mbed library sources

Dependents:   frdm_kl05z_gpio_test

Fork of mbed-src by mbed official

targets/hal/TARGET_STM/TARGET_NUCLEO_F030R8/pwmout_api.c

Committer:
mbed_official
Date:
2014-06-11
Revision:
227:7bd0639b8911
Parent:
216:577900467c9e

File content as of revision 227:7bd0639b8911:

/* mbed Microcontroller Library
 *******************************************************************************
 * Copyright (c) 2014, STMicroelectronics
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 * 1. Redistributions of source code must retain the above copyright notice,
 *    this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright notice,
 *    this list of conditions and the following disclaimer in the documentation
 *    and/or other materials provided with the distribution.
 * 3. Neither the name of STMicroelectronics nor the names of its contributors
 *    may be used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *******************************************************************************
 */
#include "mbed_assert.h"
#include "pwmout_api.h"

#if DEVICE_PWMOUT

#include "cmsis.h"
#include "pinmap.h"

// TIM1 cannot be used because already used by the us_ticker
static const PinMap PinMap_PWM[] = {
    {PA_4,  TIM_14, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_NOPULL, GPIO_AF_4)}, // TIM14_CH1
    {PA_6,  TIM_3,  STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_NOPULL, GPIO_AF_1)}, // TIM3_CH1
//  {PA_6,  TIM_16, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_NOPULL, GPIO_AF_5)}, // TIM16_CH1
    {PA_7,  TIM_3,  STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_NOPULL, GPIO_AF_1)}, // TIM3_CH2
//  {PA_7,  TIM_14, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_NOPULL, GPIO_AF_4)}, // TIM14_CH1
//  {PA_7,  TIM_17, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_NOPULL, GPIO_AF_5)}, // TIM17_CH1
    {PB_0,  TIM_3,  STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_NOPULL, GPIO_AF_1)}, // TIM3_CH3
    {PB_1,  TIM_14, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_NOPULL, GPIO_AF_0)}, // TIM14_CH1
//  {PB_1,  TIM_3,  STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_NOPULL, GPIO_AF_1)}, // TIM3_CH4
    {PB_4,  TIM_3,  STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_NOPULL, GPIO_AF_1)}, // TIM3_CH1
    {PB_5,  TIM_3,  STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_NOPULL, GPIO_AF_1)}, // TIM3_CH2
    {PB_6,  TIM_16, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_NOPULL, GPIO_AF_2)}, // TIM16_CH1N
    {PB_7,  TIM_17, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_NOPULL, GPIO_AF_2)}, // TIM17_CH1N
    {PB_8,  TIM_16, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_NOPULL, GPIO_AF_2)}, // TIM16_CH1
    {PB_9,  TIM_17, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_NOPULL, GPIO_AF_2)}, // TIM17_CH1
    {PB_14, TIM_15, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_NOPULL, GPIO_AF_1)}, // TIM15_CH1
    {PB_15, TIM_15, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_NOPULL, GPIO_AF_1)}, // TIM15_CH2
//  {PB_15, TIM_15, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_NOPULL, GPIO_AF_3)}, // TIM15_CH1N
    {PC_6,  TIM_3,  STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_NOPULL, GPIO_AF_0)}, // TIM3_CH1
    {PC_7,  TIM_3,  STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_NOPULL, GPIO_AF_0)}, // TIM3_CH2
    {PC_8,  TIM_3,  STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_NOPULL, GPIO_AF_0)}, // TIM3_CH3
    {PC_9,  TIM_3,  STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_NOPULL, GPIO_AF_0)}, // TIM3_CH4
    {NC,    NC,    0}
};

void pwmout_init(pwmout_t* obj, PinName pin) {
    // Get the peripheral name from the pin and assign it to the object
    obj->pwm = (PWMName)pinmap_peripheral(pin, PinMap_PWM);
    MBED_ASSERT(obj->pwm != (PWMName)NC);

    // Enable TIM clock
    if (obj->pwm == TIM_3)  RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3, ENABLE);
    if (obj->pwm == TIM_14) RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM14, ENABLE);
    if (obj->pwm == TIM_15) RCC_APB2PeriphClockCmd(RCC_APB2Periph_TIM15, ENABLE);
    if (obj->pwm == TIM_16) RCC_APB2PeriphClockCmd(RCC_APB2Periph_TIM16, ENABLE);
    if (obj->pwm == TIM_17) RCC_APB2PeriphClockCmd(RCC_APB2Periph_TIM17, ENABLE);

    // Configure GPIO
    pinmap_pinout(pin, PinMap_PWM);

    obj->pin = pin;
    obj->period = 0;
    obj->pulse = 0;

    pwmout_period_us(obj, 20000); // 20 ms per default
}

void pwmout_free(pwmout_t* obj) {
    // Configure GPIOs
    pin_function(obj->pin, STM_PIN_DATA(GPIO_Mode_IN, 0, GPIO_PuPd_NOPULL, 0xFF));
}

void pwmout_write(pwmout_t* obj, float value) {
    TIM_TypeDef *tim = (TIM_TypeDef *)(obj->pwm);
    TIM_OCInitTypeDef TIM_OCInitStructure;

    if (value < 0.0) {
        value = 0.0;
    } else if (value > 1.0) {
        value = 1.0;
    }

    obj->pulse = (uint32_t)((float)obj->period * value);

    // Configure channels
    TIM_OCInitStructure.TIM_OCMode       = TIM_OCMode_PWM1;
    TIM_OCInitStructure.TIM_Pulse        = obj->pulse;
    TIM_OCInitStructure.TIM_OCPolarity   = TIM_OCPolarity_High;
    TIM_OCInitStructure.TIM_OCNPolarity  = TIM_OCPolarity_Low;
    TIM_OCInitStructure.TIM_OCIdleState  = TIM_OCIdleState_Reset;
    TIM_OCInitStructure.TIM_OCNIdleState = TIM_OCNIdleState_Reset;

    switch (obj->pin) {
        // Channels 1
        case PA_4:
        case PA_6:
        case PB_1:
        case PB_4:
        case PB_8:
        case PB_9:
        case PB_14:
        case PC_6:
            TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
            TIM_OC1PreloadConfig(tim, TIM_OCPreload_Enable);
            TIM_OC1Init(tim, &TIM_OCInitStructure);
            break;
        // Channels 1N
        case PB_6:
        case PB_7:
            TIM_OCInitStructure.TIM_OutputNState = TIM_OutputNState_Enable;
            TIM_OC1PreloadConfig(tim, TIM_OCPreload_Enable);
            TIM_OC1Init(tim, &TIM_OCInitStructure);
            break;
        // Channels 2
        case PA_7:
        case PB_5:
        case PC_7:
            TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
            TIM_OC2PreloadConfig(tim, TIM_OCPreload_Enable);
            TIM_OC2Init(tim, &TIM_OCInitStructure);
            break;
        // Channels 3
        case PB_0:
        case PC_8:
            TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
            TIM_OC3PreloadConfig(tim, TIM_OCPreload_Enable);
            TIM_OC3Init(tim, &TIM_OCInitStructure);
            break;
        // Channels 4
//      case PB_1:
        case PC_9:
            TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
            TIM_OC4PreloadConfig(tim, TIM_OCPreload_Enable);
            TIM_OC4Init(tim, &TIM_OCInitStructure);
            break;
        default:
            return;
    }

    TIM_CtrlPWMOutputs(tim, ENABLE);

}

float pwmout_read(pwmout_t* obj) {
    float value = 0;
    if (obj->period > 0) {
        value = (float)(obj->pulse) / (float)(obj->period);
    }
    return ((value > 1.0) ? (1.0) : (value));
}

void pwmout_period(pwmout_t* obj, float seconds) {
    pwmout_period_us(obj, seconds * 1000000.0f);
}

void pwmout_period_ms(pwmout_t* obj, int ms) {
    pwmout_period_us(obj, ms * 1000);
}

void pwmout_period_us(pwmout_t* obj, int us) {
    TIM_TypeDef *tim = (TIM_TypeDef *)(obj->pwm);
    TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure;
    float dc = pwmout_read(obj);

    TIM_Cmd(tim, DISABLE);

    obj->period = us;

    TIM_TimeBaseStructure.TIM_Period = obj->period - 1;
    TIM_TimeBaseStructure.TIM_Prescaler = (uint16_t)(SystemCoreClock / 1000000) - 1; // 1 µs tick
    TIM_TimeBaseStructure.TIM_ClockDivision = 0;
    TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;
    TIM_TimeBaseInit(tim, &TIM_TimeBaseStructure);

    // Set duty cycle again
    pwmout_write(obj, dc);

    TIM_ARRPreloadConfig(tim, ENABLE);

    TIM_Cmd(tim, ENABLE);
}

void pwmout_pulsewidth(pwmout_t* obj, float seconds) {
    pwmout_pulsewidth_us(obj, seconds * 1000000.0f);
}

void pwmout_pulsewidth_ms(pwmout_t* obj, int ms) {
    pwmout_pulsewidth_us(obj, ms * 1000);
}

void pwmout_pulsewidth_us(pwmout_t* obj, int us) {
    float value = (float)us / (float)obj->period;
    pwmout_write(obj, value);
}

#endif