1
Dependencies: mbed-dev-f303 FastPWM3
Calibration/calibration.cpp
- Committer:
- benkatz
- Date:
- 2017-03-31
- Revision:
- 22:60276ba87ac6
- Child:
- 23:2adf23ee0305
File content as of revision 22:60276ba87ac6:
/// Calibration procedures for determining position sensor offset, /// phase ordering, and position sensor linearization /// #include "calibration.h" void order_phases(PositionSensor *ps, GPIOStruct *gpio){ ///Checks phase order, to ensure that positive Q current produces ///torque in the positive direction wrt the position sensor. printf("\n\r Checking phase ordering\n\r"); float theta_ref = 0; float theta_actual = 0; float v_d = .2; //Put all volts on the D-Axis float v_q = 0.0; float v_u, v_v, v_w = 0; float dtc_u, dtc_v, dtc_w = .5; int sample_counter = 0; ///Set voltage angle to zero, wait for rotor position to settle abc(theta_ref, v_d, v_q, &v_u, &v_v, &v_w); //inverse dq0 transform on voltages svm(1.0, v_u, v_v, v_w, &dtc_u, &dtc_v, &dtc_w); //space vector modulation for(int i = 0; i<20000; i++){ TIM1->CCR3 = 0x708*(1.0f-dtc_u); // Set duty cycles TIM1->CCR2 = 0x708*(1.0f-dtc_v); TIM1->CCR1 = 0x708*(1.0f-dtc_w); wait_us(100); } //ps->ZeroPosition(); ps->Sample(); float theta_start = ps->GetMechPosition(); //get initial rotor position /// Rotate voltage angle while(theta_ref < 4*PI){ //rotate for 2 electrical cycles abc(theta_ref, v_d, v_q, &v_u, &v_v, &v_w); //inverse dq0 transform on voltages svm(1.0, v_u, v_v, v_w, &dtc_u, &dtc_v, &dtc_w); //space vector modulation wait_us(100); TIM1->CCR3 = 0x708*(1.0f-dtc_u); //Set duty cycles TIM1->CCR2 = 0x708*(1.0f-dtc_v); TIM1->CCR1 = 0x708*(1.0f-dtc_w); ps->Sample(); //sample position sensor theta_actual = ps->GetMechPosition(); if(sample_counter > 200){ sample_counter = 0 ; printf("%.4f %.4f\n\r", theta_ref/(NPP), theta_actual); } sample_counter++; theta_ref += 0.001f; } float theta_end = ps->GetMechPosition(); int direction = (theta_end - theta_start)>0; printf("Theta Start: %f Theta End: %f\n\r", theta_start, theta_end); printf("Direction: %d\n\r", direction); if(direction){printf("Phaseing correct\n\r");} else if(!direction){printf("Phasing incorrect. Swapping phases V and W\n\r");} gpio->phasing = direction; } void calibrate(PositionSensor *ps, GPIOStruct *gpio){ /// Measures the electrical angle offset of the position sensor /// and (in the future) corrects nonlinearity due to position sensor eccentricity printf("Starting calibration procedure\n\r"); const int n = 128*NPP; // number of positions to be sampled per mechanical rotation. Multiple of NPP for filtering reasons (see later) const int n2 = 10; // increments between saved samples (for smoothing motion) float delta = 2*PI*NPP/(n*n2); // change in angle between samples float error_f[n] = {0}; // error vector rotating forwards float error_b[n] = {0}; // error vector rotating backwards int raw_f[n] = {0}; int raw_b[n] = {0}; float theta_ref = 0; float theta_actual = 0; float v_d = .2; // Put volts on the D-Axis float v_q = 0.0; float v_u, v_v, v_w = 0; float dtc_u, dtc_v, dtc_w = .5; ///Set voltage angle to zero, wait for rotor position to settle abc(theta_ref, v_d, v_q, &v_u, &v_v, &v_w); // inverse dq0 transform on voltages svm(1.0, v_u, v_v, v_w, &dtc_u, &dtc_v, &dtc_w); // space vector modulation for(int i = 0; i<40000; i++){ TIM1->CCR3 = 0x708*(1.0f-dtc_u); // Set duty cycles if(gpio->phasing){ TIM1->CCR2 = 0x708*(1.0f-dtc_v); TIM1->CCR1 = 0x708*(1.0f-dtc_w); } else{ TIM1->CCR1 = 0x708*(1.0f-dtc_v); TIM1->CCR2 = 0x708*(1.0f-dtc_w); } wait_us(100); } ps->Sample(); for(int i = 0; i<n; i++){ // rotate forwards for(int j = 0; j<n2; j++){ theta_ref += delta; abc(theta_ref, v_d, v_q, &v_u, &v_v, &v_w); // inverse dq0 transform on voltages svm(1.0, v_u, v_v, v_w, &dtc_u, &dtc_v, &dtc_w); // space vector modulation TIM1->CCR3 = 0x708*(1.0f-dtc_u); if(gpio->phasing){ TIM1->CCR2 = 0x708*(1.0f-dtc_v); TIM1->CCR1 = 0x708*(1.0f-dtc_w); } else{ TIM1->CCR1 = 0x708*(1.0f-dtc_v); TIM1->CCR2 = 0x708*(1.0f-dtc_w); } wait_us(100); ps->Sample(); } ps->Sample(); theta_actual = ps->GetMechPosition(); error_f[i] = theta_ref/NPP - theta_actual; raw_f[i] = ps->GetRawPosition(); printf("%.4f %.4f %d\n\r", theta_ref/(NPP), theta_actual, raw_f[i]); //theta_ref += delta; } for(int i = 0; i<n; i++){ // rotate backwards for(int j = 0; j<n2; j++){ theta_ref -= delta; abc(theta_ref, v_d, v_q, &v_u, &v_v, &v_w); // inverse dq0 transform on voltages svm(1.0, v_u, v_v, v_w, &dtc_u, &dtc_v, &dtc_w); // space vector modulation TIM1->CCR3 = 0x708*(1.0f-dtc_u); if(gpio->phasing){ TIM1->CCR2 = 0x708*(1.0f-dtc_v); TIM1->CCR1 = 0x708*(1.0f-dtc_w); } else{ TIM1->CCR1 = 0x708*(1.0f-dtc_v); TIM1->CCR2 = 0x708*(1.0f-dtc_w); } wait_us(100); ps->Sample(); } ps->Sample(); // sample position sensor theta_actual = ps->GetMechPosition(); // get mechanical position error_b[i] = theta_ref/NPP - theta_actual; raw_b[i] = ps->GetRawPosition(); printf("%.4f %.4f %d\n\r", theta_ref/(NPP), theta_actual, raw_b[i]); //theta_ref -= delta; } float offset = 0; for(int i = 0; i<n; i++){ offset += (error_f[i] + error_b[n-1-i])/(2.0f*n); // calclate average position sensor offset } offset = fmod(offset*NPP, 2*PI); // convert mechanical angle to electrical angle printf("Encoder Electrical Offset (rad) %f\n\r", offset); ps->SetElecOffset(offset); // Set position sensor offset /// Perform filtering to linearize position sensor eccentricity /// FIR n-sample average, where n = number of samples in one electrical cycle /// This filter has zero gain at electrical frequency and all integer multiples /// So cogging should also be completely filtered out. float error[n] = {0}; int window = 128; float error_filt[n] = {0}; float mean = 0; for (int i = 0; i<n; i++){ //Average the forward and back directions error[i] = 0.5f*(error_f[i] + error_b[n-i-1]); } for (int i = 0; i<n; i++){ for(int j = 0; j<window; j++){ int ind = -window/2 + j + i; // Indexes from -window/2 to + window/2 if(ind<0){ ind += n;} // Moving average wraps around else if(ind > n-1) { ind -= n;} error_filt[i] += error[ind]/(float)window; } //printf("%.4f %4f %.4f %.4f\n\r", error[i], error_filt[i], error_f[i], error_b[i]); mean += error_filt[i]/n; } int raw_offset = (raw_f[0] + raw_b[n-1])/2; //Insensitive to errors in this direction, so 2 points is plenty const int n_lut = 128; int lut[n_lut]; for (int i = 0; i<n_lut; i++){ // build lookup table int ind = (raw_offset>>7) + i; if(ind > (n_lut-1)){ ind -= n_lut; } lut[ind] = (int) ((error_filt[i*NPP] - mean)*(float)(ps->GetCPR())/(2.0f*PI)); printf("%d %d %d %d\n\r", raw_offset>>7, i, ind, lut[ind]); } ps->WriteLUT(lut); // write lookup table to position sensor object }