www.freertos.org

Dependents:   mbed_freeRTOS_send

Fork of FreeRTOS by Rohit Grover

Committer:
rgrover1
Date:
Fri Jan 24 14:56:04 2014 +0000
Revision:
0:8e57f3e9cc89
Making FreeRTOS available as a library

Who changed what in which revision?

UserRevisionLine numberNew contents of line
rgrover1 0:8e57f3e9cc89 1 /*
rgrover1 0:8e57f3e9cc89 2 FreeRTOS V7.6.0 - Copyright (C) 2013 Real Time Engineers Ltd.
rgrover1 0:8e57f3e9cc89 3 All rights reserved
rgrover1 0:8e57f3e9cc89 4
rgrover1 0:8e57f3e9cc89 5 VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
rgrover1 0:8e57f3e9cc89 6
rgrover1 0:8e57f3e9cc89 7 ***************************************************************************
rgrover1 0:8e57f3e9cc89 8 * *
rgrover1 0:8e57f3e9cc89 9 * FreeRTOS provides completely free yet professionally developed, *
rgrover1 0:8e57f3e9cc89 10 * robust, strictly quality controlled, supported, and cross *
rgrover1 0:8e57f3e9cc89 11 * platform software that has become a de facto standard. *
rgrover1 0:8e57f3e9cc89 12 * *
rgrover1 0:8e57f3e9cc89 13 * Help yourself get started quickly and support the FreeRTOS *
rgrover1 0:8e57f3e9cc89 14 * project by purchasing a FreeRTOS tutorial book, reference *
rgrover1 0:8e57f3e9cc89 15 * manual, or both from: http://www.FreeRTOS.org/Documentation *
rgrover1 0:8e57f3e9cc89 16 * *
rgrover1 0:8e57f3e9cc89 17 * Thank you! *
rgrover1 0:8e57f3e9cc89 18 * *
rgrover1 0:8e57f3e9cc89 19 ***************************************************************************
rgrover1 0:8e57f3e9cc89 20
rgrover1 0:8e57f3e9cc89 21 This file is part of the FreeRTOS distribution.
rgrover1 0:8e57f3e9cc89 22
rgrover1 0:8e57f3e9cc89 23 FreeRTOS is free software; you can redistribute it and/or modify it under
rgrover1 0:8e57f3e9cc89 24 the terms of the GNU General Public License (version 2) as published by the
rgrover1 0:8e57f3e9cc89 25 Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
rgrover1 0:8e57f3e9cc89 26
rgrover1 0:8e57f3e9cc89 27 >>! NOTE: The modification to the GPL is included to allow you to distribute
rgrover1 0:8e57f3e9cc89 28 >>! a combined work that includes FreeRTOS without being obliged to provide
rgrover1 0:8e57f3e9cc89 29 >>! the source code for proprietary components outside of the FreeRTOS
rgrover1 0:8e57f3e9cc89 30 >>! kernel.
rgrover1 0:8e57f3e9cc89 31
rgrover1 0:8e57f3e9cc89 32 FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
rgrover1 0:8e57f3e9cc89 33 WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
rgrover1 0:8e57f3e9cc89 34 FOR A PARTICULAR PURPOSE. Full license text is available from the following
rgrover1 0:8e57f3e9cc89 35 link: http://www.freertos.org/a00114.html
rgrover1 0:8e57f3e9cc89 36
rgrover1 0:8e57f3e9cc89 37 1 tab == 4 spaces!
rgrover1 0:8e57f3e9cc89 38
rgrover1 0:8e57f3e9cc89 39 ***************************************************************************
rgrover1 0:8e57f3e9cc89 40 * *
rgrover1 0:8e57f3e9cc89 41 * Having a problem? Start by reading the FAQ "My application does *
rgrover1 0:8e57f3e9cc89 42 * not run, what could be wrong?" *
rgrover1 0:8e57f3e9cc89 43 * *
rgrover1 0:8e57f3e9cc89 44 * http://www.FreeRTOS.org/FAQHelp.html *
rgrover1 0:8e57f3e9cc89 45 * *
rgrover1 0:8e57f3e9cc89 46 ***************************************************************************
rgrover1 0:8e57f3e9cc89 47
rgrover1 0:8e57f3e9cc89 48 http://www.FreeRTOS.org - Documentation, books, training, latest versions,
rgrover1 0:8e57f3e9cc89 49 license and Real Time Engineers Ltd. contact details.
rgrover1 0:8e57f3e9cc89 50
rgrover1 0:8e57f3e9cc89 51 http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
rgrover1 0:8e57f3e9cc89 52 including FreeRTOS+Trace - an indispensable productivity tool, a DOS
rgrover1 0:8e57f3e9cc89 53 compatible FAT file system, and our tiny thread aware UDP/IP stack.
rgrover1 0:8e57f3e9cc89 54
rgrover1 0:8e57f3e9cc89 55 http://www.OpenRTOS.com - Real Time Engineers ltd license FreeRTOS to High
rgrover1 0:8e57f3e9cc89 56 Integrity Systems to sell under the OpenRTOS brand. Low cost OpenRTOS
rgrover1 0:8e57f3e9cc89 57 licenses offer ticketed support, indemnification and middleware.
rgrover1 0:8e57f3e9cc89 58
rgrover1 0:8e57f3e9cc89 59 http://www.SafeRTOS.com - High Integrity Systems also provide a safety
rgrover1 0:8e57f3e9cc89 60 engineered and independently SIL3 certified version for use in safety and
rgrover1 0:8e57f3e9cc89 61 mission critical applications that require provable dependability.
rgrover1 0:8e57f3e9cc89 62
rgrover1 0:8e57f3e9cc89 63 1 tab == 4 spaces!
rgrover1 0:8e57f3e9cc89 64 */
rgrover1 0:8e57f3e9cc89 65
rgrover1 0:8e57f3e9cc89 66
rgrover1 0:8e57f3e9cc89 67 #ifndef QUEUE_H
rgrover1 0:8e57f3e9cc89 68 #define QUEUE_H
rgrover1 0:8e57f3e9cc89 69
rgrover1 0:8e57f3e9cc89 70 #ifndef INC_FREERTOS_H
rgrover1 0:8e57f3e9cc89 71 #error "include FreeRTOS.h" must appear in source files before "include queue.h"
rgrover1 0:8e57f3e9cc89 72 #endif
rgrover1 0:8e57f3e9cc89 73
rgrover1 0:8e57f3e9cc89 74 #ifdef __cplusplus
rgrover1 0:8e57f3e9cc89 75 extern "C" {
rgrover1 0:8e57f3e9cc89 76 #endif
rgrover1 0:8e57f3e9cc89 77
rgrover1 0:8e57f3e9cc89 78
rgrover1 0:8e57f3e9cc89 79 /**
rgrover1 0:8e57f3e9cc89 80 * Type by which queues are referenced. For example, a call to xQueueCreate()
rgrover1 0:8e57f3e9cc89 81 * returns an xQueueHandle variable that can then be used as a parameter to
rgrover1 0:8e57f3e9cc89 82 * xQueueSend(), xQueueReceive(), etc.
rgrover1 0:8e57f3e9cc89 83 */
rgrover1 0:8e57f3e9cc89 84 typedef void * xQueueHandle;
rgrover1 0:8e57f3e9cc89 85
rgrover1 0:8e57f3e9cc89 86 /**
rgrover1 0:8e57f3e9cc89 87 * Type by which queue sets are referenced. For example, a call to
rgrover1 0:8e57f3e9cc89 88 * xQueueCreateSet() returns an xQueueSet variable that can then be used as a
rgrover1 0:8e57f3e9cc89 89 * parameter to xQueueSelectFromSet(), xQueueAddToSet(), etc.
rgrover1 0:8e57f3e9cc89 90 */
rgrover1 0:8e57f3e9cc89 91 typedef void * xQueueSetHandle;
rgrover1 0:8e57f3e9cc89 92
rgrover1 0:8e57f3e9cc89 93 /**
rgrover1 0:8e57f3e9cc89 94 * Queue sets can contain both queues and semaphores, so the
rgrover1 0:8e57f3e9cc89 95 * xQueueSetMemberHandle is defined as a type to be used where a parameter or
rgrover1 0:8e57f3e9cc89 96 * return value can be either an xQueueHandle or an xSemaphoreHandle.
rgrover1 0:8e57f3e9cc89 97 */
rgrover1 0:8e57f3e9cc89 98 typedef void * xQueueSetMemberHandle;
rgrover1 0:8e57f3e9cc89 99
rgrover1 0:8e57f3e9cc89 100 /* For internal use only. */
rgrover1 0:8e57f3e9cc89 101 #define queueSEND_TO_BACK ( ( portBASE_TYPE ) 0 )
rgrover1 0:8e57f3e9cc89 102 #define queueSEND_TO_FRONT ( ( portBASE_TYPE ) 1 )
rgrover1 0:8e57f3e9cc89 103 #define queueOVERWRITE ( ( portBASE_TYPE ) 2 )
rgrover1 0:8e57f3e9cc89 104
rgrover1 0:8e57f3e9cc89 105 /* For internal use only. These definitions *must* match those in queue.c. */
rgrover1 0:8e57f3e9cc89 106 #define queueQUEUE_TYPE_BASE ( ( unsigned char ) 0U )
rgrover1 0:8e57f3e9cc89 107 #define queueQUEUE_TYPE_SET ( ( unsigned char ) 0U )
rgrover1 0:8e57f3e9cc89 108 #define queueQUEUE_TYPE_MUTEX ( ( unsigned char ) 1U )
rgrover1 0:8e57f3e9cc89 109 #define queueQUEUE_TYPE_COUNTING_SEMAPHORE ( ( unsigned char ) 2U )
rgrover1 0:8e57f3e9cc89 110 #define queueQUEUE_TYPE_BINARY_SEMAPHORE ( ( unsigned char ) 3U )
rgrover1 0:8e57f3e9cc89 111 #define queueQUEUE_TYPE_RECURSIVE_MUTEX ( ( unsigned char ) 4U )
rgrover1 0:8e57f3e9cc89 112
rgrover1 0:8e57f3e9cc89 113 /**
rgrover1 0:8e57f3e9cc89 114 * queue. h
rgrover1 0:8e57f3e9cc89 115 * <pre>
rgrover1 0:8e57f3e9cc89 116 xQueueHandle xQueueCreate(
rgrover1 0:8e57f3e9cc89 117 unsigned portBASE_TYPE uxQueueLength,
rgrover1 0:8e57f3e9cc89 118 unsigned portBASE_TYPE uxItemSize
rgrover1 0:8e57f3e9cc89 119 );
rgrover1 0:8e57f3e9cc89 120 * </pre>
rgrover1 0:8e57f3e9cc89 121 *
rgrover1 0:8e57f3e9cc89 122 * Creates a new queue instance. This allocates the storage required by the
rgrover1 0:8e57f3e9cc89 123 * new queue and returns a handle for the queue.
rgrover1 0:8e57f3e9cc89 124 *
rgrover1 0:8e57f3e9cc89 125 * @param uxQueueLength The maximum number of items that the queue can contain.
rgrover1 0:8e57f3e9cc89 126 *
rgrover1 0:8e57f3e9cc89 127 * @param uxItemSize The number of bytes each item in the queue will require.
rgrover1 0:8e57f3e9cc89 128 * Items are queued by copy, not by reference, so this is the number of bytes
rgrover1 0:8e57f3e9cc89 129 * that will be copied for each posted item. Each item on the queue must be
rgrover1 0:8e57f3e9cc89 130 * the same size.
rgrover1 0:8e57f3e9cc89 131 *
rgrover1 0:8e57f3e9cc89 132 * @return If the queue is successfully create then a handle to the newly
rgrover1 0:8e57f3e9cc89 133 * created queue is returned. If the queue cannot be created then 0 is
rgrover1 0:8e57f3e9cc89 134 * returned.
rgrover1 0:8e57f3e9cc89 135 *
rgrover1 0:8e57f3e9cc89 136 * Example usage:
rgrover1 0:8e57f3e9cc89 137 <pre>
rgrover1 0:8e57f3e9cc89 138 struct AMessage
rgrover1 0:8e57f3e9cc89 139 {
rgrover1 0:8e57f3e9cc89 140 char ucMessageID;
rgrover1 0:8e57f3e9cc89 141 char ucData[ 20 ];
rgrover1 0:8e57f3e9cc89 142 };
rgrover1 0:8e57f3e9cc89 143
rgrover1 0:8e57f3e9cc89 144 void vATask( void *pvParameters )
rgrover1 0:8e57f3e9cc89 145 {
rgrover1 0:8e57f3e9cc89 146 xQueueHandle xQueue1, xQueue2;
rgrover1 0:8e57f3e9cc89 147
rgrover1 0:8e57f3e9cc89 148 // Create a queue capable of containing 10 unsigned long values.
rgrover1 0:8e57f3e9cc89 149 xQueue1 = xQueueCreate( 10, sizeof( unsigned long ) );
rgrover1 0:8e57f3e9cc89 150 if( xQueue1 == 0 )
rgrover1 0:8e57f3e9cc89 151 {
rgrover1 0:8e57f3e9cc89 152 // Queue was not created and must not be used.
rgrover1 0:8e57f3e9cc89 153 }
rgrover1 0:8e57f3e9cc89 154
rgrover1 0:8e57f3e9cc89 155 // Create a queue capable of containing 10 pointers to AMessage structures.
rgrover1 0:8e57f3e9cc89 156 // These should be passed by pointer as they contain a lot of data.
rgrover1 0:8e57f3e9cc89 157 xQueue2 = xQueueCreate( 10, sizeof( struct AMessage * ) );
rgrover1 0:8e57f3e9cc89 158 if( xQueue2 == 0 )
rgrover1 0:8e57f3e9cc89 159 {
rgrover1 0:8e57f3e9cc89 160 // Queue was not created and must not be used.
rgrover1 0:8e57f3e9cc89 161 }
rgrover1 0:8e57f3e9cc89 162
rgrover1 0:8e57f3e9cc89 163 // ... Rest of task code.
rgrover1 0:8e57f3e9cc89 164 }
rgrover1 0:8e57f3e9cc89 165 </pre>
rgrover1 0:8e57f3e9cc89 166 * \defgroup xQueueCreate xQueueCreate
rgrover1 0:8e57f3e9cc89 167 * \ingroup QueueManagement
rgrover1 0:8e57f3e9cc89 168 */
rgrover1 0:8e57f3e9cc89 169 #define xQueueCreate( uxQueueLength, uxItemSize ) xQueueGenericCreate( uxQueueLength, uxItemSize, queueQUEUE_TYPE_BASE )
rgrover1 0:8e57f3e9cc89 170
rgrover1 0:8e57f3e9cc89 171 /**
rgrover1 0:8e57f3e9cc89 172 * queue. h
rgrover1 0:8e57f3e9cc89 173 * <pre>
rgrover1 0:8e57f3e9cc89 174 portBASE_TYPE xQueueSendToToFront(
rgrover1 0:8e57f3e9cc89 175 xQueueHandle xQueue,
rgrover1 0:8e57f3e9cc89 176 const void * pvItemToQueue,
rgrover1 0:8e57f3e9cc89 177 portTickType xTicksToWait
rgrover1 0:8e57f3e9cc89 178 );
rgrover1 0:8e57f3e9cc89 179 * </pre>
rgrover1 0:8e57f3e9cc89 180 *
rgrover1 0:8e57f3e9cc89 181 * This is a macro that calls xQueueGenericSend().
rgrover1 0:8e57f3e9cc89 182 *
rgrover1 0:8e57f3e9cc89 183 * Post an item to the front of a queue. The item is queued by copy, not by
rgrover1 0:8e57f3e9cc89 184 * reference. This function must not be called from an interrupt service
rgrover1 0:8e57f3e9cc89 185 * routine. See xQueueSendFromISR () for an alternative which may be used
rgrover1 0:8e57f3e9cc89 186 * in an ISR.
rgrover1 0:8e57f3e9cc89 187 *
rgrover1 0:8e57f3e9cc89 188 * @param xQueue The handle to the queue on which the item is to be posted.
rgrover1 0:8e57f3e9cc89 189 *
rgrover1 0:8e57f3e9cc89 190 * @param pvItemToQueue A pointer to the item that is to be placed on the
rgrover1 0:8e57f3e9cc89 191 * queue. The size of the items the queue will hold was defined when the
rgrover1 0:8e57f3e9cc89 192 * queue was created, so this many bytes will be copied from pvItemToQueue
rgrover1 0:8e57f3e9cc89 193 * into the queue storage area.
rgrover1 0:8e57f3e9cc89 194 *
rgrover1 0:8e57f3e9cc89 195 * @param xTicksToWait The maximum amount of time the task should block
rgrover1 0:8e57f3e9cc89 196 * waiting for space to become available on the queue, should it already
rgrover1 0:8e57f3e9cc89 197 * be full. The call will return immediately if this is set to 0 and the
rgrover1 0:8e57f3e9cc89 198 * queue is full. The time is defined in tick periods so the constant
rgrover1 0:8e57f3e9cc89 199 * portTICK_RATE_MS should be used to convert to real time if this is required.
rgrover1 0:8e57f3e9cc89 200 *
rgrover1 0:8e57f3e9cc89 201 * @return pdTRUE if the item was successfully posted, otherwise errQUEUE_FULL.
rgrover1 0:8e57f3e9cc89 202 *
rgrover1 0:8e57f3e9cc89 203 * Example usage:
rgrover1 0:8e57f3e9cc89 204 <pre>
rgrover1 0:8e57f3e9cc89 205 struct AMessage
rgrover1 0:8e57f3e9cc89 206 {
rgrover1 0:8e57f3e9cc89 207 char ucMessageID;
rgrover1 0:8e57f3e9cc89 208 char ucData[ 20 ];
rgrover1 0:8e57f3e9cc89 209 } xMessage;
rgrover1 0:8e57f3e9cc89 210
rgrover1 0:8e57f3e9cc89 211 unsigned long ulVar = 10UL;
rgrover1 0:8e57f3e9cc89 212
rgrover1 0:8e57f3e9cc89 213 void vATask( void *pvParameters )
rgrover1 0:8e57f3e9cc89 214 {
rgrover1 0:8e57f3e9cc89 215 xQueueHandle xQueue1, xQueue2;
rgrover1 0:8e57f3e9cc89 216 struct AMessage *pxMessage;
rgrover1 0:8e57f3e9cc89 217
rgrover1 0:8e57f3e9cc89 218 // Create a queue capable of containing 10 unsigned long values.
rgrover1 0:8e57f3e9cc89 219 xQueue1 = xQueueCreate( 10, sizeof( unsigned long ) );
rgrover1 0:8e57f3e9cc89 220
rgrover1 0:8e57f3e9cc89 221 // Create a queue capable of containing 10 pointers to AMessage structures.
rgrover1 0:8e57f3e9cc89 222 // These should be passed by pointer as they contain a lot of data.
rgrover1 0:8e57f3e9cc89 223 xQueue2 = xQueueCreate( 10, sizeof( struct AMessage * ) );
rgrover1 0:8e57f3e9cc89 224
rgrover1 0:8e57f3e9cc89 225 // ...
rgrover1 0:8e57f3e9cc89 226
rgrover1 0:8e57f3e9cc89 227 if( xQueue1 != 0 )
rgrover1 0:8e57f3e9cc89 228 {
rgrover1 0:8e57f3e9cc89 229 // Send an unsigned long. Wait for 10 ticks for space to become
rgrover1 0:8e57f3e9cc89 230 // available if necessary.
rgrover1 0:8e57f3e9cc89 231 if( xQueueSendToFront( xQueue1, ( void * ) &ulVar, ( portTickType ) 10 ) != pdPASS )
rgrover1 0:8e57f3e9cc89 232 {
rgrover1 0:8e57f3e9cc89 233 // Failed to post the message, even after 10 ticks.
rgrover1 0:8e57f3e9cc89 234 }
rgrover1 0:8e57f3e9cc89 235 }
rgrover1 0:8e57f3e9cc89 236
rgrover1 0:8e57f3e9cc89 237 if( xQueue2 != 0 )
rgrover1 0:8e57f3e9cc89 238 {
rgrover1 0:8e57f3e9cc89 239 // Send a pointer to a struct AMessage object. Don't block if the
rgrover1 0:8e57f3e9cc89 240 // queue is already full.
rgrover1 0:8e57f3e9cc89 241 pxMessage = & xMessage;
rgrover1 0:8e57f3e9cc89 242 xQueueSendToFront( xQueue2, ( void * ) &pxMessage, ( portTickType ) 0 );
rgrover1 0:8e57f3e9cc89 243 }
rgrover1 0:8e57f3e9cc89 244
rgrover1 0:8e57f3e9cc89 245 // ... Rest of task code.
rgrover1 0:8e57f3e9cc89 246 }
rgrover1 0:8e57f3e9cc89 247 </pre>
rgrover1 0:8e57f3e9cc89 248 * \defgroup xQueueSend xQueueSend
rgrover1 0:8e57f3e9cc89 249 * \ingroup QueueManagement
rgrover1 0:8e57f3e9cc89 250 */
rgrover1 0:8e57f3e9cc89 251 #define xQueueSendToFront( xQueue, pvItemToQueue, xTicksToWait ) xQueueGenericSend( ( xQueue ), ( pvItemToQueue ), ( xTicksToWait ), queueSEND_TO_FRONT )
rgrover1 0:8e57f3e9cc89 252
rgrover1 0:8e57f3e9cc89 253 /**
rgrover1 0:8e57f3e9cc89 254 * queue. h
rgrover1 0:8e57f3e9cc89 255 * <pre>
rgrover1 0:8e57f3e9cc89 256 portBASE_TYPE xQueueSendToBack(
rgrover1 0:8e57f3e9cc89 257 xQueueHandle xQueue,
rgrover1 0:8e57f3e9cc89 258 const void * pvItemToQueue,
rgrover1 0:8e57f3e9cc89 259 portTickType xTicksToWait
rgrover1 0:8e57f3e9cc89 260 );
rgrover1 0:8e57f3e9cc89 261 * </pre>
rgrover1 0:8e57f3e9cc89 262 *
rgrover1 0:8e57f3e9cc89 263 * This is a macro that calls xQueueGenericSend().
rgrover1 0:8e57f3e9cc89 264 *
rgrover1 0:8e57f3e9cc89 265 * Post an item to the back of a queue. The item is queued by copy, not by
rgrover1 0:8e57f3e9cc89 266 * reference. This function must not be called from an interrupt service
rgrover1 0:8e57f3e9cc89 267 * routine. See xQueueSendFromISR () for an alternative which may be used
rgrover1 0:8e57f3e9cc89 268 * in an ISR.
rgrover1 0:8e57f3e9cc89 269 *
rgrover1 0:8e57f3e9cc89 270 * @param xQueue The handle to the queue on which the item is to be posted.
rgrover1 0:8e57f3e9cc89 271 *
rgrover1 0:8e57f3e9cc89 272 * @param pvItemToQueue A pointer to the item that is to be placed on the
rgrover1 0:8e57f3e9cc89 273 * queue. The size of the items the queue will hold was defined when the
rgrover1 0:8e57f3e9cc89 274 * queue was created, so this many bytes will be copied from pvItemToQueue
rgrover1 0:8e57f3e9cc89 275 * into the queue storage area.
rgrover1 0:8e57f3e9cc89 276 *
rgrover1 0:8e57f3e9cc89 277 * @param xTicksToWait The maximum amount of time the task should block
rgrover1 0:8e57f3e9cc89 278 * waiting for space to become available on the queue, should it already
rgrover1 0:8e57f3e9cc89 279 * be full. The call will return immediately if this is set to 0 and the queue
rgrover1 0:8e57f3e9cc89 280 * is full. The time is defined in tick periods so the constant
rgrover1 0:8e57f3e9cc89 281 * portTICK_RATE_MS should be used to convert to real time if this is required.
rgrover1 0:8e57f3e9cc89 282 *
rgrover1 0:8e57f3e9cc89 283 * @return pdTRUE if the item was successfully posted, otherwise errQUEUE_FULL.
rgrover1 0:8e57f3e9cc89 284 *
rgrover1 0:8e57f3e9cc89 285 * Example usage:
rgrover1 0:8e57f3e9cc89 286 <pre>
rgrover1 0:8e57f3e9cc89 287 struct AMessage
rgrover1 0:8e57f3e9cc89 288 {
rgrover1 0:8e57f3e9cc89 289 char ucMessageID;
rgrover1 0:8e57f3e9cc89 290 char ucData[ 20 ];
rgrover1 0:8e57f3e9cc89 291 } xMessage;
rgrover1 0:8e57f3e9cc89 292
rgrover1 0:8e57f3e9cc89 293 unsigned long ulVar = 10UL;
rgrover1 0:8e57f3e9cc89 294
rgrover1 0:8e57f3e9cc89 295 void vATask( void *pvParameters )
rgrover1 0:8e57f3e9cc89 296 {
rgrover1 0:8e57f3e9cc89 297 xQueueHandle xQueue1, xQueue2;
rgrover1 0:8e57f3e9cc89 298 struct AMessage *pxMessage;
rgrover1 0:8e57f3e9cc89 299
rgrover1 0:8e57f3e9cc89 300 // Create a queue capable of containing 10 unsigned long values.
rgrover1 0:8e57f3e9cc89 301 xQueue1 = xQueueCreate( 10, sizeof( unsigned long ) );
rgrover1 0:8e57f3e9cc89 302
rgrover1 0:8e57f3e9cc89 303 // Create a queue capable of containing 10 pointers to AMessage structures.
rgrover1 0:8e57f3e9cc89 304 // These should be passed by pointer as they contain a lot of data.
rgrover1 0:8e57f3e9cc89 305 xQueue2 = xQueueCreate( 10, sizeof( struct AMessage * ) );
rgrover1 0:8e57f3e9cc89 306
rgrover1 0:8e57f3e9cc89 307 // ...
rgrover1 0:8e57f3e9cc89 308
rgrover1 0:8e57f3e9cc89 309 if( xQueue1 != 0 )
rgrover1 0:8e57f3e9cc89 310 {
rgrover1 0:8e57f3e9cc89 311 // Send an unsigned long. Wait for 10 ticks for space to become
rgrover1 0:8e57f3e9cc89 312 // available if necessary.
rgrover1 0:8e57f3e9cc89 313 if( xQueueSendToBack( xQueue1, ( void * ) &ulVar, ( portTickType ) 10 ) != pdPASS )
rgrover1 0:8e57f3e9cc89 314 {
rgrover1 0:8e57f3e9cc89 315 // Failed to post the message, even after 10 ticks.
rgrover1 0:8e57f3e9cc89 316 }
rgrover1 0:8e57f3e9cc89 317 }
rgrover1 0:8e57f3e9cc89 318
rgrover1 0:8e57f3e9cc89 319 if( xQueue2 != 0 )
rgrover1 0:8e57f3e9cc89 320 {
rgrover1 0:8e57f3e9cc89 321 // Send a pointer to a struct AMessage object. Don't block if the
rgrover1 0:8e57f3e9cc89 322 // queue is already full.
rgrover1 0:8e57f3e9cc89 323 pxMessage = & xMessage;
rgrover1 0:8e57f3e9cc89 324 xQueueSendToBack( xQueue2, ( void * ) &pxMessage, ( portTickType ) 0 );
rgrover1 0:8e57f3e9cc89 325 }
rgrover1 0:8e57f3e9cc89 326
rgrover1 0:8e57f3e9cc89 327 // ... Rest of task code.
rgrover1 0:8e57f3e9cc89 328 }
rgrover1 0:8e57f3e9cc89 329 </pre>
rgrover1 0:8e57f3e9cc89 330 * \defgroup xQueueSend xQueueSend
rgrover1 0:8e57f3e9cc89 331 * \ingroup QueueManagement
rgrover1 0:8e57f3e9cc89 332 */
rgrover1 0:8e57f3e9cc89 333 #define xQueueSendToBack( xQueue, pvItemToQueue, xTicksToWait ) xQueueGenericSend( ( xQueue ), ( pvItemToQueue ), ( xTicksToWait ), queueSEND_TO_BACK )
rgrover1 0:8e57f3e9cc89 334
rgrover1 0:8e57f3e9cc89 335 /**
rgrover1 0:8e57f3e9cc89 336 * queue. h
rgrover1 0:8e57f3e9cc89 337 * <pre>
rgrover1 0:8e57f3e9cc89 338 portBASE_TYPE xQueueSend(
rgrover1 0:8e57f3e9cc89 339 xQueueHandle xQueue,
rgrover1 0:8e57f3e9cc89 340 const void * pvItemToQueue,
rgrover1 0:8e57f3e9cc89 341 portTickType xTicksToWait
rgrover1 0:8e57f3e9cc89 342 );
rgrover1 0:8e57f3e9cc89 343 * </pre>
rgrover1 0:8e57f3e9cc89 344 *
rgrover1 0:8e57f3e9cc89 345 * This is a macro that calls xQueueGenericSend(). It is included for
rgrover1 0:8e57f3e9cc89 346 * backward compatibility with versions of FreeRTOS.org that did not
rgrover1 0:8e57f3e9cc89 347 * include the xQueueSendToFront() and xQueueSendToBack() macros. It is
rgrover1 0:8e57f3e9cc89 348 * equivalent to xQueueSendToBack().
rgrover1 0:8e57f3e9cc89 349 *
rgrover1 0:8e57f3e9cc89 350 * Post an item on a queue. The item is queued by copy, not by reference.
rgrover1 0:8e57f3e9cc89 351 * This function must not be called from an interrupt service routine.
rgrover1 0:8e57f3e9cc89 352 * See xQueueSendFromISR () for an alternative which may be used in an ISR.
rgrover1 0:8e57f3e9cc89 353 *
rgrover1 0:8e57f3e9cc89 354 * @param xQueue The handle to the queue on which the item is to be posted.
rgrover1 0:8e57f3e9cc89 355 *
rgrover1 0:8e57f3e9cc89 356 * @param pvItemToQueue A pointer to the item that is to be placed on the
rgrover1 0:8e57f3e9cc89 357 * queue. The size of the items the queue will hold was defined when the
rgrover1 0:8e57f3e9cc89 358 * queue was created, so this many bytes will be copied from pvItemToQueue
rgrover1 0:8e57f3e9cc89 359 * into the queue storage area.
rgrover1 0:8e57f3e9cc89 360 *
rgrover1 0:8e57f3e9cc89 361 * @param xTicksToWait The maximum amount of time the task should block
rgrover1 0:8e57f3e9cc89 362 * waiting for space to become available on the queue, should it already
rgrover1 0:8e57f3e9cc89 363 * be full. The call will return immediately if this is set to 0 and the
rgrover1 0:8e57f3e9cc89 364 * queue is full. The time is defined in tick periods so the constant
rgrover1 0:8e57f3e9cc89 365 * portTICK_RATE_MS should be used to convert to real time if this is required.
rgrover1 0:8e57f3e9cc89 366 *
rgrover1 0:8e57f3e9cc89 367 * @return pdTRUE if the item was successfully posted, otherwise errQUEUE_FULL.
rgrover1 0:8e57f3e9cc89 368 *
rgrover1 0:8e57f3e9cc89 369 * Example usage:
rgrover1 0:8e57f3e9cc89 370 <pre>
rgrover1 0:8e57f3e9cc89 371 struct AMessage
rgrover1 0:8e57f3e9cc89 372 {
rgrover1 0:8e57f3e9cc89 373 char ucMessageID;
rgrover1 0:8e57f3e9cc89 374 char ucData[ 20 ];
rgrover1 0:8e57f3e9cc89 375 } xMessage;
rgrover1 0:8e57f3e9cc89 376
rgrover1 0:8e57f3e9cc89 377 unsigned long ulVar = 10UL;
rgrover1 0:8e57f3e9cc89 378
rgrover1 0:8e57f3e9cc89 379 void vATask( void *pvParameters )
rgrover1 0:8e57f3e9cc89 380 {
rgrover1 0:8e57f3e9cc89 381 xQueueHandle xQueue1, xQueue2;
rgrover1 0:8e57f3e9cc89 382 struct AMessage *pxMessage;
rgrover1 0:8e57f3e9cc89 383
rgrover1 0:8e57f3e9cc89 384 // Create a queue capable of containing 10 unsigned long values.
rgrover1 0:8e57f3e9cc89 385 xQueue1 = xQueueCreate( 10, sizeof( unsigned long ) );
rgrover1 0:8e57f3e9cc89 386
rgrover1 0:8e57f3e9cc89 387 // Create a queue capable of containing 10 pointers to AMessage structures.
rgrover1 0:8e57f3e9cc89 388 // These should be passed by pointer as they contain a lot of data.
rgrover1 0:8e57f3e9cc89 389 xQueue2 = xQueueCreate( 10, sizeof( struct AMessage * ) );
rgrover1 0:8e57f3e9cc89 390
rgrover1 0:8e57f3e9cc89 391 // ...
rgrover1 0:8e57f3e9cc89 392
rgrover1 0:8e57f3e9cc89 393 if( xQueue1 != 0 )
rgrover1 0:8e57f3e9cc89 394 {
rgrover1 0:8e57f3e9cc89 395 // Send an unsigned long. Wait for 10 ticks for space to become
rgrover1 0:8e57f3e9cc89 396 // available if necessary.
rgrover1 0:8e57f3e9cc89 397 if( xQueueSend( xQueue1, ( void * ) &ulVar, ( portTickType ) 10 ) != pdPASS )
rgrover1 0:8e57f3e9cc89 398 {
rgrover1 0:8e57f3e9cc89 399 // Failed to post the message, even after 10 ticks.
rgrover1 0:8e57f3e9cc89 400 }
rgrover1 0:8e57f3e9cc89 401 }
rgrover1 0:8e57f3e9cc89 402
rgrover1 0:8e57f3e9cc89 403 if( xQueue2 != 0 )
rgrover1 0:8e57f3e9cc89 404 {
rgrover1 0:8e57f3e9cc89 405 // Send a pointer to a struct AMessage object. Don't block if the
rgrover1 0:8e57f3e9cc89 406 // queue is already full.
rgrover1 0:8e57f3e9cc89 407 pxMessage = & xMessage;
rgrover1 0:8e57f3e9cc89 408 xQueueSend( xQueue2, ( void * ) &pxMessage, ( portTickType ) 0 );
rgrover1 0:8e57f3e9cc89 409 }
rgrover1 0:8e57f3e9cc89 410
rgrover1 0:8e57f3e9cc89 411 // ... Rest of task code.
rgrover1 0:8e57f3e9cc89 412 }
rgrover1 0:8e57f3e9cc89 413 </pre>
rgrover1 0:8e57f3e9cc89 414 * \defgroup xQueueSend xQueueSend
rgrover1 0:8e57f3e9cc89 415 * \ingroup QueueManagement
rgrover1 0:8e57f3e9cc89 416 */
rgrover1 0:8e57f3e9cc89 417 #define xQueueSend( xQueue, pvItemToQueue, xTicksToWait ) xQueueGenericSend( ( xQueue ), ( pvItemToQueue ), ( xTicksToWait ), queueSEND_TO_BACK )
rgrover1 0:8e57f3e9cc89 418
rgrover1 0:8e57f3e9cc89 419 /**
rgrover1 0:8e57f3e9cc89 420 * queue. h
rgrover1 0:8e57f3e9cc89 421 * <pre>
rgrover1 0:8e57f3e9cc89 422 portBASE_TYPE xQueueOverwrite(
rgrover1 0:8e57f3e9cc89 423 xQueueHandle xQueue,
rgrover1 0:8e57f3e9cc89 424 const void * pvItemToQueue
rgrover1 0:8e57f3e9cc89 425 );
rgrover1 0:8e57f3e9cc89 426 * </pre>
rgrover1 0:8e57f3e9cc89 427 *
rgrover1 0:8e57f3e9cc89 428 * Only for use with queues that have a length of one - so the queue is either
rgrover1 0:8e57f3e9cc89 429 * empty or full.
rgrover1 0:8e57f3e9cc89 430 *
rgrover1 0:8e57f3e9cc89 431 * Post an item on a queue. If the queue is already full then overwrite the
rgrover1 0:8e57f3e9cc89 432 * value held in the queue. The item is queued by copy, not by reference.
rgrover1 0:8e57f3e9cc89 433 *
rgrover1 0:8e57f3e9cc89 434 * This function must not be called from an interrupt service routine.
rgrover1 0:8e57f3e9cc89 435 * See xQueueOverwriteFromISR () for an alternative which may be used in an ISR.
rgrover1 0:8e57f3e9cc89 436 *
rgrover1 0:8e57f3e9cc89 437 * @param xQueue The handle of the queue to which the data is being sent.
rgrover1 0:8e57f3e9cc89 438 *
rgrover1 0:8e57f3e9cc89 439 * @param pvItemToQueue A pointer to the item that is to be placed on the
rgrover1 0:8e57f3e9cc89 440 * queue. The size of the items the queue will hold was defined when the
rgrover1 0:8e57f3e9cc89 441 * queue was created, so this many bytes will be copied from pvItemToQueue
rgrover1 0:8e57f3e9cc89 442 * into the queue storage area.
rgrover1 0:8e57f3e9cc89 443 *
rgrover1 0:8e57f3e9cc89 444 * @return xQueueOverwrite() is a macro that calls xQueueGenericSend(), and
rgrover1 0:8e57f3e9cc89 445 * therefore has the same return values as xQueueSendToFront(). However, pdPASS
rgrover1 0:8e57f3e9cc89 446 * is the only value that can be returned because xQueueOverwrite() will write
rgrover1 0:8e57f3e9cc89 447 * to the queue even when the queue is already full.
rgrover1 0:8e57f3e9cc89 448 *
rgrover1 0:8e57f3e9cc89 449 * Example usage:
rgrover1 0:8e57f3e9cc89 450 <pre>
rgrover1 0:8e57f3e9cc89 451
rgrover1 0:8e57f3e9cc89 452 void vFunction( void *pvParameters )
rgrover1 0:8e57f3e9cc89 453 {
rgrover1 0:8e57f3e9cc89 454 xQueueHandle xQueue;
rgrover1 0:8e57f3e9cc89 455 unsigned long ulVarToSend, ulValReceived;
rgrover1 0:8e57f3e9cc89 456
rgrover1 0:8e57f3e9cc89 457 // Create a queue to hold one unsigned long value. It is strongly
rgrover1 0:8e57f3e9cc89 458 // recommended *not* to use xQueueOverwrite() on queues that can
rgrover1 0:8e57f3e9cc89 459 // contain more than one value, and doing so will trigger an assertion
rgrover1 0:8e57f3e9cc89 460 // if configASSERT() is defined.
rgrover1 0:8e57f3e9cc89 461 xQueue = xQueueCreate( 1, sizeof( unsigned long ) );
rgrover1 0:8e57f3e9cc89 462
rgrover1 0:8e57f3e9cc89 463 // Write the value 10 to the queue using xQueueOverwrite().
rgrover1 0:8e57f3e9cc89 464 ulVarToSend = 10;
rgrover1 0:8e57f3e9cc89 465 xQueueOverwrite( xQueue, &ulVarToSend );
rgrover1 0:8e57f3e9cc89 466
rgrover1 0:8e57f3e9cc89 467 // Peeking the queue should now return 10, but leave the value 10 in
rgrover1 0:8e57f3e9cc89 468 // the queue. A block time of zero is used as it is known that the
rgrover1 0:8e57f3e9cc89 469 // queue holds a value.
rgrover1 0:8e57f3e9cc89 470 ulValReceived = 0;
rgrover1 0:8e57f3e9cc89 471 xQueuePeek( xQueue, &ulValReceived, 0 );
rgrover1 0:8e57f3e9cc89 472
rgrover1 0:8e57f3e9cc89 473 if( ulValReceived != 10 )
rgrover1 0:8e57f3e9cc89 474 {
rgrover1 0:8e57f3e9cc89 475 // Error unless the item was removed by a different task.
rgrover1 0:8e57f3e9cc89 476 }
rgrover1 0:8e57f3e9cc89 477
rgrover1 0:8e57f3e9cc89 478 // The queue is still full. Use xQueueOverwrite() to overwrite the
rgrover1 0:8e57f3e9cc89 479 // value held in the queue with 100.
rgrover1 0:8e57f3e9cc89 480 ulVarToSend = 100;
rgrover1 0:8e57f3e9cc89 481 xQueueOverwrite( xQueue, &ulVarToSend );
rgrover1 0:8e57f3e9cc89 482
rgrover1 0:8e57f3e9cc89 483 // This time read from the queue, leaving the queue empty once more.
rgrover1 0:8e57f3e9cc89 484 // A block time of 0 is used again.
rgrover1 0:8e57f3e9cc89 485 xQueueReceive( xQueue, &ulValReceived, 0 );
rgrover1 0:8e57f3e9cc89 486
rgrover1 0:8e57f3e9cc89 487 // The value read should be the last value written, even though the
rgrover1 0:8e57f3e9cc89 488 // queue was already full when the value was written.
rgrover1 0:8e57f3e9cc89 489 if( ulValReceived != 100 )
rgrover1 0:8e57f3e9cc89 490 {
rgrover1 0:8e57f3e9cc89 491 // Error!
rgrover1 0:8e57f3e9cc89 492 }
rgrover1 0:8e57f3e9cc89 493
rgrover1 0:8e57f3e9cc89 494 // ...
rgrover1 0:8e57f3e9cc89 495 }
rgrover1 0:8e57f3e9cc89 496 </pre>
rgrover1 0:8e57f3e9cc89 497 * \defgroup xQueueOverwrite xQueueOverwrite
rgrover1 0:8e57f3e9cc89 498 * \ingroup QueueManagement
rgrover1 0:8e57f3e9cc89 499 */
rgrover1 0:8e57f3e9cc89 500 #define xQueueOverwrite( xQueue, pvItemToQueue ) xQueueGenericSend( ( xQueue ), ( pvItemToQueue ), 0, queueOVERWRITE )
rgrover1 0:8e57f3e9cc89 501
rgrover1 0:8e57f3e9cc89 502
rgrover1 0:8e57f3e9cc89 503 /**
rgrover1 0:8e57f3e9cc89 504 * queue. h
rgrover1 0:8e57f3e9cc89 505 * <pre>
rgrover1 0:8e57f3e9cc89 506 portBASE_TYPE xQueueGenericSend(
rgrover1 0:8e57f3e9cc89 507 xQueueHandle xQueue,
rgrover1 0:8e57f3e9cc89 508 const void * pvItemToQueue,
rgrover1 0:8e57f3e9cc89 509 portTickType xTicksToWait
rgrover1 0:8e57f3e9cc89 510 portBASE_TYPE xCopyPosition
rgrover1 0:8e57f3e9cc89 511 );
rgrover1 0:8e57f3e9cc89 512 * </pre>
rgrover1 0:8e57f3e9cc89 513 *
rgrover1 0:8e57f3e9cc89 514 * It is preferred that the macros xQueueSend(), xQueueSendToFront() and
rgrover1 0:8e57f3e9cc89 515 * xQueueSendToBack() are used in place of calling this function directly.
rgrover1 0:8e57f3e9cc89 516 *
rgrover1 0:8e57f3e9cc89 517 * Post an item on a queue. The item is queued by copy, not by reference.
rgrover1 0:8e57f3e9cc89 518 * This function must not be called from an interrupt service routine.
rgrover1 0:8e57f3e9cc89 519 * See xQueueSendFromISR () for an alternative which may be used in an ISR.
rgrover1 0:8e57f3e9cc89 520 *
rgrover1 0:8e57f3e9cc89 521 * @param xQueue The handle to the queue on which the item is to be posted.
rgrover1 0:8e57f3e9cc89 522 *
rgrover1 0:8e57f3e9cc89 523 * @param pvItemToQueue A pointer to the item that is to be placed on the
rgrover1 0:8e57f3e9cc89 524 * queue. The size of the items the queue will hold was defined when the
rgrover1 0:8e57f3e9cc89 525 * queue was created, so this many bytes will be copied from pvItemToQueue
rgrover1 0:8e57f3e9cc89 526 * into the queue storage area.
rgrover1 0:8e57f3e9cc89 527 *
rgrover1 0:8e57f3e9cc89 528 * @param xTicksToWait The maximum amount of time the task should block
rgrover1 0:8e57f3e9cc89 529 * waiting for space to become available on the queue, should it already
rgrover1 0:8e57f3e9cc89 530 * be full. The call will return immediately if this is set to 0 and the
rgrover1 0:8e57f3e9cc89 531 * queue is full. The time is defined in tick periods so the constant
rgrover1 0:8e57f3e9cc89 532 * portTICK_RATE_MS should be used to convert to real time if this is required.
rgrover1 0:8e57f3e9cc89 533 *
rgrover1 0:8e57f3e9cc89 534 * @param xCopyPosition Can take the value queueSEND_TO_BACK to place the
rgrover1 0:8e57f3e9cc89 535 * item at the back of the queue, or queueSEND_TO_FRONT to place the item
rgrover1 0:8e57f3e9cc89 536 * at the front of the queue (for high priority messages).
rgrover1 0:8e57f3e9cc89 537 *
rgrover1 0:8e57f3e9cc89 538 * @return pdTRUE if the item was successfully posted, otherwise errQUEUE_FULL.
rgrover1 0:8e57f3e9cc89 539 *
rgrover1 0:8e57f3e9cc89 540 * Example usage:
rgrover1 0:8e57f3e9cc89 541 <pre>
rgrover1 0:8e57f3e9cc89 542 struct AMessage
rgrover1 0:8e57f3e9cc89 543 {
rgrover1 0:8e57f3e9cc89 544 char ucMessageID;
rgrover1 0:8e57f3e9cc89 545 char ucData[ 20 ];
rgrover1 0:8e57f3e9cc89 546 } xMessage;
rgrover1 0:8e57f3e9cc89 547
rgrover1 0:8e57f3e9cc89 548 unsigned long ulVar = 10UL;
rgrover1 0:8e57f3e9cc89 549
rgrover1 0:8e57f3e9cc89 550 void vATask( void *pvParameters )
rgrover1 0:8e57f3e9cc89 551 {
rgrover1 0:8e57f3e9cc89 552 xQueueHandle xQueue1, xQueue2;
rgrover1 0:8e57f3e9cc89 553 struct AMessage *pxMessage;
rgrover1 0:8e57f3e9cc89 554
rgrover1 0:8e57f3e9cc89 555 // Create a queue capable of containing 10 unsigned long values.
rgrover1 0:8e57f3e9cc89 556 xQueue1 = xQueueCreate( 10, sizeof( unsigned long ) );
rgrover1 0:8e57f3e9cc89 557
rgrover1 0:8e57f3e9cc89 558 // Create a queue capable of containing 10 pointers to AMessage structures.
rgrover1 0:8e57f3e9cc89 559 // These should be passed by pointer as they contain a lot of data.
rgrover1 0:8e57f3e9cc89 560 xQueue2 = xQueueCreate( 10, sizeof( struct AMessage * ) );
rgrover1 0:8e57f3e9cc89 561
rgrover1 0:8e57f3e9cc89 562 // ...
rgrover1 0:8e57f3e9cc89 563
rgrover1 0:8e57f3e9cc89 564 if( xQueue1 != 0 )
rgrover1 0:8e57f3e9cc89 565 {
rgrover1 0:8e57f3e9cc89 566 // Send an unsigned long. Wait for 10 ticks for space to become
rgrover1 0:8e57f3e9cc89 567 // available if necessary.
rgrover1 0:8e57f3e9cc89 568 if( xQueueGenericSend( xQueue1, ( void * ) &ulVar, ( portTickType ) 10, queueSEND_TO_BACK ) != pdPASS )
rgrover1 0:8e57f3e9cc89 569 {
rgrover1 0:8e57f3e9cc89 570 // Failed to post the message, even after 10 ticks.
rgrover1 0:8e57f3e9cc89 571 }
rgrover1 0:8e57f3e9cc89 572 }
rgrover1 0:8e57f3e9cc89 573
rgrover1 0:8e57f3e9cc89 574 if( xQueue2 != 0 )
rgrover1 0:8e57f3e9cc89 575 {
rgrover1 0:8e57f3e9cc89 576 // Send a pointer to a struct AMessage object. Don't block if the
rgrover1 0:8e57f3e9cc89 577 // queue is already full.
rgrover1 0:8e57f3e9cc89 578 pxMessage = & xMessage;
rgrover1 0:8e57f3e9cc89 579 xQueueGenericSend( xQueue2, ( void * ) &pxMessage, ( portTickType ) 0, queueSEND_TO_BACK );
rgrover1 0:8e57f3e9cc89 580 }
rgrover1 0:8e57f3e9cc89 581
rgrover1 0:8e57f3e9cc89 582 // ... Rest of task code.
rgrover1 0:8e57f3e9cc89 583 }
rgrover1 0:8e57f3e9cc89 584 </pre>
rgrover1 0:8e57f3e9cc89 585 * \defgroup xQueueSend xQueueSend
rgrover1 0:8e57f3e9cc89 586 * \ingroup QueueManagement
rgrover1 0:8e57f3e9cc89 587 */
rgrover1 0:8e57f3e9cc89 588 signed portBASE_TYPE xQueueGenericSend( xQueueHandle xQueue, const void * const pvItemToQueue, portTickType xTicksToWait, portBASE_TYPE xCopyPosition ) PRIVILEGED_FUNCTION;
rgrover1 0:8e57f3e9cc89 589
rgrover1 0:8e57f3e9cc89 590 /**
rgrover1 0:8e57f3e9cc89 591 * queue. h
rgrover1 0:8e57f3e9cc89 592 * <pre>
rgrover1 0:8e57f3e9cc89 593 portBASE_TYPE xQueuePeek(
rgrover1 0:8e57f3e9cc89 594 xQueueHandle xQueue,
rgrover1 0:8e57f3e9cc89 595 void *pvBuffer,
rgrover1 0:8e57f3e9cc89 596 portTickType xTicksToWait
rgrover1 0:8e57f3e9cc89 597 );</pre>
rgrover1 0:8e57f3e9cc89 598 *
rgrover1 0:8e57f3e9cc89 599 * This is a macro that calls the xQueueGenericReceive() function.
rgrover1 0:8e57f3e9cc89 600 *
rgrover1 0:8e57f3e9cc89 601 * Receive an item from a queue without removing the item from the queue.
rgrover1 0:8e57f3e9cc89 602 * The item is received by copy so a buffer of adequate size must be
rgrover1 0:8e57f3e9cc89 603 * provided. The number of bytes copied into the buffer was defined when
rgrover1 0:8e57f3e9cc89 604 * the queue was created.
rgrover1 0:8e57f3e9cc89 605 *
rgrover1 0:8e57f3e9cc89 606 * Successfully received items remain on the queue so will be returned again
rgrover1 0:8e57f3e9cc89 607 * by the next call, or a call to xQueueReceive().
rgrover1 0:8e57f3e9cc89 608 *
rgrover1 0:8e57f3e9cc89 609 * This macro must not be used in an interrupt service routine. See
rgrover1 0:8e57f3e9cc89 610 * xQueuePeekFromISR() for an alternative that can be called from an interrupt
rgrover1 0:8e57f3e9cc89 611 * service routine.
rgrover1 0:8e57f3e9cc89 612 *
rgrover1 0:8e57f3e9cc89 613 * @param xQueue The handle to the queue from which the item is to be
rgrover1 0:8e57f3e9cc89 614 * received.
rgrover1 0:8e57f3e9cc89 615 *
rgrover1 0:8e57f3e9cc89 616 * @param pvBuffer Pointer to the buffer into which the received item will
rgrover1 0:8e57f3e9cc89 617 * be copied.
rgrover1 0:8e57f3e9cc89 618 *
rgrover1 0:8e57f3e9cc89 619 * @param xTicksToWait The maximum amount of time the task should block
rgrover1 0:8e57f3e9cc89 620 * waiting for an item to receive should the queue be empty at the time
rgrover1 0:8e57f3e9cc89 621 * of the call. The time is defined in tick periods so the constant
rgrover1 0:8e57f3e9cc89 622 * portTICK_RATE_MS should be used to convert to real time if this is required.
rgrover1 0:8e57f3e9cc89 623 * xQueuePeek() will return immediately if xTicksToWait is 0 and the queue
rgrover1 0:8e57f3e9cc89 624 * is empty.
rgrover1 0:8e57f3e9cc89 625 *
rgrover1 0:8e57f3e9cc89 626 * @return pdTRUE if an item was successfully received from the queue,
rgrover1 0:8e57f3e9cc89 627 * otherwise pdFALSE.
rgrover1 0:8e57f3e9cc89 628 *
rgrover1 0:8e57f3e9cc89 629 * Example usage:
rgrover1 0:8e57f3e9cc89 630 <pre>
rgrover1 0:8e57f3e9cc89 631 struct AMessage
rgrover1 0:8e57f3e9cc89 632 {
rgrover1 0:8e57f3e9cc89 633 char ucMessageID;
rgrover1 0:8e57f3e9cc89 634 char ucData[ 20 ];
rgrover1 0:8e57f3e9cc89 635 } xMessage;
rgrover1 0:8e57f3e9cc89 636
rgrover1 0:8e57f3e9cc89 637 xQueueHandle xQueue;
rgrover1 0:8e57f3e9cc89 638
rgrover1 0:8e57f3e9cc89 639 // Task to create a queue and post a value.
rgrover1 0:8e57f3e9cc89 640 void vATask( void *pvParameters )
rgrover1 0:8e57f3e9cc89 641 {
rgrover1 0:8e57f3e9cc89 642 struct AMessage *pxMessage;
rgrover1 0:8e57f3e9cc89 643
rgrover1 0:8e57f3e9cc89 644 // Create a queue capable of containing 10 pointers to AMessage structures.
rgrover1 0:8e57f3e9cc89 645 // These should be passed by pointer as they contain a lot of data.
rgrover1 0:8e57f3e9cc89 646 xQueue = xQueueCreate( 10, sizeof( struct AMessage * ) );
rgrover1 0:8e57f3e9cc89 647 if( xQueue == 0 )
rgrover1 0:8e57f3e9cc89 648 {
rgrover1 0:8e57f3e9cc89 649 // Failed to create the queue.
rgrover1 0:8e57f3e9cc89 650 }
rgrover1 0:8e57f3e9cc89 651
rgrover1 0:8e57f3e9cc89 652 // ...
rgrover1 0:8e57f3e9cc89 653
rgrover1 0:8e57f3e9cc89 654 // Send a pointer to a struct AMessage object. Don't block if the
rgrover1 0:8e57f3e9cc89 655 // queue is already full.
rgrover1 0:8e57f3e9cc89 656 pxMessage = & xMessage;
rgrover1 0:8e57f3e9cc89 657 xQueueSend( xQueue, ( void * ) &pxMessage, ( portTickType ) 0 );
rgrover1 0:8e57f3e9cc89 658
rgrover1 0:8e57f3e9cc89 659 // ... Rest of task code.
rgrover1 0:8e57f3e9cc89 660 }
rgrover1 0:8e57f3e9cc89 661
rgrover1 0:8e57f3e9cc89 662 // Task to peek the data from the queue.
rgrover1 0:8e57f3e9cc89 663 void vADifferentTask( void *pvParameters )
rgrover1 0:8e57f3e9cc89 664 {
rgrover1 0:8e57f3e9cc89 665 struct AMessage *pxRxedMessage;
rgrover1 0:8e57f3e9cc89 666
rgrover1 0:8e57f3e9cc89 667 if( xQueue != 0 )
rgrover1 0:8e57f3e9cc89 668 {
rgrover1 0:8e57f3e9cc89 669 // Peek a message on the created queue. Block for 10 ticks if a
rgrover1 0:8e57f3e9cc89 670 // message is not immediately available.
rgrover1 0:8e57f3e9cc89 671 if( xQueuePeek( xQueue, &( pxRxedMessage ), ( portTickType ) 10 ) )
rgrover1 0:8e57f3e9cc89 672 {
rgrover1 0:8e57f3e9cc89 673 // pcRxedMessage now points to the struct AMessage variable posted
rgrover1 0:8e57f3e9cc89 674 // by vATask, but the item still remains on the queue.
rgrover1 0:8e57f3e9cc89 675 }
rgrover1 0:8e57f3e9cc89 676 }
rgrover1 0:8e57f3e9cc89 677
rgrover1 0:8e57f3e9cc89 678 // ... Rest of task code.
rgrover1 0:8e57f3e9cc89 679 }
rgrover1 0:8e57f3e9cc89 680 </pre>
rgrover1 0:8e57f3e9cc89 681 * \defgroup xQueueReceive xQueueReceive
rgrover1 0:8e57f3e9cc89 682 * \ingroup QueueManagement
rgrover1 0:8e57f3e9cc89 683 */
rgrover1 0:8e57f3e9cc89 684 #define xQueuePeek( xQueue, pvBuffer, xTicksToWait ) xQueueGenericReceive( ( xQueue ), ( pvBuffer ), ( xTicksToWait ), pdTRUE )
rgrover1 0:8e57f3e9cc89 685
rgrover1 0:8e57f3e9cc89 686 /**
rgrover1 0:8e57f3e9cc89 687 * queue. h
rgrover1 0:8e57f3e9cc89 688 * <pre>
rgrover1 0:8e57f3e9cc89 689 portBASE_TYPE xQueuePeekFromISR(
rgrover1 0:8e57f3e9cc89 690 xQueueHandle xQueue,
rgrover1 0:8e57f3e9cc89 691 void *pvBuffer,
rgrover1 0:8e57f3e9cc89 692 );</pre>
rgrover1 0:8e57f3e9cc89 693 *
rgrover1 0:8e57f3e9cc89 694 * A version of xQueuePeek() that can be called from an interrupt service
rgrover1 0:8e57f3e9cc89 695 * routine (ISR).
rgrover1 0:8e57f3e9cc89 696 *
rgrover1 0:8e57f3e9cc89 697 * Receive an item from a queue without removing the item from the queue.
rgrover1 0:8e57f3e9cc89 698 * The item is received by copy so a buffer of adequate size must be
rgrover1 0:8e57f3e9cc89 699 * provided. The number of bytes copied into the buffer was defined when
rgrover1 0:8e57f3e9cc89 700 * the queue was created.
rgrover1 0:8e57f3e9cc89 701 *
rgrover1 0:8e57f3e9cc89 702 * Successfully received items remain on the queue so will be returned again
rgrover1 0:8e57f3e9cc89 703 * by the next call, or a call to xQueueReceive().
rgrover1 0:8e57f3e9cc89 704 *
rgrover1 0:8e57f3e9cc89 705 * @param xQueue The handle to the queue from which the item is to be
rgrover1 0:8e57f3e9cc89 706 * received.
rgrover1 0:8e57f3e9cc89 707 *
rgrover1 0:8e57f3e9cc89 708 * @param pvBuffer Pointer to the buffer into which the received item will
rgrover1 0:8e57f3e9cc89 709 * be copied.
rgrover1 0:8e57f3e9cc89 710 *
rgrover1 0:8e57f3e9cc89 711 * @return pdTRUE if an item was successfully received from the queue,
rgrover1 0:8e57f3e9cc89 712 * otherwise pdFALSE.
rgrover1 0:8e57f3e9cc89 713 *
rgrover1 0:8e57f3e9cc89 714 * \defgroup xQueuePeekFromISR xQueuePeekFromISR
rgrover1 0:8e57f3e9cc89 715 * \ingroup QueueManagement
rgrover1 0:8e57f3e9cc89 716 */
rgrover1 0:8e57f3e9cc89 717 signed portBASE_TYPE xQueuePeekFromISR( xQueueHandle xQueue, void * const pvBuffer ) PRIVILEGED_FUNCTION;
rgrover1 0:8e57f3e9cc89 718
rgrover1 0:8e57f3e9cc89 719 /**
rgrover1 0:8e57f3e9cc89 720 * queue. h
rgrover1 0:8e57f3e9cc89 721 * <pre>
rgrover1 0:8e57f3e9cc89 722 portBASE_TYPE xQueueReceive(
rgrover1 0:8e57f3e9cc89 723 xQueueHandle xQueue,
rgrover1 0:8e57f3e9cc89 724 void *pvBuffer,
rgrover1 0:8e57f3e9cc89 725 portTickType xTicksToWait
rgrover1 0:8e57f3e9cc89 726 );</pre>
rgrover1 0:8e57f3e9cc89 727 *
rgrover1 0:8e57f3e9cc89 728 * This is a macro that calls the xQueueGenericReceive() function.
rgrover1 0:8e57f3e9cc89 729 *
rgrover1 0:8e57f3e9cc89 730 * Receive an item from a queue. The item is received by copy so a buffer of
rgrover1 0:8e57f3e9cc89 731 * adequate size must be provided. The number of bytes copied into the buffer
rgrover1 0:8e57f3e9cc89 732 * was defined when the queue was created.
rgrover1 0:8e57f3e9cc89 733 *
rgrover1 0:8e57f3e9cc89 734 * Successfully received items are removed from the queue.
rgrover1 0:8e57f3e9cc89 735 *
rgrover1 0:8e57f3e9cc89 736 * This function must not be used in an interrupt service routine. See
rgrover1 0:8e57f3e9cc89 737 * xQueueReceiveFromISR for an alternative that can.
rgrover1 0:8e57f3e9cc89 738 *
rgrover1 0:8e57f3e9cc89 739 * @param xQueue The handle to the queue from which the item is to be
rgrover1 0:8e57f3e9cc89 740 * received.
rgrover1 0:8e57f3e9cc89 741 *
rgrover1 0:8e57f3e9cc89 742 * @param pvBuffer Pointer to the buffer into which the received item will
rgrover1 0:8e57f3e9cc89 743 * be copied.
rgrover1 0:8e57f3e9cc89 744 *
rgrover1 0:8e57f3e9cc89 745 * @param xTicksToWait The maximum amount of time the task should block
rgrover1 0:8e57f3e9cc89 746 * waiting for an item to receive should the queue be empty at the time
rgrover1 0:8e57f3e9cc89 747 * of the call. xQueueReceive() will return immediately if xTicksToWait
rgrover1 0:8e57f3e9cc89 748 * is zero and the queue is empty. The time is defined in tick periods so the
rgrover1 0:8e57f3e9cc89 749 * constant portTICK_RATE_MS should be used to convert to real time if this is
rgrover1 0:8e57f3e9cc89 750 * required.
rgrover1 0:8e57f3e9cc89 751 *
rgrover1 0:8e57f3e9cc89 752 * @return pdTRUE if an item was successfully received from the queue,
rgrover1 0:8e57f3e9cc89 753 * otherwise pdFALSE.
rgrover1 0:8e57f3e9cc89 754 *
rgrover1 0:8e57f3e9cc89 755 * Example usage:
rgrover1 0:8e57f3e9cc89 756 <pre>
rgrover1 0:8e57f3e9cc89 757 struct AMessage
rgrover1 0:8e57f3e9cc89 758 {
rgrover1 0:8e57f3e9cc89 759 char ucMessageID;
rgrover1 0:8e57f3e9cc89 760 char ucData[ 20 ];
rgrover1 0:8e57f3e9cc89 761 } xMessage;
rgrover1 0:8e57f3e9cc89 762
rgrover1 0:8e57f3e9cc89 763 xQueueHandle xQueue;
rgrover1 0:8e57f3e9cc89 764
rgrover1 0:8e57f3e9cc89 765 // Task to create a queue and post a value.
rgrover1 0:8e57f3e9cc89 766 void vATask( void *pvParameters )
rgrover1 0:8e57f3e9cc89 767 {
rgrover1 0:8e57f3e9cc89 768 struct AMessage *pxMessage;
rgrover1 0:8e57f3e9cc89 769
rgrover1 0:8e57f3e9cc89 770 // Create a queue capable of containing 10 pointers to AMessage structures.
rgrover1 0:8e57f3e9cc89 771 // These should be passed by pointer as they contain a lot of data.
rgrover1 0:8e57f3e9cc89 772 xQueue = xQueueCreate( 10, sizeof( struct AMessage * ) );
rgrover1 0:8e57f3e9cc89 773 if( xQueue == 0 )
rgrover1 0:8e57f3e9cc89 774 {
rgrover1 0:8e57f3e9cc89 775 // Failed to create the queue.
rgrover1 0:8e57f3e9cc89 776 }
rgrover1 0:8e57f3e9cc89 777
rgrover1 0:8e57f3e9cc89 778 // ...
rgrover1 0:8e57f3e9cc89 779
rgrover1 0:8e57f3e9cc89 780 // Send a pointer to a struct AMessage object. Don't block if the
rgrover1 0:8e57f3e9cc89 781 // queue is already full.
rgrover1 0:8e57f3e9cc89 782 pxMessage = & xMessage;
rgrover1 0:8e57f3e9cc89 783 xQueueSend( xQueue, ( void * ) &pxMessage, ( portTickType ) 0 );
rgrover1 0:8e57f3e9cc89 784
rgrover1 0:8e57f3e9cc89 785 // ... Rest of task code.
rgrover1 0:8e57f3e9cc89 786 }
rgrover1 0:8e57f3e9cc89 787
rgrover1 0:8e57f3e9cc89 788 // Task to receive from the queue.
rgrover1 0:8e57f3e9cc89 789 void vADifferentTask( void *pvParameters )
rgrover1 0:8e57f3e9cc89 790 {
rgrover1 0:8e57f3e9cc89 791 struct AMessage *pxRxedMessage;
rgrover1 0:8e57f3e9cc89 792
rgrover1 0:8e57f3e9cc89 793 if( xQueue != 0 )
rgrover1 0:8e57f3e9cc89 794 {
rgrover1 0:8e57f3e9cc89 795 // Receive a message on the created queue. Block for 10 ticks if a
rgrover1 0:8e57f3e9cc89 796 // message is not immediately available.
rgrover1 0:8e57f3e9cc89 797 if( xQueueReceive( xQueue, &( pxRxedMessage ), ( portTickType ) 10 ) )
rgrover1 0:8e57f3e9cc89 798 {
rgrover1 0:8e57f3e9cc89 799 // pcRxedMessage now points to the struct AMessage variable posted
rgrover1 0:8e57f3e9cc89 800 // by vATask.
rgrover1 0:8e57f3e9cc89 801 }
rgrover1 0:8e57f3e9cc89 802 }
rgrover1 0:8e57f3e9cc89 803
rgrover1 0:8e57f3e9cc89 804 // ... Rest of task code.
rgrover1 0:8e57f3e9cc89 805 }
rgrover1 0:8e57f3e9cc89 806 </pre>
rgrover1 0:8e57f3e9cc89 807 * \defgroup xQueueReceive xQueueReceive
rgrover1 0:8e57f3e9cc89 808 * \ingroup QueueManagement
rgrover1 0:8e57f3e9cc89 809 */
rgrover1 0:8e57f3e9cc89 810 #define xQueueReceive( xQueue, pvBuffer, xTicksToWait ) xQueueGenericReceive( ( xQueue ), ( pvBuffer ), ( xTicksToWait ), pdFALSE )
rgrover1 0:8e57f3e9cc89 811
rgrover1 0:8e57f3e9cc89 812
rgrover1 0:8e57f3e9cc89 813 /**
rgrover1 0:8e57f3e9cc89 814 * queue. h
rgrover1 0:8e57f3e9cc89 815 * <pre>
rgrover1 0:8e57f3e9cc89 816 portBASE_TYPE xQueueGenericReceive(
rgrover1 0:8e57f3e9cc89 817 xQueueHandle xQueue,
rgrover1 0:8e57f3e9cc89 818 void *pvBuffer,
rgrover1 0:8e57f3e9cc89 819 portTickType xTicksToWait
rgrover1 0:8e57f3e9cc89 820 portBASE_TYPE xJustPeek
rgrover1 0:8e57f3e9cc89 821 );</pre>
rgrover1 0:8e57f3e9cc89 822 *
rgrover1 0:8e57f3e9cc89 823 * It is preferred that the macro xQueueReceive() be used rather than calling
rgrover1 0:8e57f3e9cc89 824 * this function directly.
rgrover1 0:8e57f3e9cc89 825 *
rgrover1 0:8e57f3e9cc89 826 * Receive an item from a queue. The item is received by copy so a buffer of
rgrover1 0:8e57f3e9cc89 827 * adequate size must be provided. The number of bytes copied into the buffer
rgrover1 0:8e57f3e9cc89 828 * was defined when the queue was created.
rgrover1 0:8e57f3e9cc89 829 *
rgrover1 0:8e57f3e9cc89 830 * This function must not be used in an interrupt service routine. See
rgrover1 0:8e57f3e9cc89 831 * xQueueReceiveFromISR for an alternative that can.
rgrover1 0:8e57f3e9cc89 832 *
rgrover1 0:8e57f3e9cc89 833 * @param xQueue The handle to the queue from which the item is to be
rgrover1 0:8e57f3e9cc89 834 * received.
rgrover1 0:8e57f3e9cc89 835 *
rgrover1 0:8e57f3e9cc89 836 * @param pvBuffer Pointer to the buffer into which the received item will
rgrover1 0:8e57f3e9cc89 837 * be copied.
rgrover1 0:8e57f3e9cc89 838 *
rgrover1 0:8e57f3e9cc89 839 * @param xTicksToWait The maximum amount of time the task should block
rgrover1 0:8e57f3e9cc89 840 * waiting for an item to receive should the queue be empty at the time
rgrover1 0:8e57f3e9cc89 841 * of the call. The time is defined in tick periods so the constant
rgrover1 0:8e57f3e9cc89 842 * portTICK_RATE_MS should be used to convert to real time if this is required.
rgrover1 0:8e57f3e9cc89 843 * xQueueGenericReceive() will return immediately if the queue is empty and
rgrover1 0:8e57f3e9cc89 844 * xTicksToWait is 0.
rgrover1 0:8e57f3e9cc89 845 *
rgrover1 0:8e57f3e9cc89 846 * @param xJustPeek When set to true, the item received from the queue is not
rgrover1 0:8e57f3e9cc89 847 * actually removed from the queue - meaning a subsequent call to
rgrover1 0:8e57f3e9cc89 848 * xQueueReceive() will return the same item. When set to false, the item
rgrover1 0:8e57f3e9cc89 849 * being received from the queue is also removed from the queue.
rgrover1 0:8e57f3e9cc89 850 *
rgrover1 0:8e57f3e9cc89 851 * @return pdTRUE if an item was successfully received from the queue,
rgrover1 0:8e57f3e9cc89 852 * otherwise pdFALSE.
rgrover1 0:8e57f3e9cc89 853 *
rgrover1 0:8e57f3e9cc89 854 * Example usage:
rgrover1 0:8e57f3e9cc89 855 <pre>
rgrover1 0:8e57f3e9cc89 856 struct AMessage
rgrover1 0:8e57f3e9cc89 857 {
rgrover1 0:8e57f3e9cc89 858 char ucMessageID;
rgrover1 0:8e57f3e9cc89 859 char ucData[ 20 ];
rgrover1 0:8e57f3e9cc89 860 } xMessage;
rgrover1 0:8e57f3e9cc89 861
rgrover1 0:8e57f3e9cc89 862 xQueueHandle xQueue;
rgrover1 0:8e57f3e9cc89 863
rgrover1 0:8e57f3e9cc89 864 // Task to create a queue and post a value.
rgrover1 0:8e57f3e9cc89 865 void vATask( void *pvParameters )
rgrover1 0:8e57f3e9cc89 866 {
rgrover1 0:8e57f3e9cc89 867 struct AMessage *pxMessage;
rgrover1 0:8e57f3e9cc89 868
rgrover1 0:8e57f3e9cc89 869 // Create a queue capable of containing 10 pointers to AMessage structures.
rgrover1 0:8e57f3e9cc89 870 // These should be passed by pointer as they contain a lot of data.
rgrover1 0:8e57f3e9cc89 871 xQueue = xQueueCreate( 10, sizeof( struct AMessage * ) );
rgrover1 0:8e57f3e9cc89 872 if( xQueue == 0 )
rgrover1 0:8e57f3e9cc89 873 {
rgrover1 0:8e57f3e9cc89 874 // Failed to create the queue.
rgrover1 0:8e57f3e9cc89 875 }
rgrover1 0:8e57f3e9cc89 876
rgrover1 0:8e57f3e9cc89 877 // ...
rgrover1 0:8e57f3e9cc89 878
rgrover1 0:8e57f3e9cc89 879 // Send a pointer to a struct AMessage object. Don't block if the
rgrover1 0:8e57f3e9cc89 880 // queue is already full.
rgrover1 0:8e57f3e9cc89 881 pxMessage = & xMessage;
rgrover1 0:8e57f3e9cc89 882 xQueueSend( xQueue, ( void * ) &pxMessage, ( portTickType ) 0 );
rgrover1 0:8e57f3e9cc89 883
rgrover1 0:8e57f3e9cc89 884 // ... Rest of task code.
rgrover1 0:8e57f3e9cc89 885 }
rgrover1 0:8e57f3e9cc89 886
rgrover1 0:8e57f3e9cc89 887 // Task to receive from the queue.
rgrover1 0:8e57f3e9cc89 888 void vADifferentTask( void *pvParameters )
rgrover1 0:8e57f3e9cc89 889 {
rgrover1 0:8e57f3e9cc89 890 struct AMessage *pxRxedMessage;
rgrover1 0:8e57f3e9cc89 891
rgrover1 0:8e57f3e9cc89 892 if( xQueue != 0 )
rgrover1 0:8e57f3e9cc89 893 {
rgrover1 0:8e57f3e9cc89 894 // Receive a message on the created queue. Block for 10 ticks if a
rgrover1 0:8e57f3e9cc89 895 // message is not immediately available.
rgrover1 0:8e57f3e9cc89 896 if( xQueueGenericReceive( xQueue, &( pxRxedMessage ), ( portTickType ) 10 ) )
rgrover1 0:8e57f3e9cc89 897 {
rgrover1 0:8e57f3e9cc89 898 // pcRxedMessage now points to the struct AMessage variable posted
rgrover1 0:8e57f3e9cc89 899 // by vATask.
rgrover1 0:8e57f3e9cc89 900 }
rgrover1 0:8e57f3e9cc89 901 }
rgrover1 0:8e57f3e9cc89 902
rgrover1 0:8e57f3e9cc89 903 // ... Rest of task code.
rgrover1 0:8e57f3e9cc89 904 }
rgrover1 0:8e57f3e9cc89 905 </pre>
rgrover1 0:8e57f3e9cc89 906 * \defgroup xQueueReceive xQueueReceive
rgrover1 0:8e57f3e9cc89 907 * \ingroup QueueManagement
rgrover1 0:8e57f3e9cc89 908 */
rgrover1 0:8e57f3e9cc89 909 signed portBASE_TYPE xQueueGenericReceive( xQueueHandle xQueue, void * const pvBuffer, portTickType xTicksToWait, portBASE_TYPE xJustPeek ) PRIVILEGED_FUNCTION;
rgrover1 0:8e57f3e9cc89 910
rgrover1 0:8e57f3e9cc89 911 /**
rgrover1 0:8e57f3e9cc89 912 * queue. h
rgrover1 0:8e57f3e9cc89 913 * <pre>unsigned portBASE_TYPE uxQueueMessagesWaiting( const xQueueHandle xQueue );</pre>
rgrover1 0:8e57f3e9cc89 914 *
rgrover1 0:8e57f3e9cc89 915 * Return the number of messages stored in a queue.
rgrover1 0:8e57f3e9cc89 916 *
rgrover1 0:8e57f3e9cc89 917 * @param xQueue A handle to the queue being queried.
rgrover1 0:8e57f3e9cc89 918 *
rgrover1 0:8e57f3e9cc89 919 * @return The number of messages available in the queue.
rgrover1 0:8e57f3e9cc89 920 *
rgrover1 0:8e57f3e9cc89 921 * \defgroup uxQueueMessagesWaiting uxQueueMessagesWaiting
rgrover1 0:8e57f3e9cc89 922 * \ingroup QueueManagement
rgrover1 0:8e57f3e9cc89 923 */
rgrover1 0:8e57f3e9cc89 924 unsigned portBASE_TYPE uxQueueMessagesWaiting( const xQueueHandle xQueue ) PRIVILEGED_FUNCTION;
rgrover1 0:8e57f3e9cc89 925
rgrover1 0:8e57f3e9cc89 926 /**
rgrover1 0:8e57f3e9cc89 927 * queue. h
rgrover1 0:8e57f3e9cc89 928 * <pre>unsigned portBASE_TYPE uxQueueSpacesAvailable( const xQueueHandle xQueue );</pre>
rgrover1 0:8e57f3e9cc89 929 *
rgrover1 0:8e57f3e9cc89 930 * Return the number of free spaces available in a queue. This is equal to the
rgrover1 0:8e57f3e9cc89 931 * number of items that can be sent to the queue before the queue becomes full
rgrover1 0:8e57f3e9cc89 932 * if no items are removed.
rgrover1 0:8e57f3e9cc89 933 *
rgrover1 0:8e57f3e9cc89 934 * @param xQueue A handle to the queue being queried.
rgrover1 0:8e57f3e9cc89 935 *
rgrover1 0:8e57f3e9cc89 936 * @return The number of spaces available in the queue.
rgrover1 0:8e57f3e9cc89 937 *
rgrover1 0:8e57f3e9cc89 938 * \defgroup uxQueueMessagesWaiting uxQueueMessagesWaiting
rgrover1 0:8e57f3e9cc89 939 * \ingroup QueueManagement
rgrover1 0:8e57f3e9cc89 940 */
rgrover1 0:8e57f3e9cc89 941 unsigned portBASE_TYPE uxQueueSpacesAvailable( const xQueueHandle xQueue ) PRIVILEGED_FUNCTION;
rgrover1 0:8e57f3e9cc89 942
rgrover1 0:8e57f3e9cc89 943 /**
rgrover1 0:8e57f3e9cc89 944 * queue. h
rgrover1 0:8e57f3e9cc89 945 * <pre>void vQueueDelete( xQueueHandle xQueue );</pre>
rgrover1 0:8e57f3e9cc89 946 *
rgrover1 0:8e57f3e9cc89 947 * Delete a queue - freeing all the memory allocated for storing of items
rgrover1 0:8e57f3e9cc89 948 * placed on the queue.
rgrover1 0:8e57f3e9cc89 949 *
rgrover1 0:8e57f3e9cc89 950 * @param xQueue A handle to the queue to be deleted.
rgrover1 0:8e57f3e9cc89 951 *
rgrover1 0:8e57f3e9cc89 952 * \defgroup vQueueDelete vQueueDelete
rgrover1 0:8e57f3e9cc89 953 * \ingroup QueueManagement
rgrover1 0:8e57f3e9cc89 954 */
rgrover1 0:8e57f3e9cc89 955 void vQueueDelete( xQueueHandle xQueue ) PRIVILEGED_FUNCTION;
rgrover1 0:8e57f3e9cc89 956
rgrover1 0:8e57f3e9cc89 957 /**
rgrover1 0:8e57f3e9cc89 958 * queue. h
rgrover1 0:8e57f3e9cc89 959 * <pre>
rgrover1 0:8e57f3e9cc89 960 portBASE_TYPE xQueueSendToFrontFromISR(
rgrover1 0:8e57f3e9cc89 961 xQueueHandle xQueue,
rgrover1 0:8e57f3e9cc89 962 const void *pvItemToQueue,
rgrover1 0:8e57f3e9cc89 963 portBASE_TYPE *pxHigherPriorityTaskWoken
rgrover1 0:8e57f3e9cc89 964 );
rgrover1 0:8e57f3e9cc89 965 </pre>
rgrover1 0:8e57f3e9cc89 966 *
rgrover1 0:8e57f3e9cc89 967 * This is a macro that calls xQueueGenericSendFromISR().
rgrover1 0:8e57f3e9cc89 968 *
rgrover1 0:8e57f3e9cc89 969 * Post an item to the front of a queue. It is safe to use this macro from
rgrover1 0:8e57f3e9cc89 970 * within an interrupt service routine.
rgrover1 0:8e57f3e9cc89 971 *
rgrover1 0:8e57f3e9cc89 972 * Items are queued by copy not reference so it is preferable to only
rgrover1 0:8e57f3e9cc89 973 * queue small items, especially when called from an ISR. In most cases
rgrover1 0:8e57f3e9cc89 974 * it would be preferable to store a pointer to the item being queued.
rgrover1 0:8e57f3e9cc89 975 *
rgrover1 0:8e57f3e9cc89 976 * @param xQueue The handle to the queue on which the item is to be posted.
rgrover1 0:8e57f3e9cc89 977 *
rgrover1 0:8e57f3e9cc89 978 * @param pvItemToQueue A pointer to the item that is to be placed on the
rgrover1 0:8e57f3e9cc89 979 * queue. The size of the items the queue will hold was defined when the
rgrover1 0:8e57f3e9cc89 980 * queue was created, so this many bytes will be copied from pvItemToQueue
rgrover1 0:8e57f3e9cc89 981 * into the queue storage area.
rgrover1 0:8e57f3e9cc89 982 *
rgrover1 0:8e57f3e9cc89 983 * @param pxHigherPriorityTaskWoken xQueueSendToFrontFromISR() will set
rgrover1 0:8e57f3e9cc89 984 * *pxHigherPriorityTaskWoken to pdTRUE if sending to the queue caused a task
rgrover1 0:8e57f3e9cc89 985 * to unblock, and the unblocked task has a priority higher than the currently
rgrover1 0:8e57f3e9cc89 986 * running task. If xQueueSendToFromFromISR() sets this value to pdTRUE then
rgrover1 0:8e57f3e9cc89 987 * a context switch should be requested before the interrupt is exited.
rgrover1 0:8e57f3e9cc89 988 *
rgrover1 0:8e57f3e9cc89 989 * @return pdTRUE if the data was successfully sent to the queue, otherwise
rgrover1 0:8e57f3e9cc89 990 * errQUEUE_FULL.
rgrover1 0:8e57f3e9cc89 991 *
rgrover1 0:8e57f3e9cc89 992 * Example usage for buffered IO (where the ISR can obtain more than one value
rgrover1 0:8e57f3e9cc89 993 * per call):
rgrover1 0:8e57f3e9cc89 994 <pre>
rgrover1 0:8e57f3e9cc89 995 void vBufferISR( void )
rgrover1 0:8e57f3e9cc89 996 {
rgrover1 0:8e57f3e9cc89 997 char cIn;
rgrover1 0:8e57f3e9cc89 998 portBASE_TYPE xHigherPrioritTaskWoken;
rgrover1 0:8e57f3e9cc89 999
rgrover1 0:8e57f3e9cc89 1000 // We have not woken a task at the start of the ISR.
rgrover1 0:8e57f3e9cc89 1001 xHigherPriorityTaskWoken = pdFALSE;
rgrover1 0:8e57f3e9cc89 1002
rgrover1 0:8e57f3e9cc89 1003 // Loop until the buffer is empty.
rgrover1 0:8e57f3e9cc89 1004 do
rgrover1 0:8e57f3e9cc89 1005 {
rgrover1 0:8e57f3e9cc89 1006 // Obtain a byte from the buffer.
rgrover1 0:8e57f3e9cc89 1007 cIn = portINPUT_BYTE( RX_REGISTER_ADDRESS );
rgrover1 0:8e57f3e9cc89 1008
rgrover1 0:8e57f3e9cc89 1009 // Post the byte.
rgrover1 0:8e57f3e9cc89 1010 xQueueSendToFrontFromISR( xRxQueue, &cIn, &xHigherPriorityTaskWoken );
rgrover1 0:8e57f3e9cc89 1011
rgrover1 0:8e57f3e9cc89 1012 } while( portINPUT_BYTE( BUFFER_COUNT ) );
rgrover1 0:8e57f3e9cc89 1013
rgrover1 0:8e57f3e9cc89 1014 // Now the buffer is empty we can switch context if necessary.
rgrover1 0:8e57f3e9cc89 1015 if( xHigherPriorityTaskWoken )
rgrover1 0:8e57f3e9cc89 1016 {
rgrover1 0:8e57f3e9cc89 1017 taskYIELD ();
rgrover1 0:8e57f3e9cc89 1018 }
rgrover1 0:8e57f3e9cc89 1019 }
rgrover1 0:8e57f3e9cc89 1020 </pre>
rgrover1 0:8e57f3e9cc89 1021 *
rgrover1 0:8e57f3e9cc89 1022 * \defgroup xQueueSendFromISR xQueueSendFromISR
rgrover1 0:8e57f3e9cc89 1023 * \ingroup QueueManagement
rgrover1 0:8e57f3e9cc89 1024 */
rgrover1 0:8e57f3e9cc89 1025 #define xQueueSendToFrontFromISR( xQueue, pvItemToQueue, pxHigherPriorityTaskWoken ) xQueueGenericSendFromISR( ( xQueue ), ( pvItemToQueue ), ( pxHigherPriorityTaskWoken ), queueSEND_TO_FRONT )
rgrover1 0:8e57f3e9cc89 1026
rgrover1 0:8e57f3e9cc89 1027
rgrover1 0:8e57f3e9cc89 1028 /**
rgrover1 0:8e57f3e9cc89 1029 * queue. h
rgrover1 0:8e57f3e9cc89 1030 * <pre>
rgrover1 0:8e57f3e9cc89 1031 portBASE_TYPE xQueueSendToBackFromISR(
rgrover1 0:8e57f3e9cc89 1032 xQueueHandle xQueue,
rgrover1 0:8e57f3e9cc89 1033 const void *pvItemToQueue,
rgrover1 0:8e57f3e9cc89 1034 portBASE_TYPE *pxHigherPriorityTaskWoken
rgrover1 0:8e57f3e9cc89 1035 );
rgrover1 0:8e57f3e9cc89 1036 </pre>
rgrover1 0:8e57f3e9cc89 1037 *
rgrover1 0:8e57f3e9cc89 1038 * This is a macro that calls xQueueGenericSendFromISR().
rgrover1 0:8e57f3e9cc89 1039 *
rgrover1 0:8e57f3e9cc89 1040 * Post an item to the back of a queue. It is safe to use this macro from
rgrover1 0:8e57f3e9cc89 1041 * within an interrupt service routine.
rgrover1 0:8e57f3e9cc89 1042 *
rgrover1 0:8e57f3e9cc89 1043 * Items are queued by copy not reference so it is preferable to only
rgrover1 0:8e57f3e9cc89 1044 * queue small items, especially when called from an ISR. In most cases
rgrover1 0:8e57f3e9cc89 1045 * it would be preferable to store a pointer to the item being queued.
rgrover1 0:8e57f3e9cc89 1046 *
rgrover1 0:8e57f3e9cc89 1047 * @param xQueue The handle to the queue on which the item is to be posted.
rgrover1 0:8e57f3e9cc89 1048 *
rgrover1 0:8e57f3e9cc89 1049 * @param pvItemToQueue A pointer to the item that is to be placed on the
rgrover1 0:8e57f3e9cc89 1050 * queue. The size of the items the queue will hold was defined when the
rgrover1 0:8e57f3e9cc89 1051 * queue was created, so this many bytes will be copied from pvItemToQueue
rgrover1 0:8e57f3e9cc89 1052 * into the queue storage area.
rgrover1 0:8e57f3e9cc89 1053 *
rgrover1 0:8e57f3e9cc89 1054 * @param pxHigherPriorityTaskWoken xQueueSendToBackFromISR() will set
rgrover1 0:8e57f3e9cc89 1055 * *pxHigherPriorityTaskWoken to pdTRUE if sending to the queue caused a task
rgrover1 0:8e57f3e9cc89 1056 * to unblock, and the unblocked task has a priority higher than the currently
rgrover1 0:8e57f3e9cc89 1057 * running task. If xQueueSendToBackFromISR() sets this value to pdTRUE then
rgrover1 0:8e57f3e9cc89 1058 * a context switch should be requested before the interrupt is exited.
rgrover1 0:8e57f3e9cc89 1059 *
rgrover1 0:8e57f3e9cc89 1060 * @return pdTRUE if the data was successfully sent to the queue, otherwise
rgrover1 0:8e57f3e9cc89 1061 * errQUEUE_FULL.
rgrover1 0:8e57f3e9cc89 1062 *
rgrover1 0:8e57f3e9cc89 1063 * Example usage for buffered IO (where the ISR can obtain more than one value
rgrover1 0:8e57f3e9cc89 1064 * per call):
rgrover1 0:8e57f3e9cc89 1065 <pre>
rgrover1 0:8e57f3e9cc89 1066 void vBufferISR( void )
rgrover1 0:8e57f3e9cc89 1067 {
rgrover1 0:8e57f3e9cc89 1068 char cIn;
rgrover1 0:8e57f3e9cc89 1069 portBASE_TYPE xHigherPriorityTaskWoken;
rgrover1 0:8e57f3e9cc89 1070
rgrover1 0:8e57f3e9cc89 1071 // We have not woken a task at the start of the ISR.
rgrover1 0:8e57f3e9cc89 1072 xHigherPriorityTaskWoken = pdFALSE;
rgrover1 0:8e57f3e9cc89 1073
rgrover1 0:8e57f3e9cc89 1074 // Loop until the buffer is empty.
rgrover1 0:8e57f3e9cc89 1075 do
rgrover1 0:8e57f3e9cc89 1076 {
rgrover1 0:8e57f3e9cc89 1077 // Obtain a byte from the buffer.
rgrover1 0:8e57f3e9cc89 1078 cIn = portINPUT_BYTE( RX_REGISTER_ADDRESS );
rgrover1 0:8e57f3e9cc89 1079
rgrover1 0:8e57f3e9cc89 1080 // Post the byte.
rgrover1 0:8e57f3e9cc89 1081 xQueueSendToBackFromISR( xRxQueue, &cIn, &xHigherPriorityTaskWoken );
rgrover1 0:8e57f3e9cc89 1082
rgrover1 0:8e57f3e9cc89 1083 } while( portINPUT_BYTE( BUFFER_COUNT ) );
rgrover1 0:8e57f3e9cc89 1084
rgrover1 0:8e57f3e9cc89 1085 // Now the buffer is empty we can switch context if necessary.
rgrover1 0:8e57f3e9cc89 1086 if( xHigherPriorityTaskWoken )
rgrover1 0:8e57f3e9cc89 1087 {
rgrover1 0:8e57f3e9cc89 1088 taskYIELD ();
rgrover1 0:8e57f3e9cc89 1089 }
rgrover1 0:8e57f3e9cc89 1090 }
rgrover1 0:8e57f3e9cc89 1091 </pre>
rgrover1 0:8e57f3e9cc89 1092 *
rgrover1 0:8e57f3e9cc89 1093 * \defgroup xQueueSendFromISR xQueueSendFromISR
rgrover1 0:8e57f3e9cc89 1094 * \ingroup QueueManagement
rgrover1 0:8e57f3e9cc89 1095 */
rgrover1 0:8e57f3e9cc89 1096 #define xQueueSendToBackFromISR( xQueue, pvItemToQueue, pxHigherPriorityTaskWoken ) xQueueGenericSendFromISR( ( xQueue ), ( pvItemToQueue ), ( pxHigherPriorityTaskWoken ), queueSEND_TO_BACK )
rgrover1 0:8e57f3e9cc89 1097
rgrover1 0:8e57f3e9cc89 1098 /**
rgrover1 0:8e57f3e9cc89 1099 * queue. h
rgrover1 0:8e57f3e9cc89 1100 * <pre>
rgrover1 0:8e57f3e9cc89 1101 portBASE_TYPE xQueueOverwriteFromISR(
rgrover1 0:8e57f3e9cc89 1102 xQueueHandle xQueue,
rgrover1 0:8e57f3e9cc89 1103 const void * pvItemToQueue,
rgrover1 0:8e57f3e9cc89 1104 portBASE_TYPE *pxHigherPriorityTaskWoken
rgrover1 0:8e57f3e9cc89 1105 );
rgrover1 0:8e57f3e9cc89 1106 * </pre>
rgrover1 0:8e57f3e9cc89 1107 *
rgrover1 0:8e57f3e9cc89 1108 * A version of xQueueOverwrite() that can be used in an interrupt service
rgrover1 0:8e57f3e9cc89 1109 * routine (ISR).
rgrover1 0:8e57f3e9cc89 1110 *
rgrover1 0:8e57f3e9cc89 1111 * Only for use with queues that can hold a single item - so the queue is either
rgrover1 0:8e57f3e9cc89 1112 * empty or full.
rgrover1 0:8e57f3e9cc89 1113 *
rgrover1 0:8e57f3e9cc89 1114 * Post an item on a queue. If the queue is already full then overwrite the
rgrover1 0:8e57f3e9cc89 1115 * value held in the queue. The item is queued by copy, not by reference.
rgrover1 0:8e57f3e9cc89 1116 *
rgrover1 0:8e57f3e9cc89 1117 * @param xQueue The handle to the queue on which the item is to be posted.
rgrover1 0:8e57f3e9cc89 1118 *
rgrover1 0:8e57f3e9cc89 1119 * @param pvItemToQueue A pointer to the item that is to be placed on the
rgrover1 0:8e57f3e9cc89 1120 * queue. The size of the items the queue will hold was defined when the
rgrover1 0:8e57f3e9cc89 1121 * queue was created, so this many bytes will be copied from pvItemToQueue
rgrover1 0:8e57f3e9cc89 1122 * into the queue storage area.
rgrover1 0:8e57f3e9cc89 1123 *
rgrover1 0:8e57f3e9cc89 1124 * @param pxHigherPriorityTaskWoken xQueueOverwriteFromISR() will set
rgrover1 0:8e57f3e9cc89 1125 * *pxHigherPriorityTaskWoken to pdTRUE if sending to the queue caused a task
rgrover1 0:8e57f3e9cc89 1126 * to unblock, and the unblocked task has a priority higher than the currently
rgrover1 0:8e57f3e9cc89 1127 * running task. If xQueueOverwriteFromISR() sets this value to pdTRUE then
rgrover1 0:8e57f3e9cc89 1128 * a context switch should be requested before the interrupt is exited.
rgrover1 0:8e57f3e9cc89 1129 *
rgrover1 0:8e57f3e9cc89 1130 * @return xQueueOverwriteFromISR() is a macro that calls
rgrover1 0:8e57f3e9cc89 1131 * xQueueGenericSendFromISR(), and therefore has the same return values as
rgrover1 0:8e57f3e9cc89 1132 * xQueueSendToFrontFromISR(). However, pdPASS is the only value that can be
rgrover1 0:8e57f3e9cc89 1133 * returned because xQueueOverwriteFromISR() will write to the queue even when
rgrover1 0:8e57f3e9cc89 1134 * the queue is already full.
rgrover1 0:8e57f3e9cc89 1135 *
rgrover1 0:8e57f3e9cc89 1136 * Example usage:
rgrover1 0:8e57f3e9cc89 1137 <pre>
rgrover1 0:8e57f3e9cc89 1138
rgrover1 0:8e57f3e9cc89 1139 xQueueHandle xQueue;
rgrover1 0:8e57f3e9cc89 1140
rgrover1 0:8e57f3e9cc89 1141 void vFunction( void *pvParameters )
rgrover1 0:8e57f3e9cc89 1142 {
rgrover1 0:8e57f3e9cc89 1143 // Create a queue to hold one unsigned long value. It is strongly
rgrover1 0:8e57f3e9cc89 1144 // recommended *not* to use xQueueOverwriteFromISR() on queues that can
rgrover1 0:8e57f3e9cc89 1145 // contain more than one value, and doing so will trigger an assertion
rgrover1 0:8e57f3e9cc89 1146 // if configASSERT() is defined.
rgrover1 0:8e57f3e9cc89 1147 xQueue = xQueueCreate( 1, sizeof( unsigned long ) );
rgrover1 0:8e57f3e9cc89 1148 }
rgrover1 0:8e57f3e9cc89 1149
rgrover1 0:8e57f3e9cc89 1150 void vAnInterruptHandler( void )
rgrover1 0:8e57f3e9cc89 1151 {
rgrover1 0:8e57f3e9cc89 1152 // xHigherPriorityTaskWoken must be set to pdFALSE before it is used.
rgrover1 0:8e57f3e9cc89 1153 portBASE_TYPE xHigherPriorityTaskWoken = pdFALSE;
rgrover1 0:8e57f3e9cc89 1154 unsigned long ulVarToSend, ulValReceived;
rgrover1 0:8e57f3e9cc89 1155
rgrover1 0:8e57f3e9cc89 1156 // Write the value 10 to the queue using xQueueOverwriteFromISR().
rgrover1 0:8e57f3e9cc89 1157 ulVarToSend = 10;
rgrover1 0:8e57f3e9cc89 1158 xQueueOverwriteFromISR( xQueue, &ulVarToSend, &xHigherPriorityTaskWoken );
rgrover1 0:8e57f3e9cc89 1159
rgrover1 0:8e57f3e9cc89 1160 // The queue is full, but calling xQueueOverwriteFromISR() again will still
rgrover1 0:8e57f3e9cc89 1161 // pass because the value held in the queue will be overwritten with the
rgrover1 0:8e57f3e9cc89 1162 // new value.
rgrover1 0:8e57f3e9cc89 1163 ulVarToSend = 100;
rgrover1 0:8e57f3e9cc89 1164 xQueueOverwriteFromISR( xQueue, &ulVarToSend, &xHigherPriorityTaskWoken );
rgrover1 0:8e57f3e9cc89 1165
rgrover1 0:8e57f3e9cc89 1166 // Reading from the queue will now return 100.
rgrover1 0:8e57f3e9cc89 1167
rgrover1 0:8e57f3e9cc89 1168 // ...
rgrover1 0:8e57f3e9cc89 1169
rgrover1 0:8e57f3e9cc89 1170 if( xHigherPrioritytaskWoken == pdTRUE )
rgrover1 0:8e57f3e9cc89 1171 {
rgrover1 0:8e57f3e9cc89 1172 // Writing to the queue caused a task to unblock and the unblocked task
rgrover1 0:8e57f3e9cc89 1173 // has a priority higher than or equal to the priority of the currently
rgrover1 0:8e57f3e9cc89 1174 // executing task (the task this interrupt interrupted). Perform a context
rgrover1 0:8e57f3e9cc89 1175 // switch so this interrupt returns directly to the unblocked task.
rgrover1 0:8e57f3e9cc89 1176 portYIELD_FROM_ISR(); // or portEND_SWITCHING_ISR() depending on the port.
rgrover1 0:8e57f3e9cc89 1177 }
rgrover1 0:8e57f3e9cc89 1178 }
rgrover1 0:8e57f3e9cc89 1179 </pre>
rgrover1 0:8e57f3e9cc89 1180 * \defgroup xQueueOverwriteFromISR xQueueOverwriteFromISR
rgrover1 0:8e57f3e9cc89 1181 * \ingroup QueueManagement
rgrover1 0:8e57f3e9cc89 1182 */
rgrover1 0:8e57f3e9cc89 1183 #define xQueueOverwriteFromISR( xQueue, pvItemToQueue, pxHigherPriorityTaskWoken ) xQueueGenericSendFromISR( ( xQueue ), ( pvItemToQueue ), ( pxHigherPriorityTaskWoken ), queueOVERWRITE )
rgrover1 0:8e57f3e9cc89 1184
rgrover1 0:8e57f3e9cc89 1185 /**
rgrover1 0:8e57f3e9cc89 1186 * queue. h
rgrover1 0:8e57f3e9cc89 1187 * <pre>
rgrover1 0:8e57f3e9cc89 1188 portBASE_TYPE xQueueSendFromISR(
rgrover1 0:8e57f3e9cc89 1189 xQueueHandle xQueue,
rgrover1 0:8e57f3e9cc89 1190 const void *pvItemToQueue,
rgrover1 0:8e57f3e9cc89 1191 portBASE_TYPE *pxHigherPriorityTaskWoken
rgrover1 0:8e57f3e9cc89 1192 );
rgrover1 0:8e57f3e9cc89 1193 </pre>
rgrover1 0:8e57f3e9cc89 1194 *
rgrover1 0:8e57f3e9cc89 1195 * This is a macro that calls xQueueGenericSendFromISR(). It is included
rgrover1 0:8e57f3e9cc89 1196 * for backward compatibility with versions of FreeRTOS.org that did not
rgrover1 0:8e57f3e9cc89 1197 * include the xQueueSendToBackFromISR() and xQueueSendToFrontFromISR()
rgrover1 0:8e57f3e9cc89 1198 * macros.
rgrover1 0:8e57f3e9cc89 1199 *
rgrover1 0:8e57f3e9cc89 1200 * Post an item to the back of a queue. It is safe to use this function from
rgrover1 0:8e57f3e9cc89 1201 * within an interrupt service routine.
rgrover1 0:8e57f3e9cc89 1202 *
rgrover1 0:8e57f3e9cc89 1203 * Items are queued by copy not reference so it is preferable to only
rgrover1 0:8e57f3e9cc89 1204 * queue small items, especially when called from an ISR. In most cases
rgrover1 0:8e57f3e9cc89 1205 * it would be preferable to store a pointer to the item being queued.
rgrover1 0:8e57f3e9cc89 1206 *
rgrover1 0:8e57f3e9cc89 1207 * @param xQueue The handle to the queue on which the item is to be posted.
rgrover1 0:8e57f3e9cc89 1208 *
rgrover1 0:8e57f3e9cc89 1209 * @param pvItemToQueue A pointer to the item that is to be placed on the
rgrover1 0:8e57f3e9cc89 1210 * queue. The size of the items the queue will hold was defined when the
rgrover1 0:8e57f3e9cc89 1211 * queue was created, so this many bytes will be copied from pvItemToQueue
rgrover1 0:8e57f3e9cc89 1212 * into the queue storage area.
rgrover1 0:8e57f3e9cc89 1213 *
rgrover1 0:8e57f3e9cc89 1214 * @param pxHigherPriorityTaskWoken xQueueSendFromISR() will set
rgrover1 0:8e57f3e9cc89 1215 * *pxHigherPriorityTaskWoken to pdTRUE if sending to the queue caused a task
rgrover1 0:8e57f3e9cc89 1216 * to unblock, and the unblocked task has a priority higher than the currently
rgrover1 0:8e57f3e9cc89 1217 * running task. If xQueueSendFromISR() sets this value to pdTRUE then
rgrover1 0:8e57f3e9cc89 1218 * a context switch should be requested before the interrupt is exited.
rgrover1 0:8e57f3e9cc89 1219 *
rgrover1 0:8e57f3e9cc89 1220 * @return pdTRUE if the data was successfully sent to the queue, otherwise
rgrover1 0:8e57f3e9cc89 1221 * errQUEUE_FULL.
rgrover1 0:8e57f3e9cc89 1222 *
rgrover1 0:8e57f3e9cc89 1223 * Example usage for buffered IO (where the ISR can obtain more than one value
rgrover1 0:8e57f3e9cc89 1224 * per call):
rgrover1 0:8e57f3e9cc89 1225 <pre>
rgrover1 0:8e57f3e9cc89 1226 void vBufferISR( void )
rgrover1 0:8e57f3e9cc89 1227 {
rgrover1 0:8e57f3e9cc89 1228 char cIn;
rgrover1 0:8e57f3e9cc89 1229 portBASE_TYPE xHigherPriorityTaskWoken;
rgrover1 0:8e57f3e9cc89 1230
rgrover1 0:8e57f3e9cc89 1231 // We have not woken a task at the start of the ISR.
rgrover1 0:8e57f3e9cc89 1232 xHigherPriorityTaskWoken = pdFALSE;
rgrover1 0:8e57f3e9cc89 1233
rgrover1 0:8e57f3e9cc89 1234 // Loop until the buffer is empty.
rgrover1 0:8e57f3e9cc89 1235 do
rgrover1 0:8e57f3e9cc89 1236 {
rgrover1 0:8e57f3e9cc89 1237 // Obtain a byte from the buffer.
rgrover1 0:8e57f3e9cc89 1238 cIn = portINPUT_BYTE( RX_REGISTER_ADDRESS );
rgrover1 0:8e57f3e9cc89 1239
rgrover1 0:8e57f3e9cc89 1240 // Post the byte.
rgrover1 0:8e57f3e9cc89 1241 xQueueSendFromISR( xRxQueue, &cIn, &xHigherPriorityTaskWoken );
rgrover1 0:8e57f3e9cc89 1242
rgrover1 0:8e57f3e9cc89 1243 } while( portINPUT_BYTE( BUFFER_COUNT ) );
rgrover1 0:8e57f3e9cc89 1244
rgrover1 0:8e57f3e9cc89 1245 // Now the buffer is empty we can switch context if necessary.
rgrover1 0:8e57f3e9cc89 1246 if( xHigherPriorityTaskWoken )
rgrover1 0:8e57f3e9cc89 1247 {
rgrover1 0:8e57f3e9cc89 1248 // Actual macro used here is port specific.
rgrover1 0:8e57f3e9cc89 1249 portYIELD_FROM_ISR ();
rgrover1 0:8e57f3e9cc89 1250 }
rgrover1 0:8e57f3e9cc89 1251 }
rgrover1 0:8e57f3e9cc89 1252 </pre>
rgrover1 0:8e57f3e9cc89 1253 *
rgrover1 0:8e57f3e9cc89 1254 * \defgroup xQueueSendFromISR xQueueSendFromISR
rgrover1 0:8e57f3e9cc89 1255 * \ingroup QueueManagement
rgrover1 0:8e57f3e9cc89 1256 */
rgrover1 0:8e57f3e9cc89 1257 #define xQueueSendFromISR( xQueue, pvItemToQueue, pxHigherPriorityTaskWoken ) xQueueGenericSendFromISR( ( xQueue ), ( pvItemToQueue ), ( pxHigherPriorityTaskWoken ), queueSEND_TO_BACK )
rgrover1 0:8e57f3e9cc89 1258
rgrover1 0:8e57f3e9cc89 1259 /**
rgrover1 0:8e57f3e9cc89 1260 * queue. h
rgrover1 0:8e57f3e9cc89 1261 * <pre>
rgrover1 0:8e57f3e9cc89 1262 portBASE_TYPE xQueueGenericSendFromISR(
rgrover1 0:8e57f3e9cc89 1263 xQueueHandle xQueue,
rgrover1 0:8e57f3e9cc89 1264 const void *pvItemToQueue,
rgrover1 0:8e57f3e9cc89 1265 portBASE_TYPE *pxHigherPriorityTaskWoken,
rgrover1 0:8e57f3e9cc89 1266 portBASE_TYPE xCopyPosition
rgrover1 0:8e57f3e9cc89 1267 );
rgrover1 0:8e57f3e9cc89 1268 </pre>
rgrover1 0:8e57f3e9cc89 1269 *
rgrover1 0:8e57f3e9cc89 1270 * It is preferred that the macros xQueueSendFromISR(),
rgrover1 0:8e57f3e9cc89 1271 * xQueueSendToFrontFromISR() and xQueueSendToBackFromISR() be used in place
rgrover1 0:8e57f3e9cc89 1272 * of calling this function directly.
rgrover1 0:8e57f3e9cc89 1273 *
rgrover1 0:8e57f3e9cc89 1274 * Post an item on a queue. It is safe to use this function from within an
rgrover1 0:8e57f3e9cc89 1275 * interrupt service routine.
rgrover1 0:8e57f3e9cc89 1276 *
rgrover1 0:8e57f3e9cc89 1277 * Items are queued by copy not reference so it is preferable to only
rgrover1 0:8e57f3e9cc89 1278 * queue small items, especially when called from an ISR. In most cases
rgrover1 0:8e57f3e9cc89 1279 * it would be preferable to store a pointer to the item being queued.
rgrover1 0:8e57f3e9cc89 1280 *
rgrover1 0:8e57f3e9cc89 1281 * @param xQueue The handle to the queue on which the item is to be posted.
rgrover1 0:8e57f3e9cc89 1282 *
rgrover1 0:8e57f3e9cc89 1283 * @param pvItemToQueue A pointer to the item that is to be placed on the
rgrover1 0:8e57f3e9cc89 1284 * queue. The size of the items the queue will hold was defined when the
rgrover1 0:8e57f3e9cc89 1285 * queue was created, so this many bytes will be copied from pvItemToQueue
rgrover1 0:8e57f3e9cc89 1286 * into the queue storage area.
rgrover1 0:8e57f3e9cc89 1287 *
rgrover1 0:8e57f3e9cc89 1288 * @param pxHigherPriorityTaskWoken xQueueGenericSendFromISR() will set
rgrover1 0:8e57f3e9cc89 1289 * *pxHigherPriorityTaskWoken to pdTRUE if sending to the queue caused a task
rgrover1 0:8e57f3e9cc89 1290 * to unblock, and the unblocked task has a priority higher than the currently
rgrover1 0:8e57f3e9cc89 1291 * running task. If xQueueGenericSendFromISR() sets this value to pdTRUE then
rgrover1 0:8e57f3e9cc89 1292 * a context switch should be requested before the interrupt is exited.
rgrover1 0:8e57f3e9cc89 1293 *
rgrover1 0:8e57f3e9cc89 1294 * @param xCopyPosition Can take the value queueSEND_TO_BACK to place the
rgrover1 0:8e57f3e9cc89 1295 * item at the back of the queue, or queueSEND_TO_FRONT to place the item
rgrover1 0:8e57f3e9cc89 1296 * at the front of the queue (for high priority messages).
rgrover1 0:8e57f3e9cc89 1297 *
rgrover1 0:8e57f3e9cc89 1298 * @return pdTRUE if the data was successfully sent to the queue, otherwise
rgrover1 0:8e57f3e9cc89 1299 * errQUEUE_FULL.
rgrover1 0:8e57f3e9cc89 1300 *
rgrover1 0:8e57f3e9cc89 1301 * Example usage for buffered IO (where the ISR can obtain more than one value
rgrover1 0:8e57f3e9cc89 1302 * per call):
rgrover1 0:8e57f3e9cc89 1303 <pre>
rgrover1 0:8e57f3e9cc89 1304 void vBufferISR( void )
rgrover1 0:8e57f3e9cc89 1305 {
rgrover1 0:8e57f3e9cc89 1306 char cIn;
rgrover1 0:8e57f3e9cc89 1307 portBASE_TYPE xHigherPriorityTaskWokenByPost;
rgrover1 0:8e57f3e9cc89 1308
rgrover1 0:8e57f3e9cc89 1309 // We have not woken a task at the start of the ISR.
rgrover1 0:8e57f3e9cc89 1310 xHigherPriorityTaskWokenByPost = pdFALSE;
rgrover1 0:8e57f3e9cc89 1311
rgrover1 0:8e57f3e9cc89 1312 // Loop until the buffer is empty.
rgrover1 0:8e57f3e9cc89 1313 do
rgrover1 0:8e57f3e9cc89 1314 {
rgrover1 0:8e57f3e9cc89 1315 // Obtain a byte from the buffer.
rgrover1 0:8e57f3e9cc89 1316 cIn = portINPUT_BYTE( RX_REGISTER_ADDRESS );
rgrover1 0:8e57f3e9cc89 1317
rgrover1 0:8e57f3e9cc89 1318 // Post each byte.
rgrover1 0:8e57f3e9cc89 1319 xQueueGenericSendFromISR( xRxQueue, &cIn, &xHigherPriorityTaskWokenByPost, queueSEND_TO_BACK );
rgrover1 0:8e57f3e9cc89 1320
rgrover1 0:8e57f3e9cc89 1321 } while( portINPUT_BYTE( BUFFER_COUNT ) );
rgrover1 0:8e57f3e9cc89 1322
rgrover1 0:8e57f3e9cc89 1323 // Now the buffer is empty we can switch context if necessary. Note that the
rgrover1 0:8e57f3e9cc89 1324 // name of the yield function required is port specific.
rgrover1 0:8e57f3e9cc89 1325 if( xHigherPriorityTaskWokenByPost )
rgrover1 0:8e57f3e9cc89 1326 {
rgrover1 0:8e57f3e9cc89 1327 taskYIELD_YIELD_FROM_ISR();
rgrover1 0:8e57f3e9cc89 1328 }
rgrover1 0:8e57f3e9cc89 1329 }
rgrover1 0:8e57f3e9cc89 1330 </pre>
rgrover1 0:8e57f3e9cc89 1331 *
rgrover1 0:8e57f3e9cc89 1332 * \defgroup xQueueSendFromISR xQueueSendFromISR
rgrover1 0:8e57f3e9cc89 1333 * \ingroup QueueManagement
rgrover1 0:8e57f3e9cc89 1334 */
rgrover1 0:8e57f3e9cc89 1335 signed portBASE_TYPE xQueueGenericSendFromISR( xQueueHandle xQueue, const void * const pvItemToQueue, signed portBASE_TYPE *pxHigherPriorityTaskWoken, portBASE_TYPE xCopyPosition ) PRIVILEGED_FUNCTION;
rgrover1 0:8e57f3e9cc89 1336
rgrover1 0:8e57f3e9cc89 1337 /**
rgrover1 0:8e57f3e9cc89 1338 * queue. h
rgrover1 0:8e57f3e9cc89 1339 * <pre>
rgrover1 0:8e57f3e9cc89 1340 portBASE_TYPE xQueueReceiveFromISR(
rgrover1 0:8e57f3e9cc89 1341 xQueueHandle xQueue,
rgrover1 0:8e57f3e9cc89 1342 void *pvBuffer,
rgrover1 0:8e57f3e9cc89 1343 portBASE_TYPE *pxTaskWoken
rgrover1 0:8e57f3e9cc89 1344 );
rgrover1 0:8e57f3e9cc89 1345 * </pre>
rgrover1 0:8e57f3e9cc89 1346 *
rgrover1 0:8e57f3e9cc89 1347 * Receive an item from a queue. It is safe to use this function from within an
rgrover1 0:8e57f3e9cc89 1348 * interrupt service routine.
rgrover1 0:8e57f3e9cc89 1349 *
rgrover1 0:8e57f3e9cc89 1350 * @param xQueue The handle to the queue from which the item is to be
rgrover1 0:8e57f3e9cc89 1351 * received.
rgrover1 0:8e57f3e9cc89 1352 *
rgrover1 0:8e57f3e9cc89 1353 * @param pvBuffer Pointer to the buffer into which the received item will
rgrover1 0:8e57f3e9cc89 1354 * be copied.
rgrover1 0:8e57f3e9cc89 1355 *
rgrover1 0:8e57f3e9cc89 1356 * @param pxTaskWoken A task may be blocked waiting for space to become
rgrover1 0:8e57f3e9cc89 1357 * available on the queue. If xQueueReceiveFromISR causes such a task to
rgrover1 0:8e57f3e9cc89 1358 * unblock *pxTaskWoken will get set to pdTRUE, otherwise *pxTaskWoken will
rgrover1 0:8e57f3e9cc89 1359 * remain unchanged.
rgrover1 0:8e57f3e9cc89 1360 *
rgrover1 0:8e57f3e9cc89 1361 * @return pdTRUE if an item was successfully received from the queue,
rgrover1 0:8e57f3e9cc89 1362 * otherwise pdFALSE.
rgrover1 0:8e57f3e9cc89 1363 *
rgrover1 0:8e57f3e9cc89 1364 * Example usage:
rgrover1 0:8e57f3e9cc89 1365 <pre>
rgrover1 0:8e57f3e9cc89 1366
rgrover1 0:8e57f3e9cc89 1367 xQueueHandle xQueue;
rgrover1 0:8e57f3e9cc89 1368
rgrover1 0:8e57f3e9cc89 1369 // Function to create a queue and post some values.
rgrover1 0:8e57f3e9cc89 1370 void vAFunction( void *pvParameters )
rgrover1 0:8e57f3e9cc89 1371 {
rgrover1 0:8e57f3e9cc89 1372 char cValueToPost;
rgrover1 0:8e57f3e9cc89 1373 const portTickType xBlockTime = ( portTickType )0xff;
rgrover1 0:8e57f3e9cc89 1374
rgrover1 0:8e57f3e9cc89 1375 // Create a queue capable of containing 10 characters.
rgrover1 0:8e57f3e9cc89 1376 xQueue = xQueueCreate( 10, sizeof( char ) );
rgrover1 0:8e57f3e9cc89 1377 if( xQueue == 0 )
rgrover1 0:8e57f3e9cc89 1378 {
rgrover1 0:8e57f3e9cc89 1379 // Failed to create the queue.
rgrover1 0:8e57f3e9cc89 1380 }
rgrover1 0:8e57f3e9cc89 1381
rgrover1 0:8e57f3e9cc89 1382 // ...
rgrover1 0:8e57f3e9cc89 1383
rgrover1 0:8e57f3e9cc89 1384 // Post some characters that will be used within an ISR. If the queue
rgrover1 0:8e57f3e9cc89 1385 // is full then this task will block for xBlockTime ticks.
rgrover1 0:8e57f3e9cc89 1386 cValueToPost = 'a';
rgrover1 0:8e57f3e9cc89 1387 xQueueSend( xQueue, ( void * ) &cValueToPost, xBlockTime );
rgrover1 0:8e57f3e9cc89 1388 cValueToPost = 'b';
rgrover1 0:8e57f3e9cc89 1389 xQueueSend( xQueue, ( void * ) &cValueToPost, xBlockTime );
rgrover1 0:8e57f3e9cc89 1390
rgrover1 0:8e57f3e9cc89 1391 // ... keep posting characters ... this task may block when the queue
rgrover1 0:8e57f3e9cc89 1392 // becomes full.
rgrover1 0:8e57f3e9cc89 1393
rgrover1 0:8e57f3e9cc89 1394 cValueToPost = 'c';
rgrover1 0:8e57f3e9cc89 1395 xQueueSend( xQueue, ( void * ) &cValueToPost, xBlockTime );
rgrover1 0:8e57f3e9cc89 1396 }
rgrover1 0:8e57f3e9cc89 1397
rgrover1 0:8e57f3e9cc89 1398 // ISR that outputs all the characters received on the queue.
rgrover1 0:8e57f3e9cc89 1399 void vISR_Routine( void )
rgrover1 0:8e57f3e9cc89 1400 {
rgrover1 0:8e57f3e9cc89 1401 portBASE_TYPE xTaskWokenByReceive = pdFALSE;
rgrover1 0:8e57f3e9cc89 1402 char cRxedChar;
rgrover1 0:8e57f3e9cc89 1403
rgrover1 0:8e57f3e9cc89 1404 while( xQueueReceiveFromISR( xQueue, ( void * ) &cRxedChar, &xTaskWokenByReceive) )
rgrover1 0:8e57f3e9cc89 1405 {
rgrover1 0:8e57f3e9cc89 1406 // A character was received. Output the character now.
rgrover1 0:8e57f3e9cc89 1407 vOutputCharacter( cRxedChar );
rgrover1 0:8e57f3e9cc89 1408
rgrover1 0:8e57f3e9cc89 1409 // If removing the character from the queue woke the task that was
rgrover1 0:8e57f3e9cc89 1410 // posting onto the queue cTaskWokenByReceive will have been set to
rgrover1 0:8e57f3e9cc89 1411 // pdTRUE. No matter how many times this loop iterates only one
rgrover1 0:8e57f3e9cc89 1412 // task will be woken.
rgrover1 0:8e57f3e9cc89 1413 }
rgrover1 0:8e57f3e9cc89 1414
rgrover1 0:8e57f3e9cc89 1415 if( cTaskWokenByPost != ( char ) pdFALSE;
rgrover1 0:8e57f3e9cc89 1416 {
rgrover1 0:8e57f3e9cc89 1417 taskYIELD ();
rgrover1 0:8e57f3e9cc89 1418 }
rgrover1 0:8e57f3e9cc89 1419 }
rgrover1 0:8e57f3e9cc89 1420 </pre>
rgrover1 0:8e57f3e9cc89 1421 * \defgroup xQueueReceiveFromISR xQueueReceiveFromISR
rgrover1 0:8e57f3e9cc89 1422 * \ingroup QueueManagement
rgrover1 0:8e57f3e9cc89 1423 */
rgrover1 0:8e57f3e9cc89 1424 signed portBASE_TYPE xQueueReceiveFromISR( xQueueHandle xQueue, void * const pvBuffer, signed portBASE_TYPE *pxHigherPriorityTaskWoken ) PRIVILEGED_FUNCTION;
rgrover1 0:8e57f3e9cc89 1425
rgrover1 0:8e57f3e9cc89 1426 /*
rgrover1 0:8e57f3e9cc89 1427 * Utilities to query queues that are safe to use from an ISR. These utilities
rgrover1 0:8e57f3e9cc89 1428 * should be used only from witin an ISR, or within a critical section.
rgrover1 0:8e57f3e9cc89 1429 */
rgrover1 0:8e57f3e9cc89 1430 signed portBASE_TYPE xQueueIsQueueEmptyFromISR( const xQueueHandle xQueue ) PRIVILEGED_FUNCTION;
rgrover1 0:8e57f3e9cc89 1431 signed portBASE_TYPE xQueueIsQueueFullFromISR( const xQueueHandle xQueue ) PRIVILEGED_FUNCTION;
rgrover1 0:8e57f3e9cc89 1432 unsigned portBASE_TYPE uxQueueMessagesWaitingFromISR( const xQueueHandle xQueue ) PRIVILEGED_FUNCTION;
rgrover1 0:8e57f3e9cc89 1433
rgrover1 0:8e57f3e9cc89 1434
rgrover1 0:8e57f3e9cc89 1435 /*
rgrover1 0:8e57f3e9cc89 1436 * xQueueAltGenericSend() is an alternative version of xQueueGenericSend().
rgrover1 0:8e57f3e9cc89 1437 * Likewise xQueueAltGenericReceive() is an alternative version of
rgrover1 0:8e57f3e9cc89 1438 * xQueueGenericReceive().
rgrover1 0:8e57f3e9cc89 1439 *
rgrover1 0:8e57f3e9cc89 1440 * The source code that implements the alternative (Alt) API is much
rgrover1 0:8e57f3e9cc89 1441 * simpler because it executes everything from within a critical section.
rgrover1 0:8e57f3e9cc89 1442 * This is the approach taken by many other RTOSes, but FreeRTOS.org has the
rgrover1 0:8e57f3e9cc89 1443 * preferred fully featured API too. The fully featured API has more
rgrover1 0:8e57f3e9cc89 1444 * complex code that takes longer to execute, but makes much less use of
rgrover1 0:8e57f3e9cc89 1445 * critical sections. Therefore the alternative API sacrifices interrupt
rgrover1 0:8e57f3e9cc89 1446 * responsiveness to gain execution speed, whereas the fully featured API
rgrover1 0:8e57f3e9cc89 1447 * sacrifices execution speed to ensure better interrupt responsiveness.
rgrover1 0:8e57f3e9cc89 1448 */
rgrover1 0:8e57f3e9cc89 1449 signed portBASE_TYPE xQueueAltGenericSend( xQueueHandle xQueue, const void * const pvItemToQueue, portTickType xTicksToWait, portBASE_TYPE xCopyPosition );
rgrover1 0:8e57f3e9cc89 1450 signed portBASE_TYPE xQueueAltGenericReceive( xQueueHandle xQueue, void * const pvBuffer, portTickType xTicksToWait, portBASE_TYPE xJustPeeking );
rgrover1 0:8e57f3e9cc89 1451 #define xQueueAltSendToFront( xQueue, pvItemToQueue, xTicksToWait ) xQueueAltGenericSend( ( xQueue ), ( pvItemToQueue ), ( xTicksToWait ), queueSEND_TO_FRONT )
rgrover1 0:8e57f3e9cc89 1452 #define xQueueAltSendToBack( xQueue, pvItemToQueue, xTicksToWait ) xQueueAltGenericSend( ( xQueue ), ( pvItemToQueue ), ( xTicksToWait ), queueSEND_TO_BACK )
rgrover1 0:8e57f3e9cc89 1453 #define xQueueAltReceive( xQueue, pvBuffer, xTicksToWait ) xQueueAltGenericReceive( ( xQueue ), ( pvBuffer ), ( xTicksToWait ), pdFALSE )
rgrover1 0:8e57f3e9cc89 1454 #define xQueueAltPeek( xQueue, pvBuffer, xTicksToWait ) xQueueAltGenericReceive( ( xQueue ), ( pvBuffer ), ( xTicksToWait ), pdTRUE )
rgrover1 0:8e57f3e9cc89 1455
rgrover1 0:8e57f3e9cc89 1456 /*
rgrover1 0:8e57f3e9cc89 1457 * The functions defined above are for passing data to and from tasks. The
rgrover1 0:8e57f3e9cc89 1458 * functions below are the equivalents for passing data to and from
rgrover1 0:8e57f3e9cc89 1459 * co-routines.
rgrover1 0:8e57f3e9cc89 1460 *
rgrover1 0:8e57f3e9cc89 1461 * These functions are called from the co-routine macro implementation and
rgrover1 0:8e57f3e9cc89 1462 * should not be called directly from application code. Instead use the macro
rgrover1 0:8e57f3e9cc89 1463 * wrappers defined within croutine.h.
rgrover1 0:8e57f3e9cc89 1464 */
rgrover1 0:8e57f3e9cc89 1465 signed portBASE_TYPE xQueueCRSendFromISR( xQueueHandle xQueue, const void *pvItemToQueue, signed portBASE_TYPE xCoRoutinePreviouslyWoken );
rgrover1 0:8e57f3e9cc89 1466 signed portBASE_TYPE xQueueCRReceiveFromISR( xQueueHandle xQueue, void *pvBuffer, signed portBASE_TYPE *pxTaskWoken );
rgrover1 0:8e57f3e9cc89 1467 signed portBASE_TYPE xQueueCRSend( xQueueHandle xQueue, const void *pvItemToQueue, portTickType xTicksToWait );
rgrover1 0:8e57f3e9cc89 1468 signed portBASE_TYPE xQueueCRReceive( xQueueHandle xQueue, void *pvBuffer, portTickType xTicksToWait );
rgrover1 0:8e57f3e9cc89 1469
rgrover1 0:8e57f3e9cc89 1470 /*
rgrover1 0:8e57f3e9cc89 1471 * For internal use only. Use xSemaphoreCreateMutex(),
rgrover1 0:8e57f3e9cc89 1472 * xSemaphoreCreateCounting() or xSemaphoreGetMutexHolder() instead of calling
rgrover1 0:8e57f3e9cc89 1473 * these functions directly.
rgrover1 0:8e57f3e9cc89 1474 */
rgrover1 0:8e57f3e9cc89 1475 xQueueHandle xQueueCreateMutex( unsigned char ucQueueType ) PRIVILEGED_FUNCTION;
rgrover1 0:8e57f3e9cc89 1476 xQueueHandle xQueueCreateCountingSemaphore( unsigned portBASE_TYPE uxMaxCount, unsigned portBASE_TYPE uxInitialCount ) PRIVILEGED_FUNCTION;
rgrover1 0:8e57f3e9cc89 1477 void* xQueueGetMutexHolder( xQueueHandle xSemaphore ) PRIVILEGED_FUNCTION;
rgrover1 0:8e57f3e9cc89 1478
rgrover1 0:8e57f3e9cc89 1479 /*
rgrover1 0:8e57f3e9cc89 1480 * For internal use only. Use xSemaphoreTakeMutexRecursive() or
rgrover1 0:8e57f3e9cc89 1481 * xSemaphoreGiveMutexRecursive() instead of calling these functions directly.
rgrover1 0:8e57f3e9cc89 1482 */
rgrover1 0:8e57f3e9cc89 1483 portBASE_TYPE xQueueTakeMutexRecursive( xQueueHandle xMutex, portTickType xBlockTime ) PRIVILEGED_FUNCTION;
rgrover1 0:8e57f3e9cc89 1484 portBASE_TYPE xQueueGiveMutexRecursive( xQueueHandle pxMutex ) PRIVILEGED_FUNCTION;
rgrover1 0:8e57f3e9cc89 1485
rgrover1 0:8e57f3e9cc89 1486 /*
rgrover1 0:8e57f3e9cc89 1487 * Reset a queue back to its original empty state. pdPASS is returned if the
rgrover1 0:8e57f3e9cc89 1488 * queue is successfully reset. pdFAIL is returned if the queue could not be
rgrover1 0:8e57f3e9cc89 1489 * reset because there are tasks blocked on the queue waiting to either
rgrover1 0:8e57f3e9cc89 1490 * receive from the queue or send to the queue.
rgrover1 0:8e57f3e9cc89 1491 */
rgrover1 0:8e57f3e9cc89 1492 #define xQueueReset( xQueue ) xQueueGenericReset( xQueue, pdFALSE )
rgrover1 0:8e57f3e9cc89 1493
rgrover1 0:8e57f3e9cc89 1494 /*
rgrover1 0:8e57f3e9cc89 1495 * The registry is provided as a means for kernel aware debuggers to
rgrover1 0:8e57f3e9cc89 1496 * locate queues, semaphores and mutexes. Call vQueueAddToRegistry() add
rgrover1 0:8e57f3e9cc89 1497 * a queue, semaphore or mutex handle to the registry if you want the handle
rgrover1 0:8e57f3e9cc89 1498 * to be available to a kernel aware debugger. If you are not using a kernel
rgrover1 0:8e57f3e9cc89 1499 * aware debugger then this function can be ignored.
rgrover1 0:8e57f3e9cc89 1500 *
rgrover1 0:8e57f3e9cc89 1501 * configQUEUE_REGISTRY_SIZE defines the maximum number of handles the
rgrover1 0:8e57f3e9cc89 1502 * registry can hold. configQUEUE_REGISTRY_SIZE must be greater than 0
rgrover1 0:8e57f3e9cc89 1503 * within FreeRTOSConfig.h for the registry to be available. Its value
rgrover1 0:8e57f3e9cc89 1504 * does not effect the number of queues, semaphores and mutexes that can be
rgrover1 0:8e57f3e9cc89 1505 * created - just the number that the registry can hold.
rgrover1 0:8e57f3e9cc89 1506 *
rgrover1 0:8e57f3e9cc89 1507 * @param xQueue The handle of the queue being added to the registry. This
rgrover1 0:8e57f3e9cc89 1508 * is the handle returned by a call to xQueueCreate(). Semaphore and mutex
rgrover1 0:8e57f3e9cc89 1509 * handles can also be passed in here.
rgrover1 0:8e57f3e9cc89 1510 *
rgrover1 0:8e57f3e9cc89 1511 * @param pcName The name to be associated with the handle. This is the
rgrover1 0:8e57f3e9cc89 1512 * name that the kernel aware debugger will display.
rgrover1 0:8e57f3e9cc89 1513 */
rgrover1 0:8e57f3e9cc89 1514 #if configQUEUE_REGISTRY_SIZE > 0
rgrover1 0:8e57f3e9cc89 1515 void vQueueAddToRegistry( xQueueHandle xQueue, signed char *pcName ) PRIVILEGED_FUNCTION;
rgrover1 0:8e57f3e9cc89 1516 #endif
rgrover1 0:8e57f3e9cc89 1517
rgrover1 0:8e57f3e9cc89 1518 /*
rgrover1 0:8e57f3e9cc89 1519 * The registry is provided as a means for kernel aware debuggers to
rgrover1 0:8e57f3e9cc89 1520 * locate queues, semaphores and mutexes. Call vQueueAddToRegistry() add
rgrover1 0:8e57f3e9cc89 1521 * a queue, semaphore or mutex handle to the registry if you want the handle
rgrover1 0:8e57f3e9cc89 1522 * to be available to a kernel aware debugger, and vQueueUnregisterQueue() to
rgrover1 0:8e57f3e9cc89 1523 * remove the queue, semaphore or mutex from the register. If you are not using
rgrover1 0:8e57f3e9cc89 1524 * a kernel aware debugger then this function can be ignored.
rgrover1 0:8e57f3e9cc89 1525 *
rgrover1 0:8e57f3e9cc89 1526 * @param xQueue The handle of the queue being removed from the registry.
rgrover1 0:8e57f3e9cc89 1527 */
rgrover1 0:8e57f3e9cc89 1528 #if configQUEUE_REGISTRY_SIZE > 0
rgrover1 0:8e57f3e9cc89 1529 void vQueueUnregisterQueue( xQueueHandle xQueue ) PRIVILEGED_FUNCTION;
rgrover1 0:8e57f3e9cc89 1530 #endif
rgrover1 0:8e57f3e9cc89 1531
rgrover1 0:8e57f3e9cc89 1532 /*
rgrover1 0:8e57f3e9cc89 1533 * Generic version of the queue creation function, which is in turn called by
rgrover1 0:8e57f3e9cc89 1534 * any queue, semaphore or mutex creation function or macro.
rgrover1 0:8e57f3e9cc89 1535 */
rgrover1 0:8e57f3e9cc89 1536 xQueueHandle xQueueGenericCreate( unsigned portBASE_TYPE uxQueueLength, unsigned portBASE_TYPE uxItemSize, unsigned char ucQueueType ) PRIVILEGED_FUNCTION;
rgrover1 0:8e57f3e9cc89 1537
rgrover1 0:8e57f3e9cc89 1538 /*
rgrover1 0:8e57f3e9cc89 1539 * Queue sets provide a mechanism to allow a task to block (pend) on a read
rgrover1 0:8e57f3e9cc89 1540 * operation from multiple queues or semaphores simultaneously.
rgrover1 0:8e57f3e9cc89 1541 *
rgrover1 0:8e57f3e9cc89 1542 * See FreeRTOS/Source/Demo/Common/Minimal/QueueSet.c for an example using this
rgrover1 0:8e57f3e9cc89 1543 * function.
rgrover1 0:8e57f3e9cc89 1544 *
rgrover1 0:8e57f3e9cc89 1545 * A queue set must be explicitly created using a call to xQueueCreateSet()
rgrover1 0:8e57f3e9cc89 1546 * before it can be used. Once created, standard FreeRTOS queues and semaphores
rgrover1 0:8e57f3e9cc89 1547 * can be added to the set using calls to xQueueAddToSet().
rgrover1 0:8e57f3e9cc89 1548 * xQueueSelectFromSet() is then used to determine which, if any, of the queues
rgrover1 0:8e57f3e9cc89 1549 * or semaphores contained in the set is in a state where a queue read or
rgrover1 0:8e57f3e9cc89 1550 * semaphore take operation would be successful.
rgrover1 0:8e57f3e9cc89 1551 *
rgrover1 0:8e57f3e9cc89 1552 * Note 1: See the documentation on http://wwwFreeRTOS.org/RTOS-queue-sets.html
rgrover1 0:8e57f3e9cc89 1553 * for reasons why queue sets are very rarely needed in practice as there are
rgrover1 0:8e57f3e9cc89 1554 * simpler methods of blocking on multiple objects.
rgrover1 0:8e57f3e9cc89 1555 *
rgrover1 0:8e57f3e9cc89 1556 * Note 2: Blocking on a queue set that contains a mutex will not cause the
rgrover1 0:8e57f3e9cc89 1557 * mutex holder to inherit the priority of the blocked task.
rgrover1 0:8e57f3e9cc89 1558 *
rgrover1 0:8e57f3e9cc89 1559 * Note 3: An additional 4 bytes of RAM is required for each space in a every
rgrover1 0:8e57f3e9cc89 1560 * queue added to a queue set. Therefore counting semaphores that have a high
rgrover1 0:8e57f3e9cc89 1561 * maximum count value should not be added to a queue set.
rgrover1 0:8e57f3e9cc89 1562 *
rgrover1 0:8e57f3e9cc89 1563 * Note 4: A receive (in the case of a queue) or take (in the case of a
rgrover1 0:8e57f3e9cc89 1564 * semaphore) operation must not be performed on a member of a queue set unless
rgrover1 0:8e57f3e9cc89 1565 * a call to xQueueSelectFromSet() has first returned a handle to that set member.
rgrover1 0:8e57f3e9cc89 1566 *
rgrover1 0:8e57f3e9cc89 1567 * @param uxEventQueueLength Queue sets store events that occur on
rgrover1 0:8e57f3e9cc89 1568 * the queues and semaphores contained in the set. uxEventQueueLength specifies
rgrover1 0:8e57f3e9cc89 1569 * the maximum number of events that can be queued at once. To be absolutely
rgrover1 0:8e57f3e9cc89 1570 * certain that events are not lost uxEventQueueLength should be set to the
rgrover1 0:8e57f3e9cc89 1571 * total sum of the length of the queues added to the set, where binary
rgrover1 0:8e57f3e9cc89 1572 * semaphores and mutexes have a length of 1, and counting semaphores have a
rgrover1 0:8e57f3e9cc89 1573 * length set by their maximum count value. Examples:
rgrover1 0:8e57f3e9cc89 1574 * + If a queue set is to hold a queue of length 5, another queue of length 12,
rgrover1 0:8e57f3e9cc89 1575 * and a binary semaphore, then uxEventQueueLength should be set to
rgrover1 0:8e57f3e9cc89 1576 * (5 + 12 + 1), or 18.
rgrover1 0:8e57f3e9cc89 1577 * + If a queue set is to hold three binary semaphores then uxEventQueueLength
rgrover1 0:8e57f3e9cc89 1578 * should be set to (1 + 1 + 1 ), or 3.
rgrover1 0:8e57f3e9cc89 1579 * + If a queue set is to hold a counting semaphore that has a maximum count of
rgrover1 0:8e57f3e9cc89 1580 * 5, and a counting semaphore that has a maximum count of 3, then
rgrover1 0:8e57f3e9cc89 1581 * uxEventQueueLength should be set to (5 + 3), or 8.
rgrover1 0:8e57f3e9cc89 1582 *
rgrover1 0:8e57f3e9cc89 1583 * @return If the queue set is created successfully then a handle to the created
rgrover1 0:8e57f3e9cc89 1584 * queue set is returned. Otherwise NULL is returned.
rgrover1 0:8e57f3e9cc89 1585 */
rgrover1 0:8e57f3e9cc89 1586 xQueueSetHandle xQueueCreateSet( unsigned portBASE_TYPE uxEventQueueLength ) PRIVILEGED_FUNCTION;
rgrover1 0:8e57f3e9cc89 1587
rgrover1 0:8e57f3e9cc89 1588 /*
rgrover1 0:8e57f3e9cc89 1589 * Adds a queue or semaphore to a queue set that was previously created by a
rgrover1 0:8e57f3e9cc89 1590 * call to xQueueCreateSet().
rgrover1 0:8e57f3e9cc89 1591 *
rgrover1 0:8e57f3e9cc89 1592 * See FreeRTOS/Source/Demo/Common/Minimal/QueueSet.c for an example using this
rgrover1 0:8e57f3e9cc89 1593 * function.
rgrover1 0:8e57f3e9cc89 1594 *
rgrover1 0:8e57f3e9cc89 1595 * Note 1: A receive (in the case of a queue) or take (in the case of a
rgrover1 0:8e57f3e9cc89 1596 * semaphore) operation must not be performed on a member of a queue set unless
rgrover1 0:8e57f3e9cc89 1597 * a call to xQueueSelectFromSet() has first returned a handle to that set member.
rgrover1 0:8e57f3e9cc89 1598 *
rgrover1 0:8e57f3e9cc89 1599 * @param xQueueOrSemaphore The handle of the queue or semaphore being added to
rgrover1 0:8e57f3e9cc89 1600 * the queue set (cast to an xQueueSetMemberHandle type).
rgrover1 0:8e57f3e9cc89 1601 *
rgrover1 0:8e57f3e9cc89 1602 * @param xQueueSet The handle of the queue set to which the queue or semaphore
rgrover1 0:8e57f3e9cc89 1603 * is being added.
rgrover1 0:8e57f3e9cc89 1604 *
rgrover1 0:8e57f3e9cc89 1605 * @return If the queue or semaphore was successfully added to the queue set
rgrover1 0:8e57f3e9cc89 1606 * then pdPASS is returned. If the queue could not be successfully added to the
rgrover1 0:8e57f3e9cc89 1607 * queue set because it is already a member of a different queue set then pdFAIL
rgrover1 0:8e57f3e9cc89 1608 * is returned.
rgrover1 0:8e57f3e9cc89 1609 */
rgrover1 0:8e57f3e9cc89 1610 portBASE_TYPE xQueueAddToSet( xQueueSetMemberHandle xQueueOrSemaphore, xQueueSetHandle xQueueSet ) PRIVILEGED_FUNCTION;
rgrover1 0:8e57f3e9cc89 1611
rgrover1 0:8e57f3e9cc89 1612 /*
rgrover1 0:8e57f3e9cc89 1613 * Removes a queue or semaphore from a queue set. A queue or semaphore can only
rgrover1 0:8e57f3e9cc89 1614 * be removed from a set if the queue or semaphore is empty.
rgrover1 0:8e57f3e9cc89 1615 *
rgrover1 0:8e57f3e9cc89 1616 * See FreeRTOS/Source/Demo/Common/Minimal/QueueSet.c for an example using this
rgrover1 0:8e57f3e9cc89 1617 * function.
rgrover1 0:8e57f3e9cc89 1618 *
rgrover1 0:8e57f3e9cc89 1619 * @param xQueueOrSemaphore The handle of the queue or semaphore being removed
rgrover1 0:8e57f3e9cc89 1620 * from the queue set (cast to an xQueueSetMemberHandle type).
rgrover1 0:8e57f3e9cc89 1621 *
rgrover1 0:8e57f3e9cc89 1622 * @param xQueueSet The handle of the queue set in which the queue or semaphore
rgrover1 0:8e57f3e9cc89 1623 * is included.
rgrover1 0:8e57f3e9cc89 1624 *
rgrover1 0:8e57f3e9cc89 1625 * @return If the queue or semaphore was successfully removed from the queue set
rgrover1 0:8e57f3e9cc89 1626 * then pdPASS is returned. If the queue was not in the queue set, or the
rgrover1 0:8e57f3e9cc89 1627 * queue (or semaphore) was not empty, then pdFAIL is returned.
rgrover1 0:8e57f3e9cc89 1628 */
rgrover1 0:8e57f3e9cc89 1629 portBASE_TYPE xQueueRemoveFromSet( xQueueSetMemberHandle xQueueOrSemaphore, xQueueSetHandle xQueueSet ) PRIVILEGED_FUNCTION;
rgrover1 0:8e57f3e9cc89 1630
rgrover1 0:8e57f3e9cc89 1631 /*
rgrover1 0:8e57f3e9cc89 1632 * xQueueSelectFromSet() selects from the members of a queue set a queue or
rgrover1 0:8e57f3e9cc89 1633 * semaphore that either contains data (in the case of a queue) or is available
rgrover1 0:8e57f3e9cc89 1634 * to take (in the case of a semaphore). xQueueSelectFromSet() effectively
rgrover1 0:8e57f3e9cc89 1635 * allows a task to block (pend) on a read operation on all the queues and
rgrover1 0:8e57f3e9cc89 1636 * semaphores in a queue set simultaneously.
rgrover1 0:8e57f3e9cc89 1637 *
rgrover1 0:8e57f3e9cc89 1638 * See FreeRTOS/Source/Demo/Common/Minimal/QueueSet.c for an example using this
rgrover1 0:8e57f3e9cc89 1639 * function.
rgrover1 0:8e57f3e9cc89 1640 *
rgrover1 0:8e57f3e9cc89 1641 * Note 1: See the documentation on http://wwwFreeRTOS.org/RTOS-queue-sets.html
rgrover1 0:8e57f3e9cc89 1642 * for reasons why queue sets are very rarely needed in practice as there are
rgrover1 0:8e57f3e9cc89 1643 * simpler methods of blocking on multiple objects.
rgrover1 0:8e57f3e9cc89 1644 *
rgrover1 0:8e57f3e9cc89 1645 * Note 2: Blocking on a queue set that contains a mutex will not cause the
rgrover1 0:8e57f3e9cc89 1646 * mutex holder to inherit the priority of the blocked task.
rgrover1 0:8e57f3e9cc89 1647 *
rgrover1 0:8e57f3e9cc89 1648 * Note 3: A receive (in the case of a queue) or take (in the case of a
rgrover1 0:8e57f3e9cc89 1649 * semaphore) operation must not be performed on a member of a queue set unless
rgrover1 0:8e57f3e9cc89 1650 * a call to xQueueSelectFromSet() has first returned a handle to that set member.
rgrover1 0:8e57f3e9cc89 1651 *
rgrover1 0:8e57f3e9cc89 1652 * @param xQueueSet The queue set on which the task will (potentially) block.
rgrover1 0:8e57f3e9cc89 1653 *
rgrover1 0:8e57f3e9cc89 1654 * @param xBlockTimeTicks The maximum time, in ticks, that the calling task will
rgrover1 0:8e57f3e9cc89 1655 * remain in the Blocked state (with other tasks executing) to wait for a member
rgrover1 0:8e57f3e9cc89 1656 * of the queue set to be ready for a successful queue read or semaphore take
rgrover1 0:8e57f3e9cc89 1657 * operation.
rgrover1 0:8e57f3e9cc89 1658 *
rgrover1 0:8e57f3e9cc89 1659 * @return xQueueSelectFromSet() will return the handle of a queue (cast to
rgrover1 0:8e57f3e9cc89 1660 * a xQueueSetMemberHandle type) contained in the queue set that contains data,
rgrover1 0:8e57f3e9cc89 1661 * or the handle of a semaphore (cast to a xQueueSetMemberHandle type) contained
rgrover1 0:8e57f3e9cc89 1662 * in the queue set that is available, or NULL if no such queue or semaphore
rgrover1 0:8e57f3e9cc89 1663 * exists before before the specified block time expires.
rgrover1 0:8e57f3e9cc89 1664 */
rgrover1 0:8e57f3e9cc89 1665 xQueueSetMemberHandle xQueueSelectFromSet( xQueueSetHandle xQueueSet, portTickType xBlockTimeTicks ) PRIVILEGED_FUNCTION;
rgrover1 0:8e57f3e9cc89 1666
rgrover1 0:8e57f3e9cc89 1667 /*
rgrover1 0:8e57f3e9cc89 1668 * A version of xQueueSelectFromSet() that can be used from an ISR.
rgrover1 0:8e57f3e9cc89 1669 */
rgrover1 0:8e57f3e9cc89 1670 xQueueSetMemberHandle xQueueSelectFromSetFromISR( xQueueSetHandle xQueueSet ) PRIVILEGED_FUNCTION;
rgrover1 0:8e57f3e9cc89 1671
rgrover1 0:8e57f3e9cc89 1672 /* Not public API functions. */
rgrover1 0:8e57f3e9cc89 1673 void vQueueWaitForMessageRestricted( xQueueHandle xQueue, portTickType xTicksToWait ) PRIVILEGED_FUNCTION;
rgrover1 0:8e57f3e9cc89 1674 portBASE_TYPE xQueueGenericReset( xQueueHandle xQueue, portBASE_TYPE xNewQueue ) PRIVILEGED_FUNCTION;
rgrover1 0:8e57f3e9cc89 1675 void vQueueSetQueueNumber( xQueueHandle xQueue, unsigned char ucQueueNumber ) PRIVILEGED_FUNCTION;
rgrover1 0:8e57f3e9cc89 1676 unsigned char ucQueueGetQueueNumber( xQueueHandle xQueue ) PRIVILEGED_FUNCTION;
rgrover1 0:8e57f3e9cc89 1677 unsigned char ucQueueGetQueueType( xQueueHandle xQueue ) PRIVILEGED_FUNCTION;
rgrover1 0:8e57f3e9cc89 1678
rgrover1 0:8e57f3e9cc89 1679
rgrover1 0:8e57f3e9cc89 1680 #ifdef __cplusplus
rgrover1 0:8e57f3e9cc89 1681 }
rgrover1 0:8e57f3e9cc89 1682 #endif
rgrover1 0:8e57f3e9cc89 1683
rgrover1 0:8e57f3e9cc89 1684 #endif /* QUEUE_H */
rgrover1 0:8e57f3e9cc89 1685