1

Dependencies:   mbed-dev-f303 FastPWM3

Revision:
25:f5741040c4bb
Parent:
24:58c2d7571207
Child:
26:2b865c00d7e9
--- a/FOC/foc.cpp	Fri Apr 07 16:23:39 2017 +0000
+++ b/FOC/foc.cpp	Sun Apr 09 03:05:52 2017 +0000
@@ -6,6 +6,7 @@
 
 
 void abc( float theta, float d, float q, float *a, float *b, float *c){
+    /// Inverse DQ0 Transform ///
     ///Phase current amplitude = lengh of dq vector///
     ///i.e. iq = 1, id = 0, peak phase current of 1///
 
@@ -15,6 +16,7 @@
     }
     
 void dq0(float theta, float a, float b, float c, float *d, float *q){
+    /// DQ0 Transform ///
     ///Phase current amplitude = lengh of dq vector///
     ///i.e. iq = 1, id = 0, peak phase current of 1///
     
@@ -23,7 +25,8 @@
     }
     
 void svm(float v_bus, float u, float v, float w, float *dtc_u, float *dtc_v, float *dtc_w){
-    ///u,v,w amplitude = v_bus for full modulation depth///
+    /// Space Vector Modulation ///
+    /// u,v,w amplitude = v_bus for full modulation depth ///
     
     float v_offset = (fminf3(u, v, w) + fmaxf3(u, v, w))/2.0f;
     *dtc_u = fminf(fmaxf(((u - v_offset)*0.5f/v_bus + ((DTC_MAX-DTC_MIN)/2)), DTC_MIN), DTC_MAX);
@@ -32,11 +35,11 @@
     
     }
 
-void zero_current(int *offset_1, int *offset_2){
+void zero_current(int *offset_1, int *offset_2){                                // Measure zero-offset of the current sensors
     int adc1_offset = 0;
     int adc2_offset = 0;
     int n = 1024;
-    for (int i = 0; i<n; i++){
+    for (int i = 0; i<n; i++){                                                  // Average n samples of the ADC
         ADC1->CR2  |= 0x40000000; 
         wait(.001);
         adc2_offset += ADC2->DR;
@@ -53,26 +56,25 @@
 
 
 void commutate(ControllerStruct *controller, GPIOStruct *gpio, float theta){
-       
-       controller->loop_count ++;
-       if(PHASE_ORDER){
-           controller->i_b = I_SCALE*(float)(controller->adc2_raw - controller->adc2_offset);    //Calculate phase currents from ADC readings
+       /// Commutation Loop ///
+       controller->loop_count ++;   
+       if(PHASE_ORDER){                                                                          // Check current sensor ordering
+           controller->i_b = I_SCALE*(float)(controller->adc2_raw - controller->adc2_offset);    // Calculate phase currents from ADC readings
            controller->i_c = I_SCALE*(float)(controller->adc1_raw - controller->adc1_offset);
            }
         else{
-            controller->i_b = I_SCALE*(float)(controller->adc1_raw - controller->adc1_offset);    //Calculate phase currents from ADC readings
+            controller->i_b = I_SCALE*(float)(controller->adc1_raw - controller->adc1_offset);    
            controller->i_c = I_SCALE*(float)(controller->adc2_raw - controller->adc2_offset);
            }
-       controller->i_a = -controller->i_b - controller->i_c;
-       
-       
+       controller->i_a = -controller->i_b - controller->i_c;                                   
        dq0(controller->theta_elec, controller->i_a, controller->i_b, controller->i_c, &controller->i_d, &controller->i_q);    //dq0 transform on currents
        
-       ///Cogging Compensation Lookup///
+       ///Cogging compensation lookup, doesn't actually work yet///
        //int ind = theta * (128.0f/(2.0f*PI));
        //float cogging_current = controller->cogging[ind];
        //float cogging_current = 1.0f*cos(6*theta);
-       ///Controller///
+       
+       /// PI Controller ///
        float i_d_error = controller->i_d_ref - controller->i_d;
        float i_q_error = controller->i_q_ref - controller->i_q;// + cogging_current;
        float v_d_ff = 2.0f*(2*controller->i_d_ref*R_PHASE);   //feed-forward voltage
@@ -83,28 +85,24 @@
        //v_d_ff = 0;
        //v_q_ff = 0;
        
-       limit_norm(&controller->d_int, &controller->q_int, V_BUS/(K_Q*KI_Q));
+       limit_norm(&controller->d_int, &controller->q_int, V_BUS/(K_Q*KI_Q));        // Limit integrators to prevent windup
        //controller->d_int = fminf(fmaxf(controller->d_int, -D_INT_LIM), D_INT_LIM);
        //controller->q_int = fminf(fmaxf(controller->q_int, -Q_INT_LIM), Q_INT_LIM);
        
        
-       controller->v_d = K_D*i_d_error + K_D*KI_D*controller->d_int;// + v_d_ff;  
-       controller->v_q = K_Q*i_q_error + K_Q*KI_Q*controller->q_int;// + v_q_ff; 
+       controller->v_d = K_SCALE*I_BW*i_d_error + K_SCALE*I_BW*controller->d_int;// + v_d_ff;  
+       controller->v_q = K_SCALE*I_BW*i_q_error + K_SCALE*I_BW*controller->q_int;// + v_q_ff; 
        
        //controller->v_d = v_d_ff;
        //controller->v_q = v_q_ff; 
        
-       limit_norm(&controller->v_d, &controller->v_q, controller->v_bus);
-       
+       limit_norm(&controller->v_d, &controller->v_q, controller->v_bus);       // Normalize voltage vector to lie within curcle of radius v_bus
        abc(controller->theta_elec, controller->v_d, controller->v_q, &controller->v_u, &controller->v_v, &controller->v_w); //inverse dq0 transform on voltages
        svm(controller->v_bus, controller->v_u, controller->v_v, controller->v_w, &controller->dtc_u, &controller->dtc_v, &controller->dtc_w); //space vector modulation
 
-       //gpio->pwm_u->write(1.0f-controller->dtc_u);  //write duty cycles
-       //gpio->pwm_v->write(1.0f-controller->dtc_v);
-       //gpio->pwm_w->write(1.0f-controller->dtc_w);  
        
-       if(PHASE_ORDER){
-            TIM1->CCR3 = 0x708*(1.0f-controller->dtc_u);
+       if(PHASE_ORDER){                                                         // Check which phase order to use, 
+            TIM1->CCR3 = 0x708*(1.0f-controller->dtc_u);                        // Write duty cycles
             TIM1->CCR2 = 0x708*(1.0f-controller->dtc_v);
             TIM1->CCR1 = 0x708*(1.0f-controller->dtc_w);
         }
@@ -113,25 +111,20 @@
             TIM1->CCR1 = 0x708*(1.0f-controller->dtc_v);
             TIM1->CCR2 = 0x708*(1.0f-controller->dtc_w);
         }
-       //gpio->pwm_u->write(1.0f - .05f);  //write duty cycles
-        //gpio->pwm_v->write(1.0f - .05f);
-        //gpio->pwm_w->write(1.0f - .1f);
-       //TIM1->CCR1 = 0x708*(1.0f-controller->dtc_u);
-        //TIM1->CCR2 = 0x708*(1.0f-controller->dtc_v);
-        //TIM1->CCR3 = 0x708*(1.0f-controller->dtc_w);
-       controller->theta_elec = theta;   //For some reason putting this at the front breaks thins
+
+       controller->theta_elec = theta;                                          //For some reason putting this at the front breaks thins
        
 
-       if(controller->loop_count >400){
+       //if(controller->loop_count >400){
            //controller->i_q_ref = -controller->i_q_ref;
-           controller->loop_count  = 0;
+          // controller->loop_count  = 0;
            
            //printf("%d   %f\n\r", ind, cogging_current);
            //printf("%f\n\r", controller->theta_elec);
            //pc.printf("%f    %f    %f\n\r", controller->i_a, controller->i_b, controller->i_c);
            //pc.printf("%f    %f\n\r", controller->i_d, controller->i_q);
            //pc.printf("%d    %d\n\r", controller->adc1_raw, controller->adc2_raw);
-            }
+        //    }
     }
 /*    
 void zero_encoder(ControllerStruct *controller, GPIOStruct *gpio, ){