Final 350 project

Dependencies:   uzair Camera_LS_Y201 F7_Ethernet LCD_DISCO_F746NG NetworkAPI SDFileSystem mbed

Revision:
0:791a779d6220
diff -r 000000000000 -r 791a779d6220 includes/jcdctmgr.c
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/includes/jcdctmgr.c	Mon Jul 31 09:16:35 2017 +0000
@@ -0,0 +1,477 @@
+/*
+ * jcdctmgr.c
+ *
+ * Copyright (C) 1994-1996, Thomas G. Lane.
+ * Modified 2003-2013 by Guido Vollbeding.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains the forward-DCT management logic.
+ * This code selects a particular DCT implementation to be used,
+ * and it performs related housekeeping chores including coefficient
+ * quantization.
+ */
+
+#define JPEG_INTERNALS
+#include "jinclude.h"
+#include "jpeglib.h"
+#include "jdct.h"		/* Private declarations for DCT subsystem */
+
+
+/* Private subobject for this module */
+
+typedef struct {
+  struct jpeg_forward_dct pub;	/* public fields */
+
+  /* Pointer to the DCT routine actually in use */
+  forward_DCT_method_ptr do_dct[MAX_COMPONENTS];
+
+#ifdef DCT_FLOAT_SUPPORTED
+  /* Same as above for the floating-point case. */
+  float_DCT_method_ptr do_float_dct[MAX_COMPONENTS];
+#endif
+} my_fdct_controller;
+
+typedef my_fdct_controller * my_fdct_ptr;
+
+
+/* The allocated post-DCT divisor tables -- big enough for any
+ * supported variant and not identical to the quant table entries,
+ * because of scaling (especially for an unnormalized DCT) --
+ * are pointed to by dct_table in the per-component comp_info
+ * structures.  Each table is given in normal array order.
+ */
+
+typedef union {
+  DCTELEM int_array[DCTSIZE2];
+#ifdef DCT_FLOAT_SUPPORTED
+  FAST_FLOAT float_array[DCTSIZE2];
+#endif
+} divisor_table;
+
+
+/* The current scaled-DCT routines require ISLOW-style divisor tables,
+ * so be sure to compile that code if either ISLOW or SCALING is requested.
+ */
+#ifdef DCT_ISLOW_SUPPORTED
+#define PROVIDE_ISLOW_TABLES
+#else
+#ifdef DCT_SCALING_SUPPORTED
+#define PROVIDE_ISLOW_TABLES
+#endif
+#endif
+
+
+/*
+ * Perform forward DCT on one or more blocks of a component.
+ *
+ * The input samples are taken from the sample_data[] array starting at
+ * position start_row/start_col, and moving to the right for any additional
+ * blocks. The quantized coefficients are returned in coef_blocks[].
+ */
+
+METHODDEF(void)
+forward_DCT (j_compress_ptr cinfo, jpeg_component_info * compptr,
+	     JSAMPARRAY sample_data, JBLOCKROW coef_blocks,
+	     JDIMENSION start_row, JDIMENSION start_col,
+	     JDIMENSION num_blocks)
+/* This version is used for integer DCT implementations. */
+{
+  /* This routine is heavily used, so it's worth coding it tightly. */
+  my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct;
+  forward_DCT_method_ptr do_dct = fdct->do_dct[compptr->component_index];
+  DCTELEM * divisors = (DCTELEM *) compptr->dct_table;
+  DCTELEM workspace[DCTSIZE2];	/* work area for FDCT subroutine */
+  JDIMENSION bi;
+
+  sample_data += start_row;	/* fold in the vertical offset once */
+
+  for (bi = 0; bi < num_blocks; bi++, start_col += compptr->DCT_h_scaled_size) {
+    /* Perform the DCT */
+    (*do_dct) (workspace, sample_data, start_col);
+
+    /* Quantize/descale the coefficients, and store into coef_blocks[] */
+    { register DCTELEM temp, qval;
+      register int i;
+      register JCOEFPTR output_ptr = coef_blocks[bi];
+
+      for (i = 0; i < DCTSIZE2; i++) {
+	qval = divisors[i];
+	temp = workspace[i];
+	/* Divide the coefficient value by qval, ensuring proper rounding.
+	 * Since C does not specify the direction of rounding for negative
+	 * quotients, we have to force the dividend positive for portability.
+	 *
+	 * In most files, at least half of the output values will be zero
+	 * (at default quantization settings, more like three-quarters...)
+	 * so we should ensure that this case is fast.  On many machines,
+	 * a comparison is enough cheaper than a divide to make a special test
+	 * a win.  Since both inputs will be nonnegative, we need only test
+	 * for a < b to discover whether a/b is 0.
+	 * If your machine's division is fast enough, define FAST_DIVIDE.
+	 */
+#ifdef FAST_DIVIDE
+#define DIVIDE_BY(a,b)	a /= b
+#else
+#define DIVIDE_BY(a,b)	if (a >= b) a /= b; else a = 0
+#endif
+	if (temp < 0) {
+	  temp = -temp;
+	  temp += qval>>1;	/* for rounding */
+	  DIVIDE_BY(temp, qval);
+	  temp = -temp;
+	} else {
+	  temp += qval>>1;	/* for rounding */
+	  DIVIDE_BY(temp, qval);
+	}
+	output_ptr[i] = (JCOEF) temp;
+      }
+    }
+  }
+}
+
+
+#ifdef DCT_FLOAT_SUPPORTED
+
+METHODDEF(void)
+forward_DCT_float (j_compress_ptr cinfo, jpeg_component_info * compptr,
+		   JSAMPARRAY sample_data, JBLOCKROW coef_blocks,
+		   JDIMENSION start_row, JDIMENSION start_col,
+		   JDIMENSION num_blocks)
+/* This version is used for floating-point DCT implementations. */
+{
+  /* This routine is heavily used, so it's worth coding it tightly. */
+  my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct;
+  float_DCT_method_ptr do_dct = fdct->do_float_dct[compptr->component_index];
+  FAST_FLOAT * divisors = (FAST_FLOAT *) compptr->dct_table;
+  FAST_FLOAT workspace[DCTSIZE2]; /* work area for FDCT subroutine */
+  JDIMENSION bi;
+
+  sample_data += start_row;	/* fold in the vertical offset once */
+
+  for (bi = 0; bi < num_blocks; bi++, start_col += compptr->DCT_h_scaled_size) {
+    /* Perform the DCT */
+    (*do_dct) (workspace, sample_data, start_col);
+
+    /* Quantize/descale the coefficients, and store into coef_blocks[] */
+    { register FAST_FLOAT temp;
+      register int i;
+      register JCOEFPTR output_ptr = coef_blocks[bi];
+
+      for (i = 0; i < DCTSIZE2; i++) {
+	/* Apply the quantization and scaling factor */
+	temp = workspace[i] * divisors[i];
+	/* Round to nearest integer.
+	 * Since C does not specify the direction of rounding for negative
+	 * quotients, we have to force the dividend positive for portability.
+	 * The maximum coefficient size is +-16K (for 12-bit data), so this
+	 * code should work for either 16-bit or 32-bit ints.
+	 */
+	output_ptr[i] = (JCOEF) ((int) (temp + (FAST_FLOAT) 16384.5) - 16384);
+      }
+    }
+  }
+}
+
+#endif /* DCT_FLOAT_SUPPORTED */
+
+
+/*
+ * Initialize for a processing pass.
+ * Verify that all referenced Q-tables are present, and set up
+ * the divisor table for each one.
+ * In the current implementation, DCT of all components is done during
+ * the first pass, even if only some components will be output in the
+ * first scan.  Hence all components should be examined here.
+ */
+
+METHODDEF(void)
+start_pass_fdctmgr (j_compress_ptr cinfo)
+{
+  my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct;
+  int ci, qtblno, i;
+  jpeg_component_info *compptr;
+  int method = 0;
+  JQUANT_TBL * qtbl;
+  DCTELEM * dtbl;
+
+  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+       ci++, compptr++) {
+    /* Select the proper DCT routine for this component's scaling */
+    switch ((compptr->DCT_h_scaled_size << 8) + compptr->DCT_v_scaled_size) {
+#ifdef DCT_SCALING_SUPPORTED
+    case ((1 << 8) + 1):
+      fdct->do_dct[ci] = jpeg_fdct_1x1;
+      method = JDCT_ISLOW;	/* jfdctint uses islow-style table */
+      break;
+    case ((2 << 8) + 2):
+      fdct->do_dct[ci] = jpeg_fdct_2x2;
+      method = JDCT_ISLOW;	/* jfdctint uses islow-style table */
+      break;
+    case ((3 << 8) + 3):
+      fdct->do_dct[ci] = jpeg_fdct_3x3;
+      method = JDCT_ISLOW;	/* jfdctint uses islow-style table */
+      break;
+    case ((4 << 8) + 4):
+      fdct->do_dct[ci] = jpeg_fdct_4x4;
+      method = JDCT_ISLOW;	/* jfdctint uses islow-style table */
+      break;
+    case ((5 << 8) + 5):
+      fdct->do_dct[ci] = jpeg_fdct_5x5;
+      method = JDCT_ISLOW;	/* jfdctint uses islow-style table */
+      break;
+    case ((6 << 8) + 6):
+      fdct->do_dct[ci] = jpeg_fdct_6x6;
+      method = JDCT_ISLOW;	/* jfdctint uses islow-style table */
+      break;
+    case ((7 << 8) + 7):
+      fdct->do_dct[ci] = jpeg_fdct_7x7;
+      method = JDCT_ISLOW;	/* jfdctint uses islow-style table */
+      break;
+    case ((9 << 8) + 9):
+      fdct->do_dct[ci] = jpeg_fdct_9x9;
+      method = JDCT_ISLOW;	/* jfdctint uses islow-style table */
+      break;
+    case ((10 << 8) + 10):
+      fdct->do_dct[ci] = jpeg_fdct_10x10;
+      method = JDCT_ISLOW;	/* jfdctint uses islow-style table */
+      break;
+    case ((11 << 8) + 11):
+      fdct->do_dct[ci] = jpeg_fdct_11x11;
+      method = JDCT_ISLOW;	/* jfdctint uses islow-style table */
+      break;
+    case ((12 << 8) + 12):
+      fdct->do_dct[ci] = jpeg_fdct_12x12;
+      method = JDCT_ISLOW;	/* jfdctint uses islow-style table */
+      break;
+    case ((13 << 8) + 13):
+      fdct->do_dct[ci] = jpeg_fdct_13x13;
+      method = JDCT_ISLOW;	/* jfdctint uses islow-style table */
+      break;
+    case ((14 << 8) + 14):
+      fdct->do_dct[ci] = jpeg_fdct_14x14;
+      method = JDCT_ISLOW;	/* jfdctint uses islow-style table */
+      break;
+    case ((15 << 8) + 15):
+      fdct->do_dct[ci] = jpeg_fdct_15x15;
+      method = JDCT_ISLOW;	/* jfdctint uses islow-style table */
+      break;
+    case ((16 << 8) + 16):
+      fdct->do_dct[ci] = jpeg_fdct_16x16;
+      method = JDCT_ISLOW;	/* jfdctint uses islow-style table */
+      break;
+    case ((16 << 8) + 8):
+      fdct->do_dct[ci] = jpeg_fdct_16x8;
+      method = JDCT_ISLOW;	/* jfdctint uses islow-style table */
+      break;
+    case ((14 << 8) + 7):
+      fdct->do_dct[ci] = jpeg_fdct_14x7;
+      method = JDCT_ISLOW;	/* jfdctint uses islow-style table */
+      break;
+    case ((12 << 8) + 6):
+      fdct->do_dct[ci] = jpeg_fdct_12x6;
+      method = JDCT_ISLOW;	/* jfdctint uses islow-style table */
+      break;
+    case ((10 << 8) + 5):
+      fdct->do_dct[ci] = jpeg_fdct_10x5;
+      method = JDCT_ISLOW;	/* jfdctint uses islow-style table */
+      break;
+    case ((8 << 8) + 4):
+      fdct->do_dct[ci] = jpeg_fdct_8x4;
+      method = JDCT_ISLOW;	/* jfdctint uses islow-style table */
+      break;
+    case ((6 << 8) + 3):
+      fdct->do_dct[ci] = jpeg_fdct_6x3;
+      method = JDCT_ISLOW;	/* jfdctint uses islow-style table */
+      break;
+    case ((4 << 8) + 2):
+      fdct->do_dct[ci] = jpeg_fdct_4x2;
+      method = JDCT_ISLOW;	/* jfdctint uses islow-style table */
+      break;
+    case ((2 << 8) + 1):
+      fdct->do_dct[ci] = jpeg_fdct_2x1;
+      method = JDCT_ISLOW;	/* jfdctint uses islow-style table */
+      break;
+    case ((8 << 8) + 16):
+      fdct->do_dct[ci] = jpeg_fdct_8x16;
+      method = JDCT_ISLOW;	/* jfdctint uses islow-style table */
+      break;
+    case ((7 << 8) + 14):
+      fdct->do_dct[ci] = jpeg_fdct_7x14;
+      method = JDCT_ISLOW;	/* jfdctint uses islow-style table */
+      break;
+    case ((6 << 8) + 12):
+      fdct->do_dct[ci] = jpeg_fdct_6x12;
+      method = JDCT_ISLOW;	/* jfdctint uses islow-style table */
+      break;
+    case ((5 << 8) + 10):
+      fdct->do_dct[ci] = jpeg_fdct_5x10;
+      method = JDCT_ISLOW;	/* jfdctint uses islow-style table */
+      break;
+    case ((4 << 8) + 8):
+      fdct->do_dct[ci] = jpeg_fdct_4x8;
+      method = JDCT_ISLOW;	/* jfdctint uses islow-style table */
+      break;
+    case ((3 << 8) + 6):
+      fdct->do_dct[ci] = jpeg_fdct_3x6;
+      method = JDCT_ISLOW;	/* jfdctint uses islow-style table */
+      break;
+    case ((2 << 8) + 4):
+      fdct->do_dct[ci] = jpeg_fdct_2x4;
+      method = JDCT_ISLOW;	/* jfdctint uses islow-style table */
+      break;
+    case ((1 << 8) + 2):
+      fdct->do_dct[ci] = jpeg_fdct_1x2;
+      method = JDCT_ISLOW;	/* jfdctint uses islow-style table */
+      break;
+#endif
+    case ((DCTSIZE << 8) + DCTSIZE):
+      switch (cinfo->dct_method) {
+#ifdef DCT_ISLOW_SUPPORTED
+      case JDCT_ISLOW:
+	fdct->do_dct[ci] = jpeg_fdct_islow;
+	method = JDCT_ISLOW;
+	break;
+#endif
+#ifdef DCT_IFAST_SUPPORTED
+      case JDCT_IFAST:
+	fdct->do_dct[ci] = jpeg_fdct_ifast;
+	method = JDCT_IFAST;
+	break;
+#endif
+#ifdef DCT_FLOAT_SUPPORTED
+      case JDCT_FLOAT:
+	fdct->do_float_dct[ci] = jpeg_fdct_float;
+	method = JDCT_FLOAT;
+	break;
+#endif
+      default:
+	ERREXIT(cinfo, JERR_NOT_COMPILED);
+	break;
+      }
+      break;
+    default:
+      ERREXIT2(cinfo, JERR_BAD_DCTSIZE,
+	       compptr->DCT_h_scaled_size, compptr->DCT_v_scaled_size);
+      break;
+    }
+    qtblno = compptr->quant_tbl_no;
+    /* Make sure specified quantization table is present */
+    if (qtblno < 0 || qtblno >= NUM_QUANT_TBLS ||
+	cinfo->quant_tbl_ptrs[qtblno] == NULL)
+      ERREXIT1(cinfo, JERR_NO_QUANT_TABLE, qtblno);
+    qtbl = cinfo->quant_tbl_ptrs[qtblno];
+    /* Create divisor table from quant table */
+    switch (method) {
+#ifdef PROVIDE_ISLOW_TABLES
+    case JDCT_ISLOW:
+      /* For LL&M IDCT method, divisors are equal to raw quantization
+       * coefficients multiplied by 8 (to counteract scaling).
+       */
+      dtbl = (DCTELEM *) compptr->dct_table;
+      for (i = 0; i < DCTSIZE2; i++) {
+	dtbl[i] =
+	  ((DCTELEM) qtbl->quantval[i]) << (compptr->component_needed ? 4 : 3);
+      }
+      fdct->pub.forward_DCT[ci] = forward_DCT;
+      break;
+#endif
+#ifdef DCT_IFAST_SUPPORTED
+    case JDCT_IFAST:
+      {
+	/* For AA&N IDCT method, divisors are equal to quantization
+	 * coefficients scaled by scalefactor[row]*scalefactor[col], where
+	 *   scalefactor[0] = 1
+	 *   scalefactor[k] = cos(k*PI/16) * sqrt(2)    for k=1..7
+	 * We apply a further scale factor of 8.
+	 */
+#define CONST_BITS 14
+	static const INT16 aanscales[DCTSIZE2] = {
+	  /* precomputed values scaled up by 14 bits */
+	  16384, 22725, 21407, 19266, 16384, 12873,  8867,  4520,
+	  22725, 31521, 29692, 26722, 22725, 17855, 12299,  6270,
+	  21407, 29692, 27969, 25172, 21407, 16819, 11585,  5906,
+	  19266, 26722, 25172, 22654, 19266, 15137, 10426,  5315,
+	  16384, 22725, 21407, 19266, 16384, 12873,  8867,  4520,
+	  12873, 17855, 16819, 15137, 12873, 10114,  6967,  3552,
+	   8867, 12299, 11585, 10426,  8867,  6967,  4799,  2446,
+	   4520,  6270,  5906,  5315,  4520,  3552,  2446,  1247
+	};
+	SHIFT_TEMPS
+
+	dtbl = (DCTELEM *) compptr->dct_table;
+	for (i = 0; i < DCTSIZE2; i++) {
+	  dtbl[i] = (DCTELEM)
+	    DESCALE(MULTIPLY16V16((INT32) qtbl->quantval[i],
+				  (INT32) aanscales[i]),
+		    compptr->component_needed ? CONST_BITS-4 : CONST_BITS-3);
+	}
+      }
+      fdct->pub.forward_DCT[ci] = forward_DCT;
+      break;
+#endif
+#ifdef DCT_FLOAT_SUPPORTED
+    case JDCT_FLOAT:
+      {
+	/* For float AA&N IDCT method, divisors are equal to quantization
+	 * coefficients scaled by scalefactor[row]*scalefactor[col], where
+	 *   scalefactor[0] = 1
+	 *   scalefactor[k] = cos(k*PI/16) * sqrt(2)    for k=1..7
+	 * We apply a further scale factor of 8.
+	 * What's actually stored is 1/divisor so that the inner loop can
+	 * use a multiplication rather than a division.
+	 */
+	FAST_FLOAT * fdtbl = (FAST_FLOAT *) compptr->dct_table;
+	int row, col;
+	static const double aanscalefactor[DCTSIZE] = {
+	  1.0, 1.387039845, 1.306562965, 1.175875602,
+	  1.0, 0.785694958, 0.541196100, 0.275899379
+	};
+
+	i = 0;
+	for (row = 0; row < DCTSIZE; row++) {
+	  for (col = 0; col < DCTSIZE; col++) {
+	    fdtbl[i] = (FAST_FLOAT)
+	      (1.0 / ((double) qtbl->quantval[i] *
+		      aanscalefactor[row] * aanscalefactor[col] *
+		      (compptr->component_needed ? 16.0 : 8.0)));
+	    i++;
+	  }
+	}
+      }
+      fdct->pub.forward_DCT[ci] = forward_DCT_float;
+      break;
+#endif
+    default:
+      ERREXIT(cinfo, JERR_NOT_COMPILED);
+      break;
+    }
+  }
+}
+
+
+/*
+ * Initialize FDCT manager.
+ */
+
+GLOBAL(void)
+jinit_forward_dct (j_compress_ptr cinfo)
+{
+  my_fdct_ptr fdct;
+  int ci;
+  jpeg_component_info *compptr;
+
+  fdct = (my_fdct_ptr)
+    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+				SIZEOF(my_fdct_controller));
+  cinfo->fdct = &fdct->pub;
+  fdct->pub.start_pass = start_pass_fdctmgr;
+
+  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+       ci++, compptr++) {
+    /* Allocate a divisor table for each component */
+    compptr->dct_table =
+      (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+				  SIZEOF(divisor_table));
+  }
+}