helpfor studient
Dependents: STM32_F103-C8T6basecanblink_led
Fork of mbed-dev by
targets/TARGET_TOSHIBA/TARGET_TMPM46B/i2c_api.c
- Committer:
- Anna Bridge
- Date:
- 2018-04-20
- Revision:
- 186:9c2029bfadbe
- Parent:
- 185:08ed48f1de7f
File content as of revision 186:9c2029bfadbe:
/* mbed Microcontroller Library * (C)Copyright TOSHIBA ELECTRONIC DEVICES & STORAGE CORPORATION 2017 All rights reserved * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "i2c_api.h" #include "mbed_error.h" #include "PeripheralNames.h" #include "pinmap.h" #include "tmpm46b_i2c.h" #include <string.h> #include <stdlib.h> static const PinMap PinMap_I2C_SDA[] = { {PK2, I2C_0, PIN_DATA(3, 2)}, {PF7, I2C_1, PIN_DATA(4, 2)}, {PH0, I2C_2, PIN_DATA(4, 2)}, {NC, NC, 0} }; static const PinMap PinMap_I2C_SCL[] = { {PK3, I2C_0, PIN_DATA(3, 2)}, {PF6, I2C_1, PIN_DATA(4, 2)}, {PH1, I2C_2, PIN_DATA(4, 2)}, {NC, NC, 0} }; #define SBI_I2C_SEND 0x00 #define SBI_I2C_RECEIVE 0x01 #define MAX_NUM_I2C 3 #define DELAY_MS_MULTIPLIER 5500 struct i2c_xfer { int32_t count; int32_t len; void *done; char *buf; }; // Clock setting structure definition typedef struct { uint32_t sck; uint32_t prsck; } I2C_clock_setting_t; static void DelayMS(uint32_t delay) { volatile uint32_t VarI; for (VarI = 0; VarI < delay * DELAY_MS_MULTIPLIER; VarI++); } static const uint32_t I2C_SCK_DIVIDER_TBL[8] = { 20, 24, 32, 48, 80, 144, 272, 528 }; // SCK Divider value table static I2C_clock_setting_t clk; static I2C_InitTypeDef myi2c; static int32_t start_flag = 1; static struct i2c_xfer xfer[MAX_NUM_I2C]; static TSB_I2C_TypeDef *i2c_lut[MAX_NUM_I2C] = {TSB_I2C0, TSB_I2C1, TSB_I2C2}; static char *gI2C_TxData = NULL; static char *gI2C_LTxData = NULL; static uint8_t send_byte = 0; static uint8_t byte_func = 0; // Initialize the I2C peripheral. It sets the default parameters for I2C void i2c_init(i2c_t *obj, PinName sda, PinName scl) { MBED_ASSERT(obj != NULL); I2CName i2c_sda = (I2CName)pinmap_peripheral(sda, PinMap_I2C_SDA); I2CName i2c_scl = (I2CName)pinmap_peripheral(scl, PinMap_I2C_SCL); I2CName i2c_name = (I2CName)pinmap_merge(i2c_sda, i2c_scl); MBED_ASSERT((int)i2c_name != NC); switch(i2c_name) { case I2C_0: CG_SetFcPeriphB(CG_FC_PERIPH_I2C0, ENABLE); CG_SetFcPeriphA(CG_FC_PERIPH_PORTK, ENABLE); obj->i2c = TSB_I2C0; obj->index = 0; obj->IRQn = INTI2C0_IRQn; break; case I2C_1: CG_SetFcPeriphB(CG_FC_PERIPH_I2C1, ENABLE); CG_SetFcPeriphA(CG_FC_PERIPH_PORTF, ENABLE); obj->i2c = TSB_I2C1; obj->index = 1; obj->IRQn = INTI2C1_IRQn; break; case I2C_2: CG_SetFcPeriphB(CG_FC_PERIPH_I2C2, ENABLE); CG_SetFcPeriphA(CG_FC_PERIPH_PORTH, ENABLE); obj->i2c = TSB_I2C2; obj->index = 2; obj->IRQn = INTI2C2_IRQn; break; default: error("I2C is not available"); break; } pinmap_pinout(sda, PinMap_I2C_SDA); pin_mode(sda, OpenDrain); pin_mode(sda, PullUp); pinmap_pinout(scl, PinMap_I2C_SCL); pin_mode(scl, OpenDrain); pin_mode(scl, PullUp); i2c_reset(obj); i2c_frequency(obj, 100000); } // Configure the I2C frequency void i2c_frequency(i2c_t *obj, int hz) { uint32_t sck = 0; uint32_t tmp_sck = 0; uint32_t prsck = 1; uint32_t tmp_prsck = 1; uint32_t fscl = 0; uint32_t tmp_fscl = 0; uint64_t fx; if (hz <= 400000) { // Maximum 400khz clock frequency supported by M46B for (prsck = 1; prsck <= 32; prsck++) { fx = ((uint64_t)SystemCoreClock / prsck); if ((fx < 20000000U) && (fx > 6666666U)) { for (sck = 0; sck <= 7; sck++) { fscl = (fx / (uint64_t)I2C_SCK_DIVIDER_TBL[sck]); if ((fscl <= (uint64_t)hz) && (fscl > tmp_fscl)) { tmp_fscl = fscl; tmp_sck = sck; tmp_prsck = (prsck < 32)? prsck: 1; } } } } clk.sck = (uint32_t)tmp_sck; clk.prsck = (tmp_prsck < 32)? (uint32_t)tmp_prsck - 1 : 1; } else { clk.sck = I2C_SCK_CLK_DIV_24; clk.prsck = I2C_PRESCALER_DIV_4; } myi2c.I2CSelfAddr = 0xE0; // Self Address myi2c.I2CDataLen = I2C_DATA_LEN_8; myi2c.I2CACKState = ENABLE; myi2c.I2CClkDiv = clk.sck; myi2c.PrescalerClkDiv = clk.prsck; I2C_SWReset(obj->i2c); I2C_Init(obj->i2c, &myi2c); NVIC_EnableIRQ(obj->IRQn); I2C_SetINTReq(obj->i2c, ENABLE); } int i2c_start(i2c_t *obj) { start_flag = 1; return 0; } int i2c_stop(i2c_t *obj) { I2C_GenerateStop(obj->i2c); return 0; } void i2c_reset(i2c_t *obj) { I2C_SWReset(obj->i2c); } static void wait_i2c_bus_free(i2c_t *obj) { I2C_State status; do { status = I2C_GetState(obj->i2c); } while (status.Bit.BusState); } int i2c_read(i2c_t *obj, int address, char *data, int length, int stop) { TSB_I2C_TypeDef *sbi = obj->i2c; uint32_t i2c_num = 0; obj->address = address; i2c_num = obj->index; // receive data xfer[i2c_num].count = 0; xfer[i2c_num].len = length; xfer[i2c_num].buf = data; I2C_SetSendData(sbi, address | SBI_I2C_RECEIVE); I2C_GenerateStart(sbi); wait_i2c_bus_free(obj); return (xfer[i2c_num].count - 1); } int i2c_write(i2c_t *obj, int address, const char *data, int length, int stop) { int8_t i = 0; TSB_I2C_TypeDef *sbi = obj->i2c; uint32_t i2c_num = 0; obj->address = address; i2c_num = obj->index; gI2C_TxData = (char *)calloc(length, sizeof(int8_t)); for (i = 0; i < length; i++) { gI2C_TxData[i] = data[i]; } // receive data xfer[i2c_num].count = 0; xfer[i2c_num].len = length; xfer[i2c_num].buf = gI2C_TxData; I2C_SetSendData(sbi, address | SBI_I2C_SEND); I2C_GenerateStart(sbi); // Start condition wait_i2c_bus_free(obj); free(gI2C_TxData); DelayMS(8); if (((xfer[i2c_num].count - 1) == 0) && (byte_func == 1)) { send_byte = 1; i2c_byte_write(obj, 0x00); xfer[i2c_num].count = 1; byte_func = 0; } return (xfer[i2c_num].count - 1); } int i2c_byte_read(i2c_t *obj, int last) { char i2c_ret = 0; i2c_read(obj, obj->address, &i2c_ret, 1, last); return i2c_ret; } int i2c_byte_write(i2c_t *obj, int data) { uint32_t wb = 1; static size_t counter = 1; byte_func = 1; if (start_flag == 0 && send_byte == 0) { gI2C_LTxData = (char *)realloc(gI2C_LTxData, counter++); gI2C_LTxData[counter - 2] = data; } if (send_byte == 1) { wb = i2c_write(obj, obj->address, gI2C_LTxData, (counter - 1), 0); start_flag = 1; send_byte = 0; byte_func = 0; counter = 1; return wb; } else { if (start_flag == 1) { obj->address = data; start_flag = 0; } else { // Store the number of written bytes wb = i2c_write(obj, obj->address, (char*)&data, 1, 0); } if (wb == 1) return 1; else return 0; } } static void i2c_irq_handler(int i2c_num) { uint32_t tmp = 0U; TSB_I2C_TypeDef *sbi = i2c_lut[i2c_num]; I2C_State sbi_sr; sbi_sr = I2C_GetState(sbi); // we don't support slave mode if (!sbi_sr.Bit.MasterSlave) return; if (sbi_sr.Bit.TRx) { // Tx mode if (sbi_sr.Bit.LastRxBit) { // LRB=1: the receiver requires no further data. I2C_GenerateStop(sbi); } else { // LRB=0: the receiver requires further data. if (xfer[i2c_num].count < xfer[i2c_num].len) { I2C_SetSendData(sbi, xfer[i2c_num].buf[xfer[i2c_num].count]); // Send next data } else if (xfer[i2c_num].count == xfer[i2c_num].len) { // I2C data send finished. I2C_GenerateStop(sbi); } else { // Do nothing } xfer[i2c_num].count++; } } else { // Rx Mode if (xfer[i2c_num].count > xfer[i2c_num].len) { I2C_GenerateStop(sbi); I2C_SetACK(sbi, ENABLE); } else { if (xfer[i2c_num].count == xfer[i2c_num].len) { // Rx last data I2C_SetBitNum(sbi, I2C_DATA_LEN_1); } else if (xfer[i2c_num].count == (xfer[i2c_num].len - 1)) { // Rx the data second to last // Not generate ACK for next data Rx end. I2C_SetACK(sbi, DISABLE); } else { // Do nothing } tmp = I2C_GetReceiveData(sbi); if (xfer[i2c_num].count > 0) { xfer[i2c_num].buf[xfer[i2c_num].count - 1U] = tmp; } else { // first read is dummy read } xfer[i2c_num].count++; } } } void INTI2C0_IRQHandler(void) { i2c_irq_handler(0); } void INTI2C1_IRQHandler(void) { i2c_irq_handler(1); } void INTI2C2_IRQHandler(void) { i2c_irq_handler(2); }