1
Dependencies: mbed-dev-f303 FastPWM3
main.cpp
- Committer:
- benkatz
- Date:
- 2016-05-22
- Revision:
- 11:c83b18d41e54
- Parent:
- 10:370851e6e132
- Child:
- 12:c473a25f54f7
File content as of revision 11:c83b18d41e54:
#include "mbed.h" #include "PositionSensor.h" #include "Inverter.h" #include "SVM.h" #include "FastMath.h" #include "Transforms.h" #include "CurrentRegulator.h" #include "TorqueController.h" #include "ImpedanceController.h" using namespace FastMath; using namespace Transforms; int id[3] = {0}; float cmd_float[3] = {0.0f}; int raw[3] = {0}; float val_max[3] = {18.0f, 1.0f, 0.1f}; //max angle in radians, stiffness in N-m/rad, damping in N-m*s/rad int buff[8]; Serial pc(PA_2, PA_3); Inverter inverter(PA_10, PA_9, PA_8, PA_11, 0.02014160156, 0.00005); //hall motor PositionSensorSPI spi(2048, 2.75f, 7); ///1 I really need an eeprom or something to store this.... //PositionSensorSPI spi(2048, 1.34f, 7); ///2 int motorID = 40; ///1 //int motorID = 50; ///2 PositionSensorEncoder encoder(1024, 0, 7); CurrentRegulator foc(&inverter, &spi, .005, .5); TorqueController torqueController(.031f, &foc); ImpedanceController impedanceController(&torqueController, &spi, &encoder); Ticker testing; // Current Sampling IRQ extern "C" void TIM1_UP_TIM10_IRQHandler(void) { if (TIM1->SR & TIM_SR_UIF ) { inverter.SampleCurrent(); //foc.Commutate(); ///Putting the loop here doesn't work for some reason. Need to figure out why } TIM1->SR = 0x0; // reset the status register } // HobbyKing-style startup tone. Just because. void hk_start(void){ float dtc = .1; inverter.SetDTC(0, 0, 0); inverter.EnableInverter(); for(int i = 0; i<200; i++){ //torqueController.SetTorque(.4); inverter.SetDTC(dtc, 0, 0); wait(0.00047778308); //torqueController.SetTorque(-.4); inverter.SetDTC(0, dtc, 0); wait(0.00047778308); } for(int i = 0; i<200; i++){ //torqueController.SetTorque(.4); inverter.SetDTC(dtc, 0, 0); wait(0.00042565508); //torqueController.SetTorque(-.4); inverter.SetDTC(0, dtc, 0); wait(0.00042565508); } for(int i = 0; i<200; i++){ //torqueController.SetTorque(.4); inverter.SetDTC(dtc, 0, 0); wait(0.00037921593); //torqueController.SetTorque(-.4); inverter.SetDTC(0, dtc, 0); wait(0.00037921593); } inverter.SetDTC(0, 0, 0); wait(1); for (int j = 0; j<3; j++){ for(int i = 0; i<240; i++){ //torqueController.SetTorque(.4); inverter.SetDTC(dtc, 0, 0); wait(0.00047778308); //torqueController.SetTorque(-.4); inverter.SetDTC(0, dtc, 0); wait(0.00047778308); } torqueController.SetTorque(0); inverter.SetDTC(0, 0, 0); wait(.2); } } /* //sinusoidal voltage-mode control, for debugging. void voltage_foc(void){ float theta = encoder.GetElecPosition(); InvPark(v_d, v_q, theta, &v_alpha, &v_beta); InvClarke(v_alpha, v_beta, &v_a, &v_b, &v_c); svpwm.Update_DTC(v_a, v_b, v_c); //output.write(theta/6.28318530718f); } */ // For decoding serial commands. void serialInterrupt(void){ //wait(.001); int i = 0; while(pc.readable()){ buff[i] = pc.getc(); wait(.0001); i++; } int val = (buff[4]<<8) + buff[5]; int checksum = buff[2]^buff[3]^buff[4]^buff[5]; int validStart = (buff[0] == 255 && buff[1] == 255 && buff[2]==motorID && checksum==buff[6]); if(validStart){ switch(buff[3]){ case 10: cmd_float[1] = (float)val*val_max[1]/65278.0f; break; case 20: cmd_float[2] = (float)val*val_max[2]/65278.0f; break; case 30: cmd_float[0] = (float)val*val_max[0]/65278.0f; break; } } //pc.printf("%d %d %d %d %d %d %d \n", start1, start2, id, cmd, byte1, byte2, byte3); //pc.printf("%f, %f, %f\n", cmd_float[0], cmd_float[1], cmd_float[2]); //pc.printf("%d\n", cmd); //pc.printf("%d, %d, %d, %d, %d, %d, %d, %d\n", buff[0], buff[1], buff[2], buff[3], buff[4], buff[5], buff[6], buff[7]); } void Loop(void){ impedanceController.SetImpedance(cmd_float[1], cmd_float[2], cmd_float[0]); //impedanceController.SetImpedance(-.04, 0, 0); //torqueController.SetTorque(0); //foc.Commutate(); //voltage_foc(); } void PrintStuff(void){ //float v = encoder.GetMechVelocity(); //float position = encoder.GetElecPosition(); //float position = encoder.GetMechPosition(); //float m = spi.GetMechPosition(); //float e = spi.GetElecPosition(); //printf("%f\n\r", e); //printf("%f %f %f %f \n\r", m, cmd_float[0], cmd_float[1], cmd_float[2]); //printf("%d %d %d\n\r", raw[0], raw[1], raw[2]); } /* ////Throw some sines on the phases. useful to make sure the hardware works. void gen_sine(void){ float f = 1.0f; float time = t.read(); float a = .45f*sin(6.28318530718f*f*time) + .5f; float b = .45f*sin(6.28318530718f*f*time + 2.09439510239f) + .5f; float c = .45f*sin(6.28318530718f*f*time + 4.18879020479f) + .5f; inverter.SetDTC(a, b, c); } */ int main() { inverter.DisableInverter(); spi.ZeroPosition(); wait(.1); inverter.SetDTC(0.2, 0.2, 0.2); inverter.EnableInverter(); //hk_start(); foc.Reset(); testing.attach(&Loop, .0001); NVIC_SetPriority(TIM5_IRQn, 2); pc.baud(115200); wait(.1); while(1) { } }