add codes for data reading and PCA
Dependencies: mpu9250_i2c Eigen
Diff: source/main.cpp
- Revision:
- 1:28c107f8cf24
- Parent:
- 0:dbcc46819a5e
--- a/source/main.cpp Fri Nov 15 15:31:52 2019 +0000 +++ b/source/main.cpp Wed Nov 20 00:55:20 2019 +0000 @@ -20,6 +20,100 @@ #include "ble/Gap.h" #include "pretty_printer.h" +/*** +Library used by PCA + +#include "mbed.h" +#include "platform/mbed_thread.h" +#include "stats_report.h" +#include "MPU9250.h" +#include <Eigen/Dense.h> +#include <iostream> +***/ + +/*** +Fields used by PCA + +using namespace std; +using namespace Eigen; + +DigitalOut led1(LED1); +const int addr7bit = 0x68; // 7bit I2C address,AD0 is 0 + +#define SLEEP_TIME 5000 // (msec) +***/ + +/*** +Methods used by PCA + +///* +// * Normalize the Matrix X +// */ +// MatrixXd featurnormail(MatrixXd &X) +//{ +// //I don't know why to use the transpose +// //compute the mean of every dimension +// MatrixXd X1 = X.transpose(); +// MatrixXd meanval = X1.colwise().mean(); +// +// //normalization +// RowVectorXd meanvecRow = meanval; +// X1.rowwise() -= meanvecRow; +// +// return X1.transpose(); +//} +// +// /* +// * Compute the Covariane Matrix of X, put to C +// * C = 1/m * X * X.transpose +// */ +//void ComComputeCov(MatrixXd &X, MatrixXd &C) +//{ +// +// C = X*X.adjoint();//same as XT*X a +// //translate to array +// C = C.array() / X.cols(); +//} +// +// +///* +// * Compute the eigenvalue and eigenvector of C +// * val = (first eigenvalue) --smallest --not important +// * . +// * . +// * . +// * (last eigenvalue) --largest -- important +// * +// * vec = (first eigenvector, ... , last eigenvector) +// * not important important +// */ +//void ComputEig(MatrixXd &C, MatrixXd &vec, MatrixXd &val) +//{ +// //SelfAdjointEigenSolver will sort the values automatically +// SelfAdjointEigenSolver<MatrixXd> eig(C); +// vec = eig.eigenvectors(); +// val = eig.eigenvalues(); +//} +// +///* Compute the dimension need to include enough information of raw data. +// * form large index to small index, since the val is sorted from small to large. +// * in some cases, just decide the number of dimension, instead of compute it. +// */ +//int ComputDim(MatrixXd &val) +//{ +// int dim; +// double sum = 0; +// for (int i = val.rows() - 1; i >= 0;--i) +// { +// sum += val(i, 0); +// dim = i; +// if (sum / val.sum()>=0.8)//80% of the information +// break; +// } +// return val.rows() - dim; +//} +***/ + static DigitalOut led1(LED1, 1); const static char DEVICE_NAME[] = "STEP COUNTER"; @@ -46,6 +140,9 @@ _ble.init(this, &StepCounter::on_init_complete); _event_queue.call_every(500, this, &StepCounter::blink); + + // TODO Replace this to sync with data reading in order to update step + // counts by exact window. _event_queue.call_every(1000, this, &StepCounter::update_step_count); _event_queue.dispatch_forever(); @@ -119,6 +216,8 @@ void update_step_count() { if (_ble.gap().getState().connected) { + // TODO Remove step_count increament which would be implemented at + // main() after peak detection. step_count++; _ble.gattServer().write(step_count_state.getValueHandle(), (uint8_t *)&step_count, sizeof(int)); @@ -163,6 +262,73 @@ StepCounter demo(ble, event_queue); demo.start(); + + // read data + /*** + PCA parameters init + + //new mpu(data,clk,address),in constructor addr7bit<<1 + mpu9250 *mpu = new mpu9250(p26,p27,addr7bit); + //scale of acc and gyro + mpu->initMPU9250(0x00,0x00); + + float AccRead[3]; + float GyroRead[3]; + float TempRead[1]; + + + MatrixXd acc_raw(3,0); + Vector3d acc_new; + MatrixXd C; + MatrixXd vec, val; + int dim = 1; //dimension of PCA + ***/ + /*** + Reading data and do PCA + + while (true) { + + //Blink LED and wait 1 seconds + // TODO Question actually: Is this to wait for collecting enough data + // for a window? + led1 = !led1; + thread_sleep_for(SLEEP_TIME); + + //read and convert date + mpu->ReadConvertAll(AccRead,GyroRead,TempRead); + //printf("acc value is (%f,%f,%f).\n\r",AccRead[0],AccRead[1],AccRead[2]); + //printf("gyro value is (%f,%f,%f).\n\r",GyroRead[0],GyroRead[1],GyroRead[2]); + //printf("temp value is %f.\n\r",TempRead[0]); + + //append new data to matrix acc_raw + //adding the columns + acc_new << AccRead[0],AccRead[1],AccRead[2]; + acc_raw.conservativeResize(acc_raw.rows(), acc_raw.cols()+1); + acc_raw.col(acc_raw.cols()-1) = acc_new; + //cout << "acc_raw:" << acc_raw << endl; + + // TODO Check if there are enough data for a single window + // if true -> run PCA and peak detection + // else -> sleep for another 1 second maybe? + + //run PCA + MatrixXd X1=featurnormail(acc_raw); + ComComputeCov(X1, C); + ComputEig(C, vec, val); + //select dim num of eigenvector from right to left. right is important + //compute the result array + MatrixXd res = vec.rightCols(dim).transpose()*X1; + + //show the result after PCA + //cout << "result" << res << endl; + + // TODO add peak detection algorithm here + + // TODO add step count. Also, think about lock of the variable - what + // if + } + ***/ + return 0; }