Condensed Version of Public VL53L0X

Dependents:   ToF-Only-Tryout

VL53L0X.cpp

Committer:
sepp_nepp
Date:
2019-04-08
Revision:
11:c6f95a42d4d7
Parent:
10:cd251e0fc2fd
Child:
12:aa177f0e4c10

File content as of revision 11:c6f95a42d4d7:

/**
 ******************************************************************************
 * @file    Class.cpp
 * @author  IMG
 * @version V0.0.1
 * @date    28-June-2016
 * @brief   Implementation file for the VL53L0X driver class
 ******************************************************************************
 * @attention
 *
 * <h2><center>&copy; COPYRIGHT(c) 2016 STMicroelectronics</center></h2>
 *
 * Redistribution and use in source and binary forms,with or without modification,
 * are permitted provided that the following conditions are met:
 *   1. Redistributions of source code must retain the above copyright notice,
 *      this list of conditions and the following disclaimer.
 *   2. Redistributions in binary form must reproduce the above copyright notice,
 *      this list of conditions and the following disclaimer in the documentation
 *      and/or other materials provided with the distribution.
 *   3. Neither the name of STMicroelectronics nor the names of its contributors
 *      may be used to endorse or promote products derived from this software
 *      without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES,INCLUDING,BUT NOT LIMITED TO,THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT,INDIRECT,INCIDENTAL,SPECIAL,EXEMPLARY,OR CONSEQUENTIAL
 * DAMAGES (INCLUDING,BUT NOT LIMITED TO,PROCUREMENT OF SUBSTITUTE GOODS OR
 * SERVICES; LOSS OF USE,DATA,OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 * CAUSED AND ON ANY THEORY OF LIABILITY,WHETHER IN CONTRACT,STRICT LIABILITY,
 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE,EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 ******************************************************************************
*/

// Some example regex that were used to replace useless macros
// \QVL53L0X_SETARRAYPARAMETERFIELD(\E([A-Z\d]+)[[:punct:]](\s*)([A-Z\d_]+)[[:punct:]](\s*)([A-Z\d_]+)\Q);\E
// _device->CurrParams.\1[\3] = \5; 
// to replace this "#define VL53L0X_SETARRAYPARAMETERFIELD(field, index, value)"  by  "_device->CurrParams.field[index] = value" 

// to replace "Read_Byte(0x90,&module_id);"  by  "module_id = Read_Byte(0x90);" search and replace
// \QRead_Byte(\E([A-Za-z_\d]+)[[:punct:]](\s*)\Q&\E([A-Za-z\d_]+)\Q);\E
// \3 = Read_Byte\(\1\); 

/* Includes */
#include <stdlib.h>
#include "VL53L0X.h"
#include "VL53L0X_tuning.h"

// Function Data_init and Init_Sensor is united into Start_Sensor
VL53L0X_Error VL53L0X::Start_Sensor(uint8_t new_addr)
{	ErrState = VL53L0X_OK;

    if (_gpio0) {   // Can the shutdown pin be controlled?
       *_gpio0 = 0; wait_ms(1); // quick shutdown
       *_gpio0 = 1; wait_ms(10); // and back ON again
       }

	/* Setup the I2C bus.  By default the I2C is running at 1V8 if you 
	 * want to change it you need to include this define at compilation level. */
#ifdef USE_I2C_2V8
    VL53L0X_UpdateByte(REG_VHV_CONFIG_PAD_SCL_SDA__EXTSUP_HV, 0xFE, 0x01);
#endif
    /* Set I2C standard mode */
    Write_Byte(0x88,0x00);

	// read and check the device ID from the ID register
    Device_Info.ProductType = Read_Byte(REG_IDENTIFICATION_MODEL_ID); 
    if ( (ErrState == VL53L0X_OK)  && (Device_Info.ProductType != 0xEEAA) ) 
    	{return VL53L0X_ERROR_I2C_WRONG_DEV_ID; }
    
    // reconfigure the address with a new address if requested
    if ( (ErrState == VL53L0X_OK) && (new_addr != VL53L0X_DEFAULT_ADDRESS) )
    	{ Write_Byte(REG_I2C_SLAVE_DEVICE_ADDRESS, new_addr / 2);
    	  I2cDevAddr = new_addr;
        } 
    // quite if an error was raised 
    if (ErrState != VL53L0X_OK)  {return ErrState; } 
    
    /* Set Default static parameters
    *set first temporary values 9.44MHz * 65536 = 618660 */
    DevSpecParams.OscFrequencyMHz = 618660;
 	DevSpecParams.RefSPADSInitialised = 0;
    DevSpecParams.ReadDataFromDeviceDone = 0;

#ifdef USE_IQC_STATION
    VL53L0X_Apply_Offset_Cal();
#endif

    /* Default value is 1000 for Linearity Corrective Gain */
    LinearityCorrectiveGain = 1000; 

    /* Dmax default Parameter */
    DmaxCalRangeMilliMeter = 400; 
    DmaxCalSignalRateRtnMHz = (TFP1616)((0x00016B85)); /* 1.42 No Cover Glass*/

    /* Get default parameters */
    CurrParams = Get_device_parameters();
    
    /* Set Default Xtalk_CompRate_MHz to 0  */
    CurrParams.Xtalk_CompRate_MHz = 0; 

    /* initialize CurrParams values */
    CurrParams.DeviceMode = VL53L0X_DEVICEMODE_SINGLE_RANGING;
    CurrParams.HistogramMode = VL53L0X_HISTOGRAMMODE_DISABLED;

    /* Sigma estimator variable */
    SigmaEstRefArray      = 100; 
    SigmaEstEffPulseWidth = 900; 
    SigmaEstEffAmbWidth   = 500; 
    targetRefRate         = 0x0A00;  /* 20 MHz in 9:7 format */

    /* Use internal default settings */
    UseInternalTuningSettings = 1; 
    Write_Byte(0x80,0x01);
    Write_Byte(0xFF,0x01);
    Write_Byte(0x00,0x00);
    StopVariable = Read_Byte(0x91); 
    Write_Byte(0x00,0x01);
    Write_Byte(0xFF,0x00);
    Write_Byte(0x80,0x00);

    // quite if an error was raised 
    if (ErrState != VL53L0X_OK)  {return ErrState; } 

    /* Disable the following SW-internal checks plaus set some values */
    CurrParams.Limit_Chk_En [VL53L0X_CHECKEN_SIG_REF_CLIP] = 0; 
	CurrParams.Limit_Chk_Val[VL53L0X_CHECKEN_SIG_REF_CLIP] = (35 * 65536);
    CurrParams.Limit_Chk_En [VL53L0X_CHECKEN_RANGE_IGNORE_THRESHOLD] = 0; 
	CurrParams.Limit_Chk_Val[VL53L0X_CHECKEN_RANGE_IGNORE_THRESHOLD] = 0;

	/* Disable the following Device-Internal Checks: */
    CurrParams.Limit_Chk_En[VL53L0X_CHECKEN_SIG_RATE_MSRC] = 0; 
    CurrParams.Limit_Chk_En[VL53L0X_CHECKEN_SIG_RATE_PRE_RANGE] = 0; 
    Register_BitMask(REG_MSRC_CONFIG_CONTROL,0xEE, 0);

	/* Only enable this  internal Check : */
	CurrParams.Limit_Chk_En [VL53L0X_CHECKEN_SIGMA_FINAL_RANGE] = 1; 
	CurrParams.Limit_Chk_Val[VL53L0X_CHECKEN_SIGMA_FINAL_RANGE] = (18 * 65536);

    /* Plus Enable VL53L0X_CHECKEN_SIG_RATE_FINAL_RANGE check */
	Set_limit_chk_en(VL53L0X_CHECKEN_SIG_RATE_FINAL_RANGE,1);
                                      
    if (ErrState == VL53L0X_OK) {  /* 0.25 in FP1616 notation 65536 */
        Set_limit_chk_val(VL53L0X_CHECKEN_SIG_RATE_FINAL_RANGE,
                                               (TFP1616)(25 * 65536 / 100)); }

    // quit if an error was raised 
    if (ErrState != VL53L0X_OK)  {return ErrState; } 

	// Preset the Config States 
    SequenceConfig = 0xFF ; 

    /* Set Device state to tell that we are waiting for call to VL53L0X_StaticInit */
    Current_State = VL53L0X_STATE_WAIT_STATICINIT ;

	Fill_device_info(); // Retrieve Silicon version, stored in Device_Info

    uint32_t ref_SPAD_count;
    uint8_t is_aperture_SPADS;
    uint8_t vhv_settings;
    uint8_t phase_cal;

    if (ErrState == VL53L0X_OK) { Static_init(); } // Device Initialization

    if (ErrState == VL53L0X_OK) {  // Device Calibration
           Perf_Ref_calibration( &vhv_settings, &phase_cal, 1);  }

    if (ErrState == VL53L0X_OK) {  // SPAD Configuration
        Perf_Ref_SPAD_management( &ref_SPAD_count, &is_aperture_SPADS); }
   
    return ErrState;
}                   
 
void VL53L0X::Fill_device_info()
{   uint8_t revision;

    Get_info_from_device(2);

    if (ErrState == VL53L0X_OK) 
      { if (DevSpecParams.ModuleId == 0) 
            { revision = 0;
              strcpy(Device_Info.ProductId,""); }
          else 
            { revision = DevSpecParams.Revision; 
              strcpy(Device_Info.ProductId,DevSpecParams.ProductId); 
            }
        if (revision == 0) 
            { strcpy(Device_Info.Name,VL53L0X_STRING_DEVICE_INFO_NAME_TS0); } 
          else if ((revision <= 34) && (revision != 32)) 
        	{ strcpy(Device_Info.Name,VL53L0X_STRING_DEVICE_INFO_NAME_TS1); }
          else if (revision < 39)
            { strcpy(Device_Info.Name,VL53L0X_STRING_DEVICE_INFO_NAME_TS2); }
          else { strcpy(Device_Info.Name,VL53L0X_STRING_DEVICE_INFO_NAME_ES1); }
        strcpy(Device_Info.Type,VL53L0X_STRING_DEVICE_INFO_TYPE);
     }
 
	Device_Info.ProductRevisionMajor = 1;
	Device_Info.ProductRevisionMinor = 
	             (Read_Byte(REG_IDENTIFICATION_REVISION_ID) & 0xF0) >> 4;
}
 

uint32_t VL53L0X::Get_distance()
{   ErrState = VL53L0X_OK;
    TRangeResults p_ranging_results;

    Start_Measurement(op_single_shot_poll, NULL);
    if (ErrState==VL53L0X_OK) 
       { p_ranging_results = Get_Measurement(op_single_shot_poll); }

    Stop_Measurement(op_single_shot_poll);

    if (p_ranging_results.RangeStatus == 0) // we have a valid range ?
       { return p_ranging_results.RangeMilliMeter; } 
      else 
       { ErrState = VL53L0X_ERROR_RANGE_ERROR; return 0;}
}

TRangeResults VL53L0X::Get_Measurement(TOperatingMode operating_mode)
{ 	TRangeResults p_data;

  	switch (operating_mode) {
		case op_single_shot_poll: 
       		Perf_single_ranging_measurement(&p_data);
       		break;
		case op_poll:
	        Poll_Measure_Completion();
	        Get_ranging_results(&p_data);
	        if (ErrState == VL53L0X_OK) { // Clear the interrupt
	            Clear_interrupt_mask(REG_SYSINT_GPIO_NEW_SAMPLE_READY);
	            Polling_delay();
	          }
	        break;
    	case op_INT:
        	Get_ranging_results(&p_data);
        	Clear_interrupt_mask(REG_SYSINT_CLEAR | REG_RESULT_INTERRUPT_STATUS);
      } // switch
	return p_data;
}

/** Get part to part calibration offset;   Should only be used after a 
    successful call to @a VL53L0X_DataInit to backup device NVM value **/
int32_t VL53L0X::Get_Offset_Cal_um()
{   uint16_t range_offset_register;
    int16_t c_max_offset = 2047;
    int16_t c_offset_range = 4096;

    /* Note that offset has 10.2 format */
    range_offset_register = Read_Word(REG_ALGO_PART_TO_PART_RANGE_OFFSET_MM); 

    if (ErrState == VL53L0X_OK) {
        range_offset_register = (range_offset_register & 0x0fff);

        /* Apply 12 bit 2's complement conversion */
        if (range_offset_register > c_max_offset) 
        	{ return (int16_t)(range_offset_register - c_offset_range)  * 250; } 
          else 
            { return (int16_t)range_offset_register * 250;}
    }
    else return 0; 
}

void VL53L0X::Set_Offset_Cal_um(int32_t Offset_Cal_um)
{   int32_t c_max_offset_um =  511000;
    int32_t c_min_offset_um = -512000;
    int16_t c_offset_range  =    4096;
    uint32_t encoded_offset_val;

    if (Offset_Cal_um > c_max_offset_um) { Offset_Cal_um = c_max_offset_um; } 
      else
        if (Offset_Cal_um < c_min_offset_um) { Offset_Cal_um = c_min_offset_um; }

    /* The offset register is 10.2 format and units are mm
     * therefore conversion is applied by a division of 250. */
    if (Offset_Cal_um >= 0) { encoded_offset_val = Offset_Cal_um / 250; } 
      else { encoded_offset_val = c_offset_range + Offset_Cal_um / 250; }

    Write_Word(REG_ALGO_PART_TO_PART_RANGE_OFFSET_MM,  encoded_offset_val);
}

void VL53L0X::VL53L0X_Apply_Offset_Cal()
{   int32_t Summed_Offset_Cal_um;

    /* read all NVM info used by the API */
    Get_info_from_device(7);

    /* Read back current device offset, and remember in case later someone wants to use it */
    if (ErrState == VL53L0X_OK) { Last_Offset_Cal_um = Get_Offset_Cal_um(); }

    /* Apply Offset Adjustment derived from 400mm measurements */
    if (ErrState == VL53L0X_OK) 
     {  Summed_Offset_Cal_um = Last_Offset_Cal_um + (int32_t) NVM_Offset_Cal_um;
        Set_Offset_Cal_um(Summed_Offset_Cal_um);
        /* remember current,adjusted offset */
        if (ErrState == VL53L0X_OK) { CurrParams.Offset_Cal_um = Summed_Offset_Cal_um; }
     }
}

void VL53L0X::Get_measure_period_ms(uint32_t *p_measure_period_ms)
{   uint16_t osc_calibrate_val;
    uint32_t im_period_ms;

    osc_calibrate_val = Read_Word(REG_OSC_CALIBRATE_VAL); 

    if (ErrState == VL53L0X_OK)  { im_period_ms = Read_DWord(REG_SYSTEM_MEASURE_PERIOD); }

    if (ErrState == VL53L0X_OK) {
        if (osc_calibrate_val != 0) 
          {*p_measure_period_ms =  im_period_ms / osc_calibrate_val; }
           CurrParams.Measure_Period_ms = *p_measure_period_ms;
    }
}

void VL53L0X::Get_Xtalk_CompRate_MHz( TFP1616 *p_Xtalk_CompRate_MHz)
{   uint16_t value;
    TFP1616 temp_fix1616;

    value = Read_Word(REG_XTALK_COMPENS_RATE_MHz);
    
    if (ErrState == VL53L0X_OK) {
        if (value == 0) {
            /* the Xtalk is disabled return value from memory */
            temp_fix1616 = CurrParams.Xtalk_CompRate_MHz; 
            *p_Xtalk_CompRate_MHz = temp_fix1616;
            CurrParams.XTalk_Compens_En = 0; 
        } else {
            temp_fix1616 = FP313_TO_FP1616(value);
            *p_Xtalk_CompRate_MHz = temp_fix1616;
            CurrParams.Xtalk_CompRate_MHz = temp_fix1616; 
            CurrParams.XTalk_Compens_En = 1; 
        }
    }
}

TFP1616 VL53L0X::Get_limit_chk_val( uint16_t limit_check_id )
{   uint16_t temp16;
    TFP1616 temp_fix1616;

    switch (limit_check_id) {
        case VL53L0X_CHECKEN_SIGMA_FINAL_RANGE:  /* only internal computations: */
        case VL53L0X_CHECKEN_SIG_REF_CLIP: 
        case VL53L0X_CHECKEN_RANGE_IGNORE_THRESHOLD:
            return CurrParams.Limit_Chk_Val[limit_check_id];// need no more 'break';

        case VL53L0X_CHECKEN_SIG_RATE_FINAL_RANGE:
            temp16 = Read_Word(REG_FINAL_RANGE_CONFIG_MIN_COUNT_RATE_RTN_LIMIT); 
            temp_fix1616 = FP97_TO_FP1616(temp16);
            if (temp_fix1616 == 0)  /* disabled: return value from memory instead*/
               { temp_fix1616 = CurrParams.Limit_Chk_Val[limit_check_id];
                 CurrParams.Limit_Chk_En[limit_check_id] = 0;  } 
             else 
                { CurrParams.Limit_Chk_Val[limit_check_id] = temp_fix1616; 
                  CurrParams.Limit_Chk_En[limit_check_id] = 1; }
			return temp_fix1616; // need no more 'break';

        case VL53L0X_CHECKEN_SIG_RATE_MSRC:
        case VL53L0X_CHECKEN_SIG_RATE_PRE_RANGE:
            temp16 = Read_Word(REG_PRE_RANGE_MIN_COUNT_RATE_RTN_LIMIT); 
            return FP97_TO_FP1616(temp16); // need no more break;

        default:
            ErrState = VL53L0X_ERROR_INVALID_PARAMS;
            return 0;
    }
}

uint8_t VL53L0X::Get_limit_chk_en(uint16_t limit_check_id )
{   if (limit_check_id >= VL53L0X_CHECKEN_NUMBER_OF_CHECKS) 
        { ErrState = VL53L0X_ERROR_INVALID_PARAMS;
          return 0; } 
     else { return CurrParams.Limit_Chk_En[limit_check_id]; }
}

uint8_t VL53L0X::Get_Wrap_Around_Chk_En()
{   /* Now using the private state field SequenceConfig instead of reading from device:
	uint8_t SequenceConfig;
    SequenceConfig = Read_Byte(REG_SYSTEM_SEQUENCE_CONFIG);
    Set_SequenceConfig( SequenceConfig ); // checks for ErrState   
    
    if (ErrState == VL53L0X_OK) {    
    */
        CurrParams.Wrap_Around_Chk_En = (SequenceConfig >> 7) & 0x01;
        return CurrParams.Wrap_Around_Chk_En;
    // } else return 0;
}

VL53L0X_Sequence_Steps_t VL53L0X::Get_sequence_step_enables()
{  	VL53L0X_Sequence_Steps_t p_sequence_steps;
    /* Now using the private state field SequenceConfig instead of reading from device:
	uint8_t SequenceConfig;

    SequenceConfig = Read_Byte(REG_SYSTEM_SEQUENCE_CONFIG);
	
    if (ErrState == VL53L0X_OK) {
    */
        p_sequence_steps.TccOn        = (SequenceConfig & 0x10) >> 4;
        p_sequence_steps.DssOn        = (SequenceConfig & 0x08) >> 3;
        p_sequence_steps.MsrcOn       = (SequenceConfig & 0x04) >> 2;
        p_sequence_steps.PreRangeOn   = (SequenceConfig & 0x40) >> 6;
        p_sequence_steps.FinalRangeOn = (SequenceConfig & 0x80) >> 7;
    // }
	return p_sequence_steps;
}

void VL53L0X::Set_vcsel_PPeriod(VL53L0X_Range_Phase Vcsel_Range_Phase, uint8_t vcsel_PPeriod_pclk)
{   uint8_t vcsel_period_reg;
    uint8_t min_pre_vcsel_period_pclk = 12;
    uint8_t max_pre_vcsel_period_pclk = 18;
    uint8_t min_final_vcsel_period_pclk = 8;
    uint8_t max_final_vcsel_period_pclk = 14;
    uint32_t final_range_timeout_us;
    uint32_t pre_range_timeout_us;
    uint32_t msrc_timeout_us;
    uint8_t phase_cal_int = 0;

    /* Check if valid clock period requested */
	if ( ((vcsel_PPeriod_pclk % 2) != 0 ) /* Value must be an even number */
		||
       ( Vcsel_Range_Phase == VL53L0X_VCSEL_PRE_RANGE &&
        ((vcsel_PPeriod_pclk < min_pre_vcsel_period_pclk)||
         (vcsel_PPeriod_pclk > max_pre_vcsel_period_pclk)  ) ) 
		||
       ( Vcsel_Range_Phase == VL53L0X_VCSEL_FINAL_RANGE &&
        (vcsel_PPeriod_pclk < min_final_vcsel_period_pclk ||
         vcsel_PPeriod_pclk > max_final_vcsel_period_pclk) )  )
       { ErrState = VL53L0X_ERROR_INVALID_PARAMS; 
         return;}

    /* Apply specific settings for the requested clock period */
    if (Vcsel_Range_Phase == VL53L0X_VCSEL_PRE_RANGE) {
        /* Set phase check limits for pre-ranging*/
        if (vcsel_PPeriod_pclk == 12) {
            Write_Byte(REG_PRE_RANGE_CONFIG_VALID_PHASE_HIGH,0x18);
            Write_Byte(REG_PRE_RANGE_CONFIG_VALID_PHASE_LOW ,0x08);
        } else if (vcsel_PPeriod_pclk == 14) {
            Write_Byte(REG_PRE_RANGE_CONFIG_VALID_PHASE_HIGH,0x30);
            Write_Byte(REG_PRE_RANGE_CONFIG_VALID_PHASE_LOW ,0x08);
        } else if (vcsel_PPeriod_pclk == 16) {
            Write_Byte(REG_PRE_RANGE_CONFIG_VALID_PHASE_HIGH,0x40);
            Write_Byte(REG_PRE_RANGE_CONFIG_VALID_PHASE_LOW ,0x08);
        } else if (vcsel_PPeriod_pclk == 18) {
            Write_Byte(REG_PRE_RANGE_CONFIG_VALID_PHASE_HIGH,0x50);
            Write_Byte(REG_PRE_RANGE_CONFIG_VALID_PHASE_LOW ,0x08);
        }
    } else if (Vcsel_Range_Phase == VL53L0X_VCSEL_FINAL_RANGE) {
        if (vcsel_PPeriod_pclk == 8) {
            Write_Byte(REG_FINAL_RANGE_CONFIG_VALID_PHASE_HIGH,0x10);
            Write_Byte(REG_FINAL_RANGE_CONFIG_VALID_PHASE_LOW ,0x08);
            Write_Byte(REG_GLOBAL_CONFIG_VCSEL_WIDTH   ,0x02);
            Write_Byte(REG_ALGO_PHASECAL_CONFIG_TIMEOUT,0x0C);
            Write_Byte(0xff,0x01);
            Write_Byte(REG_ALGO_PHASECAL_LIM,0x30);
            Write_Byte(0xff,0x00);
        } else if (vcsel_PPeriod_pclk == 10) {
            Write_Byte(REG_FINAL_RANGE_CONFIG_VALID_PHASE_HIGH,0x28);
            Write_Byte(REG_FINAL_RANGE_CONFIG_VALID_PHASE_LOW,0x08);
            Write_Byte(REG_GLOBAL_CONFIG_VCSEL_WIDTH,0x03);
            Write_Byte(REG_ALGO_PHASECAL_CONFIG_TIMEOUT,0x09);
            Write_Byte(0xff,0x01);
            Write_Byte(REG_ALGO_PHASECAL_LIM,0x20);
            Write_Byte(0xff,0x00);
        } else if (vcsel_PPeriod_pclk == 12) {
            Write_Byte(REG_FINAL_RANGE_CONFIG_VALID_PHASE_HIGH,0x38);
            Write_Byte(REG_FINAL_RANGE_CONFIG_VALID_PHASE_LOW,0x08);
            Write_Byte(REG_GLOBAL_CONFIG_VCSEL_WIDTH,0x03);
            Write_Byte(REG_ALGO_PHASECAL_CONFIG_TIMEOUT,0x08);
            Write_Byte(0xff,0x01);
            Write_Byte(REG_ALGO_PHASECAL_LIM,0x20);
            Write_Byte(0xff,0x00);
        } else if (vcsel_PPeriod_pclk == 14) {
            Write_Byte(REG_FINAL_RANGE_CONFIG_VALID_PHASE_HIGH,0x048);
            Write_Byte(REG_FINAL_RANGE_CONFIG_VALID_PHASE_LOW,0x08);
            Write_Byte(REG_GLOBAL_CONFIG_VCSEL_WIDTH,0x03);
            Write_Byte(REG_ALGO_PHASECAL_CONFIG_TIMEOUT,0x07);
            Write_Byte(0xff,0x01);
            Write_Byte(REG_ALGO_PHASECAL_LIM, 0x20);
            Write_Byte(0xff,0x00);
        }
    }

    /* Re-calculate and apply timeouts,in macro periods */
    if (ErrState == VL53L0X_OK) {
        /* Converts the encoded VCSEL period register value into the real period in PLL clocks */
        /* Flattened from procedure called Encode_vcsel_period */
        vcsel_period_reg = (vcsel_PPeriod_pclk >> 1) - 1;
        
        /* When the VCSEL period for the pre or final range is changed,
        * the corresponding timeout must be read from the device using
        * the current VCSEL period,then the new VCSEL period can be
        * applied. The timeout then must be written back to the device
        * using the new VCSEL period.
        * For the MSRC timeout,the same applies - this timeout being
        * dependant on the pre-range vcsel period.
        */
        switch (Vcsel_Range_Phase) {
          case VL53L0X_VCSEL_PRE_RANGE:
            Get_Sequence_Step_Timeout(VL53L0X_SEQUENCESTEP_PRE_RANGE,&pre_range_timeout_us);

            if (ErrState == VL53L0X_OK)
                Get_Sequence_Step_Timeout(VL53L0X_SEQUENCESTEP_MSRC,&msrc_timeout_us);

            Write_Byte(REG_PRE_RANGE_CONFIG_VCSEL_PERIOD,vcsel_period_reg);

            if (ErrState == VL53L0X_OK)
                Set_Sequence_Step_Timeout(VL53L0X_SEQUENCESTEP_PRE_RANGE,pre_range_timeout_us);

            if (ErrState == VL53L0X_OK)
                Set_Sequence_Step_Timeout(VL53L0X_SEQUENCESTEP_MSRC,msrc_timeout_us);

            DevSpecParams.PreRangeVcselPPeriod = vcsel_PPeriod_pclk;
            break;
            
          case VL53L0X_VCSEL_FINAL_RANGE:
            Get_Sequence_Step_Timeout(VL53L0X_SEQUENCESTEP_FINAL_RANGE,&final_range_timeout_us);

            Write_Byte(REG_FINAL_RANGE_CONFIG_VCSEL_PERIOD,vcsel_period_reg);

            if (ErrState == VL53L0X_OK)
                Set_Sequence_Step_Timeout(VL53L0X_SEQUENCESTEP_FINAL_RANGE,final_range_timeout_us);

            DevSpecParams.FinalRangeVcselPPeriod = vcsel_PPeriod_pclk;
            break;
          default: ErrState = VL53L0X_ERROR_INVALID_PARAMS;
        }
    }

    /* Finally,the timing budget is re-applied */
    if (ErrState == VL53L0X_OK) 
      { Set_Measure_Time_Budget_us(CurrParams.Measure_Time_Budget_us); }

    /* Perform the phase calibration. This is needed after changing on  vcsel period.
     * get_data_enable = 0,restore_config = 1 */
     Perf_phase_calibration(&phase_cal_int,0,1);
}

#define VL53L0X_MACRO_PERIOD_NS 3813; // = ( VL53L0X_PLL_PERIOD_PS * VL53L0X_MACRO_PERIOD_VCLKS / 1000 )

/* To convert register value into us */
uint32_t VL53L0X::Calc_timeout_us(uint16_t timeout_period_mclks,
        uint8_t vcsel_period_pclks)
{
    uint32_t macro_period_ns;
    uint32_t actual_timeout_period_us = 0;

    macro_period_ns = (uint32_t) (vcsel_period_pclks ) *  VL53L0X_MACRO_PERIOD_NS;

    actual_timeout_period_us = ((timeout_period_mclks * macro_period_ns) + 500) / 1000;

    return actual_timeout_period_us;
}

void VL53L0X::Get_Sequence_Step_Timeout(VL53L0X_SequenceStepId sequence_step_id,
        uint32_t *p_time_out_micro_secs)
{   uint8_t current_vcsel_PPeriod_p_clk;
    uint8_t encoded_time_out_byte = 0;
    uint32_t timeout_us = 0;
    uint16_t pre_range_encoded_time_out = 0;
    uint16_t msrc_time_out_m_clks;
    uint16_t pre_range_time_out_m_clks;
    uint16_t final_range_time_out_m_clks = 0;
    uint16_t final_range_encoded_time_out;
    VL53L0X_Sequence_Steps_t sequence_steps;

    if ((sequence_step_id == VL53L0X_SEQUENCESTEP_TCC ) ||
        (sequence_step_id == VL53L0X_SEQUENCESTEP_DSS ) ||
        (sequence_step_id == VL53L0X_SEQUENCESTEP_MSRC)   ) {

        current_vcsel_PPeriod_p_clk = /*  Gets and converts the VCSEL period register into actual clock periods */
				( Read_Byte(REG_PRE_RANGE_CONFIG_VCSEL_PERIOD) + 1) << 1;

        if (ErrState == VL53L0X_OK) {
            encoded_time_out_byte = Read_Byte(REG_MSRC_CONFIG_TIMEOUT_MACROP); 
        }
        msrc_time_out_m_clks = Decode_timeout(encoded_time_out_byte);

        timeout_us = Calc_timeout_us(msrc_time_out_m_clks,
                                current_vcsel_PPeriod_p_clk);
    } else if (sequence_step_id == VL53L0X_SEQUENCESTEP_PRE_RANGE) {

        current_vcsel_PPeriod_p_clk = /*  Gets and converts the VCSEL period register into actual clock periods */
				( Read_Byte(REG_PRE_RANGE_CONFIG_VCSEL_PERIOD) + 1) << 1;

        /* Retrieve PRE-RANGE Timeout in Macro periods (MCLKS) */
        if (ErrState == VL53L0X_OK) {

            pre_range_encoded_time_out = Read_Word(REG_PRE_RANGE_CONFIG_TIMEOUT_MACROP_HI); 

            pre_range_time_out_m_clks = Decode_timeout(pre_range_encoded_time_out);

            timeout_us = Calc_timeout_us(pre_range_time_out_m_clks,
                                    current_vcsel_PPeriod_p_clk);
        }
    } else if (sequence_step_id == VL53L0X_SEQUENCESTEP_FINAL_RANGE) {

        sequence_steps = Get_sequence_step_enables();
        pre_range_time_out_m_clks = 0;

        if (sequence_steps.PreRangeOn) {
        	current_vcsel_PPeriod_p_clk = /*  Gets and converts the VCSEL period register into actual clock periods */
				( Read_Byte(REG_PRE_RANGE_CONFIG_VCSEL_PERIOD) + 1) << 1;

            /* Retrieve PRE-RANGE Timeout in Macro periods (MCLKS) */
            if (ErrState == VL53L0X_OK) {
                pre_range_encoded_time_out = Read_Word(REG_PRE_RANGE_CONFIG_TIMEOUT_MACROP_HI); 
                pre_range_time_out_m_clks = Decode_timeout(pre_range_encoded_time_out);
            }
        }

        if (ErrState == VL53L0X_OK) {
        	current_vcsel_PPeriod_p_clk =  /*  Get and converts the VCSEL period register into actual clock periods */
				( Read_Byte(REG_FINAL_RANGE_CONFIG_VCSEL_PERIOD) + 1) << 1; 

        }

        /* Retrieve FINAL-RANGE Timeout in Macro periods (MCLKS) */
        if (ErrState == VL53L0X_OK) {
            final_range_encoded_time_out = Read_Word(REG_FINAL_RANGE_CONFIG_TIMEOUT_MACROP_HI); 
            final_range_time_out_m_clks = Decode_timeout(final_range_encoded_time_out);
        }

        final_range_time_out_m_clks -= pre_range_time_out_m_clks;
        timeout_us = Calc_timeout_us(final_range_time_out_m_clks,current_vcsel_PPeriod_p_clk);
    }

    *p_time_out_micro_secs = timeout_us;
}

uint32_t VL53L0X::Get_Measure_Time_Budget_us()
{   VL53L0X_Sequence_Steps_t sequence_steps;
    uint32_t p_Measure_Time_Budget_us;
    uint32_t final_range_timeout_us;
    uint32_t msrc_dcc_tcc_timeout_us= 2000;
    uint32_t start_overhead_us		= 1910;
    uint32_t end_overhead_us		= 960;
    uint32_t msrc_overhead_us		= 660;
    uint32_t tcc_overhead_us		= 590;
    uint32_t dss_overhead_us		= 690;
    uint32_t pre_range_overhead_us	= 660;
    uint32_t final_range_overhead_us= 550;
    uint32_t pre_range_timeout_us	= 0;

    if (ErrState != VL53L0X_OK)  {return 0; } // do nothing while in Error State!!!!

    /* Start and end overhead times always present */
    p_Measure_Time_Budget_us = start_overhead_us + end_overhead_us;

    sequence_steps = Get_sequence_step_enables();

    if (sequence_steps.TccOn  || sequence_steps.MsrcOn || sequence_steps.DssOn) 
      { Get_Sequence_Step_Timeout(VL53L0X_SEQUENCESTEP_MSRC, &msrc_dcc_tcc_timeout_us);

        if (ErrState == VL53L0X_OK) {
            if (sequence_steps.TccOn)
                { p_Measure_Time_Budget_us += msrc_dcc_tcc_timeout_us + tcc_overhead_us; }

            if (sequence_steps.DssOn) {
                p_Measure_Time_Budget_us += 2 * (msrc_dcc_tcc_timeout_us + dss_overhead_us);
            } else if (sequence_steps.MsrcOn) {
                p_Measure_Time_Budget_us +=  msrc_dcc_tcc_timeout_us + msrc_overhead_us;
            }
        }
    }

    if ( (ErrState == VL53L0X_OK) && sequence_steps.PreRangeOn) {
            Get_Sequence_Step_Timeout(VL53L0X_SEQUENCESTEP_PRE_RANGE, &pre_range_timeout_us);
            p_Measure_Time_Budget_us += pre_range_timeout_us + pre_range_overhead_us;
    	}

    if (ErrState == VL53L0X_OK) {
        if (sequence_steps.FinalRangeOn) {
            Get_Sequence_Step_Timeout(VL53L0X_SEQUENCESTEP_FINAL_RANGE, &final_range_timeout_us);
            p_Measure_Time_Budget_us += (final_range_timeout_us + final_range_overhead_us);
        }
    }

    if (ErrState == VL53L0X_OK) 
       { CurrParams.Measure_Time_Budget_us = p_Measure_Time_Budget_us;  }

	return p_Measure_Time_Budget_us;
}

VL53L0X_DeviceParams_t VL53L0X::Get_device_parameters()
{   VL53L0X_DeviceParams_t device_params  = {0};
	int i;

    if (ErrState != VL53L0X_OK)  {return device_params; } // do nothing while in Error State!!!!

    device_params.DeviceMode = CurrParams.DeviceMode;
	device_params.XTalk_Compens_En = 0; 
    device_params.Offset_Cal_um = Get_Offset_Cal_um();
	
    Get_measure_period_ms(&(device_params.Measure_Period_ms));

    if (ErrState == VL53L0X_OK)
        Get_Xtalk_CompRate_MHz(&(device_params.Xtalk_CompRate_MHz));

    if (ErrState == VL53L0X_OK) {
        for (i = 0; i < VL53L0X_CHECKEN_NUMBER_OF_CHECKS; i++) 
          {/* get first the values,then the enables.  GetLimitCheckValue will 
           modify the enable flags  */
        	if (ErrState == VL53L0X_OK) 
        	  { device_params.Limit_Chk_Val[i] = Get_limit_chk_val(i); } 
        	  else { break; }
            if (ErrState == VL53L0X_OK) 
              { device_params.Limit_Chk_En[i]= Get_limit_chk_en(i);} 
              else { break; }
        }
    }

    if (ErrState == VL53L0X_OK) {
        device_params.Wrap_Around_Chk_En = Get_Wrap_Around_Chk_En();}

    /* Need to be done at the end as it uses VCSELPPeriod */
    if (ErrState == VL53L0X_OK) {
        device_params.Measure_Time_Budget_us = Get_Measure_Time_Budget_us();  }

	return device_params;
}

void VL53L0X::Set_limit_chk_val(uint16_t limit_check_id, TFP1616 limit_chk_val)
{  /* first verify that the ID is within bounds .. */
	if (limit_check_id>=VL53L0X_CHECKEN_NUMBER_OF_CHECKS)
		{  ErrState = VL53L0X_ERROR_INVALID_PARAMS;  return; }

	/*  Under all other circumstances store value in local array:  */
	CurrParams.Limit_Chk_Val[limit_check_id] = limit_chk_val;
	
	/* in addition, if enabled, then write the external ones also to the Registers  */
    if (CurrParams.Limit_Chk_En[ limit_check_id ])  
        switch (limit_check_id) {
            case VL53L0X_CHECKEN_SIG_RATE_FINAL_RANGE:
                Write_Word(REG_FINAL_RANGE_CONFIG_MIN_COUNT_RATE_RTN_LIMIT,
                                            FP1616_TO_FP97(limit_chk_val));
                break;
            case VL53L0X_CHECKEN_SIG_RATE_MSRC:
            case VL53L0X_CHECKEN_SIG_RATE_PRE_RANGE:
                Write_Word(REG_PRE_RANGE_MIN_COUNT_RATE_RTN_LIMIT, 
                                              FP1616_TO_FP97(limit_chk_val));
                break;
    	} // switch
}




void VL53L0X::Get_interrupt_mask_status(uint32_t *p_interrupt_mask_status)
{   uint8_t intStat;

    intStat = Read_Byte(REG_RESULT_INTERRUPT_STATUS); 
    *p_interrupt_mask_status = intStat & 0x07;
    if (intStat & 0x18) { ErrState =  VL53L0X_ERROR_RANGE_ERROR;  }
}

uint8_t VL53L0X::Get_Measurement_Ready()
{   uint8_t sys_range_status_register;
    uint32_t interrupt_mask;

    if (DevSpecParams.GpioFunctionality == REG_SYSINT_GPIO_NEW_SAMPLE_READY) 
	  { Get_interrupt_mask_status(&interrupt_mask);
        if (interrupt_mask ==  REG_SYSINT_GPIO_NEW_SAMPLE_READY) 
		   { return 1; } else { return 0; }
      } 
	  else 
	  { sys_range_status_register = Read_Byte(REG_RESULT_RANGE_STATUS); 
        if ( ( ErrState == VL53L0X_OK ) & (sys_range_status_register & 0x01) )
			{ return 1; } else { return 0; }
      }
}

void VL53L0X::Polling_delay()
{
   // do nothing VL53L0X_OsDelay();
}

void VL53L0X::Poll_Measure_Completion()
{   uint8_t new_data_ready;
    uint32_t loop_nb = 0;
    
    if (ErrState != VL53L0X_OK) { return; } // Do nothing if not Cleared error

    new_data_ready = Get_Measurement_Ready();

    while ((ErrState==0) && (new_data_ready != 1) )
      { Polling_delay();
        new_data_ready = Get_Measurement_Ready();
		if (loop_nb++ >= VL53L0X_DEFAULT_MAX_LOOP) ErrState=VL53L0X_ERROR_TIME_OUT;
      } // while ;
}

/* Group Device Interrupt Functions */
void VL53L0X::Clear_interrupt_mask(uint32_t interrupt_mask)
{   uint8_t loop_count = 0;
    uint8_t byte;

    if (ErrState != VL53L0X_OK) { return; } // Do nothing if not Cleared error

    /* clear bit 0 range interrupt,bit 1 error interrupt */
    do {
        Write_Byte(REG_SYSINT_CLEAR,0x01);
        Write_Byte(REG_SYSINT_CLEAR,0x00);
        byte = Read_Byte(REG_RESULT_INTERRUPT_STATUS); 
        if (loop_count++ > 3) {ErrState =VL53L0X_ERROR_INTERRUPT_NOT_CLEARED;}
        } while (((byte & 0x07) != 0x00)  && (ErrState == VL53L0X_OK));    

}

void VL53L0X::Perf_single_Ref_calibration(uint8_t vhv_init_byte)
{   if (ErrState != VL53L0X_OK)  {return; } // no activity while in Error State!!!!
    Write_Byte(REG_SYSRANGE_START, REG_SYSRANGE_MODE_START_STOP | vhv_init_byte);
    Poll_Measure_Completion();
    Clear_interrupt_mask(0);
    Write_Byte(REG_SYSRANGE_START,0x00);
}

void VL53L0X::Ref_calibration_io(uint8_t read_not_write,
        uint8_t vhv_settings,uint8_t phase_cal,
        uint8_t *p_vhv_settings,uint8_t *p_phase_cal,
        const uint8_t vhv_enable,const uint8_t phase_enable)
{   uint8_t phase_calint = 0;

    /* Read VHV from device */
    Write_Byte(0xFF,0x01);
    Write_Byte(0x00,0x00);
    Write_Byte(0xFF,0x00);

    if (read_not_write) {
        if (vhv_enable  ) { *p_vhv_settings = Read_Byte(0xCB); }
        if (phase_enable) { phase_calint = Read_Byte(0xEE); }
      } 
      else {
        if (vhv_enable  ) { Write_Byte(0xCB,vhv_settings); }
        if (phase_enable) { Register_BitMask(0xEE,0x80,phase_cal); }
      }

    Write_Byte(0xFF,0x01);
    Write_Byte(0x00,0x01);
    Write_Byte(0xFF,0x00);

    *p_phase_cal = (uint8_t)(phase_calint & 0xEF);
}

void VL53L0X::Perf_vhv_calibration(uint8_t *p_vhv_settings,
        const uint8_t get_data_enable,   const uint8_t restore_config)
{   uint8_t orig_sequence_config = 0;
    uint8_t vhv_settings = 0;
    uint8_t phase_cal = 0;
    uint8_t phase_cal_int = 0;

    /* store the value of the sequence config,
     * this will be reset before the end of the function  */
    orig_sequence_config = SequenceConfig;

    /* Run VHV */
    Set_SequenceConfig( 0x01 );
    Perf_single_Ref_calibration(0x40);

    /* Read VHV from device */
    if ((ErrState == VL53L0X_OK) && (get_data_enable == 1)) 
        { Ref_calibration_io(1,vhv_settings,phase_cal,/* Not used here */
                            p_vhv_settings,&phase_cal_int, 1,0); }
      else { *p_vhv_settings = 0; }

    if (restore_config) { /* restore the previous Sequence Config */
    	Set_SequenceConfig( orig_sequence_config ); } // checks for ErrState
}

void VL53L0X::Perf_phase_calibration(uint8_t *p_phase_cal,const uint8_t get_data_enable,
        const uint8_t restore_config)
{   uint8_t orig_sequence_config;
    uint8_t vhv_settings = 0;
    uint8_t phase_cal = 0;
    uint8_t vhv_settingsint;

    if (ErrState != VL53L0X_OK) { return; } // Do nothing if not Cleared error
    
    /* store the value of the sequence config, this will be reset before the end of the function  */
    orig_sequence_config = SequenceConfig;

    /* Run PhaseCal: */ 
    Set_SequenceConfig( 0x02 ); // sets REG_SYSTEM_SEQUENCE_CONFIG
    Perf_single_Ref_calibration(0x0);

    /* Read PhaseCal from device */
    if ((ErrState == VL53L0X_OK) && (get_data_enable == 1)) 
       { Ref_calibration_io(1,vhv_settings,phase_cal,/* Not used here */
                            &vhv_settingsint,p_phase_cal,  0,1); }
       else {  *p_phase_cal = 0; }

    if (restore_config) { /* restore the previous Sequence Config */
        Set_SequenceConfig( orig_sequence_config ); }
}

void VL53L0X::Perf_Ref_calibration(uint8_t *p_vhv_settings,
                               uint8_t *p_phase_cal,  uint8_t get_data_enable)
{   uint8_t orig_sequence_config;

    /* store the value of the sequence config,
     * this will be reset before the end of the function */
    orig_sequence_config =  SequenceConfig;

    /* In the following function we don't save the config to optimize
     * writes on device. Config is saved and restored only once. */
    Perf_vhv_calibration(p_vhv_settings,get_data_enable,0);
    Perf_phase_calibration(p_phase_cal,get_data_enable,0);

    /* restore the previous Sequence Config */
    Set_SequenceConfig( orig_sequence_config ); // sets REG_SYSTEM_SEQUENCE_CONFIG
}

void VL53L0X::Get_Next_Good_SPAD(uint8_t good_SPAD_array[],uint32_t size,
                                 uint32_t curr,int32_t *p_next)
{   uint32_t start_index;
    uint32_t fine_offset;
    uint32_t c_SPADS_per_byte = 8;
    uint32_t coarse_index;
    uint32_t fine_index;
    uint8_t data_byte;
    uint8_t success = 0;

    /* Starting with the current good SPAD,loop through the array to find
     * the next. i.e. the next bit set in the sequence.
     * The coarse index is the byte index of the array and the fine index is
     * the index of the bit within each byte.  */
    *p_next = -1;

    start_index = curr / c_SPADS_per_byte;
    fine_offset = curr % c_SPADS_per_byte;

    for (coarse_index = start_index; ((coarse_index < size) && !success);
            coarse_index++) {
        fine_index = 0;
        data_byte = good_SPAD_array[coarse_index];

        if (coarse_index == start_index) {
            /* locate the bit position of the provided current
             * SPAD bit before iterating */
            data_byte >>= fine_offset;
            fine_index = fine_offset;
        }

        while (fine_index < c_SPADS_per_byte) {
            if ((data_byte & 0x1) == 1) {
                success = 1;
                *p_next = coarse_index * c_SPADS_per_byte + fine_index;
                break;
            }
            data_byte >>= 1;
            fine_index++;
        }
    }
}

void VL53L0X::Enable_SPAD_bit(uint8_t SPAD_array[],uint32_t size,uint32_t SPAD_index)
{   uint32_t c_SPADS_per_byte = 8;
    uint32_t coarse_index;
    uint32_t fine_index;

    coarse_index = SPAD_index / c_SPADS_per_byte;
    fine_index = SPAD_index % c_SPADS_per_byte;
    if (coarse_index >= size) { ErrState = VL53L0X_ERROR_REF_SPAD_INIT; }
       else { SPAD_array[coarse_index] |= (1 << fine_index); }
}

void VL53L0X::Enable_Ref_SPADS( uint8_t aperture_SPADS, uint8_t good_SPAD_array[], 
        uint8_t SPAD_array[],  uint32_t size, uint32_t start, uint32_t offset,
        uint32_t SPAD_count,  uint32_t *p_last_SPAD )
{   uint32_t index;
    uint32_t i;
    int32_t  next_good_SPAD = offset;
    uint32_t current_SPAD;
    uint8_t  check_SPAD_array[6];

    /* This function takes in a SPAD array which may or may not have SPADS
     * already enabled and appends from a given offset a requested number
     * of new SPAD enables. The 'good SPAD map' is applied to
     * determine the next SPADS to enable.
     *
     * This function applies to only aperture or only non-aperture SPADS.
     * Checks are performed to ensure this.
     */

    current_SPAD = offset;
    for (index = 0; index < SPAD_count; index++) {
        Get_Next_Good_SPAD(good_SPAD_array,size,current_SPAD, &next_good_SPAD);

        if (next_good_SPAD == -1) 
          {  ErrState = VL53L0X_ERROR_REF_SPAD_INIT;
            break;  }
       

        /* Confirm that the next good SPAD is non-aperture */
        if (Is_ApertureSPAD(start + next_good_SPAD) != aperture_SPADS) {
            /* if we can't get the required number of good aperture
             * SPADS from the current quadrant then this is an error */
            ErrState = VL53L0X_ERROR_REF_SPAD_INIT;
            break;}
            
        current_SPAD = (uint32_t)next_good_SPAD;
        Enable_SPAD_bit(SPAD_array,size,current_SPAD);
        current_SPAD++;
    }
    *p_last_SPAD = current_SPAD;

    if (ErrState == VL53L0X_OK) 
      { I2c_Write(REG_GLOBAL_CONFIG_SPAD_ENABLES_REF_0, SPAD_array,6); } // set_Ref_SPAD_map()

    if (ErrState == VL53L0X_OK) {
        // Get the ref_SPAD_map from the device
		I2c_Read(REG_GLOBAL_CONFIG_SPAD_ENABLES_REF_0,check_SPAD_array,6);

        /* Compare SPAD maps. If not equal report error. */
        i = 0;
        while (i < size) {
            if (SPAD_array[i] != check_SPAD_array[i]) {
                ErrState = VL53L0X_ERROR_REF_SPAD_INIT;
                break;
            }
            i++;
        }
    }
}

void VL53L0X::Set_device_mode(VL53L0X_DeviceModes device_mode)
{  	if (ErrState != VL53L0X_OK)  {return; } // no reaction while in Error State!!!!

    switch (device_mode) {
        case VL53L0X_DEVICEMODE_SINGLE_RANGING:
        case VL53L0X_DEVICEMODE_CONTINUOUS_RANGING:
        case VL53L0X_DEVICEMODE_CONTINUOUS_TIMED_RANGING:
        case VL53L0X_DEVICEMODE_GPIO_DRIVE:
        case VL53L0X_DEVICEMODE_GPIO_OSC: /* Supported modes */
            CurrParams.DeviceMode = device_mode; 
            break;
        default:  /* Unsupported mode */
            ErrState = VL53L0X_ERROR_MODE_NOT_SUPPORTED;
    }
}

void VL53L0X::Set_interrupt_thresholds(VL53L0X_DeviceModes device_mode,TFP1616 threshold_low,
        TFP1616 threshold_high)
{	uint16_t threshold16;

    /* no dependency on DeviceMode for FlightSense */
    /* Need to divide by 2 because the FW will apply a x2 */
    threshold16 = (uint16_t)((threshold_low >> 17) & 0x00fff);
    Write_Word(REG_SYSTEM_THRESH_LOW,threshold16);

	/* Need to divide by 2 because the FW will apply a x2 */
	threshold16 = (uint16_t)((threshold_high >> 17) & 0x00fff);
	Write_Word(REG_SYSTEM_THRESH_HIGH,threshold16);
}

void VL53L0X::Get_interrupt_thresholds(VL53L0X_DeviceModes device_mode,TFP1616 *p_threshold_low,
        TFP1616 *p_threshold_high)
{   uint16_t threshold16;

    /* no dependency on DeviceMode for FlightSense */
    threshold16 = Read_Word(REG_SYSTEM_THRESH_LOW); 
    /* Need to multiply by 2 because the FW will apply a x2 */
    *p_threshold_low = (TFP1616)((0x00fff & threshold16) << 17);

    if (ErrState == VL53L0X_OK) {
        threshold16 = Read_Word(REG_SYSTEM_THRESH_HIGH); 
        /* Need to multiply by 2 because the FW will apply a x2 */
        *p_threshold_high =  (TFP1616)((0x00fff & threshold16) << 17);
    }
}

void VL53L0X::Load_tuning_settings(uint8_t *p_tuning_setting_buffer)
{   int i;
    int index;
    uint8_t msb;
    uint8_t lsb;
    uint8_t select_param;
    uint8_t number_of_writes;
    uint8_t address;
    uint8_t local_buffer[4]; /* max */
    uint16_t temp16;

    index = 0;

    while ((*(p_tuning_setting_buffer + index) != 0) &&
            (ErrState == VL53L0X_OK)) {
        number_of_writes = *(p_tuning_setting_buffer + index);
        index++;
        if (number_of_writes == 0xFF) {
            /* internal parameters */
            select_param = *(p_tuning_setting_buffer + index);
            index++;
            switch (select_param) {
                case 0: /* uint16_t SigmaEstRefArray -> 2 bytes */
                    msb = *(p_tuning_setting_buffer + index);
                    index++;
                    lsb = *(p_tuning_setting_buffer + index);
                    index++;
                    temp16 = VL53L0X_MAKEUINT16(lsb,msb);
                    SigmaEstRefArray = temp16; 
                    break;
                case 1: /* uint16_t SigmaEstEffPulseWidth -> 2 bytes */
                    msb = *(p_tuning_setting_buffer + index);
                    index++;
                    lsb = *(p_tuning_setting_buffer + index);
                    index++;
                    temp16 = VL53L0X_MAKEUINT16(lsb,msb);
                    SigmaEstEffPulseWidth = temp16; 
                    break;
                case 2: /* uint16_t SigmaEstEffAmbWidth -> 2 bytes */
                    msb = *(p_tuning_setting_buffer + index);
                    index++;
                    lsb = *(p_tuning_setting_buffer + index);
                    index++;
                    temp16 = VL53L0X_MAKEUINT16(lsb,msb);
                    SigmaEstEffAmbWidth = temp16; 
                    break;
                case 3: /* uint16_t targetRefRate -> 2 bytes */
                    msb = *(p_tuning_setting_buffer + index);
                    index++;
                    lsb = *(p_tuning_setting_buffer + index);
                    index++;
                    temp16 = VL53L0X_MAKEUINT16(lsb,msb);
                    targetRefRate = temp16; 
                    break;
                default: /* invalid parameter */
                    ErrState = VL53L0X_ERROR_INVALID_PARAMS;
            }
        } else if (number_of_writes <= 4) {
            address = *(p_tuning_setting_buffer + index);
            index++;
            for (i = 0; i < number_of_writes; i++) {
                local_buffer[i] = *(p_tuning_setting_buffer + index);
                index++;
            }
            I2c_Write(address,local_buffer,number_of_writes);
        } else {
            ErrState = VL53L0X_ERROR_INVALID_PARAMS;
        }
    }
}

void VL53L0X::Check_and_load_interrupt_settings(uint8_t start_not_stopflag)
{   uint8_t interrupt_config;
    TFP1616 threshold_low;
    TFP1616 threshold_high;
    
    if (ErrState != VL53L0X_OK) { return; } // Do nothing if not Cleared error

    interrupt_config = DevSpecParams.GpioFunctionality; 

    if ((interrupt_config == GPIO_FUNC_THRESHOLD_CROSSED_LOW ) ||
        (interrupt_config == GPIO_FUNC_THRESHOLD_CROSSED_HIGH) ||
        (interrupt_config == GPIO_FUNC_THRESHOLD_CROSSED_OUT )) {
        Get_interrupt_thresholds(VL53L0X_DEVICEMODE_CONTINUOUS_RANGING,
                 &threshold_low,&threshold_high);

        if (((threshold_low > 255 * 65536) || (threshold_high > 255 * 65536)) &&
            (ErrState == VL53L0X_OK)) 
          { if (start_not_stopflag != 0) 
               {Load_tuning_settings(InterruptThresholdSettings); } 
             else 
               {Write_Byte(0xFF,0x04);
                Write_Byte(0x70,0x00);
                Write_Byte(0xFF,0x00);
                Write_Byte(0x80,0x00);
              }
        }
    }
}

void VL53L0X::Start_Measurement()
{   VL53L0X_DeviceModes device_mode;
    uint8_t byte;
    uint8_t start_stop_byte = REG_SYSRANGE_MODE_START_STOP;
    uint32_t loop_nb;

	if (ErrState != VL53L0X_OK)  {return; } // no activity while in Error State!!!!

    /* Get Current DeviceMode */
    device_mode = CurrParams.DeviceMode;

    Write_Byte(0x80,0x01);
    Write_Byte(0xFF,0x01);
    Write_Byte(0x00,0x00);
    Write_Byte(0x91,StopVariable);
    Write_Byte(0x00,0x01);
    Write_Byte(0xFF,0x00);
    Write_Byte(0x80,0x00);

    switch (device_mode) {
        case VL53L0X_DEVICEMODE_SINGLE_RANGING:
            Write_Byte(REG_SYSRANGE_START,0x01);

            byte = start_stop_byte;
            if (ErrState == VL53L0X_OK) {
                /* Wait until start bit has been cleared */
                loop_nb = 0;
                do {
                    if (loop_nb > 0)
                        byte = Read_Byte(REG_SYSRANGE_START); 
                    loop_nb = loop_nb + 1;
                } while (((byte & start_stop_byte) == start_stop_byte)
                         && (ErrState == VL53L0X_OK)
                         && (loop_nb < VL53L0X_DEFAULT_MAX_LOOP));

                if (loop_nb >= VL53L0X_DEFAULT_MAX_LOOP) {
                    ErrState = VL53L0X_ERROR_TIME_OUT;
                }
            }
            break;
            
        case VL53L0X_DEVICEMODE_CONTINUOUS_RANGING:
            /* Back-to-back mode, Check if need to apply interrupt settings */
            Check_and_load_interrupt_settings(1);
            Write_Byte(REG_SYSRANGE_START,REG_SYSRANGE_MODE_BACKTOBACK);
            Set_Current_State( VL53L0X_STATE_RUNNING );
            break;
        case VL53L0X_DEVICEMODE_CONTINUOUS_TIMED_RANGING:
            /* Continuous mode; Check if need to apply interrupt settings */
            Check_and_load_interrupt_settings(1);
            Write_Byte(REG_SYSRANGE_START, REG_SYSRANGE_MODE_TIMED);
            Set_Current_State( VL53L0X_STATE_RUNNING ); 
            break;
        default:
            /* Selected mode not supported */
            ErrState = VL53L0X_ERROR_MODE_NOT_SUPPORTED;
    }
}

/* Group Device Measurement Functions */
void VL53L0X::Perf_single_measurement()
{   VL53L0X_DeviceModes device_mode;

	if (ErrState != VL53L0X_OK)  {return; } // no activity while in Error State!!!!

    /* Get Current DeviceMode */
    device_mode = CurrParams.DeviceMode;

    /* Start immediately to run a single ranging measurement in case of
     * single ranging or single histogram */
    if (device_mode == VL53L0X_DEVICEMODE_SINGLE_RANGING) {Start_Measurement();}

    Poll_Measure_Completion();

    /* Change Device State in case of single ranging or single histogram */
    if (device_mode == VL53L0X_DEVICEMODE_SINGLE_RANGING) 
       { Set_Current_State( VL53L0X_STATE_IDLE );  }
}

TFP1616 VL53L0X::Get_total_xtalk_rate(TRangeResults *p_ranging_results)
{   TFP1616 total_xtalk_MHz;

    // CurrParams.XTalk_Compens_En was Get_xtalk_compensation_enable
    if ( (ErrState == VL53L0X_OK) & (CurrParams.XTalk_Compens_En ) ) 
      { /* FixPoint1616 * FixPoint 8:8 = FixPoint0824 */
        total_xtalk_MHz = p_ranging_results->EffectiveSPADRtnCount *
            CurrParams.Xtalk_CompRate_MHz;

        /* FixPoint0824 >> 8 = FixPoint1616 */
        return (total_xtalk_MHz + 0x80) >> 8;
      }
      else { return 0; }
}

void VL53L0X::Get_total_SIG_rate(TRangeResults *p_ranging_results,
        TFP1616 *p_total_SIG_rate_mcps)
{   TFP1616 total_xtalk_MHz;

    *p_total_SIG_rate_mcps = p_ranging_results->SignalRateRtnMHz;
    total_xtalk_MHz = Get_total_xtalk_rate(p_ranging_results);
    
    if (ErrState == VL53L0X_OK) { *p_total_SIG_rate_mcps += total_xtalk_MHz;}
}

/* To convert ms into register value */
uint32_t VL53L0X::Calc_timeout_mclks(uint32_t timeout_period_us,
        uint8_t vcsel_period_pclks)
{   uint32_t macro_period_ns;
    
    macro_period_ns = (uint32_t)(vcsel_period_pclks) * VL53L0X_MACRO_PERIOD_NS;

    return (uint32_t)(((timeout_period_us * 1000)
                     + (macro_period_ns / 2)) / macro_period_ns);
}

uint32_t VL53L0X::ISQRT(uint32_t num)
{   /* Implements an integer square root
     * From: http://en.wikipedia.org/wiki/Methods_of_computing_square_roots */
    uint32_t  res = 0;
    uint32_t  bit = 1 << 30;
    /* The second-to-top bit is set:	1 << 14 for 16-bits,1 << 30 for 32 bits */

    /* "bit" starts at the highest power of four <= the argument. */
    while (bit > num) { bit >>= 2; }

    while (bit != 0) {
        if (num >= res + bit) {
            num -= res + bit;
            res = (res >> 1) + bit;
        } else { res >>= 1;  }
        bit >>= 2;
    }
    return res;
}

void VL53L0X::Calc_dmax(TFP1616 total_SIG_rate_mcps,
    TFP1616 total_corr_SIG_rate_mcps,
    TFP1616 pw_mult,
    uint32_t sigma_estimate_p1,
    TFP1616 sigma_estimate_p2,
    uint32_t peak_vcsel_duration_us,
    uint32_t *pd_max_mm)
{   const uint32_t c_sigma_limit		= 18;
    const TFP1616 c_SIG_limit	= 0x4000; /* 0.25 */
    const TFP1616 c_sigma_est_Ref	= 0x00000042; /* 0.001 */
    const uint32_t c_amb_eff_width_sigma_est_ns = 6;
    const uint32_t c_amb_eff_width_d_max_ns	   = 7;
    uint32_t dmax_cal_range_mm;
    TFP1616 dmax_cal_SIG_rate_rtn_mcps;
    TFP1616 min_SIG_needed;
    TFP1616 min_SIG_needed_p1;
    TFP1616 min_SIG_needed_p2;
    TFP1616 min_SIG_needed_p3;
    TFP1616 min_SIG_needed_p4;
    TFP1616 sigma_limit_tmp;
    TFP1616 sigma_est_sq_tmp;
    TFP1616 signal_limit_tmp;
    TFP1616 signal_at0_mm;
    TFP1616 dmax_dark;
    TFP1616 dmax_ambient;
    TFP1616 dmax_dark_tmp;
    TFP1616 sigma_est_p2_tmp;
    uint32_t signal_rate_temp_mcps;

    dmax_cal_range_mm = DmaxCalRangeMilliMeter;

    dmax_cal_SIG_rate_rtn_mcps = DmaxCalSignalRateRtnMHz;

    /* uint32 * FixPoint1616 = FixPoint1616 */
    signal_at0_mm = dmax_cal_range_mm * dmax_cal_SIG_rate_rtn_mcps;

    /* FixPoint1616 >> 8 = FixPoint2408 */
    signal_at0_mm = (signal_at0_mm + 0x80) >> 8;
    signal_at0_mm *= dmax_cal_range_mm;

    min_SIG_needed_p1 = 0;
    if (total_corr_SIG_rate_mcps > 0) {
        /* Shift by 10 bits to increase resolution prior to the  division */
        signal_rate_temp_mcps = total_SIG_rate_mcps << 10;

        /* Add rounding value prior to division */
        min_SIG_needed_p1 = signal_rate_temp_mcps + (total_corr_SIG_rate_mcps / 2);

        /* FixPoint0626/FixPoint1616 = FixPoint2210 */
        min_SIG_needed_p1 /= total_corr_SIG_rate_mcps;

        /* Apply a factored version of the speed of light.
         Correction to be applied at the end */
        min_SIG_needed_p1 *= 3;

        /* FixPoint2210 * FixPoint2210 = FixPoint1220 */
        min_SIG_needed_p1 *= min_SIG_needed_p1;

        /* FixPoint1220 >> 16 = FixPoint2804 */
        min_SIG_needed_p1 = (min_SIG_needed_p1 + 0x8000) >> 16;
    }

    min_SIG_needed_p2 = pw_mult * sigma_estimate_p1;

    /* FixPoint1616 >> 16 =	 uint32 */
    min_SIG_needed_p2 = (min_SIG_needed_p2 + 0x8000) >> 16;

    /* uint32 * uint32	=  uint32 */
    min_SIG_needed_p2 *= min_SIG_needed_p2;

    /* Check sigmaEstimateP2; If this value is too high, there is not enough
     * signal rate to calculate dmax value so set a suitable value to ensure
     * a very small dmax. */
    sigma_est_p2_tmp = (sigma_estimate_p2 + 0x8000) >> 16;
    sigma_est_p2_tmp = (sigma_est_p2_tmp + c_amb_eff_width_sigma_est_ns / 2) /
                       c_amb_eff_width_sigma_est_ns;
    sigma_est_p2_tmp *= c_amb_eff_width_d_max_ns;

    if (sigma_est_p2_tmp > 0xffff) {
        min_SIG_needed_p3 = 0xfff00000;
    } else {
        /* DMAX uses a different ambient width from sigma,so apply correction.
         * Perform division before multiplication to prevent overflow.  */
        sigma_estimate_p2 = (sigma_estimate_p2 + c_amb_eff_width_sigma_est_ns / 2) /
                            c_amb_eff_width_sigma_est_ns;
        sigma_estimate_p2 *= c_amb_eff_width_d_max_ns;

        /* FixPoint1616 >> 16 = uint32 */
        min_SIG_needed_p3 = (sigma_estimate_p2 + 0x8000) >> 16;
        min_SIG_needed_p3 *= min_SIG_needed_p3;
    }

    /* FixPoint1814 / uint32 = FixPoint1814 */
    sigma_limit_tmp = ((c_sigma_limit << 14) + 500) / 1000;

    /* FixPoint1814 * FixPoint1814 = FixPoint3628 := FixPoint0428 */
    sigma_limit_tmp *= sigma_limit_tmp;

    /* FixPoint1616 * FixPoint1616 = FixPoint3232 */
    sigma_est_sq_tmp = c_sigma_est_Ref * c_sigma_est_Ref;

    /* FixPoint3232 >> 4 = FixPoint0428 */
    sigma_est_sq_tmp = (sigma_est_sq_tmp + 0x08) >> 4;

    /* FixPoint0428 - FixPoint0428	= FixPoint0428 */
    sigma_limit_tmp -=  sigma_est_sq_tmp;

    /* uint32_t * FixPoint0428 = FixPoint0428 */
    min_SIG_needed_p4 = 4 * 12 * sigma_limit_tmp;

    /* FixPoint0428 >> 14 = FixPoint1814 */
    min_SIG_needed_p4 = (min_SIG_needed_p4 + 0x2000) >> 14;

    /* uint32 + uint32 = uint32 */
    min_SIG_needed = (min_SIG_needed_p2 + min_SIG_needed_p3);

    /* uint32 / uint32 = uint32 */
    min_SIG_needed += (peak_vcsel_duration_us / 2);
    min_SIG_needed /= peak_vcsel_duration_us;

    /* uint32 << 14 = FixPoint1814 */
    min_SIG_needed <<= 14;

    /* FixPoint1814 / FixPoint1814 = uint32 */
    min_SIG_needed += (min_SIG_needed_p4 / 2);
    min_SIG_needed /= min_SIG_needed_p4;

    /* FixPoint3200 * FixPoint2804 := FixPoint2804*/
    min_SIG_needed *= min_SIG_needed_p1;

    /* Apply correction by dividing by 1000000.
     * This assumes 10E16 on the numerator of the equation and 10E-22 on the denominator.
     * We do this because 32bit fix point calculation can't
     * handle the larger and smaller elements of this equation,
     * i.e. speed of light and pulse widths.
     */
    min_SIG_needed = (min_SIG_needed + 500) / 1000;
    min_SIG_needed <<= 4;

    min_SIG_needed = (min_SIG_needed + 500) / 1000;

    /* FixPoint1616 >> 8 = FixPoint2408 */
    signal_limit_tmp = (c_SIG_limit + 0x80) >> 8;

    /* FixPoint2408/FixPoint2408 = uint32 */
    if (signal_limit_tmp != 0) {
        dmax_dark_tmp = (signal_at0_mm + (signal_limit_tmp / 2))
                        / signal_limit_tmp;
    } else { dmax_dark_tmp = 0; }

    dmax_dark = ISQRT(dmax_dark_tmp);

    /* FixPoint2408/FixPoint2408 = uint32 */
    if (min_SIG_needed != 0) 
       { dmax_ambient = (signal_at0_mm + min_SIG_needed / 2) / min_SIG_needed; }
      else { dmax_ambient = 0; }

    dmax_ambient = ISQRT(dmax_ambient);

    *pd_max_mm = dmax_dark;
    if (dmax_dark > dmax_ambient) { *pd_max_mm = dmax_ambient; }
}

void VL53L0X::Calc_sigma_estimate(TRangeResults *p_ranging_results,
        TFP1616 *p_sigma_estimate, uint32_t *p_dmax_mm)
{   /* Expressed in 100ths of a ns,i.e. centi-ns */
    const uint32_t c_pulse_effective_width_centi_ns   = 800;
    /* Expressed in 100ths of a ns,i.e. centi-ns */
    const uint32_t c_ambient_effective_width_centi_ns = 600;
    const TFP1616 c_dflt_final_range_integration_time_milli_secs	= 0x00190000; /* 25ms */
    const uint32_t c_vcsel_pulse_width_ps	= 4700; /* pico secs */
    const TFP1616 c_sigma_est_max	= 0x028F87AE;
    const TFP1616 c_sigma_est_rtn_max	= 0xF000;
    const TFP1616 c_amb_to_SIG_ratio_max = 0xF0000000 /
            c_ambient_effective_width_centi_ns;
    /* Time Of Flight per mm (6.6 pico secs) */
    const TFP1616 c_tof_per_mm_ps		= 0x0006999A;
    const uint32_t c_16bit_rounding_param		= 0x00008000;
    const TFP1616 c_max_xtalk_kcps		= 0x00320000;
    const uint32_t c_pll_period_ps			= 1655;

    uint32_t vcsel_total_events_rtn;
    uint32_t final_range_timeout_micro_secs;
    uint32_t pre_range_timeout_micro_secs;
    uint32_t final_range_integration_time_milli_secs;
    TFP1616 sigma_estimate_p1;
    TFP1616 sigma_estimate_p2;
    TFP1616 sigma_estimate_p3;
    TFP1616 delta_t_ps;
    TFP1616 pw_mult;
    TFP1616 sigma_est_rtn;
    TFP1616 sigma_estimate;
    TFP1616 xtalk_correction;
    TFP1616 ambient_rate_kcps;
    TFP1616 peak_SIG_rate_kcps;
    TFP1616 xtalk_comp_rate_mcps;
    uint32_t xtalk_comp_rate_kcps;
    
    TFP1616 diff1_mcps;
    TFP1616 diff2_mcps;
    TFP1616 sqr1;
    TFP1616 sqr2;
    TFP1616 sqr_sum;
    TFP1616 sqrt_result_centi_ns;
    TFP1616 sqrt_result;
    TFP1616 total_SIG_rate_mcps;
    TFP1616 corrected_SIG_rate_mcps;
    TFP1616 sigma_est_Ref;
    uint32_t vcsel_width;
    uint32_t final_range_macro_pclks;
    uint32_t pre_range_macro_pclks;
    uint32_t peak_vcsel_duration_us;
    uint8_t final_range_vcsel_pclks;
    uint8_t pre_range_vcsel_pclks;
    /*! \addtogroup calc_sigma_estimate
     * @{
     * Estimates the range sigma */

    xtalk_comp_rate_mcps = CurrParams.Xtalk_CompRate_MHz; 

    /* We work in kcps rather than mcps as this helps keep within the
     * confines of the 32 Fix1616 type.  */
    ambient_rate_kcps = (p_ranging_results->AmbientRateRtnMHz * 1000) >> 16;

    corrected_SIG_rate_mcps =  p_ranging_results->SignalRateRtnMHz;

    Get_total_SIG_rate(p_ranging_results,&total_SIG_rate_mcps);
    xtalk_comp_rate_mcps = Get_total_xtalk_rate(p_ranging_results);

    /* Signal rate measurement provided by device is the
     * peak signal rate,not average.  */
    peak_SIG_rate_kcps = (total_SIG_rate_mcps * 1000);
    peak_SIG_rate_kcps = (peak_SIG_rate_kcps + 0x8000) >> 16;

    xtalk_comp_rate_kcps = xtalk_comp_rate_mcps * 1000;

    if (xtalk_comp_rate_kcps > c_max_xtalk_kcps) 
        {  xtalk_comp_rate_kcps = c_max_xtalk_kcps; }

    if (ErrState == VL53L0X_OK) {
        /* Calculate final range macro periods */
        final_range_timeout_micro_secs = DevSpecParams.FinalRangeTimeoutMicroSecs; 
        final_range_vcsel_pclks = DevSpecParams.FinalRangeVcselPPeriod; 
        final_range_macro_pclks = Calc_timeout_mclks(final_range_timeout_micro_secs,final_range_vcsel_pclks);

        /* Calculate pre-range macro periods */
        pre_range_timeout_micro_secs = DevSpecParams.PreRangeTimeoutMicroSecs; 
        pre_range_vcsel_pclks = DevSpecParams.PreRangeVcselPPeriod; 
        pre_range_macro_pclks = Calc_timeout_mclks(pre_range_timeout_micro_secs,pre_range_vcsel_pclks);
        vcsel_width = 3;
        if (final_range_vcsel_pclks == 8) {  vcsel_width = 2; }

        peak_vcsel_duration_us = vcsel_width * 2048 *
                                 (pre_range_macro_pclks + final_range_macro_pclks);
        peak_vcsel_duration_us = (peak_vcsel_duration_us + 500) / 1000;
        peak_vcsel_duration_us *= c_pll_period_ps;
        peak_vcsel_duration_us = (peak_vcsel_duration_us + 500) / 1000;

        /* Fix1616 >> 8 = Fix2408 */
        total_SIG_rate_mcps = (total_SIG_rate_mcps + 0x80) >> 8;

        /* Fix2408 * uint32 = Fix2408 */
        vcsel_total_events_rtn = total_SIG_rate_mcps *  peak_vcsel_duration_us;

        /* Fix2408 >> 8 = uint32 */
        vcsel_total_events_rtn = (vcsel_total_events_rtn + 0x80) >> 8;

        /* Fix2408 << 8 = Fix1616 = */
        total_SIG_rate_mcps <<= 8;
    }

    if (ErrState != VL53L0X_OK) { return ; }

    if (peak_SIG_rate_kcps == 0) {
        *p_sigma_estimate = c_sigma_est_max;
        SigmaEstimate = c_sigma_est_max; 
        *p_dmax_mm = 0;
    } else {
        if (vcsel_total_events_rtn < 1) {vcsel_total_events_rtn = 1; }

        sigma_estimate_p1 = c_pulse_effective_width_centi_ns;

        /* ((FixPoint1616 << 16)* uint32)/uint32 = FixPoint1616 */
        sigma_estimate_p2 = (ambient_rate_kcps << 16) / peak_SIG_rate_kcps;
        if (sigma_estimate_p2 > c_amb_to_SIG_ratio_max) 
            /* Clip to prevent overflow. Will ensure safe max result. */
            { sigma_estimate_p2 = c_amb_to_SIG_ratio_max; }
        sigma_estimate_p2 *= c_ambient_effective_width_centi_ns;
        sigma_estimate_p3 = 2 * ISQRT(vcsel_total_events_rtn * 12);

        /* uint32 * FixPoint1616 = FixPoint1616 */
        delta_t_ps = p_ranging_results->RangeMilliMeter * c_tof_per_mm_ps;

        /* vcselRate - xtalkCompRate
         * (uint32 << 16) - FixPoint1616 = FixPoint1616.
         * Divide result by 1000 to convert to mcps.
         * 500 is added to ensure rounding when integer division truncates. */
        diff1_mcps = (((peak_SIG_rate_kcps << 16) - 2 * xtalk_comp_rate_kcps) + 500) / 1000;

        /* vcselRate + xtalkCompRate */
        diff2_mcps = ((peak_SIG_rate_kcps << 16) + 500) / 1000;

        /* Shift by 8 bits to increase resolution prior to the division */
        diff1_mcps <<= 8;

        /* FixPoint0824/FixPoint1616 = FixPoint2408 */
//		xTalkCorrection	 = abs(diff1_mcps/diff2_mcps);
// abs is causing compiler overloading isue in C++, but unsigned types. So,redundant call anyway!
        xtalk_correction	 = diff1_mcps / diff2_mcps;

        /* FixPoint2408 << 8 = FixPoint1616 */
        xtalk_correction <<= 8;

        if (p_ranging_results->RangeStatus != 0) 
          { pw_mult = 1 << 16; }
         else {
            /* FixPoint1616/uint32 = FixPoint1616 */
            pw_mult = delta_t_ps / c_vcsel_pulse_width_ps; /* smaller than 1.0f */

            /* FixPoint1616 * FixPoint1616 = FixPoint3232,however both
             * values are small enough such that32 bits will not be
             * exceeded. */
            pw_mult *= ((1 << 16) - xtalk_correction);

            /* (FixPoint3232 >> 16) = FixPoint1616 */
            pw_mult = (pw_mult + c_16bit_rounding_param) >> 16;

            /* FixPoint1616 + FixPoint1616 = FixPoint1616 */
            pw_mult += (1 << 16);

            /* At this point the value will be 1.xx,therefore if we square
             * the value this will exceed 32 bits. To address this perform
             * a single shift to the right before the multiplication.  */
            pw_mult >>= 1;
            /* FixPoint1715 * FixPoint1715 = FixPoint3430 */
            pw_mult = pw_mult * pw_mult;

            /* (FixPoint3430 >> 14) = Fix1616 */
            pw_mult >>= 14;
        }

        /* FixPoint1616 * uint32 = FixPoint1616 */
        sqr1 = pw_mult * sigma_estimate_p1;

        /* (FixPoint1616 >> 16) = FixPoint3200 */
        sqr1 = (sqr1 + 0x8000) >> 16;

        /* FixPoint3200 * FixPoint3200 = FixPoint6400 */
        sqr1 *= sqr1;
        sqr2 = sigma_estimate_p2;

        /* (FixPoint1616 >> 16) = FixPoint3200 */
        sqr2 = (sqr2 + 0x8000) >> 16;

        /* FixPoint3200 * FixPoint3200 = FixPoint6400 */
        sqr2 *= sqr2;

        /* FixPoint64000 + FixPoint6400 = FixPoint6400 */
        sqr_sum = sqr1 + sqr2;

        /* SQRT(FixPoin6400) = FixPoint3200 */
        sqrt_result_centi_ns = ISQRT(sqr_sum);

        /* (FixPoint3200 << 16) = FixPoint1616 */
        sqrt_result_centi_ns <<= 16;

        /* Note that the Speed Of Light is expressed in um per 1E-10
         * seconds (2997) Therefore to get mm/ns we have to divide by 10000 */
        sigma_est_rtn = (((sqrt_result_centi_ns + 50) / 100) /
                         sigma_estimate_p3);
        sigma_est_rtn		 *= VL53L0X_SPEED_OF_LIGHT_IN_AIR;

        /* Add 5000 before dividing by 10000 to ensure rounding. */
        sigma_est_rtn  = (sigma_est_rtn + 5000) / 10000;

        if (sigma_est_rtn > c_sigma_est_rtn_max) 
            /* Clip to prevent overflow. Will ensure safe max result. */
            { sigma_est_rtn = c_sigma_est_rtn_max; }

        final_range_integration_time_milli_secs =
            (final_range_timeout_micro_secs + pre_range_timeout_micro_secs + 500) / 1000;

        /* sigmaEstRef = 1mm * 25ms/final range integration time (inc pre-range)
         * sqrt(FixPoint1616/int) = FixPoint2408) */
        sigma_est_Ref =
            ISQRT((c_dflt_final_range_integration_time_milli_secs +
                           final_range_integration_time_milli_secs / 2) /
                          final_range_integration_time_milli_secs);

        /* FixPoint2408 << 8 = FixPoint1616 */
        sigma_est_Ref <<= 8;
        sigma_est_Ref = (sigma_est_Ref + 500) / 1000;

        /* FixPoint1616 * FixPoint1616 = FixPoint3232 */
        sqr1 = sigma_est_rtn * sigma_est_rtn;
        /* FixPoint1616 * FixPoint1616 = FixPoint3232 */
        sqr2 = sigma_est_Ref * sigma_est_Ref;

        /* sqrt(FixPoint3232) = FixPoint1616 */
        sqrt_result = ISQRT((sqr1 + sqr2));
        /* Note that the Shift by 4 bits increases resolution prior to
         * the sqrt,therefore the result must be shifted by 2 bits to
         * the right to revert back to the FixPoint1616 format.  */
        sigma_estimate	 = 1000 * sqrt_result;

        if ((peak_SIG_rate_kcps < 1) || (vcsel_total_events_rtn < 1) ||
                (sigma_estimate > c_sigma_est_max)) {
            sigma_estimate = c_sigma_est_max; }

        *p_sigma_estimate = (uint32_t)(sigma_estimate);
        SigmaEstimate = *p_sigma_estimate;
        Calc_dmax(total_SIG_rate_mcps,
                     corrected_SIG_rate_mcps,
                     pw_mult,
                     sigma_estimate_p1,
                     sigma_estimate_p2,
                     peak_vcsel_duration_us,
                     p_dmax_mm);
    }
}

void VL53L0X::Get_Device_range_status(uint8_t device_range_status,
        TFP1616 signal_rate,
        uint16_t effective_SPAD_rtn_count,
        TRangeResults *p_ranging_results,
        uint8_t *p_Device_range_status)
{   uint8_t none_flag;
    uint8_t sigma_limitflag = 0;
    uint8_t signal_Ref_clipflag = 0;
    uint8_t range_ignore_thresholdflag = 0;
    uint8_t sigma_limit_chk_en = 0;
    uint8_t signal_rate_final_range_limit_chk_en = 0;
    uint8_t signal_Ref_clip_limit_chk_en = 0;
    uint8_t range_ignore_threshold_chk_en = 0;
    TFP1616 sigma_estimate;
    TFP1616 sigma_limit_value;
    TFP1616 signal_Ref_clip_value;
    TFP1616 range_ignore_threshold;
    TFP1616 signal_rate_per_SPAD;
    uint8_t device_range_status_internal = 0;
    uint8_t temp8;
    uint32_t dmax_mm = 0;

    /* VL53L0X has a good ranging when the value of the
     * DeviceRangeStatus = 11. This function will replace the value 0 with
     * the value 11 in the DeviceRangeStatus.
     * In addition,the SigmaEstimator is not included in the VL53L0X
     * DeviceRangeStatus,this will be added in the DeviceRangeStatus.  */

    device_range_status_internal = ((device_range_status & 0x78) >> 3);

    if ( device_range_status_internal == 0  ||
         device_range_status_internal == 5  ||
         device_range_status_internal == 7  ||
         device_range_status_internal == 12 ||
         device_range_status_internal == 13 ||
         device_range_status_internal == 14 ||
         device_range_status_internal == 15    )
        { none_flag = 1; } 
        else { none_flag = 0; }

    /* Check if Sigma limit is enabled,if yes then do comparison with limit
     * value and put the result back into pDeviceRangeStatus. */
    if (ErrState == VL53L0X_OK) 
       { sigma_limit_chk_en = Get_limit_chk_en(VL53L0X_CHECKEN_SIGMA_FINAL_RANGE); }

    if ((sigma_limit_chk_en != 0) && (ErrState == VL53L0X_OK)) {
        /* compute the Sigma and check with limit */
        Calc_sigma_estimate(p_ranging_results,  &sigma_estimate, &dmax_mm);
        if (ErrState == VL53L0X_OK) 
          { p_ranging_results->RangeDMaxMilliMeter = dmax_mm; }

        if (ErrState == VL53L0X_OK) 
          { sigma_limit_value = Get_limit_chk_val(VL53L0X_CHECKEN_SIGMA_FINAL_RANGE);

            if ((sigma_limit_value > 0) && (sigma_estimate > sigma_limit_value)) 
              { sigma_limitflag = 1; }/* Limit Fail */
          }
      }

    /* Check if Signal ref clip limit is enabled,if yes then do comparison
     * with limit value and put the result back into pDeviceRangeStatus. */
    if (ErrState == VL53L0X_OK) 
      {signal_Ref_clip_limit_chk_en = Get_limit_chk_en(VL53L0X_CHECKEN_SIG_REF_CLIP);}

    if ((signal_Ref_clip_limit_chk_en != 0) && (ErrState == VL53L0X_OK)) 
      { signal_Ref_clip_value = Get_limit_chk_val(VL53L0X_CHECKEN_SIG_REF_CLIP);

        /* Read LastSignalRefMcps from device */
        Write_Byte(0xFF,0x01);
        LastSignalRefMcps = FP97_TO_FP1616( Read_Word(REG_RESULT_PEAK_SIG_RATE_REF));
        Write_Byte(0xFF,0x00);
 
        if ((signal_Ref_clip_value > 0) && (LastSignalRefMcps > signal_Ref_clip_value)) \
          { signal_Ref_clipflag = 1; /* Limit Fail */ }
      }

    /* Check if Signal ref clip limit is enabled,if yes then do comparison
     * with limit value and put the result back into pDeviceRangeStatus.
     * EffectiveSPADRtnCount has a format 8.8
     * If (Return signal rate < (1.5 x Xtalk x number of SPADS)) : FAIL  */
    if (ErrState == VL53L0X_OK) 
       { range_ignore_threshold_chk_en = Get_limit_chk_en(VL53L0X_CHECKEN_RANGE_IGNORE_THRESHOLD); }

    if ((range_ignore_threshold_chk_en != 0) && (ErrState == VL53L0X_OK)) 
       {/* Compute the signal rate per SPAD */
        if (effective_SPAD_rtn_count == 0) {  signal_rate_per_SPAD = 0; }
        else { signal_rate_per_SPAD = 
                    (TFP1616)((256 * signal_rate) / effective_SPAD_rtn_count); }

        range_ignore_threshold=Get_limit_chk_val(VL53L0X_CHECKEN_RANGE_IGNORE_THRESHOLD);

        if ((range_ignore_threshold > 0) && (signal_rate_per_SPAD < range_ignore_threshold)) {
            /* Limit Fail add 2^6 to range ErrState */
            range_ignore_thresholdflag = 1;
        }
    }

    if (ErrState == VL53L0X_OK) {
        if (none_flag == 1) {
            *p_Device_range_status = 255;	 /* NONE */
        } else if (device_range_status_internal == 1 ||
                   device_range_status_internal == 2 ||
                   device_range_status_internal == 3) {
            *p_Device_range_status = 5; /* HW fail */
        } else if (device_range_status_internal == 6 ||
                   device_range_status_internal == 9) {
            *p_Device_range_status = 4;  /* Phase fail */
        } else if (device_range_status_internal == 8 ||
                   device_range_status_internal == 10 ||
                   signal_Ref_clipflag == 1) {
            *p_Device_range_status = 3;  /* Min range */
        } else if (device_range_status_internal == 4 ||
                   range_ignore_thresholdflag == 1) {
            *p_Device_range_status = 2;  /* Signal Fail */
        } else if (sigma_limitflag == 1) {
            *p_Device_range_status = 1;  /* Sigma	 Fail */
        } else {
            *p_Device_range_status = 0; /* Range Valid */
        }
    }

    /* DMAX only relevant during range error */
    if (*p_Device_range_status == 0) { p_ranging_results->RangeDMaxMilliMeter = 0; }

    /* fill the Limit Check ErrState */
	signal_rate_final_range_limit_chk_en = Get_limit_chk_en(VL53L0X_CHECKEN_SIG_RATE_FINAL_RANGE);

    if (ErrState == VL53L0X_OK) {
        if ((sigma_limit_chk_en == 0) || (sigma_limitflag == 1))
            { temp8 = 1; } else { temp8 = 0; }
         CurrParams.LimitChecksStatus[VL53L0X_CHECKEN_SIGMA_FINAL_RANGE] = temp8; 

        if ((device_range_status_internal == 4) || (signal_rate_final_range_limit_chk_en == 0)) 
        	{ temp8 = 1; } else { temp8 = 0; }
         CurrParams.LimitChecksStatus[VL53L0X_CHECKEN_SIG_RATE_FINAL_RANGE] = temp8; 

        if ((signal_Ref_clip_limit_chk_en == 0) || (signal_Ref_clipflag == 1)) 
            { temp8 = 1; } else { temp8 = 0; }
         CurrParams.LimitChecksStatus[VL53L0X_CHECKEN_SIG_REF_CLIP] = temp8; 

        if ((range_ignore_threshold_chk_en == 0) || (range_ignore_thresholdflag == 1)) 
            { temp8 = 1; } else { temp8 = 0;}
         CurrParams.LimitChecksStatus[VL53L0X_CHECKEN_RANGE_IGNORE_THRESHOLD] = temp8; 
    }
}

void VL53L0X::Get_ranging_results(TRangeResults *p_ranging_results)
{   uint8_t device_range_status;
    uint8_t range_fractional_enable;
    uint8_t Device_range_status;
    uint8_t xtalk_compensation_enable;
    uint16_t ambient_rate;
    TFP1616 signal_rate;
    uint16_t Xtalk_CompRate_MHz;
    uint16_t effective_SPAD_rtn_count;
    uint16_t tmpuint16;
    uint16_t xtalk_range_milli_meter;
    uint16_t linearity_corrective_gain;
    uint8_t localBuffer[12];
    TRangeResults last_range_data_buffer;

	if (ErrState != VL53L0X_OK) { return; } // Do nothing while in error state
	
    /* use multi read even if some registers are not useful,result will
     * be more efficient start reading at REG_RESULT_RANGE_STATUS = 0x14 
     * end reading at 0x21 dec33 total 14 bytes to read */
    I2c_Read(REG_RESULT_RANGE_STATUS, localBuffer,12);

    if (ErrState == VL53L0X_OK) {
        p_ranging_results->ZoneId = 0; /* Only one zone */
        p_ranging_results->TimeStamp = 0; /* Not Implemented */

        tmpuint16 = VL53L0X_MAKEUINT16(localBuffer[11],localBuffer[10]);
        /* cut1.1 if SYSTEM__RANGE_CONFIG if 1 range is 2bits fractional
         *(format 11.2) else no fractional     */

        p_ranging_results->MeasurementTimeUsec = 0;

        signal_rate = FP97_TO_FP1616(VL53L0X_MAKEUINT16(localBuffer[7],localBuffer[6]));
        /* peak_SIG_count_rate_rtn_mcps */
        p_ranging_results->SignalRateRtnMHz = signal_rate;

        ambient_rate = VL53L0X_MAKEUINT16(localBuffer[9],localBuffer[8]);
        p_ranging_results->AmbientRateRtnMHz = FP97_TO_FP1616(ambient_rate);

        effective_SPAD_rtn_count = VL53L0X_MAKEUINT16(localBuffer[3], localBuffer[2]);
        /* EffectiveSPADRtnCount is 8.8 format */
        p_ranging_results->EffectiveSPADRtnCount = effective_SPAD_rtn_count;

        device_range_status = localBuffer[0];

        /* Get Linearity Corrective Gain */
        linearity_corrective_gain = LinearityCorrectiveGain;

        /* Get ranging configuration */
        range_fractional_enable = RangeFractionalEnable;

        if (linearity_corrective_gain != 1000) {
            tmpuint16 = (uint16_t)((linearity_corrective_gain
                                    * tmpuint16 + 500) / 1000);

            /* Implement Xtalk */
            Xtalk_CompRate_MHz = CurrParams.Xtalk_CompRate_MHz; 
            xtalk_compensation_enable = CurrParams.XTalk_Compens_En; 

            if (xtalk_compensation_enable) {
                if ((signal_rate - ((Xtalk_CompRate_MHz
                            * effective_SPAD_rtn_count) >> 8))  <= 0) { 
                    if (range_fractional_enable) { xtalk_range_milli_meter = 8888;
                    } else { xtalk_range_milli_meter = 8888 << 2; }
                } else {
                    xtalk_range_milli_meter = (tmpuint16 * signal_rate)
                        / (signal_rate - ((Xtalk_CompRate_MHz * effective_SPAD_rtn_count) >> 8));
                }
                tmpuint16 = xtalk_range_milli_meter;
            }
        }

        if (range_fractional_enable) {
            p_ranging_results->RangeMilliMeter = (uint16_t)((tmpuint16) >> 2);
            p_ranging_results->RangeFractionalPart =
                (uint8_t)((tmpuint16 & 0x03) << 6);
        } else {
            p_ranging_results->RangeMilliMeter = tmpuint16;
            p_ranging_results->RangeFractionalPart = 0;
        }

        /* For a standard definition of RangeStatus,this should
         * return 0 in case of good result after a ranging
         * The range ErrState depends on the device so call a device
         * specific function to obtain the right ErrState. */
        Get_Device_range_status(device_range_status,signal_rate,effective_SPAD_rtn_count,
                                               p_ranging_results,&Device_range_status);
        if (ErrState == VL53L0X_OK) {
            p_ranging_results->RangeStatus = Device_range_status;
        }
    }

    if (ErrState == VL53L0X_OK) {
        /* Copy last read data into device+ buffer */
        last_range_data_buffer =  LastRangeMeasure;
        last_range_data_buffer.RangeMilliMeter =
            p_ranging_results->RangeMilliMeter;
        last_range_data_buffer.RangeFractionalPart =
            p_ranging_results->RangeFractionalPart;
        last_range_data_buffer.RangeDMaxMilliMeter =
            p_ranging_results->RangeDMaxMilliMeter;
        last_range_data_buffer.MeasurementTimeUsec =
            p_ranging_results->MeasurementTimeUsec;
        last_range_data_buffer.SignalRateRtnMHz =
            p_ranging_results->SignalRateRtnMHz;
        last_range_data_buffer.AmbientRateRtnMHz =
            p_ranging_results->AmbientRateRtnMHz;
        last_range_data_buffer.EffectiveSPADRtnCount =
            p_ranging_results->EffectiveSPADRtnCount;
        last_range_data_buffer.RangeStatus =
            p_ranging_results->RangeStatus;
        LastRangeMeasure = last_range_data_buffer; 
    }
}

void VL53L0X::Perf_single_ranging_measurement(
                          TRangeResults *p_ranging_results)
{   if (ErrState != VL53L0X_OK)  {return; } // no activity while in Error State!!!!

    /* This function will do a complete single ranging  Here we fix the mode! */
    Set_device_mode(VL53L0X_DEVICEMODE_SINGLE_RANGING);
    
    Perf_single_measurement();
    
    Get_ranging_results(p_ranging_results);
    
    Clear_interrupt_mask(0);
}

uint16_t VL53L0X::Get_Perf_Ref_SIG_measurement()
{   TRangeResults ranging_results;
    uint8_t orig_sequence_config;
    uint16_t Ref_SIG_rate ;

    /* store the value of the sequence config,
     * this will be reset before the end of the function*/
    orig_sequence_config =  SequenceConfig;

    /* This function performs a reference signal rate measurement.*/
    Set_SequenceConfig( 0xC0 ); // sets REG_SYSTEM_SEQUENCE_CONFIG
    
    Perf_single_ranging_measurement(&ranging_results);

    Write_Byte(0xFF,0x01);
    Ref_SIG_rate = Read_Word(REG_RESULT_PEAK_SIG_RATE_REF);
    Write_Byte(0xFF,0x00);

    /* restore the previous Sequence Config */
    Set_SequenceConfig( orig_sequence_config ); // resets REG_SYSTEM_SEQUENCE_CONFIG
    
    return Ref_SIG_rate;
}

void VL53L0X::Perf_Ref_SPAD_management(uint32_t *ref_SPAD_count,
        uint8_t *is_aperture_SPADS)
{   uint8_t last_SPAD_array[6];
    uint8_t start_select = 0xB4;
    uint32_t minimum_SPAD_count = 3;
    uint32_t max_SPAD_count = 44;
    uint32_t current_SPAD_index = 0;
    uint32_t last_SPAD_index = 0;
    int32_t next_good_SPAD = 0;
    uint16_t target_Ref_rate = 0x0A00; /* 20 MHz in 9:7 format */
    uint16_t peak_SIG_rate_Ref;
    uint32_t need_apt_SPADS = 0;
    uint32_t index = 0;
    uint32_t SPAD_array_size = 6;
    uint32_t signal_rate_diff = 0;
    uint32_t last_SIG_rate_diff = 0;
    uint8_t complete = 0;
    uint8_t vhv_settings = 0;
    uint8_t phase_cal = 0;
    uint32_t ref_SPAD_count_int = 0;
    uint8_t	 is_aperture_SPADS_int = 0;

    /*
     * The reference SPAD initialization procedure determines the minimum
     * amount of reference SPADS to be enables to achieve a target reference
     * signal rate and should be performed once during initialization.
     *
     * Either aperture or non-aperture SPADS are applied but never both.
     * Firstly non-aperture SPADS are set,begining with 5 SPADS,and
     * increased one SPAD at a time until the closest measurement to the
     * target rate is achieved.
     *
     * If the target rate is exceeded when 5 non-aperture SPADS are enabled,
     * initialization is performed instead with aperture SPADS.
     *
     * When setting SPADS,a 'Good SPAD Map' is applied.
     *
     * This procedure operates within a SPAD window of interest of a maximum
     * 44 SPADS.
     * The start point is currently fixed to 180,which lies towards the end
     * of the non-aperture quadrant and runs in to the adjacent aperture
     * quadrant. */
    target_Ref_rate =  targetRefRate;

    /* Initialize SPAD arrays.
     * Currently the good SPAD map is initialised to 'All good'.
     * This is a short term implementation. The good SPAD map will be
     * provided as an input.
     * Note that there are 6 bytes. Only the first 44 bits will be used to
     * represent SPADS. */
    for (index = 0; index < SPAD_array_size; index++) {
        SPADData.RefSPADEnables[index] = 0; }

    Write_Byte(0xFF,0x01);
    Write_Byte(REG_DYNAMIC_SPAD_REF_EN_START_OFFSET,0x00);
    Write_Byte(REG_DYNAMIC_SPAD_NUM_REQUESTED_REF_SPAD,0x2C);
    Write_Byte(0xFF,0x00);
    Write_Byte(REG_GLOBAL_CONFIG_REF_EN_START_SELECT,start_select);
    Write_Byte(REG_POWER_MANAGEMENT_GO1_POWER_FORCE,0);

    /* Perform ref calibration */
    if (ErrState == VL53L0X_OK)
       {Perf_Ref_calibration(&vhv_settings, &phase_cal, 0);}

    if (ErrState == VL53L0X_OK) {
        /* Enable Minimum NON-APERTURE SPADS */
        current_SPAD_index = 0;
        last_SPAD_index = current_SPAD_index;
        need_apt_SPADS = 0;
        Enable_Ref_SPADS(need_apt_SPADS,
                                  SPADData.RefGoodSPADMap,
                                  SPADData.RefSPADEnables,
                                  SPAD_array_size,
                                  start_select,
                                  current_SPAD_index,
                                  minimum_SPAD_count,
                                  &last_SPAD_index);
    }

    if (ErrState == VL53L0X_OK) {
        current_SPAD_index = last_SPAD_index;

        peak_SIG_rate_Ref = Get_Perf_Ref_SIG_measurement();
        if ((ErrState == VL53L0X_OK) && (peak_SIG_rate_Ref > target_Ref_rate)) 
         {  /* Signal rate measurement too high, switch to APERTURE SPADS */
            for (index = 0; index < SPAD_array_size; index++) 
              {  SPADData.RefSPADEnables[index] = 0; }

            /* Increment to the first APERTURE SPAD */
            while ((Is_ApertureSPAD(start_select + current_SPAD_index)
                    == 0) && (current_SPAD_index < max_SPAD_count)) 
               { current_SPAD_index++; }

            need_apt_SPADS = 1;

            Enable_Ref_SPADS(need_apt_SPADS,
                                      SPADData.RefGoodSPADMap,
                                      SPADData.RefSPADEnables,
                                      SPAD_array_size,
                                      start_select,
                                      current_SPAD_index,
                                      minimum_SPAD_count,
                                      &last_SPAD_index);

            if (ErrState == VL53L0X_OK) {
                current_SPAD_index = last_SPAD_index;
                peak_SIG_rate_Ref = Get_Perf_Ref_SIG_measurement();

                if ((ErrState == VL53L0X_OK) && (peak_SIG_rate_Ref > target_Ref_rate)) 
                  { /* Signal rate still too high after  setting the minimum number of
                     * APERTURE SPADS. Can do no more therefore set the min number of
                     * aperture SPADS as the result.        */
                    is_aperture_SPADS_int = 1;
                    ref_SPAD_count_int = minimum_SPAD_count;
                }
            }
        } else { need_apt_SPADS = 0;}
    }

    if ((ErrState == VL53L0X_OK) && (peak_SIG_rate_Ref < target_Ref_rate)) 
     {  /* At this point,the minimum number of either aperture
         * or non-aperture SPADS have been set. Proceed to add
         * SPADS and perform measurements until the target reference is reached.*/
        is_aperture_SPADS_int = need_apt_SPADS;
        ref_SPAD_count_int	= minimum_SPAD_count;

        memcpy(last_SPAD_array,SPADData.RefSPADEnables, SPAD_array_size);
        last_SIG_rate_diff = abs(peak_SIG_rate_Ref - target_Ref_rate);
        complete = 0;

        while (!complete) {
            Get_Next_Good_SPAD(SPADData.RefGoodSPADMap,
                SPAD_array_size,current_SPAD_index, &next_good_SPAD);

            if (next_good_SPAD == -1) {
                ErrState = VL53L0X_ERROR_REF_SPAD_INIT;
                break;
            }

            /* Cannot combine Aperture and Non-Aperture SPADS,so
             * ensure the current SPAD is of the correct type. */
            if (Is_ApertureSPAD((uint32_t)start_select + next_good_SPAD) !=
                    need_apt_SPADS) {
                /* At this point we have enabled the maximum number of Aperture SPADS.  */
                complete = 1;
                break;
            }

            (ref_SPAD_count_int)++;

            current_SPAD_index = next_good_SPAD;
            Enable_SPAD_bit(SPADData.RefSPADEnables,
                         SPAD_array_size,current_SPAD_index);

            if (ErrState == VL53L0X_OK) {
                current_SPAD_index++;
                /* Proceed to apply the additional SPAD and perform measurement. */
                I2c_Write(REG_GLOBAL_CONFIG_SPAD_ENABLES_REF_0, SPADData.RefSPADEnables,6); //Set_Ref_SPAD_map
            }

            if (ErrState != VL53L0X_OK) { break; }

            peak_SIG_rate_Ref = Get_Perf_Ref_SIG_measurement();

            if (ErrState != VL53L0X_OK) { break; }

            signal_rate_diff = abs(peak_SIG_rate_Ref - target_Ref_rate);

            if (peak_SIG_rate_Ref > target_Ref_rate) {
                /* Select the SPAD map that provides the
                 * measurement closest to the target rate,
                 * either above or below it. */
                if (signal_rate_diff > last_SIG_rate_diff) {
                    /* Previous SPAD map produced a closer measurement,so choose this. */
                    I2c_Write(REG_GLOBAL_CONFIG_SPAD_ENABLES_REF_0, last_SPAD_array,6); // Set_Ref_SPAD_map();
                    memcpy(SPADData.RefSPADEnables,last_SPAD_array,SPAD_array_size);
                    (ref_SPAD_count_int)--;
                }
                complete = 1;
            } else {
                /* Continue to add SPADS */
                last_SIG_rate_diff = signal_rate_diff;
                memcpy(last_SPAD_array, SPADData.RefSPADEnables,SPAD_array_size);
            }
        } /* while */
    }

    if (ErrState == VL53L0X_OK) {
        *ref_SPAD_count = ref_SPAD_count_int;
        *is_aperture_SPADS = is_aperture_SPADS_int;
        DevSpecParams.RefSPADSInitialised = 1;
        DevSpecParams.ReferenceSPADCount = (uint8_t)(*ref_SPAD_count);
        DevSpecParams.ReferenceSPADType = *is_aperture_SPADS;
    }
}

void VL53L0X::Set_Reference_SPADS(uint32_t count,uint8_t is_aperture_SPADS)
{   uint32_t current_SPAD_index = 0;
    uint8_t  start_select    = 0xB4;
    uint32_t SPAD_array_size = 6;
    uint32_t max_SPAD_count  = 44;
    uint32_t last_SPAD_index;
    uint32_t index;

    /* This function applies a requested number of reference SPADS,either
     * aperture or non-aperture,as requested. The good SPAD map will be applied.*/
    Write_Byte(0xFF,0x01);
    Write_Byte(REG_DYNAMIC_SPAD_REF_EN_START_OFFSET,0x00);
    Write_Byte(REG_DYNAMIC_SPAD_NUM_REQUESTED_REF_SPAD,0x2C);
    Write_Byte(0xFF,0x00); 
    Write_Byte(REG_GLOBAL_CONFIG_REF_EN_START_SELECT, start_select);

    for (index = 0; index < SPAD_array_size; index++) {
        SPADData.RefSPADEnables[index] = 0; }

    if (is_aperture_SPADS) {
        /* Increment to the first APERTURE SPAD */
        while ((Is_ApertureSPAD(start_select + current_SPAD_index) == 0) &&
                (current_SPAD_index < max_SPAD_count)) {
            current_SPAD_index++;
        }
    }
    Enable_Ref_SPADS(is_aperture_SPADS,
                              SPADData.RefGoodSPADMap,
                              SPADData.RefSPADEnables,
                              SPAD_array_size,
                              start_select,
                              current_SPAD_index,
                              count,
                              &last_SPAD_index);

    if (ErrState == VL53L0X_OK) {
        DevSpecParams.RefSPADSInitialised = 1;
        DevSpecParams.ReferenceSPADCount = (uint8_t)(count);
        DevSpecParams.ReferenceSPADType = is_aperture_SPADS;
    }
}

void VL53L0X::Set_GPIO_config(VL53L0X_DeviceModes device_mode,
                TGPIO_Func functionality,  VL53L0X_InterruptPolarity polarity)
{   uint8_t pol_data;

    if (polarity == VL53L0X_INTERRUPTPOLARITY_LOW) 
       	{ pol_data = 0x00;} else { pol_data = 0x10;}

	switch ( device_mode ) {
	  case VL53L0X_DEVICEMODE_GPIO_DRIVE: 
        Write_Byte(REG_GPIO_HV_MUX_ACTIVE_HIGH,pol_data);
		break;
      case VL53L0X_DEVICEMODE_GPIO_OSC: 
        Write_Byte(0xff,0x01);
        Write_Byte(0x00,0x00);
        Write_Byte(0xff,0x00);
        Write_Byte(0x80,0x01);
        Write_Byte(0x85,0x02);
        Write_Byte(0xff,0x04);
        Write_Byte(0xcd,0x00);
        Write_Byte(0xcc,0x11);
        Write_Byte(0xff,0x07);
        Write_Byte(0xbe,0x00);
        Write_Byte(0xff,0x06);
        Write_Byte(0xcc,0x09);
        Write_Byte(0xff,0x00);
        Write_Byte(0xff,0x01);
        Write_Byte(0x00,0x00);
		break;
	  default:	
        if (functionality>GPIO_FUNC_NEW_MEASURE_READY)
        	{ ErrState = VL53L0X_ERROR_GPIO_FUNC_NOT_SUPPORTED; }
        	else { Write_Byte(REG_SYSINT_CONFIG_GPIO,functionality); }

            if (ErrState == VL53L0X_OK) 
               { Register_BitMask(REG_GPIO_HV_MUX_ACTIVE_HIGH,0xEF,pol_data); }

            if (ErrState == VL53L0X_OK) 
               {DevSpecParams.GpioFunctionality = functionality; }

            Clear_interrupt_mask(0);
     } // switch 
} // Set_GPIO_config

/* Encode timeout in macro periods in (LSByte * 2^MSByte) + 1 format */
uint16_t VL53L0X::Encode_timeout(uint32_t timeout_macro_clks)
{   uint16_t encoded_timeout = 0;
    uint16_t ms_byte = 0;

    if (timeout_macro_clks > 0) {
        timeout_macro_clks = timeout_macro_clks - 1;
        while ((timeout_macro_clks & 0xFFFFFF00) > 0) {
            timeout_macro_clks = timeout_macro_clks >> 1;
            ms_byte++;
          } // while
        encoded_timeout = (ms_byte << 8) + (uint16_t)(timeout_macro_clks & 0x000000FF);
      }
    return encoded_timeout;
}

void VL53L0X::Set_Sequence_Step_Timeout(VL53L0X_SequenceStepId sequence_step_id,
        uint32_t timeout_micro_secs)
{   uint8_t current_vcsel_PPeriod_p_clk;
    uint8_t msrc_encoded_time_out;
    uint16_t pre_range_encoded_time_out;
    uint16_t pre_range_time_out_m_clks;
    uint16_t msrc_range_time_out_m_clks;
    uint32_t final_range_time_out_m_clks;
    uint16_t final_range_encoded_time_out;
    VL53L0X_Sequence_Steps_t sequence_steps;

    switch (sequence_step_id) {
      case VL53L0X_SEQUENCESTEP_TCC:
      case VL53L0X_SEQUENCESTEP_DSS:
      case VL53L0X_SEQUENCESTEP_MSRC:
        current_vcsel_PPeriod_p_clk = /*  Gets and converts the VCSEL period register into actual clock periods */
				( Read_Byte(REG_PRE_RANGE_CONFIG_VCSEL_PERIOD) + 1) << 1;

        if (ErrState == VL53L0X_OK) {
               msrc_range_time_out_m_clks = Calc_timeout_mclks(timeout_micro_secs,
                                         (uint8_t)current_vcsel_PPeriod_p_clk);

            if (msrc_range_time_out_m_clks > 256) { msrc_encoded_time_out = 255;} 
               else {msrc_encoded_time_out = (uint8_t)msrc_range_time_out_m_clks - 1; }

            DevSpecParams.LastEncodedTimeout = msrc_encoded_time_out;
          }
        Write_Byte(REG_MSRC_CONFIG_TIMEOUT_MACROP,msrc_encoded_time_out);
        break; 
        
      case VL53L0X_SEQUENCESTEP_PRE_RANGE:
        	current_vcsel_PPeriod_p_clk = /*  Gets and converts the VCSEL period register into actual clock periods */
			      ( Read_Byte(REG_PRE_RANGE_CONFIG_VCSEL_PERIOD) + 1) << 1;
            
            pre_range_time_out_m_clks = Calc_timeout_mclks(timeout_micro_secs,
                                           (uint8_t)current_vcsel_PPeriod_p_clk);
            pre_range_encoded_time_out = Encode_timeout(pre_range_time_out_m_clks);

            DevSpecParams.LastEncodedTimeout = pre_range_encoded_time_out;
        
            Write_Word(REG_PRE_RANGE_CONFIG_TIMEOUT_MACROP_HI,pre_range_encoded_time_out);

            if (ErrState == VL53L0X_OK) 
               {DevSpecParams.PreRangeTimeoutMicroSecs=timeout_micro_secs; }
            break;
            
      case VL53L0X_SEQUENCESTEP_FINAL_RANGE:
            /* For the final range timeout,the pre-range timeout must be added. 
             * To do this both final and pre-range timeouts must be expressed in 
             * macro periods MClks because they have different vcsel periods.*/
        	sequence_steps = Get_sequence_step_enables();
            pre_range_time_out_m_clks = 0;
            
            if (sequence_steps.PreRangeOn) 
        	  {	current_vcsel_PPeriod_p_clk = /*  Gets and converts the VCSEL period register into actual clock periods */
					( Read_Byte(REG_PRE_RANGE_CONFIG_VCSEL_PERIOD) + 1) << 1;

                /* Retrieve PRE-RANGE Timeout in Macro periods (MCLKS) */
                if (ErrState == VL53L0X_OK) 
                 {  pre_range_encoded_time_out = Read_Word(0x51); 
                    pre_range_time_out_m_clks = Decode_timeout(pre_range_encoded_time_out);
                  } 
              }

            /* Calculate FINAL RANGE Timeout in Macro Periode (MCLKS) and add PRE-RANGE value */
            if (ErrState == VL53L0X_OK) 
              { current_vcsel_PPeriod_p_clk  /*  Get and converts the VCSEL period register into actual clock periods */
					= ( Read_Byte(REG_FINAL_RANGE_CONFIG_VCSEL_PERIOD) + 1) << 1; }
					
            if (ErrState == VL53L0X_OK) 
              {	final_range_time_out_m_clks = Calc_timeout_mclks(timeout_micro_secs,
                                    (uint8_t) current_vcsel_PPeriod_p_clk);

                final_range_time_out_m_clks += pre_range_time_out_m_clks;

                final_range_encoded_time_out = Encode_timeout(final_range_time_out_m_clks);

                Write_Word(0x71,final_range_encoded_time_out); 
              }

            if (ErrState == VL53L0X_OK) 
              { DevSpecParams.FinalRangeTimeoutMicroSecs = timeout_micro_secs; }
          	break;
          
        default: ErrState = VL53L0X_ERROR_INVALID_PARAMS;
      } // switch (sequence_step_id)
 }

void VL53L0X::Set_Measure_Time_Budget_us (uint32_t Measure_Time_Budget_us)
{   uint32_t final_range_timing_budget_us;
    VL53L0X_Sequence_Steps_t sequence_steps;
    uint32_t msrc_dcc_tcc_timeout_us= 2000;
    uint32_t start_overhead_us		= 1910;
    uint32_t end_overhead_us		= 960;
    uint32_t msrc_overhead_us		= 660;
    uint32_t tcc_overhead_us		= 590;
    uint32_t dss_overhead_us		= 690;
    uint32_t pre_range_overhead_us	= 660;
    uint32_t final_range_overhead_us= 550;
    uint32_t pre_range_timeout_us	= 0;
    uint32_t c_min_timing_budget_us	= 20000;
    uint32_t sub_timeout = 0;

    if (Measure_Time_Budget_us < c_min_timing_budget_us) 
    	{ ErrState = VL53L0X_ERROR_INVALID_PARAMS;
    	  return ; }

    final_range_timing_budget_us = Measure_Time_Budget_us - 
                                      (start_overhead_us + end_overhead_us);

    sequence_steps = Get_sequence_step_enables();

    if (ErrState == VL53L0X_OK &&
            (sequence_steps.TccOn  ||
             sequence_steps.MsrcOn ||
             sequence_steps.DssOn)) {

        /* TCC,MSRC and DSS all share the same timeout */
        Get_Sequence_Step_Timeout(VL53L0X_SEQUENCESTEP_MSRC,
                                           &msrc_dcc_tcc_timeout_us);

        /* Subtract the TCC,MSRC and DSS timeouts if they are  enabled. */
        if (ErrState != VL53L0X_OK) {return ; }

        /* TCC */
        if (sequence_steps.TccOn) {

            sub_timeout = msrc_dcc_tcc_timeout_us + tcc_overhead_us;

            if (sub_timeout < final_range_timing_budget_us) {
                final_range_timing_budget_us -= sub_timeout;
            } else { /* Requested timeout too big. */
                ErrState = VL53L0X_ERROR_INVALID_PARAMS;
            }
        }

        if (ErrState != VL53L0X_OK) {return;  }

        /* DSS */
        if (sequence_steps.DssOn) 
          { sub_timeout = 2 * (msrc_dcc_tcc_timeout_us + dss_overhead_us);

            if (sub_timeout < final_range_timing_budget_us) 
                { final_range_timing_budget_us  -= sub_timeout;  } 
           	  else { /* Requested timeout too big. */
                ErrState = VL53L0X_ERROR_INVALID_PARAMS; }
          } 
         else if (sequence_steps.MsrcOn)  /* MSRC */
          { sub_timeout = msrc_dcc_tcc_timeout_us + msrc_overhead_us;

            if (sub_timeout < final_range_timing_budget_us) 
               { final_range_timing_budget_us -= sub_timeout; } 
            else  /* Requested timeout too big. */
               { ErrState = VL53L0X_ERROR_INVALID_PARAMS; } 
          }
    }

    if (ErrState != VL53L0X_OK) {return; }

    if (sequence_steps.PreRangeOn) {
        /* Subtract the Pre-range timeout if enabled. */
        Get_Sequence_Step_Timeout(VL53L0X_SEQUENCESTEP_PRE_RANGE,
                                           &pre_range_timeout_us);
        sub_timeout = pre_range_timeout_us + pre_range_overhead_us;

        if (sub_timeout < final_range_timing_budget_us) {
            final_range_timing_budget_us -= sub_timeout;
        } else {
            /* Requested timeout too big. */
            ErrState = VL53L0X_ERROR_INVALID_PARAMS;
        }
    }

    if (ErrState == VL53L0X_OK && sequence_steps.FinalRangeOn) 
      { final_range_timing_budget_us -= final_range_overhead_us;

        /* Final Range Timeout
         * Note that the final range timeout is determined by the timing
         * budget and the sum of all other timeouts within the sequence.
         * If there is no room for the final range timeout,then an error
         * will be set. Otherwise the remaining time will be applied to
         * the final range.
         */
        Set_Sequence_Step_Timeout(VL53L0X_SEQUENCESTEP_FINAL_RANGE,
                                           final_range_timing_budget_us);

        CurrParams.Measure_Time_Budget_us = Measure_Time_Budget_us; 
    }
}

const uint8_t SEQUENCESTEP_MASK[] =
{  0x10, //VL53L0X_SEQUENCESTEP_TCC = 0
   0x28, //VL53L0X_SEQUENCESTEP_DSS = 1
   0x04, //VL53L0X_SEQUENCESTEP_MSRC= 2 
   0x40, //VL53L0X_SEQUENCESTEP_PRE_RANGE= 3
   0x80}; //VL53L0X_SEQUENCESTEP_FINAL_RANGE = 4 
  
void VL53L0X::Set_sequence_step_enable(VL53L0X_SequenceStepId sequence_step_id,
                                       uint8_t sequence_step_enabled)
{   uint8_t new_config = 0;

    // SequenceConfig = Read_Byte(REG_SYSTEM_SEQUENCE_CONFIG); 
	// instead of reading from the device, use the SequenceConfig local data field!!
	
    if (sequence_step_enabled == 1)  /* Enable requested sequence step  */
         { new_config = SequenceConfig | SEQUENCESTEP_MASK[sequence_step_id]; }
       else  /* Disable requested sequence step  */ 
         { new_config = SequenceConfig & (0xff - SEQUENCESTEP_MASK[sequence_step_id]); }

    if (new_config != SequenceConfig) {  /* Apply New Setting */
        Set_SequenceConfig( new_config ); 
        if (ErrState == VL53L0X_OK)   /* Recalculate timing budget */
           {  Set_Measure_Time_Budget_us(CurrParams.Measure_Time_Budget_us); }
    } // if (new_config != sequence_config)
}

void VL53L0X::Set_limit_chk_en(uint16_t limit_check_id,  uint8_t limit_chk_en)
{   TFP1616 temp_fix1616 = 0;
	if (limit_chk_en!=0) {limit_chk_en=1;} // make sure we only have 0 or 1 as values!!!

    switch (limit_check_id) {
        case VL53L0X_CHECKEN_SIGMA_FINAL_RANGE:      /* internal computation: */
        case VL53L0X_CHECKEN_SIG_REF_CLIP:           /* internal computation: */
        case VL53L0X_CHECKEN_RANGE_IGNORE_THRESHOLD: /* internal computation: */
            CurrParams.Limit_Chk_En[limit_check_id] = limit_chk_en; 
            break;

        case VL53L0X_CHECKEN_SIG_RATE_FINAL_RANGE:
        	temp_fix1616 = limit_chk_en * CurrParams.Limit_Chk_Val[limit_check_id];
            Write_Word(REG_FINAL_RANGE_CONFIG_MIN_COUNT_RATE_RTN_LIMIT,
                           FP1616_TO_FP97(temp_fix1616));
            break;

        case VL53L0X_CHECKEN_SIG_RATE_MSRC:
            Register_BitMask(REG_MSRC_CONFIG_CONTROL,0xFE, (1-limit_chk_en)<< 1);
            break;

        case VL53L0X_CHECKEN_SIG_RATE_PRE_RANGE:
            Register_BitMask(REG_MSRC_CONFIG_CONTROL,0xEF, (1-limit_chk_en)<< 4);
            break;

        default: ErrState = VL53L0X_ERROR_INVALID_PARAMS; 
     } // switch

    if (ErrState == VL53L0X_OK) { CurrParams.Limit_Chk_En[limit_check_id] = limit_chk_en; } 
}

void VL53L0X::Static_init()
{   VL53L0X_DeviceParams_t new_curr_parameters;
    uint8_t  *p_tuning_setting_buffer;
    uint16_t tempword = 0;
    uint8_t  tempbyte = 0;
    uint32_t count = 0;
    uint8_t  is_aperture_SPADS = 0;
    uint32_t ref_SPAD_count = 0;
    uint8_t  aperture_SPADS = 0;
    uint8_t  vcsel_PPeriod_pclk;
    uint32_t seq_timeout_micro_secs;

    Get_info_from_device(1);

    /* set the ref SPAD from NVM */
    count	= (uint32_t)DevSpecParams.ReferenceSPADCount; 
    aperture_SPADS = DevSpecParams.ReferenceSPADType; 

    /* NVM value invalid */
    if ((aperture_SPADS > 1) || ((aperture_SPADS == 1) && (count > 32)) ||
       ((aperture_SPADS == 0) && (count > 12))) 
       { Perf_Ref_SPAD_management(&ref_SPAD_count, &is_aperture_SPADS); }
     else 
       { Set_Reference_SPADS(count,aperture_SPADS);  }

    /* Initialize tuning settings buffer to prevent compiler warning. */
    p_tuning_setting_buffer = DefaultTuningSettings;

    if (ErrState == VL53L0X_OK) {
        if (UseInternalTuningSettings == 0) 
           { p_tuning_setting_buffer = pTuningSettingsPointer; }
         else 
           { p_tuning_setting_buffer = DefaultTuningSettings; }
      }

    if (ErrState == VL53L0X_OK) 
       {  Load_tuning_settings(p_tuning_setting_buffer); }
       
    /*  Set interrupt config to new sample ready */
    if (ErrState == VL53L0X_OK) 
       { Set_GPIO_config(0,GPIO_FUNC_NEW_MEASURE_READY,VL53L0X_INTERRUPTPOLARITY_LOW); }

    Write_Byte(0xFF,0x01);
    tempword = Read_Word(0x84); 
    Write_Byte(0xFF,0x00);

    if (ErrState == VL53L0X_OK) 
      { DevSpecParams.OscFrequencyMHz=FP412_TO_FP1616(tempword); }

    /* After static init,some device parameters may be changed, so update them */
    new_curr_parameters = Get_device_parameters(); 

    if (ErrState == VL53L0X_OK) { tempbyte = Read_Byte(REG_SYSTEM_RANGE_CONFIG); }
    if (ErrState == VL53L0X_OK) { RangeFractionalEnable = (tempbyte & 1); }
    if (ErrState == VL53L0X_OK) { CurrParams = new_curr_parameters; }

    /* read the sequence config and save it */
    Set_SequenceConfig( Read_Byte(REG_SYSTEM_SEQUENCE_CONFIG) ); // checks for ErrState

    /* Disable MSRC and TCC by default */
    if (ErrState == VL53L0X_OK) 
       { Set_sequence_step_enable(VL53L0X_SEQUENCESTEP_TCC,0); }

    if (ErrState == VL53L0X_OK) 
       { Set_sequence_step_enable(VL53L0X_SEQUENCESTEP_MSRC,0); }

    /* Set State to standby */
    Set_Current_State( VL53L0X_STATE_IDLE) ;

    /* Store pre-range vcsel period */
    if (ErrState == VL53L0X_OK)/*  Gets and converts the VCSEL period register into actual clock periods */ 
       { vcsel_PPeriod_pclk = (Read_Byte(REG_PRE_RANGE_CONFIG_VCSEL_PERIOD) + 1) << 1; }

    if ( ErrState == VL53L0X_OK) 
       { DevSpecParams.PreRangeVcselPPeriod = vcsel_PPeriod_pclk; }

    /* Store final-range vcsel period */
    if (ErrState == VL53L0X_OK)
       { vcsel_PPeriod_pclk  /*  Get and convert the VCSEL period register into actual clock periods */
		    = ( Read_Byte(REG_FINAL_RANGE_CONFIG_VCSEL_PERIOD) + 1) << 1; }

    if (ErrState == VL53L0X_OK) 
       { DevSpecParams.FinalRangeVcselPPeriod = vcsel_PPeriod_pclk; }

    /* Store pre-range timeout */
    if (ErrState == VL53L0X_OK) 
       { Get_Sequence_Step_Timeout( VL53L0X_SEQUENCESTEP_PRE_RANGE, 
                                                     &seq_timeout_micro_secs); }

    if (ErrState == VL53L0X_OK) 
       { DevSpecParams.PreRangeTimeoutMicroSecs = seq_timeout_micro_secs; }

    /* Store final-range timeout */
    if (ErrState == VL53L0X_OK) 
       { Get_Sequence_Step_Timeout( VL53L0X_SEQUENCESTEP_FINAL_RANGE, 
                                                      &seq_timeout_micro_secs);}

    if (ErrState == VL53L0X_OK) 
       { DevSpecParams.FinalRangeTimeoutMicroSecs = seq_timeout_micro_secs; }
}

void VL53L0X::Stop_Measurement()
{   Write_Byte(REG_SYSRANGE_START, REG_SYSRANGE_MODE_SINGLESHOT);
    Write_Byte(0xFF,0x01);
    Write_Byte(0x00,0x00);
    Write_Byte(0x91,0x00);
    Write_Byte(0x00,0x01);
    Write_Byte(0xFF,0x00);

    Set_Current_State( VL53L0X_STATE_IDLE );

    /* Check if need to apply interrupt settings */
    Check_and_load_interrupt_settings(0); 
}

uint8_t VL53L0X::Get_Stop_Completed()
{   uint8_t Abyte = 0;

    Write_Byte(0xFF,0x01);
    Abyte = Read_Byte(0x04); 
    Write_Byte(0xFF,0x0); 
    
    if ((ErrState == VL53L0X_OK) & (Abyte == 0))
     {  Write_Byte(0x80,0x01);
        Write_Byte(0xFF,0x01);
        Write_Byte(0x00,0x00);
        Write_Byte(0x91,StopVariable);
        Write_Byte(0x00,0x01);
        Write_Byte(0xFF,0x00);
        Write_Byte(0x80,0x00);
      }
	return Abyte;
}

void VL53L0X::Wait_Measurement_Ready()
{   uint32_t loop_nb = 0;

    // Wait until it finished, or loopo count reached = avoids deadlock
    while ( !Get_Measurement_Ready() & (ErrState == VL53L0X_OK)  )
      { if (loop_nb++ >= VL53L0X_DEFAULT_MAX_LOOP) 
    	     { ErrState = VL53L0X_ERROR_TIME_OUT;} 
    	   else { Polling_delay(); }  
      } // while ends
}

void VL53L0X::Wait_Stop_Completed()
{   uint32_t loop_nb = 0;

    // Wait until Stop_Completed, or loopo count reached = avoids deadlock
    while ( (ErrState == VL53L0X_OK) & !Get_Stop_Completed() )
      { if (loop_nb++ >= VL53L0X_DEFAULT_MAX_LOOP) 
    	     { ErrState = VL53L0X_ERROR_TIME_OUT;} 
    	   else { Polling_delay(); }  
      } // while ends
}

void VL53L0X::Range_meas_int_continuous_mode(void (*fptr)(void))
{   Stop_Measurement(); // it is safer to do this while sensor is stopped

    Set_GPIO_config(VL53L0X_DEVICEMODE_CONTINUOUS_RANGING,
            GPIO_FUNC_NEW_MEASURE_READY, VL53L0X_INTERRUPTPOLARITY_HIGH);
    if (ErrState==VL53L0X_OK) {
        Attach_interrupt_measure_detection_irq(fptr);
        Enable_interrupt_measure_detection_irq();   }

    Clear_interrupt_mask(REG_RESULT_INTERRUPT_STATUS | REG_RESULT_RANGE_STATUS);
    // NB: return value was previously only passed to logging macro,but did not get passed back 

    if (ErrState==VL53L0X_OK) { Range_start_continuous_mode(); }
}


VL53L0X_Error VL53L0X::Start_Measurement(TOperatingMode operating_mode, void (*fptr)(void))
{   uint8_t VhvSettings;
    uint8_t PhaseCal;
    // *** from mass market cube expansion v1.1,ranging with satellites.
    // default settings,for normal range.
    TFP1616 signalLimit = (TFP1616)(0.25 * 65536);
    TFP1616 sigmaLimit = (TFP1616)(18 * 65536);
    uint32_t timingBudget = 33000;
    uint8_t preRangeVcselPeriod = 14;
    uint8_t finalRangeVcselPeriod = 10;

    switch (operating_mode) {
     case op_INT:
        if (_gpio1Int == NULL) { ErrState=1; return ErrState; }
        Stop_Measurement(); // it is safer to do this while sensor is stopped

        Set_GPIO_config(VL53L0X_DEVICEMODE_CONTINUOUS_RANGING,
             GPIO_FUNC_NEW_MEASURE_READY, VL53L0X_INTERRUPTPOLARITY_HIGH);

        if (ErrState == VL53L0X_OK) 
         {  Attach_interrupt_measure_detection_irq(fptr);
            Enable_interrupt_measure_detection_irq(); }

        Clear_interrupt_mask(REG_RESULT_INTERRUPT_STATUS | REG_RESULT_RANGE_STATUS);
    	// NB: return value was previously only passed to logging macro, but did not get passed back 

        // Setup in continuous ranging mode
        Set_device_mode(VL53L0X_DEVICEMODE_CONTINUOUS_RANGING);
        Start_Measurement();
		break;

	case op_single_shot_poll:
        // singelshot,polled ranging; no need to do this when we use VL53L0X_PerformSingleRangingMeasurement
        Set_device_mode(VL53L0X_DEVICEMODE_SINGLE_RANGING); // Setup in single ranging mode

        // Enable/Disable Sigma and Signal check
        if (ErrState == VL53L0X_OK) 
          { Set_limit_chk_en(VL53L0X_CHECKEN_SIGMA_FINAL_RANGE,1); }
        
        if (ErrState == VL53L0X_OK) 
          { Set_limit_chk_en(VL53L0X_CHECKEN_SIG_RATE_FINAL_RANGE,1); }
        

    	/* Ranging configuration */
		// *** from mass market cube expansion v1.1,ranging with satellites.
		//        switch(rangingConfig) {
		//        case LONG_RANGE:
        signalLimit = (TFP1616)(0.1 * 65536);
        sigmaLimit = (TFP1616)(60 * 65536);
        timingBudget = 33000;
        preRangeVcselPeriod = 18;
        finalRangeVcselPeriod = 14;
        /*        	break;
                case HIGH_ACCURACY:
        			signalLimit = (TFP1616)(0.25*65536);
        			sigmaLimit = (TFP1616)(18*65536);
        			timingBudget = 200000;
        			preRangeVcselPeriod = 14;
        			finalRangeVcselPeriod = 10;
        			break;
                case HIGH_SPEED:
        			signalLimit = (TFP1616)(0.25*65536);
        			sigmaLimit = (TFP1616)(32*65536);
        			timingBudget = 20000;
        			preRangeVcselPeriod = 14;
        			finalRangeVcselPeriod = 10;
         			break;
                default:
                	debug_printf("Not Supported");
                }
        */

        if (ErrState == VL53L0X_OK) 
           { Set_limit_chk_val(VL53L0X_CHECKEN_SIG_RATE_FINAL_RANGE,signalLimit);}

        if (ErrState == VL53L0X_OK) 
           { Set_limit_chk_val(VL53L0X_CHECKEN_SIGMA_FINAL_RANGE,sigmaLimit);}

        if (ErrState == VL53L0X_OK) 
           { Set_Measure_Time_Budget_us(timingBudget);}

        if (ErrState == VL53L0X_OK) 
           { Set_vcsel_PPeriod(VL53L0X_VCSEL_PRE_RANGE,preRangeVcselPeriod); }

        if (ErrState == VL53L0X_OK) 
           { Set_vcsel_PPeriod(VL53L0X_VCSEL_FINAL_RANGE,finalRangeVcselPeriod);}

        if (ErrState == VL53L0X_OK) 
           { Perf_Ref_calibration(&VhvSettings,&PhaseCal,1); }
		break;
	case  op_poll:  // Setup in continuous ranging mode
        Set_device_mode(VL53L0X_DEVICEMODE_CONTINUOUS_RANGING);
        Start_Measurement(); 
    } // switch
    return ErrState;
}

VL53L0X_Error VL53L0X::Stop_Measurement(TOperatingMode operating_mode)
{   if ((ErrState == VL53L0X_OK) &
        (operating_mode == op_INT || operating_mode == op_poll) )
	  { // only stop if in one of the continuous modes !!!!
        Stop_Measurement();
        Wait_Stop_Completed();
        Clear_interrupt_mask( REG_SYSINT_GPIO_NEW_SAMPLE_READY);
      }
    return ErrState;
}

TRangeResults VL53L0X::Handle_irq(TOperatingMode operating_mode)
{	TRangeResults RangeResults;
    RangeResults = Get_Measurement(operating_mode);
    Enable_interrupt_measure_detection_irq();
    return RangeResults;
}

/****************** Private device functions *************************/

void VL53L0X::Wait_read_strobe()
{   uint32_t loop_nb = 0;

    Write_Byte(0x83,0x00); // set strobe register to 0

    /* polling while no error, no strobe, and not reached max number of loop to avoid deadlock*/
    while ((ErrState == VL53L0X_OK) && (Read_Byte(0x83) == 0x00) ) 
      {  if (loop_nb++ >= VL53L0X_DEFAULT_MAX_LOOP) 
          { ErrState = VL53L0X_ERROR_TIME_OUT; } } 

    Write_Byte(0x83,0x01); // set strobe register back to 1 'manually'
}

void VL53L0X::Get_info_from_device(uint8_t option)
{   uint8_t byte;
    uint32_t tmp_dword;
    uint8_t module_id;
    uint8_t revision;
    uint8_t reference_SPAD_count = 0;
    uint8_t reference_SPAD_type = 0;
    uint32_t part_uid_upper = 0;
    uint32_t part_uid_lower = 0;
    uint32_t offset_fixed1104_mm = 0;
    int16_t offset_um = 0;
    uint32_t dist_meas_tgt_fixed1104_mm = 400 << 4;
    uint32_t dist_meas_fixed1104_400_mm = 0;
    uint32_t signal_rate_meas_fixed1104_400_mm = 0;
    char product_id[19];
    uint8_t read_data_from_device_done;
    TFP1616 signal_rate_meas_fixed400_mm_fix = 0;
    uint8_t nvm_Ref_good_SPAD_map[REF_SPAD_BUFFER_SIZE];
    int i;

	read_data_from_device_done = DevSpecParams.ReadDataFromDeviceDone; 

    /* This access is done only once after that a GetDeviceInfo or datainit is done*/
    if (read_data_from_device_done != 7) {
        Write_Byte(0x80,0x01);
        Write_Byte(0xFF,0x01);
        Write_Byte(0x00,0x00);
        Write_Byte(0xFF,0x06);
        byte = Read_Byte(0x83); 
        Write_Byte(0x83,byte | 4);
        Write_Byte(0xFF,0x07);
        Write_Byte(0x81,0x01);
        Polling_delay(); // warning, does nothing!!
        Write_Byte(0x80,0x01);

        if (((option & 1) == 1) &&
            ((read_data_from_device_done & 1) == 0)) {
            Write_Byte(0x94,0x6b);
            Wait_read_strobe();
            tmp_dword = Read_DWord(0x90); 
            reference_SPAD_count = (uint8_t)((tmp_dword >>  8) & 0x7f);
            reference_SPAD_type  = (uint8_t)((tmp_dword >> 15) & 0x01);

            Write_Byte(0x94,0x24);
            Wait_read_strobe();
            tmp_dword = Read_DWord(0x90); 
            nvm_Ref_good_SPAD_map[0] = (uint8_t)((tmp_dword >> 24)& 0xff);
            nvm_Ref_good_SPAD_map[1] = (uint8_t)((tmp_dword >> 16)& 0xff);
            nvm_Ref_good_SPAD_map[2] = (uint8_t)((tmp_dword >>  8)& 0xff);
            nvm_Ref_good_SPAD_map[3] = (uint8_t)(tmp_dword & 0xff);

            Write_Byte(0x94,0x25);
            Wait_read_strobe();
            tmp_dword = Read_DWord(0x90); 
            nvm_Ref_good_SPAD_map[4] = (uint8_t)((tmp_dword >> 24)& 0xff);
            nvm_Ref_good_SPAD_map[5] = (uint8_t)((tmp_dword >> 16)& 0xff);
        }

        if (((option & 2) == 2) && ((read_data_from_device_done & 2) == 0)) {
            Write_Byte(0x94,0x02);
            Wait_read_strobe();
            module_id = Read_Byte(0x90); 

            Write_Byte(0x94,0x7B);
            Wait_read_strobe();
            revision = Read_Byte(0x90); 

            Write_Byte(0x94,0x77);
            Wait_read_strobe();
            tmp_dword = Read_DWord(0x90); 
            product_id[0] = (char)((tmp_dword >> 25) & 0x07f);
            product_id[1] = (char)((tmp_dword >> 18) & 0x07f);
            product_id[2] = (char)((tmp_dword >> 11) & 0x07f);
            product_id[3] = (char)((tmp_dword >>  4) & 0x07f);

            byte = (uint8_t)((tmp_dword & 0x00f) << 3);

            Write_Byte(0x94,0x78);
            Wait_read_strobe();
            tmp_dword = Read_DWord(0x90); 
            product_id[4] = (char)(byte +((tmp_dword >> 29) & 0x07f));
            product_id[5] = (char)((tmp_dword >> 22) & 0x07f);
            product_id[6] = (char)((tmp_dword >> 15) & 0x07f);
            product_id[7] = (char)((tmp_dword >> 8) & 0x07f);
            product_id[8] = (char)((tmp_dword >> 1) & 0x07f);
            byte = (uint8_t)((tmp_dword & 0x001) << 6);

            Write_Byte(0x94,0x79);
            Wait_read_strobe();
            tmp_dword = Read_DWord(0x90); 
            product_id[9] = (char)(byte +((tmp_dword >> 26) & 0x07f));
            product_id[10] = (char)((tmp_dword >> 19) & 0x07f);
            product_id[11] = (char)((tmp_dword >> 12) & 0x07f);
            product_id[12] = (char)((tmp_dword >> 5) & 0x07f);

            byte = (uint8_t)((tmp_dword & 0x01f) << 2);

            Write_Byte(0x94,0x7A);
            Wait_read_strobe();
            tmp_dword = Read_DWord(0x90); 
            product_id[13] = (char)(byte +((tmp_dword >> 30) & 0x07f));
            product_id[14] = (char)((tmp_dword >> 23) & 0x07f);
            product_id[15] = (char)((tmp_dword >> 16) & 0x07f);
            product_id[16] = (char)((tmp_dword >> 9) & 0x07f);
            product_id[17] = (char)((tmp_dword >> 2) & 0x07f);
            product_id[18] = '\0';
        }

        if (((option & 4) == 4) && ((read_data_from_device_done & 4) == 0)) 
          { Write_Byte(0x94,0x7B);
            Wait_read_strobe();
            part_uid_upper = Read_DWord(0x90); 

            Write_Byte(0x94,0x7C);
            Wait_read_strobe();
            part_uid_lower = Read_DWord(0x90); 

            Write_Byte(0x94,0x73);
            Wait_read_strobe();
            tmp_dword = Read_DWord(0x90); 
            signal_rate_meas_fixed1104_400_mm = (tmp_dword & 0x0000000ff) << 8;

            Write_Byte(0x94,0x74);
            Wait_read_strobe();
            tmp_dword = Read_DWord(0x90); 
            signal_rate_meas_fixed1104_400_mm |= ((tmp_dword &
                                                   0xff000000) >> 24);

            Write_Byte(0x94,0x75);
            Wait_read_strobe();
            tmp_dword = Read_DWord(0x90); 
            dist_meas_fixed1104_400_mm = (tmp_dword & 0x0000000ff)<< 8;

            Write_Byte(0x94,0x76);
            Wait_read_strobe();
            tmp_dword = Read_DWord(0x90); 
            dist_meas_fixed1104_400_mm |= ((tmp_dword & 0xff000000) >> 24);
        }

        Write_Byte(0x81,0x00);
        Write_Byte(0xFF,0x06);
        Write_Byte(0x83,Read_Byte(0x83) & 0xfb);
        Write_Byte(0xFF,0x01);
        Write_Byte(0x00,0x01);
        Write_Byte(0xFF,0x00);
        Write_Byte(0x80,0x00);
    }

    if ((ErrState == VL53L0X_OK) && (read_data_from_device_done != 7)) {
        /* Assign to variable if ErrState is ok */
        if (((option & 1) == 1) && ((read_data_from_device_done & 1) == 0)) 
          { DevSpecParams.ReferenceSPADCount=reference_SPAD_count;
            DevSpecParams.ReferenceSPADType =reference_SPAD_type;
            for (i = 0; i < REF_SPAD_BUFFER_SIZE; i++) 
              { SPADData.RefGoodSPADMap[i] =  nvm_Ref_good_SPAD_map[i]; }
          }

        if (((option & 2) == 2) &&((read_data_from_device_done & 2) == 0)) 
          { DevSpecParams.ModuleId = module_id;
            DevSpecParams.Revision = revision;
            strcpy(DevSpecParams.ProductId, product_id);
          }

        if (((option & 4) == 4) && ((read_data_from_device_done & 4) == 0)) {
            DevSpecParams.PartUIDUpper = part_uid_upper;
            DevSpecParams.PartUIDLower = part_uid_lower;
            signal_rate_meas_fixed400_mm_fix =
                FP97_TO_FP1616(signal_rate_meas_fixed1104_400_mm);
            DevSpecParams.SignalRateMeasFixed400mm = signal_rate_meas_fixed400_mm_fix;
            DevSpecParams.SignalRateMeasFixed400mm = signal_rate_meas_fixed400_mm_fix;

            offset_um = 0;
            if (dist_meas_fixed1104_400_mm != 0) {
                offset_fixed1104_mm = dist_meas_fixed1104_400_mm -
                    dist_meas_tgt_fixed1104_mm;
                offset_um = (offset_fixed1104_mm * 1000) >> 4;
                offset_um *= -1;
            }
            NVM_Offset_Cal_um = offset_um; 
        }
        byte = (uint8_t)(read_data_from_device_done | option);
        DevSpecParams.ReadDataFromDeviceDone = byte;
    }
}

/******************************************************************************/
/****************** Small Service and wrapper functions  **********************/
/******************************************************************************/
uint32_t refArrayQuadrants[4] = {REF_ARRAY_SPAD_10,REF_ARRAY_SPAD_5,
                                 REF_ARRAY_SPAD_0,REF_ARRAY_SPAD_5 }; 


uint32_t VL53L0X::Decode_timeout(uint16_t encoded_timeout)
{  /*Decode 16-bit timeout register value - format (LSByte * 2^MSByte) + 1 */
    return ((uint32_t) (encoded_timeout & 0x00FF)            
         << (uint32_t)((encoded_timeout & 0xFF00) >> 8)) + 1;
}

uint8_t VL53L0X::Is_ApertureSPAD(uint32_t SPAD_index)
{   /* This function reports if a given SPAD index is an aperture SPAD by
     * deriving the quadrant = SPAD_index >> 6. */
    if (refArrayQuadrants[SPAD_index >> 6] == REF_ARRAY_SPAD_0) 
       { return 0; } else { return 1; }
}

/******************************************************************************/
/****************** Write and read functions from I2C *************************/
/******************************************************************************/

void VL53L0X::Write_Byte(uint8_t index, uint8_t data)
{   I2c_Write(index,&data,1);   }

void VL53L0X::Write_Word(uint8_t index,uint16_t data)
{   uint8_t buffer[2];
    buffer[0] = data >> 8;
    buffer[1] = data & 0x00FF;
    I2c_Write(index,(uint8_t *)buffer,2);
}

void VL53L0X::Write_DWord(uint8_t index, uint32_t data)
{  uint8_t buffer[4];
    buffer[0] = (data >> 24) & 0xFF;
    buffer[1] = (data >> 16) & 0xFF;
    buffer[2] = (data >>  8) & 0xFF;
    buffer[3] = (data >>  0) & 0xFF;
    I2c_Write(index,(uint8_t *)buffer,4);
}

uint8_t VL53L0X::Read_Byte(uint8_t index)
{  uint8_t result;
   I2c_Read(index,&result,1);
   return result;
}

uint16_t VL53L0X::Read_Word(uint8_t index)
{   uint8_t buffer[2] = {0,0};
    I2c_Read(index, &buffer[0], 2);
    return (buffer[0] << 8) + buffer[1];
}

uint32_t VL53L0X::Read_DWord(uint8_t index)
{   uint8_t buffer[4] = {0,0,0,0};
    I2c_Read(index,buffer,4);
    return (buffer[0] << 24) + (buffer[1] << 16) + (buffer[2] <<  8) +  buffer[3];
}

void VL53L0X::Register_BitMask(uint8_t index,uint8_t and_mask,uint8_t or_mask)
{   uint8_t buffer = 0;
    /* read data direct onto buffer */
    I2c_Read(index,&buffer,1);
    if (ErrState==VL53L0X_OK) {
        buffer = (buffer & and_mask) | or_mask;
        I2c_Write(index,&buffer,(uint8_t)1);
    }
}

/**
 * @brief  Writes a buffer towards the I2C peripheral device.
 * @param  RegisterAddr specifies the internal address register
 * @param  p_data pointer to the byte-array data to send
 *         where to start writing to (must be correctly masked).
 * @param  NumByteToWrite number of bytes to be written.
 * @note   On some devices if NumByteToWrite is greater
 *         than one, the RegisterAddr must be masked correctly!  */
void VL53L0X::I2c_Write( uint8_t  RegisterAddr,  uint8_t  *p_data,
                            uint16_t NumByteToWrite )
{   int ret;
    uint8_t tmp[TEMP_BUF_SIZE];

	if (ErrState != VL53L0X_OK)  {return; } // no comms while in Error State!!!!
	
    if (NumByteToWrite >= TEMP_BUF_SIZE) 
        {ErrState = VL53L0X_ERROR_I2C_BUF_OVERFLOW; return; };

    /* First, send device address. Then, send data and terminate with STOP condition */
    tmp[0] = RegisterAddr;
    memcpy(tmp+1, p_data, NumByteToWrite);
    ret = _dev_i2c->write(I2cDevAddr, (const char*)tmp, NumByteToWrite+1, false);

    if (ret) { ErrState = VL53L0X_ERROR_CONTROL_INTERFACE;  }
}

    /**@brief  Reads a buffer from the I2C peripheral device.
     * @param  pBuffer pointer to the byte-array to read data in to
     * @param  I2cDevAddr specifies the peripheral device slave address.
     * @param  RegisterAddr specifies the internal address register
     *         where to start reading from (must be correctly masked).
     * @param  NumByteToRead number of bytes to be read, maximum VL53L0X_MAX_I2C_XFER_SIZE
     * @note   On some devices if NumByteToWrite is greater
     *         than one, the RegisterAddr must be masked correctly!
     */
void VL53L0X::I2c_Read(uint8_t RegisterAddr,  uint8_t *p_data,
                          uint16_t NumByteToRead)
{   int ret;
	if (ErrState != VL53L0X_OK)  {return; } // no comms while in Error State, return value undefined!!!!
	
     /*  Send device address, without STOP condition  */
    ret = _dev_i2c->write(I2cDevAddr, (const char*)&RegisterAddr, 1, true);
    if(!ret) /*   Read data, with STOP condition   */
       { ret = _dev_i2c->read(I2cDevAddr, (char*)p_data, NumByteToRead, false); }

    if (ret) { ErrState = VL53L0X_ERROR_CONTROL_INTERFACE;  }
}

/******************************************************************************/