Final 350 project

Dependencies:   uzair Camera_LS_Y201 F7_Ethernet LCD_DISCO_F746NG NetworkAPI SDFileSystem mbed

Revision:
0:791a779d6220
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/includes/jidctflt.c	Mon Jul 31 09:16:35 2017 +0000
@@ -0,0 +1,238 @@
+/*
+ * jidctflt.c
+ *
+ * Copyright (C) 1994-1998, Thomas G. Lane.
+ * Modified 2010-2015 by Guido Vollbeding.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains a floating-point implementation of the
+ * inverse DCT (Discrete Cosine Transform).  In the IJG code, this routine
+ * must also perform dequantization of the input coefficients.
+ *
+ * This implementation should be more accurate than either of the integer
+ * IDCT implementations.  However, it may not give the same results on all
+ * machines because of differences in roundoff behavior.  Speed will depend
+ * on the hardware's floating point capacity.
+ *
+ * A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT
+ * on each row (or vice versa, but it's more convenient to emit a row at
+ * a time).  Direct algorithms are also available, but they are much more
+ * complex and seem not to be any faster when reduced to code.
+ *
+ * This implementation is based on Arai, Agui, and Nakajima's algorithm for
+ * scaled DCT.  Their original paper (Trans. IEICE E-71(11):1095) is in
+ * Japanese, but the algorithm is described in the Pennebaker & Mitchell
+ * JPEG textbook (see REFERENCES section in file README).  The following code
+ * is based directly on figure 4-8 in P&M.
+ * While an 8-point DCT cannot be done in less than 11 multiplies, it is
+ * possible to arrange the computation so that many of the multiplies are
+ * simple scalings of the final outputs.  These multiplies can then be
+ * folded into the multiplications or divisions by the JPEG quantization
+ * table entries.  The AA&N method leaves only 5 multiplies and 29 adds
+ * to be done in the DCT itself.
+ * The primary disadvantage of this method is that with a fixed-point
+ * implementation, accuracy is lost due to imprecise representation of the
+ * scaled quantization values.  However, that problem does not arise if
+ * we use floating point arithmetic.
+ */
+
+#define JPEG_INTERNALS
+#include "jinclude.h"
+#include "jpeglib.h"
+#include "jdct.h"		/* Private declarations for DCT subsystem */
+
+#ifdef DCT_FLOAT_SUPPORTED
+
+
+/*
+ * This module is specialized to the case DCTSIZE = 8.
+ */
+
+#if DCTSIZE != 8
+  Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
+#endif
+
+
+/* Dequantize a coefficient by multiplying it by the multiplier-table
+ * entry; produce a float result.
+ */
+
+#define DEQUANTIZE(coef,quantval)  (((FAST_FLOAT) (coef)) * (quantval))
+
+
+/*
+ * Perform dequantization and inverse DCT on one block of coefficients.
+ *
+ * cK represents cos(K*pi/16).
+ */
+
+GLOBAL(void)
+jpeg_idct_float (j_decompress_ptr cinfo, jpeg_component_info * compptr,
+		 JCOEFPTR coef_block,
+		 JSAMPARRAY output_buf, JDIMENSION output_col)
+{
+  FAST_FLOAT tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
+  FAST_FLOAT tmp10, tmp11, tmp12, tmp13;
+  FAST_FLOAT z5, z10, z11, z12, z13;
+  JCOEFPTR inptr;
+  FLOAT_MULT_TYPE * quantptr;
+  FAST_FLOAT * wsptr;
+  JSAMPROW outptr;
+  JSAMPLE *range_limit = IDCT_range_limit(cinfo);
+  int ctr;
+  FAST_FLOAT workspace[DCTSIZE2]; /* buffers data between passes */
+
+  /* Pass 1: process columns from input, store into work array. */
+
+  inptr = coef_block;
+  quantptr = (FLOAT_MULT_TYPE *) compptr->dct_table;
+  wsptr = workspace;
+  for (ctr = DCTSIZE; ctr > 0; ctr--) {
+    /* Due to quantization, we will usually find that many of the input
+     * coefficients are zero, especially the AC terms.  We can exploit this
+     * by short-circuiting the IDCT calculation for any column in which all
+     * the AC terms are zero.  In that case each output is equal to the
+     * DC coefficient (with scale factor as needed).
+     * With typical images and quantization tables, half or more of the
+     * column DCT calculations can be simplified this way.
+     */
+
+    if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 &&
+	inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 &&
+	inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 &&
+	inptr[DCTSIZE*7] == 0) {
+      /* AC terms all zero */
+      FAST_FLOAT dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
+
+      wsptr[DCTSIZE*0] = dcval;
+      wsptr[DCTSIZE*1] = dcval;
+      wsptr[DCTSIZE*2] = dcval;
+      wsptr[DCTSIZE*3] = dcval;
+      wsptr[DCTSIZE*4] = dcval;
+      wsptr[DCTSIZE*5] = dcval;
+      wsptr[DCTSIZE*6] = dcval;
+      wsptr[DCTSIZE*7] = dcval;
+
+      inptr++;			/* advance pointers to next column */
+      quantptr++;
+      wsptr++;
+      continue;
+    }
+
+    /* Even part */
+
+    tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
+    tmp1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
+    tmp2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
+    tmp3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
+
+    tmp10 = tmp0 + tmp2;	/* phase 3 */
+    tmp11 = tmp0 - tmp2;
+
+    tmp13 = tmp1 + tmp3;	/* phases 5-3 */
+    tmp12 = (tmp1 - tmp3) * ((FAST_FLOAT) 1.414213562) - tmp13; /* 2*c4 */
+
+    tmp0 = tmp10 + tmp13;	/* phase 2 */
+    tmp3 = tmp10 - tmp13;
+    tmp1 = tmp11 + tmp12;
+    tmp2 = tmp11 - tmp12;
+
+    /* Odd part */
+
+    tmp4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
+    tmp5 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
+    tmp6 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
+    tmp7 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
+
+    z13 = tmp6 + tmp5;		/* phase 6 */
+    z10 = tmp6 - tmp5;
+    z11 = tmp4 + tmp7;
+    z12 = tmp4 - tmp7;
+
+    tmp7 = z11 + z13;		/* phase 5 */
+    tmp11 = (z11 - z13) * ((FAST_FLOAT) 1.414213562); /* 2*c4 */
+
+    z5 = (z10 + z12) * ((FAST_FLOAT) 1.847759065); /* 2*c2 */
+    tmp10 = z5 - z12 * ((FAST_FLOAT) 1.082392200); /* 2*(c2-c6) */
+    tmp12 = z5 - z10 * ((FAST_FLOAT) 2.613125930); /* 2*(c2+c6) */
+
+    tmp6 = tmp12 - tmp7;	/* phase 2 */
+    tmp5 = tmp11 - tmp6;
+    tmp4 = tmp10 - tmp5;
+
+    wsptr[DCTSIZE*0] = tmp0 + tmp7;
+    wsptr[DCTSIZE*7] = tmp0 - tmp7;
+    wsptr[DCTSIZE*1] = tmp1 + tmp6;
+    wsptr[DCTSIZE*6] = tmp1 - tmp6;
+    wsptr[DCTSIZE*2] = tmp2 + tmp5;
+    wsptr[DCTSIZE*5] = tmp2 - tmp5;
+    wsptr[DCTSIZE*3] = tmp3 + tmp4;
+    wsptr[DCTSIZE*4] = tmp3 - tmp4;
+
+    inptr++;			/* advance pointers to next column */
+    quantptr++;
+    wsptr++;
+  }
+
+  /* Pass 2: process rows from work array, store into output array. */
+
+  wsptr = workspace;
+  for (ctr = 0; ctr < DCTSIZE; ctr++) {
+    outptr = output_buf[ctr] + output_col;
+    /* Rows of zeroes can be exploited in the same way as we did with columns.
+     * However, the column calculation has created many nonzero AC terms, so
+     * the simplification applies less often (typically 5% to 10% of the time).
+     * And testing floats for zero is relatively expensive, so we don't bother.
+     */
+
+    /* Even part */
+
+    /* Prepare range-limit and float->int conversion */
+    z5 = wsptr[0] + (((FAST_FLOAT) RANGE_CENTER) + ((FAST_FLOAT) 0.5));
+    tmp10 = z5 + wsptr[4];
+    tmp11 = z5 - wsptr[4];
+
+    tmp13 = wsptr[2] + wsptr[6];
+    tmp12 = (wsptr[2] - wsptr[6]) *
+	      ((FAST_FLOAT) 1.414213562) - tmp13; /* 2*c4 */
+
+    tmp0 = tmp10 + tmp13;
+    tmp3 = tmp10 - tmp13;
+    tmp1 = tmp11 + tmp12;
+    tmp2 = tmp11 - tmp12;
+
+    /* Odd part */
+
+    z13 = wsptr[5] + wsptr[3];
+    z10 = wsptr[5] - wsptr[3];
+    z11 = wsptr[1] + wsptr[7];
+    z12 = wsptr[1] - wsptr[7];
+
+    tmp7 = z11 + z13;		/* phase 5 */
+    tmp11 = (z11 - z13) * ((FAST_FLOAT) 1.414213562); /* 2*c4 */
+
+    z5 = (z10 + z12) * ((FAST_FLOAT) 1.847759065); /* 2*c2 */
+    tmp10 = z5 - z12 * ((FAST_FLOAT) 1.082392200); /* 2*(c2-c6) */
+    tmp12 = z5 - z10 * ((FAST_FLOAT) 2.613125930); /* 2*(c2+c6) */
+
+    tmp6 = tmp12 - tmp7;	/* phase 2 */
+    tmp5 = tmp11 - tmp6;
+    tmp4 = tmp10 - tmp5;
+
+    /* Final output stage: float->int conversion and range-limit */
+
+    outptr[0] = range_limit[(int) (tmp0 + tmp7) & RANGE_MASK];
+    outptr[7] = range_limit[(int) (tmp0 - tmp7) & RANGE_MASK];
+    outptr[1] = range_limit[(int) (tmp1 + tmp6) & RANGE_MASK];
+    outptr[6] = range_limit[(int) (tmp1 - tmp6) & RANGE_MASK];
+    outptr[2] = range_limit[(int) (tmp2 + tmp5) & RANGE_MASK];
+    outptr[5] = range_limit[(int) (tmp2 - tmp5) & RANGE_MASK];
+    outptr[3] = range_limit[(int) (tmp3 + tmp4) & RANGE_MASK];
+    outptr[4] = range_limit[(int) (tmp3 - tmp4) & RANGE_MASK];
+
+    wsptr += DCTSIZE;		/* advance pointer to next row */
+  }
+}
+
+#endif /* DCT_FLOAT_SUPPORTED */