add codes for data reading and PCA
Dependencies: mpu9250_i2c Eigen
source/main.cpp
- Committer:
- shiyaozhanag
- Date:
- 2019-11-20
- Revision:
- 2:145ba8262ed2
- Parent:
- 1:28c107f8cf24
File content as of revision 2:145ba8262ed2:
/* mbed Microcontroller Library * Copyright (c) 2006-2014 ARM Limited * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <events/mbed_events.h> #include <mbed.h> #include "ble/BLE.h" #include "ble/Gap.h" #include "pretty_printer.h" /*** Library used by PCA #include "mbed.h" #include "platform/mbed_thread.h" #include "stats_report.h" #include "MPU9250.h" #include <Eigen/Dense.h> #include <iostream> ***/ /*** Fields used by PCA using namespace std; using namespace Eigen; DigitalOut led1(LED1); const int addr7bit = 0x68; // 7bit I2C address,AD0 is 0 #define SLEEP_TIME 5000 // (msec) ***/ /*** Methods used by PCA ///* // * Normalize the Matrix X // */ // MatrixXd featurnormail(MatrixXd &X) //{ // //I don't know why to use the transpose // //compute the mean of every dimension // MatrixXd X1 = X.transpose(); // MatrixXd meanval = X1.colwise().mean(); // // //normalization // RowVectorXd meanvecRow = meanval; // X1.rowwise() -= meanvecRow; // // return X1.transpose(); //} // // /* // * Compute the Covariane Matrix of X, put to C // * C = 1/m * X * X.transpose // */ //void ComComputeCov(MatrixXd &X, MatrixXd &C) //{ // // C = X*X.adjoint();//same as XT*X a // //translate to array // C = C.array() / X.cols(); //} // // ///* // * Compute the eigenvalue and eigenvector of C // * val = (first eigenvalue) --smallest --not important // * . // * . // * . // * (last eigenvalue) --largest -- important // * // * vec = (first eigenvector, ... , last eigenvector) // * not important important // */ //void ComputEig(MatrixXd &C, MatrixXd &vec, MatrixXd &val) //{ // //SelfAdjointEigenSolver will sort the values automatically // SelfAdjointEigenSolver<MatrixXd> eig(C); // vec = eig.eigenvectors(); // val = eig.eigenvalues(); //} // ///* Compute the dimension need to include enough information of raw data. // * form large index to small index, since the val is sorted from small to large. // * in some cases, just decide the number of dimension, instead of compute it. // */ //int ComputDim(MatrixXd &val) //{ // int dim; // double sum = 0; // for (int i = val.rows() - 1; i >= 0;--i) // { // sum += val(i, 0); // dim = i; // if (sum / val.sum()>=0.8)//80% of the information // break; // } // return val.rows() - dim; //} ***/ static DigitalOut led1(LED1, 1); const static char DEVICE_NAME[] = "STEP COUNTER"; const static uint16_t STEP_COUNTER_SERVICE_UUID = 0xA000; const static uint16_t STEP_COUNTER_CHARACTERISTIC_UUID = 0xA001; int step_count = 0; int id = 0; ReadWriteGattCharacteristic<int> step_count_state(STEP_COUNTER_CHARACTERISTIC_UUID, &step_count, GattCharacteristic::BLE_GATT_CHAR_PROPERTIES_NOTIFY); static events::EventQueue event_queue(/* event count */ 16 * EVENTS_EVENT_SIZE); class StepCounter : ble::Gap::EventHandler { public: StepCounter(BLE &ble, events::EventQueue &event_queue) : _ble(ble), _event_queue(event_queue), _step_counter_uuid(STEP_COUNTER_SERVICE_UUID), _adv_data_builder(_adv_buffer) { } void start() { _ble.gap().setEventHandler(this); _ble.init(this, &StepCounter::on_init_complete); _event_queue.call_every(500, this, &StepCounter::blink); // TODO Replace this to sync with data reading in order to update step // counts by exact window. _event_queue.call_every(1000, this, &StepCounter::update_step_count); _event_queue.dispatch_forever(); } private: /** Callback triggered when the ble initialization process has finished */ void on_init_complete(BLE::InitializationCompleteCallbackContext *params) { if (params->error != BLE_ERROR_NONE) { print_error(params->error, "Ble initialization failed."); return; } _ble.gattServer().onDataWritten(this, &StepCounter::on_data_written); print_mac_address(); start_advertising(); } void start_advertising() { /* Create advertising parameters and payload */ ble::AdvertisingParameters adv_parameters( ble::advertising_type_t::CONNECTABLE_UNDIRECTED, ble::adv_interval_t(ble::millisecond_t(1000)) ); _adv_data_builder.setFlags(); _adv_data_builder.setLocalServiceList(mbed::make_Span(&_step_counter_uuid, 1)); _adv_data_builder.setName(DEVICE_NAME); /* Setup advertising */ ble_error_t error = _ble.gap().setAdvertisingParameters( ble::LEGACY_ADVERTISING_HANDLE, adv_parameters ); if (error) { print_error(error, "_ble.gap().setAdvertisingParameters() failed"); return; } error = _ble.gap().setAdvertisingPayload( ble::LEGACY_ADVERTISING_HANDLE, _adv_data_builder.getAdvertisingData() ); if (error) { print_error(error, "_ble.gap().setAdvertisingPayload() failed"); return; } /* Start advertising */ error = _ble.gap().startAdvertising(ble::LEGACY_ADVERTISING_HANDLE); if (error) { print_error(error, "_ble.gap().startAdvertising() failed"); return; } } void on_data_written(const GattWriteCallbackParams *params) { if ((params->handle == step_count_state.getValueHandle()) && (params->len == 1)) { step_count = *(params->data); } step_count = 0; } void update_step_count() { if (_ble.gap().getState().connected) { // TODO Remove step_count increament which would be implemented at // main() after peak detection. step_count++; _ble.gattServer().write(step_count_state.getValueHandle(), (uint8_t *)&step_count, sizeof(int)); } } void blink(void) { led1 = !led1; } private: /* Event handler */ void onDisconnectionComplete(const ble::DisconnectionCompleteEvent&) { _ble.gap().startAdvertising(ble::LEGACY_ADVERTISING_HANDLE); } private: BLE &_ble; events::EventQueue &_event_queue; UUID _step_counter_uuid; uint8_t _adv_buffer[ble::LEGACY_ADVERTISING_MAX_SIZE]; ble::AdvertisingDataBuilder _adv_data_builder; }; /** Schedule processing of events from the BLE middleware in the event queue. */ void schedule_ble_events(BLE::OnEventsToProcessCallbackContext *context) { event_queue.call(Callback<void()>(&context->ble, &BLE::processEvents)); } int main() { BLE &ble = BLE::Instance(); GattCharacteristic *charTable[] = {&step_count_state}; GattService step_count_service(STEP_COUNTER_SERVICE_UUID, charTable, sizeof(charTable) / sizeof(GattCharacteristic *)); ble.addService(step_count_service); ble.onEventsToProcess(schedule_ble_events); StepCounter demo(ble, event_queue); demo.start(); // read data /*** PCA parameters init //new mpu(data,clk,address),in constructor addr7bit<<1 mpu9250 *mpu = new mpu9250(p26,p27,addr7bit); //scale of acc and gyro mpu->initMPU9250(0x00,0x00); float AccRead[3]; float GyroRead[3]; float TempRead[1]; MatrixXd acc_raw(3,0); Vector3d acc_new; MatrixXd C; MatrixXd vec, val; int dim = 1; //dimension of PCA ***/ /*** Reading data and do PCA while (true) { //Blink LED and wait 1 seconds // TODO Question actually: Is this to wait for collecting enough data // for a window? led1 = !led1; thread_sleep_for(SLEEP_TIME); //read and convert date mpu->ReadConvertAll(AccRead,GyroRead,TempRead); //printf("acc value is (%f,%f,%f).\n\r",AccRead[0],AccRead[1],AccRead[2]); //printf("gyro value is (%f,%f,%f).\n\r",GyroRead[0],GyroRead[1],GyroRead[2]); //printf("temp value is %f.\n\r",TempRead[0]); //append new data to matrix acc_raw //adding the columns acc_new << AccRead[0],AccRead[1],AccRead[2]; acc_raw.conservativeResize(acc_raw.rows(), acc_raw.cols()+1); acc_raw.col(acc_raw.cols()-1) = acc_new; //cout << "acc_raw:" << acc_raw << endl; // TODO Check if there are enough data for a single window // if true -> run PCA and peak detection // else -> sleep for another 1 second maybe? //run PCA MatrixXd X1=featurnormail(acc_raw); ComComputeCov(X1, C); ComputEig(C, vec, val); //select dim num of eigenvector from right to left. right is important //compute the result array MatrixXd res = vec.rightCols(dim).transpose()*X1; //show the result after PCA //cout << "result" << res << endl; // TODO add peak detection algorithm here // TODO add step count. Also, think about lock of the variable - what // if } ***/ return 0; }