Final 350 project

Dependencies:   uzair Camera_LS_Y201 F7_Ethernet LCD_DISCO_F746NG NetworkAPI SDFileSystem mbed

Revision:
0:791a779d6220
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/includes/jdarith.c	Mon Jul 31 09:16:35 2017 +0000
@@ -0,0 +1,796 @@
+/*
+ * jdarith.c
+ *
+ * Developed 1997-2015 by Guido Vollbeding.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains portable arithmetic entropy decoding routines for JPEG
+ * (implementing the ISO/IEC IS 10918-1 and CCITT Recommendation ITU-T T.81).
+ *
+ * Both sequential and progressive modes are supported in this single module.
+ *
+ * Suspension is not currently supported in this module.
+ */
+
+#define JPEG_INTERNALS
+#include "jinclude.h"
+#include "jpeglib.h"
+
+
+/* Expanded entropy decoder object for arithmetic decoding. */
+
+typedef struct {
+  struct jpeg_entropy_decoder pub; /* public fields */
+
+  INT32 c;       /* C register, base of coding interval + input bit buffer */
+  INT32 a;               /* A register, normalized size of coding interval */
+  int ct;     /* bit shift counter, # of bits left in bit buffer part of C */
+                                                         /* init: ct = -16 */
+                                                         /* run: ct = 0..7 */
+                                                         /* error: ct = -1 */
+  int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
+  int dc_context[MAX_COMPS_IN_SCAN]; /* context index for DC conditioning */
+
+  unsigned int restarts_to_go;	/* MCUs left in this restart interval */
+
+  /* Pointers to statistics areas (these workspaces have image lifespan) */
+  unsigned char * dc_stats[NUM_ARITH_TBLS];
+  unsigned char * ac_stats[NUM_ARITH_TBLS];
+
+  /* Statistics bin for coding with fixed probability 0.5 */
+  unsigned char fixed_bin[4];
+} arith_entropy_decoder;
+
+typedef arith_entropy_decoder * arith_entropy_ptr;
+
+/* The following two definitions specify the allocation chunk size
+ * for the statistics area.
+ * According to sections F.1.4.4.1.3 and F.1.4.4.2, we need at least
+ * 49 statistics bins for DC, and 245 statistics bins for AC coding.
+ *
+ * We use a compact representation with 1 byte per statistics bin,
+ * thus the numbers directly represent byte sizes.
+ * This 1 byte per statistics bin contains the meaning of the MPS
+ * (more probable symbol) in the highest bit (mask 0x80), and the
+ * index into the probability estimation state machine table
+ * in the lower bits (mask 0x7F).
+ */
+
+#define DC_STAT_BINS 64
+#define AC_STAT_BINS 256
+
+
+LOCAL(int)
+get_byte (j_decompress_ptr cinfo)
+/* Read next input byte; we do not support suspension in this module. */
+{
+  struct jpeg_source_mgr * src = cinfo->src;
+
+  if (src->bytes_in_buffer == 0)
+    if (! (*src->fill_input_buffer) (cinfo))
+      ERREXIT(cinfo, JERR_CANT_SUSPEND);
+  src->bytes_in_buffer--;
+  return GETJOCTET(*src->next_input_byte++);
+}
+
+
+/*
+ * The core arithmetic decoding routine (common in JPEG and JBIG).
+ * This needs to go as fast as possible.
+ * Machine-dependent optimization facilities
+ * are not utilized in this portable implementation.
+ * However, this code should be fairly efficient and
+ * may be a good base for further optimizations anyway.
+ *
+ * Return value is 0 or 1 (binary decision).
+ *
+ * Note: I've changed the handling of the code base & bit
+ * buffer register C compared to other implementations
+ * based on the standards layout & procedures.
+ * While it also contains both the actual base of the
+ * coding interval (16 bits) and the next-bits buffer,
+ * the cut-point between these two parts is floating
+ * (instead of fixed) with the bit shift counter CT.
+ * Thus, we also need only one (variable instead of
+ * fixed size) shift for the LPS/MPS decision, and
+ * we can do away with any renormalization update
+ * of C (except for new data insertion, of course).
+ *
+ * I've also introduced a new scheme for accessing
+ * the probability estimation state machine table,
+ * derived from Markus Kuhn's JBIG implementation.
+ */
+
+LOCAL(int)
+arith_decode (j_decompress_ptr cinfo, unsigned char *st)
+{
+  register arith_entropy_ptr e = (arith_entropy_ptr) cinfo->entropy;
+  register unsigned char nl, nm;
+  register INT32 qe, temp;
+  register int sv, data;
+
+  /* Renormalization & data input per section D.2.6 */
+  while (e->a < 0x8000L) {
+    if (--e->ct < 0) {
+      /* Need to fetch next data byte */
+      if (cinfo->unread_marker)
+	data = 0;		/* stuff zero data */
+      else {
+	data = get_byte(cinfo);	/* read next input byte */
+	if (data == 0xFF) {	/* zero stuff or marker code */
+	  do data = get_byte(cinfo);
+	  while (data == 0xFF);	/* swallow extra 0xFF bytes */
+	  if (data == 0)
+	    data = 0xFF;	/* discard stuffed zero byte */
+	  else {
+	    /* Note: Different from the Huffman decoder, hitting
+	     * a marker while processing the compressed data
+	     * segment is legal in arithmetic coding.
+	     * The convention is to supply zero data
+	     * then until decoding is complete.
+	     */
+	    cinfo->unread_marker = data;
+	    data = 0;
+	  }
+	}
+      }
+      e->c = (e->c << 8) | data; /* insert data into C register */
+      if ((e->ct += 8) < 0)	 /* update bit shift counter */
+	/* Need more initial bytes */
+	if (++e->ct == 0)
+	  /* Got 2 initial bytes -> re-init A and exit loop */
+	  e->a = 0x8000L; /* => e->a = 0x10000L after loop exit */
+    }
+    e->a <<= 1;
+  }
+
+  /* Fetch values from our compact representation of Table D.3(D.2):
+   * Qe values and probability estimation state machine
+   */
+  sv = *st;
+  qe = jpeg_aritab[sv & 0x7F];	/* => Qe_Value */
+  nl = qe & 0xFF; qe >>= 8;	/* Next_Index_LPS + Switch_MPS */
+  nm = qe & 0xFF; qe >>= 8;	/* Next_Index_MPS */
+
+  /* Decode & estimation procedures per sections D.2.4 & D.2.5 */
+  temp = e->a - qe;
+  e->a = temp;
+  temp <<= e->ct;
+  if (e->c >= temp) {
+    e->c -= temp;
+    /* Conditional LPS (less probable symbol) exchange */
+    if (e->a < qe) {
+      e->a = qe;
+      *st = (sv & 0x80) ^ nm;	/* Estimate_after_MPS */
+    } else {
+      e->a = qe;
+      *st = (sv & 0x80) ^ nl;	/* Estimate_after_LPS */
+      sv ^= 0x80;		/* Exchange LPS/MPS */
+    }
+  } else if (e->a < 0x8000L) {
+    /* Conditional MPS (more probable symbol) exchange */
+    if (e->a < qe) {
+      *st = (sv & 0x80) ^ nl;	/* Estimate_after_LPS */
+      sv ^= 0x80;		/* Exchange LPS/MPS */
+    } else {
+      *st = (sv & 0x80) ^ nm;	/* Estimate_after_MPS */
+    }
+  }
+
+  return sv >> 7;
+}
+
+
+/*
+ * Check for a restart marker & resynchronize decoder.
+ */
+
+LOCAL(void)
+process_restart (j_decompress_ptr cinfo)
+{
+  arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
+  int ci;
+  jpeg_component_info * compptr;
+
+  /* Advance past the RSTn marker */
+  if (! (*cinfo->marker->read_restart_marker) (cinfo))
+    ERREXIT(cinfo, JERR_CANT_SUSPEND);
+
+  /* Re-initialize statistics areas */
+  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
+    compptr = cinfo->cur_comp_info[ci];
+    if (! cinfo->progressive_mode || (cinfo->Ss == 0 && cinfo->Ah == 0)) {
+      MEMZERO(entropy->dc_stats[compptr->dc_tbl_no], DC_STAT_BINS);
+      /* Reset DC predictions to 0 */
+      entropy->last_dc_val[ci] = 0;
+      entropy->dc_context[ci] = 0;
+    }
+    if ((! cinfo->progressive_mode && cinfo->lim_Se) ||
+	(cinfo->progressive_mode && cinfo->Ss)) {
+      MEMZERO(entropy->ac_stats[compptr->ac_tbl_no], AC_STAT_BINS);
+    }
+  }
+
+  /* Reset arithmetic decoding variables */
+  entropy->c = 0;
+  entropy->a = 0;
+  entropy->ct = -16;	/* force reading 2 initial bytes to fill C */
+
+  /* Reset restart counter */
+  entropy->restarts_to_go = cinfo->restart_interval;
+}
+
+
+/*
+ * Arithmetic MCU decoding.
+ * Each of these routines decodes and returns one MCU's worth of
+ * arithmetic-compressed coefficients.
+ * The coefficients are reordered from zigzag order into natural array order,
+ * but are not dequantized.
+ *
+ * The i'th block of the MCU is stored into the block pointed to by
+ * MCU_data[i].  WE ASSUME THIS AREA IS INITIALLY ZEROED BY THE CALLER.
+ */
+
+/*
+ * MCU decoding for DC initial scan (either spectral selection,
+ * or first pass of successive approximation).
+ */
+
+METHODDEF(boolean)
+decode_mcu_DC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
+{
+  arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
+  JBLOCKROW block;
+  unsigned char *st;
+  int blkn, ci, tbl, sign;
+  int v, m;
+
+  /* Process restart marker if needed */
+  if (cinfo->restart_interval) {
+    if (entropy->restarts_to_go == 0)
+      process_restart(cinfo);
+    entropy->restarts_to_go--;
+  }
+
+  if (entropy->ct == -1) return TRUE;	/* if error do nothing */
+
+  /* Outer loop handles each block in the MCU */
+
+  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
+    block = MCU_data[blkn];
+    ci = cinfo->MCU_membership[blkn];
+    tbl = cinfo->cur_comp_info[ci]->dc_tbl_no;
+
+    /* Sections F.2.4.1 & F.1.4.4.1: Decoding of DC coefficients */
+
+    /* Table F.4: Point to statistics bin S0 for DC coefficient coding */
+    st = entropy->dc_stats[tbl] + entropy->dc_context[ci];
+
+    /* Figure F.19: Decode_DC_DIFF */
+    if (arith_decode(cinfo, st) == 0)
+      entropy->dc_context[ci] = 0;
+    else {
+      /* Figure F.21: Decoding nonzero value v */
+      /* Figure F.22: Decoding the sign of v */
+      sign = arith_decode(cinfo, st + 1);
+      st += 2; st += sign;
+      /* Figure F.23: Decoding the magnitude category of v */
+      if ((m = arith_decode(cinfo, st)) != 0) {
+	st = entropy->dc_stats[tbl] + 20;	/* Table F.4: X1 = 20 */
+	while (arith_decode(cinfo, st)) {
+	  if ((m <<= 1) == 0x8000) {
+	    WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
+	    entropy->ct = -1;			/* magnitude overflow */
+	    return TRUE;
+	  }
+	  st += 1;
+	}
+      }
+      /* Section F.1.4.4.1.2: Establish dc_context conditioning category */
+      if (m < (int) ((1L << cinfo->arith_dc_L[tbl]) >> 1))
+	entropy->dc_context[ci] = 0;		   /* zero diff category */
+      else if (m > (int) ((1L << cinfo->arith_dc_U[tbl]) >> 1))
+	entropy->dc_context[ci] = 12 + (sign * 4); /* large diff category */
+      else
+	entropy->dc_context[ci] = 4 + (sign * 4);  /* small diff category */
+      v = m;
+      /* Figure F.24: Decoding the magnitude bit pattern of v */
+      st += 14;
+      while (m >>= 1)
+	if (arith_decode(cinfo, st)) v |= m;
+      v += 1; if (sign) v = -v;
+      entropy->last_dc_val[ci] += v;
+    }
+
+    /* Scale and output the DC coefficient (assumes jpeg_natural_order[0]=0) */
+    (*block)[0] = (JCOEF) (entropy->last_dc_val[ci] << cinfo->Al);
+  }
+
+  return TRUE;
+}
+
+
+/*
+ * MCU decoding for AC initial scan (either spectral selection,
+ * or first pass of successive approximation).
+ */
+
+METHODDEF(boolean)
+decode_mcu_AC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
+{
+  arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
+  JBLOCKROW block;
+  unsigned char *st;
+  int tbl, sign, k;
+  int v, m;
+  const int * natural_order;
+
+  /* Process restart marker if needed */
+  if (cinfo->restart_interval) {
+    if (entropy->restarts_to_go == 0)
+      process_restart(cinfo);
+    entropy->restarts_to_go--;
+  }
+
+  if (entropy->ct == -1) return TRUE;	/* if error do nothing */
+
+  natural_order = cinfo->natural_order;
+
+  /* There is always only one block per MCU */
+  block = MCU_data[0];
+  tbl = cinfo->cur_comp_info[0]->ac_tbl_no;
+
+  /* Sections F.2.4.2 & F.1.4.4.2: Decoding of AC coefficients */
+
+  /* Figure F.20: Decode_AC_coefficients */
+  k = cinfo->Ss - 1;
+  do {
+    st = entropy->ac_stats[tbl] + 3 * k;
+    if (arith_decode(cinfo, st)) break;		/* EOB flag */
+    for (;;) {
+      k++;
+      if (arith_decode(cinfo, st + 1)) break;
+      st += 3;
+      if (k >= cinfo->Se) {
+	WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
+	entropy->ct = -1;			/* spectral overflow */
+	return TRUE;
+      }
+    }
+    /* Figure F.21: Decoding nonzero value v */
+    /* Figure F.22: Decoding the sign of v */
+    sign = arith_decode(cinfo, entropy->fixed_bin);
+    st += 2;
+    /* Figure F.23: Decoding the magnitude category of v */
+    if ((m = arith_decode(cinfo, st)) != 0) {
+      if (arith_decode(cinfo, st)) {
+	m <<= 1;
+	st = entropy->ac_stats[tbl] +
+	     (k <= cinfo->arith_ac_K[tbl] ? 189 : 217);
+	while (arith_decode(cinfo, st)) {
+	  if ((m <<= 1) == 0x8000) {
+	    WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
+	    entropy->ct = -1;			/* magnitude overflow */
+	    return TRUE;
+	  }
+	  st += 1;
+	}
+      }
+    }
+    v = m;
+    /* Figure F.24: Decoding the magnitude bit pattern of v */
+    st += 14;
+    while (m >>= 1)
+      if (arith_decode(cinfo, st)) v |= m;
+    v += 1; if (sign) v = -v;
+    /* Scale and output coefficient in natural (dezigzagged) order */
+    (*block)[natural_order[k]] = (JCOEF) (v << cinfo->Al);
+  } while (k < cinfo->Se);
+
+  return TRUE;
+}
+
+
+/*
+ * MCU decoding for DC successive approximation refinement scan.
+ * Note: we assume such scans can be multi-component,
+ * although the spec is not very clear on the point.
+ */
+
+METHODDEF(boolean)
+decode_mcu_DC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
+{
+  arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
+  unsigned char *st;
+  int p1, blkn;
+
+  /* Process restart marker if needed */
+  if (cinfo->restart_interval) {
+    if (entropy->restarts_to_go == 0)
+      process_restart(cinfo);
+    entropy->restarts_to_go--;
+  }
+
+  st = entropy->fixed_bin;	/* use fixed probability estimation */
+  p1 = 1 << cinfo->Al;		/* 1 in the bit position being coded */
+
+  /* Outer loop handles each block in the MCU */
+
+  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
+    /* Encoded data is simply the next bit of the two's-complement DC value */
+    if (arith_decode(cinfo, st))
+      MCU_data[blkn][0][0] |= p1;
+  }
+
+  return TRUE;
+}
+
+
+/*
+ * MCU decoding for AC successive approximation refinement scan.
+ */
+
+METHODDEF(boolean)
+decode_mcu_AC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
+{
+  arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
+  JBLOCKROW block;
+  JCOEFPTR thiscoef;
+  unsigned char *st;
+  int tbl, k, kex;
+  int p1, m1;
+  const int * natural_order;
+
+  /* Process restart marker if needed */
+  if (cinfo->restart_interval) {
+    if (entropy->restarts_to_go == 0)
+      process_restart(cinfo);
+    entropy->restarts_to_go--;
+  }
+
+  if (entropy->ct == -1) return TRUE;	/* if error do nothing */
+
+  natural_order = cinfo->natural_order;
+
+  /* There is always only one block per MCU */
+  block = MCU_data[0];
+  tbl = cinfo->cur_comp_info[0]->ac_tbl_no;
+
+  p1 = 1 << cinfo->Al;		/* 1 in the bit position being coded */
+  m1 = (-1) << cinfo->Al;	/* -1 in the bit position being coded */
+
+  /* Establish EOBx (previous stage end-of-block) index */
+  kex = cinfo->Se;
+  do {
+    if ((*block)[natural_order[kex]]) break;
+  } while (--kex);
+
+  k = cinfo->Ss - 1;
+  do {
+    st = entropy->ac_stats[tbl] + 3 * k;
+    if (k >= kex)
+      if (arith_decode(cinfo, st)) break;	/* EOB flag */
+    for (;;) {
+      thiscoef = *block + natural_order[++k];
+      if (*thiscoef) {				/* previously nonzero coef */
+	if (arith_decode(cinfo, st + 2)) {
+	  if (*thiscoef < 0)
+	    *thiscoef += m1;
+	  else
+	    *thiscoef += p1;
+	}
+	break;
+      }
+      if (arith_decode(cinfo, st + 1)) {	/* newly nonzero coef */
+	if (arith_decode(cinfo, entropy->fixed_bin))
+	  *thiscoef = m1;
+	else
+	  *thiscoef = p1;
+	break;
+      }
+      st += 3;
+      if (k >= cinfo->Se) {
+	WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
+	entropy->ct = -1;			/* spectral overflow */
+	return TRUE;
+      }
+    }
+  } while (k < cinfo->Se);
+
+  return TRUE;
+}
+
+
+/*
+ * Decode one MCU's worth of arithmetic-compressed coefficients.
+ */
+
+METHODDEF(boolean)
+decode_mcu (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
+{
+  arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
+  jpeg_component_info * compptr;
+  JBLOCKROW block;
+  unsigned char *st;
+  int blkn, ci, tbl, sign, k;
+  int v, m;
+  const int * natural_order;
+
+  /* Process restart marker if needed */
+  if (cinfo->restart_interval) {
+    if (entropy->restarts_to_go == 0)
+      process_restart(cinfo);
+    entropy->restarts_to_go--;
+  }
+
+  if (entropy->ct == -1) return TRUE;	/* if error do nothing */
+
+  natural_order = cinfo->natural_order;
+
+  /* Outer loop handles each block in the MCU */
+
+  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
+    block = MCU_data[blkn];
+    ci = cinfo->MCU_membership[blkn];
+    compptr = cinfo->cur_comp_info[ci];
+
+    /* Sections F.2.4.1 & F.1.4.4.1: Decoding of DC coefficients */
+
+    tbl = compptr->dc_tbl_no;
+
+    /* Table F.4: Point to statistics bin S0 for DC coefficient coding */
+    st = entropy->dc_stats[tbl] + entropy->dc_context[ci];
+
+    /* Figure F.19: Decode_DC_DIFF */
+    if (arith_decode(cinfo, st) == 0)
+      entropy->dc_context[ci] = 0;
+    else {
+      /* Figure F.21: Decoding nonzero value v */
+      /* Figure F.22: Decoding the sign of v */
+      sign = arith_decode(cinfo, st + 1);
+      st += 2; st += sign;
+      /* Figure F.23: Decoding the magnitude category of v */
+      if ((m = arith_decode(cinfo, st)) != 0) {
+	st = entropy->dc_stats[tbl] + 20;	/* Table F.4: X1 = 20 */
+	while (arith_decode(cinfo, st)) {
+	  if ((m <<= 1) == 0x8000) {
+	    WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
+	    entropy->ct = -1;			/* magnitude overflow */
+	    return TRUE;
+	  }
+	  st += 1;
+	}
+      }
+      /* Section F.1.4.4.1.2: Establish dc_context conditioning category */
+      if (m < (int) ((1L << cinfo->arith_dc_L[tbl]) >> 1))
+	entropy->dc_context[ci] = 0;		   /* zero diff category */
+      else if (m > (int) ((1L << cinfo->arith_dc_U[tbl]) >> 1))
+	entropy->dc_context[ci] = 12 + (sign * 4); /* large diff category */
+      else
+	entropy->dc_context[ci] = 4 + (sign * 4);  /* small diff category */
+      v = m;
+      /* Figure F.24: Decoding the magnitude bit pattern of v */
+      st += 14;
+      while (m >>= 1)
+	if (arith_decode(cinfo, st)) v |= m;
+      v += 1; if (sign) v = -v;
+      entropy->last_dc_val[ci] += v;
+    }
+
+    (*block)[0] = (JCOEF) entropy->last_dc_val[ci];
+
+    /* Sections F.2.4.2 & F.1.4.4.2: Decoding of AC coefficients */
+
+    if (cinfo->lim_Se == 0) continue;
+    tbl = compptr->ac_tbl_no;
+    k = 0;
+
+    /* Figure F.20: Decode_AC_coefficients */
+    do {
+      st = entropy->ac_stats[tbl] + 3 * k;
+      if (arith_decode(cinfo, st)) break;	/* EOB flag */
+      for (;;) {
+	k++;
+	if (arith_decode(cinfo, st + 1)) break;
+	st += 3;
+	if (k >= cinfo->lim_Se) {
+	  WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
+	  entropy->ct = -1;			/* spectral overflow */
+	  return TRUE;
+	}
+      }
+      /* Figure F.21: Decoding nonzero value v */
+      /* Figure F.22: Decoding the sign of v */
+      sign = arith_decode(cinfo, entropy->fixed_bin);
+      st += 2;
+      /* Figure F.23: Decoding the magnitude category of v */
+      if ((m = arith_decode(cinfo, st)) != 0) {
+	if (arith_decode(cinfo, st)) {
+	  m <<= 1;
+	  st = entropy->ac_stats[tbl] +
+	       (k <= cinfo->arith_ac_K[tbl] ? 189 : 217);
+	  while (arith_decode(cinfo, st)) {
+	    if ((m <<= 1) == 0x8000) {
+	      WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
+	      entropy->ct = -1;			/* magnitude overflow */
+	      return TRUE;
+	    }
+	    st += 1;
+	  }
+	}
+      }
+      v = m;
+      /* Figure F.24: Decoding the magnitude bit pattern of v */
+      st += 14;
+      while (m >>= 1)
+	if (arith_decode(cinfo, st)) v |= m;
+      v += 1; if (sign) v = -v;
+      (*block)[natural_order[k]] = (JCOEF) v;
+    } while (k < cinfo->lim_Se);
+  }
+
+  return TRUE;
+}
+
+
+/*
+ * Initialize for an arithmetic-compressed scan.
+ */
+
+METHODDEF(void)
+start_pass (j_decompress_ptr cinfo)
+{
+  arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
+  int ci, tbl;
+  jpeg_component_info * compptr;
+
+  if (cinfo->progressive_mode) {
+    /* Validate progressive scan parameters */
+    if (cinfo->Ss == 0) {
+      if (cinfo->Se != 0)
+	goto bad;
+    } else {
+      /* need not check Ss/Se < 0 since they came from unsigned bytes */
+      if (cinfo->Se < cinfo->Ss || cinfo->Se > cinfo->lim_Se)
+	goto bad;
+      /* AC scans may have only one component */
+      if (cinfo->comps_in_scan != 1)
+	goto bad;
+    }
+    if (cinfo->Ah != 0) {
+      /* Successive approximation refinement scan: must have Al = Ah-1. */
+      if (cinfo->Ah-1 != cinfo->Al)
+	goto bad;
+    }
+    if (cinfo->Al > 13) {	/* need not check for < 0 */
+      bad:
+      ERREXIT4(cinfo, JERR_BAD_PROGRESSION,
+	       cinfo->Ss, cinfo->Se, cinfo->Ah, cinfo->Al);
+    }
+    /* Update progression status, and verify that scan order is legal.
+     * Note that inter-scan inconsistencies are treated as warnings
+     * not fatal errors ... not clear if this is right way to behave.
+     */
+    for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
+      int coefi, cindex = cinfo->cur_comp_info[ci]->component_index;
+      int *coef_bit_ptr = & cinfo->coef_bits[cindex][0];
+      if (cinfo->Ss && coef_bit_ptr[0] < 0) /* AC without prior DC scan */
+	WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, 0);
+      for (coefi = cinfo->Ss; coefi <= cinfo->Se; coefi++) {
+	int expected = (coef_bit_ptr[coefi] < 0) ? 0 : coef_bit_ptr[coefi];
+	if (cinfo->Ah != expected)
+	  WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, coefi);
+	coef_bit_ptr[coefi] = cinfo->Al;
+      }
+    }
+    /* Select MCU decoding routine */
+    if (cinfo->Ah == 0) {
+      if (cinfo->Ss == 0)
+	entropy->pub.decode_mcu = decode_mcu_DC_first;
+      else
+	entropy->pub.decode_mcu = decode_mcu_AC_first;
+    } else {
+      if (cinfo->Ss == 0)
+	entropy->pub.decode_mcu = decode_mcu_DC_refine;
+      else
+	entropy->pub.decode_mcu = decode_mcu_AC_refine;
+    }
+  } else {
+    /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG.
+     * This ought to be an error condition, but we make it a warning.
+     */
+    if (cinfo->Ss != 0 || cinfo->Ah != 0 || cinfo->Al != 0 ||
+	(cinfo->Se < DCTSIZE2 && cinfo->Se != cinfo->lim_Se))
+      WARNMS(cinfo, JWRN_NOT_SEQUENTIAL);
+    /* Select MCU decoding routine */
+    entropy->pub.decode_mcu = decode_mcu;
+  }
+
+  /* Allocate & initialize requested statistics areas */
+  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
+    compptr = cinfo->cur_comp_info[ci];
+    if (! cinfo->progressive_mode || (cinfo->Ss == 0 && cinfo->Ah == 0)) {
+      tbl = compptr->dc_tbl_no;
+      if (tbl < 0 || tbl >= NUM_ARITH_TBLS)
+	ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl);
+      if (entropy->dc_stats[tbl] == NULL)
+	entropy->dc_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small)
+	  ((j_common_ptr) cinfo, JPOOL_IMAGE, DC_STAT_BINS);
+      MEMZERO(entropy->dc_stats[tbl], DC_STAT_BINS);
+      /* Initialize DC predictions to 0 */
+      entropy->last_dc_val[ci] = 0;
+      entropy->dc_context[ci] = 0;
+    }
+    if ((! cinfo->progressive_mode && cinfo->lim_Se) ||
+	(cinfo->progressive_mode && cinfo->Ss)) {
+      tbl = compptr->ac_tbl_no;
+      if (tbl < 0 || tbl >= NUM_ARITH_TBLS)
+	ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl);
+      if (entropy->ac_stats[tbl] == NULL)
+	entropy->ac_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small)
+	  ((j_common_ptr) cinfo, JPOOL_IMAGE, AC_STAT_BINS);
+      MEMZERO(entropy->ac_stats[tbl], AC_STAT_BINS);
+    }
+  }
+
+  /* Initialize arithmetic decoding variables */
+  entropy->c = 0;
+  entropy->a = 0;
+  entropy->ct = -16;	/* force reading 2 initial bytes to fill C */
+
+  /* Initialize restart counter */
+  entropy->restarts_to_go = cinfo->restart_interval;
+}
+
+
+/*
+ * Finish up at the end of an arithmetic-compressed scan.
+ */
+
+METHODDEF(void)
+finish_pass (j_decompress_ptr cinfo)
+{
+  /* no work necessary here */
+}
+
+
+/*
+ * Module initialization routine for arithmetic entropy decoding.
+ */
+
+GLOBAL(void)
+jinit_arith_decoder (j_decompress_ptr cinfo)
+{
+  arith_entropy_ptr entropy;
+  int i;
+
+  entropy = (arith_entropy_ptr)
+    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+				SIZEOF(arith_entropy_decoder));
+  cinfo->entropy = &entropy->pub;
+  entropy->pub.start_pass = start_pass;
+  entropy->pub.finish_pass = finish_pass;
+
+  /* Mark tables unallocated */
+  for (i = 0; i < NUM_ARITH_TBLS; i++) {
+    entropy->dc_stats[i] = NULL;
+    entropy->ac_stats[i] = NULL;
+  }
+
+  /* Initialize index for fixed probability estimation */
+  entropy->fixed_bin[0] = 113;
+
+  if (cinfo->progressive_mode) {
+    /* Create progression status table */
+    int *coef_bit_ptr, ci;
+    cinfo->coef_bits = (int (*)[DCTSIZE2])
+      (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+				  cinfo->num_components*DCTSIZE2*SIZEOF(int));
+    coef_bit_ptr = & cinfo->coef_bits[0][0];
+    for (ci = 0; ci < cinfo->num_components; ci++) 
+      for (i = 0; i < DCTSIZE2; i++)
+	*coef_bit_ptr++ = -1;
+  }
+}