Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Dependencies: ADS1115 BME280 CronoDot SDFileSystem mbed
Fork of Outdoor_UPAS_v1_2_powerfunction by
main.cpp
- Committer:
- caseyquinn
- Date:
- 2016-04-27
- Revision:
- 35:e0bdd6389a75
- Parent:
- 34:da333abe3476
- Child:
- 36:2e344db70d35
File content as of revision 35:e0bdd6389a75:
#include "mbed.h"
#include "SDFileSystem.h"
#include "Adafruit_ADS1015.h"
#include "MCP40D17.h"
#include "STC3100.h"
#include "LSM303.h"
#include "BME280.h"
#include "SI1145.h"
#include "NCP5623BMUTBG.h"
#include "CronoDot.h"
#include "EEPROM.h"
#include "Calibration.h"
#include "MAX_M8.h"
#include "DRV8830.h"
/////////////////////////////////////////////
//General Items
/////////////////////////////////////////////
I2C i2c(PB_9, PB_8);//(D14, D15); SDA,SCL
Serial pc(USBTX, USBRX);
DigitalOut pumps(PA_9, 0);//(D8, 0);
DigitalOut pbKill(PC_12, 1); // Digital input pin that conncect to the LTC2950 battery charger used to shutdown the UPAS
DigitalIn nINT(PA_15); //Connected but currently unused is a digital ouput pin from LTC2950 battery charger. http://cds.linear.com/docs/en/datasheet/295012fd.pdf
MCP40D17 DigPot(&i2c);
BME280 bmesensor(PB_9, PB_8);//(D14, D15);
NCP5623BMUTBG RGB_LED(PB_9, PB_8);//(D14, D15);
CronoDot RTC_UPAS(PB_9, PB_8);//(D14, D15);
EEPROM E2PROM(PB_9, PB_8);//(D14, D15);
Calibration calibrations(1); //Default serial/calibration if there are no values for the selected option
/////////////////////////////////////////////
//RN4677 BT/BLE Module
/////////////////////////////////////////////
Serial microChannel(PB_10, PB_11); // tx, rx
DigitalOut bleRTS(PB_14, 0);
DigitalOut bleCTS(PB_13, 0);
DigitalOut BT_IRST(PC_8, 0);
DigitalOut BT_SW(PA_12, 0);
/////////////////////////////////////////////
//Analog to Digital Converter
/////////////////////////////////////////////
Adafruit_ADS1115 ads(&i2c);
//DigitalIn ADS_ALRT(PA_10); //Connected but currently unused. (ADS1115) http://www.ti.com/lit/ds/symlink/ads1115.pdf
/////////////////////////////////////////////
//Battery Monitoring
/////////////////////////////////////////////
STC3100 gasG(PB_9, PB_8);//(D14, D15); // http://www.st.com/web/en/resource/technical/document/datasheet/CD00219947.pdf
InterruptIn bcs1(PC_9); //Charge complete if High. Connected but currently unused. (MCP73871) http://www.mouser.com/ds/2/268/22090a-52174.pdf
InterruptIn bcs2(PA_8); //Batt charging if High. Connected but currently unused. (MCP73871) http://www.mouser.com/ds/2/268/22090a-52174.pdf
/////////////////////////////////////////////
//Accelerometer and Magnometer
/////////////////////////////////////////////
LSM303 movementsensor(PB_9, PB_8);//(D14, D15); // http://www.st.com/web/en/resource/technical/document/datasheet/DM00027543.pdf
//DigitalIn ACC_INT1(PC_7); //Connected but currently unused. (LSM303)
//DigitalIn ACC_INT2(PC_6); //Connected but currently unused. (LSM303)
//DigitalIn ACC_DRDY(PC_11); //Connected but currently unused. (LSM303)
/////////////////////////////////////////////
//UV and Visible Light Sensor
/////////////////////////////////////////////
SI1145 lightsensor(PB_9, PB_8);//(D14, D15);
//DigitalIn UV_INT(PD_2); //Connected but currently unused nor configured (interupt). (SI1145) https://www.silabs.com/Support%20Documents/TechnicalDocs/Si1145-46-47.pdf
/////////////////////////////////////////////
//GPS
/////////////////////////////////////////////
DigitalOut gpsEN(PB_15, 0);
Max_M8 gps(PB_9, PB_8,(0x84));
/////////////////////////////////////////////
//Hbridge Valve Control
/////////////////////////////////////////////
DRV8830 schoolF1(PB_9, PB_8, 0xC4); //Work/School Filter
DRV8830 homeF2(PB_9, PB_8, 0xCA); //Home Filter
DRV8830 transitF3(PB_9, PB_8, 0xCC); //Transit Filter
DRV8830 blankF4(PB_9, PB_8, 0xCE); //Blank Filter
DigitalIn hb1_school(PA_6);
DigitalIn hb2_home(PA_7);
DigitalIn hb3_transit(PA_5);
DigitalIn hb4_blank(PA_4);
/////////////////////////////////////////////
//SD Card
/////////////////////////////////////////////
char filename[] = "/sd/XXXX0000LOG000000000000---------------.txt";
SDFileSystem sd(PB_5, PB_4, PB_3, PB_6, "sd");//(D4, D5, D3, D10, "sd"); // (MOSI, MISO, SCK, SEL)
DigitalIn sdCD(PA_11, PullUp);
/////////////////////////////////////////////
//Callbacks
/////////////////////////////////////////////
Ticker stop; //This is the stop callback object
Ticker logg; //This is the logging callback object
Ticker flowCtl; //This is the control loop callback object
/////////////////////////////////////////////
//Varible Definitions
/////////////////////////////////////////////
uint16_t serial_num = 1; // Default serial/calibration number
int RunReady =0;
bool ledOn = 0;
struct tm STtime;
char timestr[32];
float press;
float temp;
float rh;
int uv;
int vis;
int ir;
float compass;
float accel_x;
float accel_y;
float accel_z;
float accel_comp;
float angle_x;
float angle_y;
float angle_z;
float mag_x;
float mag_y;
float mag_z;
int vInReading;
int vInReadingLast;
int vBlowerReading;
int omronDiff;
float omronVolt; //V
int omronReading;
float atmoRho; //g/L
int amps;
int bVolt;
int bFuel;
//bool pumpOn;
float massflow; //g/min
float volflow; //L/min
float volflowSet = 1.0; //L/min
int logInerval = 5;//seconds
double secondsD = 0;
double lastsecondD = 0;
float massflowSet;
float deltaVflow = 0.0;
float deltaMflow = 0.0;
float gainFlow;
float sampledVol; //L, total sampled volume
int digital_pot_setpoint = 30; //min = 0x7F, max = 0x00
int digital_pot_set;
int digital_pot_change;
int digitalpotMax = 127;
int digitalpotMin = 10;
int dutyUp;
int dutyDown;
bool gpsFix;
uint8_t gpssatellites = 0;
double gpsspeed = 0.0;
double gpscourse = 0.0;
double gpslatitude = 0.0;
double gpslongitude = 0.0;
float gpsaltitude = 0.0;
float home_lat = 40.00000; //40.580508;
float home_lon = -105.000000; //-105.081823;
float work_lat = 40.100000; //40.594062; //40.569136;
float work_lon = -105.100000; //-105.075683; //-105.081966;
int location = 0;
float homeDistance = 99999;
float workDistance = 99999;
//*************************************************//
void sendData();
void pc_recv(){
while(pc.readable()){
pc.getc();
}
}
static uint8_t rx_buf[20];
static uint8_t rx_len=0;
static int haltBLE = 1;
static int transmissionValue = 0;
uint8_t writeData[20] = {0,};
static uint8_t dataLength = 0;
static int runReady = 0;
static uint8_t startAndEndTime[12] = {0,};
//////////////////////////////////////////////////////////////
//BLE Functions
//////////////////////////////////////////////////////////////
void uartMicro(){
if(runReady!=1){
haltBLE = 2;
while(microChannel.readable()){
rx_buf[rx_len++] = microChannel.getc();
//Code block to verify what is being transmitted. To function correctly, all data must terminate with \0 or \n
if(transmissionValue==0){
if (rx_buf[0] == 0x01)transmissionValue = 1; //rtc
else if(rx_buf[0] == 0x02)transmissionValue = 2; //sample start and end times
else if(rx_buf[0] == 0x03)transmissionValue = 3; //sample name
else if(rx_buf[0] == 0x04)transmissionValue = 4; //Send Data Check
else if(rx_buf[0] == 0x05)transmissionValue = 5; //log interval
else if(rx_buf[0] == 0x06)transmissionValue = 6; //Flow Rate
else if(rx_buf[0] == 0x07)transmissionValue = 7; //Serial Number
else if(rx_buf[0] == 0x08)transmissionValue = 8; //Run Enable
else if(rx_buf[0] == 0x0A)transmissionValue = 10; //GPS Coordinates
else if(rx_buf[0] == 0x0B)transmissionValue = 11; //GPS Coordinates (Second Set)
//else if(rx_buf[0] == 0x30)RGB_LED.set_led(1,0,0);
else transmissionValue = 100; //Not useful data
}
if(rx_buf[rx_len-1]=='\0' || rx_buf[rx_len-1]=='\n' || rx_buf[rx_len-1] == 0xff){
if((transmissionValue == 1 || transmissionValue == 2 || transmissionValue == 3 || transmissionValue == 4 || transmissionValue == 5 ||
transmissionValue == 6 || transmissionValue == 7 || transmissionValue ==10) && rx_buf[rx_len-1] != 0xff)
{}else{
if(transmissionValue == 4 ) sendData();
if(transmissionValue == 8){
runReady = 1;
microChannel.attach(NULL,microChannel.RxIrq);
}
haltBLE = 1;
transmissionValue = 0;
dataLength = 0;
//if(fileWrite == 1){
//FILE *fp = fopen(gpsConfigFilename, "a");
//fprintf(fp,"HELLO");
//fclose(fp);
//free(fp);
//fileWrite=0;
//}
}
}
}
if(haltBLE!=1){
if((transmissionValue!=100) && (dataLength!= 0)) writeData[dataLength-1] = rx_buf[0];
if(transmissionValue ==100){
pc.putc(rx_buf[0]);
}else if(transmissionValue ==1){ //process and store RTC values
//if(dataLength==6)RTC_UPAS.set_time(writeData[0],writeData[1],writeData[2],writeData[3],writeData[3],writeData[4],writeData[5]);//sets chronodot RTC
if(dataLength==6){
RTC_UPAS.set_time(writeData[0],writeData[1],writeData[2],writeData[3],writeData[3],writeData[4],writeData[5]);//sets chronodot RTC
///////////////////////
//sets ST RTC
//////////////////////
STtime.tm_sec = writeData[0]; // 0-59
STtime.tm_min = writeData[1]; // 0-59
STtime.tm_hour = writeData[2]; // 0-23
STtime.tm_mday = writeData[3]; // 1-31
STtime.tm_mon = writeData[4]-1; // 0-11
STtime.tm_year = 100+writeData[5]; // year since 1900 (116 = 2016)
time_t STseconds = mktime(&STtime);
set_time(STseconds); // Set RTC time
}
}
else if(transmissionValue ==2){ //process and store sample start/end
if(dataLength ==12)E2PROM.write(0x00015, writeData, 12);
}else if(transmissionValue ==3){ //process and store sample name
if(dataLength ==8)E2PROM.write(0x00001,writeData,8);
}else if(transmissionValue ==5){ //process and store Log Interval
if(dataLength ==1)E2PROM.write(0x00014,writeData,1);
}else if(transmissionValue ==6){ //process and store Flow Rate
if(dataLength ==4)E2PROM.write(0x00010,writeData,4);
}else if(transmissionValue ==7){ //process and store Serial Number
if(dataLength ==2)E2PROM.write(0x00034,writeData,2);
}else if (transmissionValue == 10){
if(dataLength == 16)E2PROM.write(0x00050,writeData,16);
}else if (transmissionValue == 11){
if(dataLength == 8)E2PROM.write(0x00060,writeData,8);
}
dataLength++;
}
rx_len = 0;
}else{
while(microChannel.readable())
uint8_t extract = microChannel.getc();
}
}
void sendData(){
//First byte is designator for the App
uint8_t sampleTimePassValues[13] = {0x01,0x00,0x00,0x0A,0x01,0x01,0x10,0x00,0x00,0x0A,0x01,0x01,0x10};
uint8_t subjectLabelOriginal[9] = {0x02,0x52,0x45,0x53,0x45,0x54,0x5F,0x5F,0x5f};
uint8_t dataLogOriginal[2] = {0x03,0x0A,};
uint8_t flowRateOriginal[5] = {0x04,0x00,0x00,0x80,0x3F};
uint8_t serialBytes[3] = {0x07,0x00,0x00};
uint8_t latLongSchoolOriginal[17] = {0x0A,0x00,0x00,0x80,0x3F,0x00,0x00,0x80,0x3F,0x00,0x00,0x80,0x3F,0x00,0x00,0x80,0x3F};
uint8_t latLongHome2[9] = {0x0B,0x00,0x00,0x80,0x3F,0x00,0x00,0x80,0x3F};
// Latitude School EEPROM = 0x50-0x53
// Longitude School EEPROM = 0x54-0x57
// Latitude Home EEPROM = 0x58-0x5B
// Longitude Home EEPROM = 0x5C-0x5F
uint8_t NEW_EEPROM_CHECK[1] = {0,}; //THIS IS USED TO ENSURE COOPERATION WITH MOBILE APPS
uint8_t TERMINATE_BYTE[1] = {0xff,}; //used for compatibility with android app
//NEW EEPROM Check bit = 0x75
E2PROM.read(0x00075,NEW_EEPROM_CHECK,1);
if(NEW_EEPROM_CHECK[0] == 0x0A){
E2PROM.read(0x00015, sampleTimePassValues+1, 12);
E2PROM.read(0x00001, subjectLabelOriginal+1,8);
E2PROM.read(0x00014,dataLogOriginal+1,1);
E2PROM.read(0x00010,flowRateOriginal+1,4);
E2PROM.read(0x00034,serialBytes+1,2);
E2PROM.read(0x00050,latLongSchoolOriginal+1,16);
E2PROM.read(0x00060,latLongHome2+1,8);
}else{
NEW_EEPROM_CHECK[0] = 0x0A;
E2PROM.write(0x00075,NEW_EEPROM_CHECK,1);
E2PROM.write(0x00015, sampleTimePassValues+1, 12);
E2PROM.write(0x00001, subjectLabelOriginal+1,8);
E2PROM.write(0x00014,dataLogOriginal+1,1);
E2PROM.write(0x00010,flowRateOriginal+1,4);
E2PROM.write(0x00034,serialBytes+1,2);
E2PROM.write(0x00050,latLongSchoolOriginal+1,16);
E2PROM.write(0x00060,latLongHome2+1,8);
}
for(int i=0; i<13; i++){
microChannel.putc(sampleTimePassValues[i]);
}
wait(.15);
for(int i=0; i<9; i++){
microChannel.putc(subjectLabelOriginal[i]);
}
wait(.15);
for(int i=0; i<2; i++){
microChannel.putc(dataLogOriginal[i]);
}
wait(.15);
for(int i=0; i<5; i++){
microChannel.putc(flowRateOriginal[i]);
}
wait(.15);
for(int i=0;i<17;i++){
microChannel.putc(latLongSchoolOriginal[i]);
}
wait(.15);
for(int i=0;i<9;i++){
microChannel.putc(latLongHome2[i]);
}
wait(.15);
microChannel.putc(TERMINATE_BYTE[0]);
}
//////////////////////////////////////////////////////////////
// GPS: Calculate distance from target location
//////////////////////////////////////////////////////////////
double GPSdistanceCalc (float tlat, float tlon)
{
float tlatrad, flatrad;
float sdlong, cdlong;
float sflat, cflat;
float stlat, ctlat;
float delta, denom;
double distance;
delta = (gpslongitude-tlon)*0.0174532925;
sdlong = sin(delta);
cdlong = cos(delta);
flatrad = (gpslatitude)*0.0174532925;
tlatrad = (tlat)*0.0174532925;
sflat = sin(flatrad);
cflat = cos(flatrad);
stlat = sin(tlatrad);
ctlat = cos(tlatrad);
delta = (cflat * stlat) - (sflat * ctlat * cdlong);
delta = pow(delta,2);
delta += pow(ctlat * sdlong,2);
delta = sqrt(delta);
denom = (sflat * stlat) + (cflat * ctlat * cdlong);
delta = atan2(delta, denom);
distance = delta * 6372795;
return distance;
}
//////////////////////////////////////////////////////////////
//Shutdown Function
//////////////////////////////////////////////////////////////
void check_stop() // this checks if it's time to stop and shutdown
{
//!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
//UPDATE THIS TO WORK WITH ST RTC INSTEAD
//!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
if(RTC_UPAS.compare(startAndEndTime[6], startAndEndTime[7], startAndEndTime[8], startAndEndTime[9], startAndEndTime[10], startAndEndTime[11])) {
pbKill = 0; // this is were we shut everything down
//pc.printf("If you're reading this something has gone very wrong.");
}
}
//////////////////////////////////////////////////////////////
//SD Logging Function
//////////////////////////////////////////////////////////////
void log_data()
{
//Get time and set RTC
///////////////////////////
time_t seconds = time(NULL);
strftime(timestr, 32, "%y%m%d%H%M%S", localtime(&seconds));
RTC_UPAS.get_time();
//Get Sensor Data except GPS
////////////////////////////
press = bmesensor.getPressure();
temp = bmesensor.getTemperature()-5.0;
rh = bmesensor.getHumidity();
uv = lightsensor.getUV();
movementsensor.getACCEL();
movementsensor.getCOMPASS();
compass = movementsensor.getCOMPASS_HEADING();
accel_x = movementsensor.AccelData.x;
accel_y = movementsensor.AccelData.y;
accel_z = movementsensor.AccelData.z;
accel_comp = pow(accel_x,(float)2)+pow(accel_y,(float)2)+pow(accel_z,(float)2)-1.0;
mag_x = movementsensor.MagData.x;
mag_y = movementsensor.MagData.y;
mag_z = movementsensor.MagData.z;
vInReadingLast = vInReading;
vInReading = ads.readADC_SingleEnded(1, 0xD583); // read channel 0
amps = gasG.getAmps();
bVolt = gasG.getVolts();
bFuel = gasG.getCharge();
//Check for fully charged battery
if(bVolt > 1750 && amps > 8191) {
RGB_LED.set_led(0,1,0);
//Check for battery with ~2 hours left of runtime at 2lpm or if after 8pm to remind user to plug in sampler
}else if(amps > 8191 && (RTC_UPAS.hour >=20 || bVolt < 1500)) {
if(ledOn) {
RGB_LED.set_led(0,0,0);
ledOn = 0;
}else {
RGB_LED.set_led(1,0,0);
ledOn = 1;
}
//No LED on when not low battery and not fully charged
}else{
RGB_LED.set_led(0,0,0);
}
// Get GPS Data
//////////////////////////////
//if(gpsEN ==1){
gpsFix = gps.read(1);
gpsspeed = gps.speed;
//gpscourse = gps.course;
gpssatellites = gps.satellites;
gpslatitude = gps.lat;
gpslongitude = gps.lon;
gpsaltitude = gps.altitude;
if(gpsFix){
workDistance = GPSdistanceCalc (work_lat, work_lon);
homeDistance = GPSdistanceCalc (home_lat, home_lon);
RGB_LED.set_led(0,0,0);
if(workDistance < 50) {
location = 1;
//RGB_LED.set_led(0,1,1);
}else if(homeDistance < 50) { // 25 or 30 m instead?
location = 2;
//RGB_LED.set_led(1,0,1);
}else{
location = 3;
//RGB_LED.set_led(1,1,1);
}
}else if(homeDistance == 99999 && workDistance == 99999){
location = 0;
RGB_LED.set_led(1,1,0);
}
//}
//Check for 3.3V rail cut out and turn off pumps in this event
if(vInReading > 5950 && amps > 8191) {
pumps = 0;
wait(1);
//Turn pumps back on once the sampler is plugged in and charging after pumps shutoff and 3.3V rail drops out
} else if(pumps == 0 && amps < 8191) {
// If pumps are plugged in the next morning assume the sampler is at school if after 8 if no GPSfix is available
if(gpsFix == 0 && RTC_UPAS.hour>8){
gpslatitude = work_lat; // specific to Rivendell Study. In case student forgets to plug in and teachers catch this. Assume if plugged in after 8 and no GPS signal will change to proper valve. Hopefully...
gpslongitude = work_lon; // specific to Rivendell Study. In case student forgets to plug in and teachers catch this. Assume if plugged in after 8 and no GPS signal will change to proper valve. Hopefully...
}
//Adjust valves to ensure everything is in proper place before pumps restart
/*
schoolF1.getFault();
homeF2.getFault();
transitF3.getFault();
blankF4.getFault();
schoolF1.drive(254); //closed = 253, open = 254
homeF2.drive(253); //closed = 253, open = 254
transitF3.drive(253); //closed = 253, open = 254
blankF4.drive(253); //closed = 253, open = 254
wait(1);
schoolF1.stop();
homeF2.stop();
transitF3.stop();
blankF4.stop();
*/
//pumps = 1;
}
if(pumps == 1){
omronReading = ads.readADC_SingleEnded(0, 0xC383); // read channel 0 PGA = 2 : Full Scale Range = 2.048V
omronVolt = (omronReading*4.096)/(32768*1);
if(omronVolt<=calibrations.omronVMin) {
massflow = calibrations.omronMFMin;
} else if(omronVolt>=calibrations.omronVMax) {
massflow = calibrations.omronMFMax;
} else {
massflow = calibrations.MF4*pow(omronVolt,(float)4)+calibrations.MF3*pow(omronVolt,(float)3)+calibrations.MF2*pow(omronVolt,(float)2)+calibrations.MF1*omronVolt+calibrations.MF0;
}
atmoRho = ((press-((6.1078*pow((float)10,(float)((7.5*temp)/(237.3+temp))))*(rh/100)))*100)/(287.0531*(temp+273.15))+((6.1078*pow((float)10,(float)((7.5*temp)/(237.3+temp))))*(rh/100)*100)/(461.4964*(temp+273.15));
volflow = massflow/atmoRho;
sampledVol = sampledVol + ((((float)logInerval)/60.0)*volflow);
deltaVflow = volflow-volflowSet;
massflowSet = volflowSet*atmoRho;
deltaMflow = massflow-massflowSet;
vBlowerReading = ads.readADC_SingleEnded(2, 0xE783); // read channel 0
omronDiff = ads.readADC_Differential(0x8583); // differential channel 2-3
}
FILE *fp = fopen(filename, "a");
fprintf(fp, "%02d,%02d,%02d,%02d,%02d,%02d,",RTC_UPAS.year, RTC_UPAS.month,RTC_UPAS.date,RTC_UPAS.hour,RTC_UPAS.minutes,RTC_UPAS.seconds);
fprintf(fp, "%s,", timestr);
fprintf(fp, "%1.3f,%1.3f,%2.2f,%4.2f,%2.1f,%1.3f,", omronVolt,massflow,temp,press,rh,atmoRho);
fprintf(fp, "%1.3f,%5.1f,%1.1f,%1.1f,%1.1f,%1.1f,", volflow, sampledVol, accel_x, accel_y, accel_z, accel_comp);
fprintf(fp, "%.1f,%.1f,%.1f,%.3f,%.3f,%.3f,%.1f,", angle_x,angle_y,angle_z,mag_x, mag_y, mag_z,compass);
fprintf(fp, "%d,%d,%d,%d,%d,%d," ,uv,omronReading, vInReading, vBlowerReading, omronDiff,amps);
fprintf(fp, "%d,%d,%d,%1.3f,%1.3f,", bVolt, bFuel,digital_pot_set, deltaMflow, deltaVflow);
fprintf(fp, "%f,%f,%06d,%06d,", gpslatitude, gpslongitude, (long)gps.date, (long)gps.utc);
//fprintf(fp, "%f,%d,%f,%f,%d,", gpsspeed, gpssatellites, gpscourse, gpsaltitude, gpsFix);
fprintf(fp, "%f,%d,%f,%d,", gpsspeed, gpssatellites, gpsaltitude, gpsFix);
fprintf(fp, "%f,%f,%d,%d\r\n", homeDistance, workDistance, location, pumps == 1); // test and add in speed, etc that Josh added in to match the adafruit GPS
fclose(fp);
free(fp);
}
//////////////////////////////////////////////////////////////
//Flow Control Function
//////////////////////////////////////////////////////////////
void flowControl()
{
//RGB_LED.set_led(0,1,0);
omronReading = ads.readADC_SingleEnded(0, 0xC383); // read channel 0 PGA = 2 : Full Scale Range = 2.048V
omronVolt = (omronReading*4.096)/(32768*1);
if(omronVolt<=calibrations.omronVMin) {
massflow = calibrations.omronMFMin;
} else if(omronVolt>=calibrations.omronVMax) {
massflow = calibrations.omronMFMax;
} else {
massflow = calibrations.MF4*pow(omronVolt,(float)4)+calibrations.MF3*pow(omronVolt,(float)3)+calibrations.MF2*pow(omronVolt,(float)2)+calibrations.MF1*omronVolt+calibrations.MF0;
}
atmoRho = ((press-((6.1078*pow((float)10,(float)((7.5*temp)/(237.3+temp))))*(rh/100)))*100)/(287.0531*(temp+273.15))+((6.1078*pow((float)10,(float)((7.5*temp)/(237.3+temp))))*(rh/100)*100)/(461.4964*(temp+273.15));
volflow = massflow/atmoRho;
sampledVol = sampledVol + ((((float)logInerval)/60.0)*volflow);
deltaVflow = volflow-volflowSet;
massflowSet = volflowSet*atmoRho;
deltaMflow = massflow-massflowSet;
if(abs(deltaMflow)>.025) {
digital_pot_change = (int)(gainFlow*deltaMflow);
if(abs(digital_pot_change)>=10) {
digital_pot_set = (int)(digital_pot_set+ (int)(1*deltaMflow));
//RGB_LED.set_led(1,0,0);
} else {
digital_pot_set = (digital_pot_set+ digital_pot_change);
//RGB_LED.set_led(1,1,0);
}
if(digital_pot_set>=digitalpotMax) {
digital_pot_set = digitalpotMax;
//RGB_LED.set_led(1,0,0);
} else if(digital_pot_set<=digitalpotMin) {
digital_pot_set = digitalpotMin;
//RGB_LED.set_led(1,0,0);
}
DigPot.writeRegister(digital_pot_set);
} else {
//RGB_LED.set_led(0,1,0);
}
}
//////////////////////////////////////////////////////////////
//Main Function
//////////////////////////////////////////////////////////////
int main(){
RGB_LED.set_led(0,0,1);
/*
while(1){
if(sdCD == 0){
RGB_LED.set_led(0,1,0);
}else{
RGB_LED.set_led(1,0,0);
}
wait(10);
}
schoolF1.getFault();
homeF2.getFault();
transitF3.getFault();
blankF4.getFault();
schoolF1.drive(253); //closed = 253, open = 254
homeF2.drive(253); //closed = 253, open = 254
transitF3.drive(253); //closed = 253, open = 254
blankF4.drive(253); //closed = 253, open = 254
wait(1);
schoolF1.stop();
homeF2.stop();
transitF3.stop();
blankF4.stop();
*/
schoolF1.getFault();
homeF2.getFault();
transitF3.getFault();
blankF4.getFault();
schoolF1.drive(253); //closed = 253, open = 254
homeF2.drive(254); //closed = 253, open = 254
transitF3.drive(253); //closed = 253, open = 254
blankF4.drive(253); //closed = 253, open = 254
wait(1);
schoolF1.stop();
homeF2.stop();
transitF3.stop();
blankF4.stop();
gpsEN = 1;
wait(1);
BT_SW = 1;
wait(1);
BT_IRST = 1;
wait(1);
pc.baud(115200); // set what you want here depending on your terminal program speed
pc.printf("\f\n\r-------------Startup-------------\n\r");
wait(0.5);
uint8_t serialNumberAndType[6] = {0x50,0x53,}; //ex) PS0018 // 0x50,0x53 <- ASCII 80 + 83 (PS) //0x4d,0x53 <- ASCII 77 + 83 (MS)
E2PROM.read(0x00034,serialNumberAndType+2,2);
int tempSerialNum = ((serialNumberAndType[2]-48)*10 + serialNumberAndType[3]-48);
if(tempSerialNum < 18){
serialNumberAndType[0] = 0x4D;
}
int serialNumDigits[4];
serialNumDigits[0] = tempSerialNum / 1000 % 10;
serialNumDigits[1] = tempSerialNum / 100 % 10;
serialNumDigits[2] = tempSerialNum / 10 % 10;
serialNumDigits[3] = tempSerialNum % 10;
serialNumberAndType[2] = serialNumDigits[0]+48;
serialNumberAndType[3] = serialNumDigits[1]+48;
serialNumberAndType[4] = serialNumDigits[2]+48;
serialNumberAndType[5] = serialNumDigits[3]+48;
/*
serialNumberAndType[2] = serialNumDigits[0];
serialNumberAndType[3] = serialNumDigits[1];
serialNumberAndType[4] = serialNumDigits[2];
serialNumberAndType[5] = serialNumDigits[3];
*/
RGB_LED.set_led(0,1,0);
pc.attach(pc_recv);
microChannel.attach(uartMicro,microChannel.RxIrq);
microChannel.baud(115200);
microChannel.printf("$$$");
wait(0.5);
microChannel.printf("SN,");
for(int i=0;i<6;i++)microChannel.putc(serialNumberAndType[i]);
microChannel.printf("\r");
wait(0.5);
microChannel.printf("A\r");
wait(0.5);
microChannel.printf("---\r");
wait(0.5);
RGB_LED.set_led(1,1,1);
while(runReady!=1) {
wait(1);
pc.printf("Waiting for BLE instruction\r\n");
}
E2PROM.read(0x00015, startAndEndTime, 12); //Grab start and end times from EEPROM
RGB_LED.set_led(0,1,0);
//Pull MicroEnviornment Lat/Lons from EEPROM
// Latitude School EEPROM = 0x50-0x53
// Longitude School EEPROM = 0x54-0x57
// Latitude Home EEPROM = 0x58-0x5B
// Longitude Home EEPROM = 0x5C-0x5F
uint8_t workLat[4] = {0,};
E2PROM.read(0x00050,workLat,4);
E2PROM.byteToFloat(workLat, &work_lat);
uint8_t workLon[4] = {0,};
E2PROM.read(0x00054,workLon,4);
E2PROM.byteToFloat(workLon, &work_lon);
uint8_t homeLat[4] = {0,};
E2PROM.read(0x00058,homeLat,4);
E2PROM.byteToFloat(homeLat, &home_lat);
uint8_t homeLon[4] = {0,};
E2PROM.read(0x0005C,homeLon,4);
E2PROM.byteToFloat(homeLon, &home_lon);
pc.printf("%f,%f\r\n%f,%f\r\n", home_lat, home_lon, work_lat, work_lon);
//!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
//UPDATE THIS TO WORK WITH ST RTC INSTEAD
//!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
BT_SW = 0;
wait(1);
BT_IRST = 0;
wait(1);
while(!RTC_UPAS.compare(startAndEndTime[0], startAndEndTime[1], startAndEndTime[2], startAndEndTime[3], startAndEndTime[4], startAndEndTime[5])) { // this while waits for the start time by looping until the start time
wait(0.5);
RTC_UPAS.get_time();
}
//Get the subject line information
uint8_t subjectLabelOriginal[8] = {0,};
E2PROM.read(0x00001, subjectLabelOriginal,8);
//Get the proper serial number
uint8_t serialBytes[2] = {0,};
E2PROM.read(0x00034,serialBytes,2);
serial_num = (uint16_t)(((serialBytes[0]-48)*10 + serialBytes[1]-48));
////////////////////////////////////////////////////////////////////
//Temporary fix for setting serial_num
////////////////////////////////////////////////////////////////////
//uint8_t serialsubjectLabelOriginal[2] = {0,};
//E2PROM.read(0x00001, serialsubjectLabelOriginal,2);
//uint8_t newserialBytes[2] = {0,};
if(subjectLabelOriginal[2] == 126){
E2PROM.write(0x00034,subjectLabelOriginal,2);
serial_num = (uint16_t)(((subjectLabelOriginal[0]-48)*10 + subjectLabelOriginal[1]-48));
}
//----------------------------------------------
calibrations.initialize(serial_num);
pc.printf("%d\r\n", serial_num);
pc.printf("%f\r\n",calibrations.MF4);
//----------------------------------------------
////////////////////////////////////////////////////////////////////
uint8_t logByte[1] = {0,};
E2PROM.read(0x00014,logByte,1);
logInerval = logByte[0];
//Use the flow rate value stored in eeprom
uint8_t flowRateBytes[4] = {0,};
E2PROM.read(0x00010,flowRateBytes,4);
E2PROM.byteToFloat(flowRateBytes, &volflowSet);
if(volflowSet<=1.0) {
gainFlow = 100;
} else if(volflowSet>=2.0) {
gainFlow = 25;
} else {
gainFlow = 25;
}
RGB_LED.set_led(1,0,0);
press = bmesensor.getPressure();
temp = bmesensor.getTemperature();
rh = bmesensor.getHumidity();
atmoRho = ((press-((6.1078*pow((float)10,(float)((7.5*temp)/(237.3+temp))))*(rh/100)))*100)/(287.0531*(temp+273.15))+((6.1078*pow((float)10,(float)((7.5*temp)/(237.3+temp))))*(rh/100)*100)/(461.4964*(temp+273.15));
massflowSet = volflowSet*atmoRho;
DigPot.writeRegister(digital_pot_setpoint);
wait(1);
pumps = 1;
//pumpOn = 1;
if(volflowSet<=1.0) {
gainFlow = 100;
} else if(volflowSet>=2.0) {
gainFlow = 25;
} else {
gainFlow = 25;
}
RGB_LED.set_led(1,0,0);
press = bmesensor.getPressure();
temp = bmesensor.getTemperature();
rh = bmesensor.getHumidity();
atmoRho = ((press-((6.1078*pow((float)10,(float)((7.5*temp)/(237.3+temp))))*(rh/100)))*100)/(287.0531*(temp+273.15))+((6.1078*pow((float)10,(float)((7.5*temp)/(237.3+temp))))*(rh/100)*100)/(461.4964*(temp+273.15));
massflowSet = volflowSet*atmoRho;
//Digtal pot tf from file: UPAS v2 OSU-PrimaryFlowData FullSet 2015-05-29 CQ mods.xlsx
digital_pot_setpoint = (int)floor(calibrations.DP4*pow(massflowSet,4)+calibrations.DP3*pow(massflowSet,3)+calibrations.DP2*pow(massflowSet,2)+calibrations.DP1*massflowSet+calibrations.DP0); //min = 0x7F, max = 0x00
if(digital_pot_setpoint>=digitalpotMax) {
digital_pot_setpoint = digitalpotMax;
} else if(digital_pot_setpoint<=digitalpotMin) {
digital_pot_setpoint = digitalpotMin;
}
pc.printf("%d\r\n", digital_pot_setpoint);
DigPot.writeRegister(digital_pot_setpoint);
wait(1);
pumps = 1;
time_t seconds = time(NULL);
strftime(timestr, 32, "%y-%m-%d-%H=%M=%S", localtime(&seconds));
if(tempSerialNum < 18){
sprintf(filename, "/sd/MS%04dLOG_%02d-%02d-%02d_%02d=%02d=%02d_%c%c%c%c%c%c%c%c.txt",serial_num,RTC_UPAS.year,RTC_UPAS.month,RTC_UPAS.date,RTC_UPAS.hour,RTC_UPAS.minutes,RTC_UPAS.seconds,subjectLabelOriginal[0],subjectLabelOriginal[1],subjectLabelOriginal[2],subjectLabelOriginal[3],subjectLabelOriginal[4],subjectLabelOriginal[5],subjectLabelOriginal[6],subjectLabelOriginal[7]);
}
else{
sprintf(filename, "/sd/PS%04dLOG_%02d-%02d-%02d_%02d=%02d=%02d_%c%c%c%c%c%c%c%c.txt",serial_num,RTC_UPAS.year,RTC_UPAS.month,RTC_UPAS.date,RTC_UPAS.hour,RTC_UPAS.minutes,RTC_UPAS.seconds,subjectLabelOriginal[0],subjectLabelOriginal[1],subjectLabelOriginal[2],subjectLabelOriginal[3],subjectLabelOriginal[4],subjectLabelOriginal[5],subjectLabelOriginal[6],subjectLabelOriginal[7]);
}
//sprintf(filename, "/sd/UPAS_TboardtestLog_%s_%c%c%c%c%c%c%c%c.txt", timestr,subjectLabelOriginal[0],subjectLabelOriginal[1],subjectLabelOriginal[2],subjectLabelOriginal[3],subjectLabelOriginal[4],subjectLabelOriginal[5],subjectLabelOriginal[6],subjectLabelOriginal[7]);
//sprintf(filename, "/sd/UPAS_TboardtestLog_%s.txt", timestr);
FILE *fp = fopen(filename, "w");
fclose(fp);
omronReading = ads.readADC_SingleEnded(0, 0xC383); // read channel 0 PGA = 2 : Full Scale Range = 2.048V
omronVolt = (omronReading*4.096)/(32768*1);
if(omronVolt<=calibrations.omronVMin) {
massflow = calibrations.omronMFMin;
} else if(omronVolt>=calibrations.omronVMax) {
massflow = calibrations.omronMFMax;
} else {
massflow = calibrations.MF4*pow(omronVolt,(float)4)+calibrations.MF3*pow(omronVolt,(float)3)+calibrations.MF2*pow(omronVolt,(float)2)+calibrations.MF1*omronVolt+calibrations.MF0;
}
deltaMflow = massflow-massflowSet;
digital_pot_set = digital_pot_setpoint;
wait(5);
//---------------------------------------------------------------------------------------------//
//Sets the flow withen +-1.5% of the desired flow rate based on mass flow
while(abs(deltaMflow)>.025) {
omronReading = ads.readADC_SingleEnded(0, 0xC383); // read channel 0 PGA = 2 : Full Scale Range = 2.048V
omronVolt = (omronReading*4.096)/(32768*1);
//Mass Flow tf from file: UPAS v2 OSU-PrimaryFlowData FullSet 2015-05-29 CQ mods.xlsx
if(omronVolt<=calibrations.omronVMin) {
massflow = calibrations.omronMFMin;
} else if(omronVolt>=calibrations.omronVMax) {
massflow = calibrations.omronMFMax;
} else {
massflow = calibrations.MF4*pow(omronVolt,(float)4)+calibrations.MF3*pow(omronVolt,(float)3)+calibrations.MF2*pow(omronVolt,(float)2)+calibrations.MF1*omronVolt+calibrations.MF0;
}
atmoRho = ((press-((6.1078*pow((float)10,(float)((7.5*temp)/(237.3+temp))))*(rh/100)))*100)/(287.0531*(temp+273.15))+((6.1078*pow((float)10,(float)((7.5*temp)/(237.3+temp))))*(rh/100)*100)/(461.4964*(temp+273.15));
volflow = massflow/atmoRho;
massflowSet = volflowSet*atmoRho;
deltaMflow = massflow-massflowSet;
digital_pot_set = (int)(digital_pot_set+(int)((gainFlow*deltaMflow)));
if(digital_pot_set>=digitalpotMax) {
digital_pot_set = digitalpotMax;
} else if(digital_pot_set<=digitalpotMin) {
digital_pot_set = digitalpotMin;
}
wait(2);
DigPot.writeRegister(digital_pot_set);
pc.printf("%d,\r\n", digital_pot_set);
wait(1);
}
sampledVol = 0.0;
RGB_LED.set_led(0,1,0);
wait(1);
RGB_LED.set_led(0,0,0);
stop.attach(&check_stop, 9); // check if we should shut down every 9 number seconds, starting after the start.
logg.attach(&log_data, logInerval);
flowCtl.attach(&flowControl, 3);
/*
wait(60);
schoolF1.getFault();
homeF2.getFault();
transitF3.getFault();
blankF4.getFault();
schoolF1.drive(254); //closed = 253, open = 254
homeF2.drive(253); //closed = 253, open = 254
transitF3.drive(253); //closed = 253, open = 254
blankF4.drive(253); //closed = 253, open = 254
wait(1);
schoolF1.stop();
homeF2.stop();
transitF3.stop();
blankF4.stop();
wait(60);
schoolF1.getFault();
homeF2.getFault();
transitF3.getFault();
blankF4.getFault();
schoolF1.drive(253); //closed = 253, open = 254
homeF2.drive(254); //closed = 253, open = 254
transitF3.drive(253); //closed = 253, open = 254
blankF4.drive(253); //closed = 253, open = 254
wait(1);
schoolF1.stop();
homeF2.stop();
transitF3.stop();
blankF4.stop();
wait(60);
schoolF1.getFault();
homeF2.getFault();
transitF3.getFault();
blankF4.getFault();
schoolF1.drive(253); //closed = 253, open = 254
homeF2.drive(253); //closed = 253, open = 254
transitF3.drive(254); //closed = 253, open = 254
blankF4.drive(253); //closed = 253, open = 254
wait(1);
schoolF1.stop();
homeF2.stop();
transitF3.stop();
blankF4.stop();
wait(60);
schoolF1.getFault();
homeF2.getFault();
transitF3.getFault();
blankF4.getFault();
schoolF1.drive(253); //closed = 253, open = 254
homeF2.drive(253); //closed = 253, open = 254
transitF3.drive(253); //closed = 253, open = 254
blankF4.drive(254); //closed = 253, open = 254
wait(1);
schoolF1.stop();
homeF2.stop();
transitF3.stop();
blankF4.stop();
*/
//** end of initalization **//
//---------------------------------------------------------------------------------------------//
//---------------------------------------------------------------------------------------------//
// Main Control Loop
while (1) {
// Do other things...
/*
pumps = 1;
wait(5);
pumps = 0;
wait(5);
*/
}
}
