helpfor studient
Dependents: STM32_F103-C8T6basecanblink_led
Fork of mbed-dev by
targets/TARGET_NUVOTON/TARGET_M451/analogin_api.c
- Committer:
- <>
- Date:
- 2016-10-28
- Revision:
- 149:156823d33999
- Child:
- 153:fa9ff456f731
File content as of revision 149:156823d33999:
/* mbed Microcontroller Library * Copyright (c) 2015-2016 Nuvoton * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "analogin_api.h" #if DEVICE_ANALOGIN #include "cmsis.h" #include "pinmap.h" #include "PeripheralPins.h" #include "nu_modutil.h" struct nu_adc_var { uint32_t en_msk; }; static struct nu_adc_var adc0_var = { .en_msk = 0 }; static struct nu_adc_var adc1_var = { .en_msk = 0 }; static struct nu_adc_var adc2_var = { .en_msk = 0 }; static struct nu_adc_var adc3_var = { .en_msk = 0 }; static struct nu_adc_var adc4_var = { .en_msk = 0 }; static struct nu_adc_var adc5_var = { .en_msk = 0 }; static struct nu_adc_var adc6_var = { .en_msk = 0 }; static struct nu_adc_var adc7_var = { .en_msk = 0 }; static struct nu_adc_var adc8_var = { .en_msk = 0 }; static struct nu_adc_var adc9_var = { .en_msk = 0 }; static struct nu_adc_var adc10_var = { .en_msk = 0 }; static struct nu_adc_var adc11_var = { .en_msk = 0 }; static struct nu_adc_var adc12_var = { .en_msk = 0 }; static struct nu_adc_var adc13_var = { .en_msk = 0 }; static struct nu_adc_var adc14_var = { .en_msk = 0 }; static struct nu_adc_var adc15_var = { .en_msk = 0 }; static const struct nu_modinit_s adc_modinit_tab[] = { {ADC_0_0, EADC_MODULE, 0, CLK_CLKDIV0_EADC(8), EADC_RST, ADC00_IRQn, &adc0_var}, {ADC_0_1, EADC_MODULE, 0, CLK_CLKDIV0_EADC(8), EADC_RST, ADC00_IRQn, &adc1_var}, {ADC_0_2, EADC_MODULE, 0, CLK_CLKDIV0_EADC(8), EADC_RST, ADC00_IRQn, &adc2_var}, {ADC_0_3, EADC_MODULE, 0, CLK_CLKDIV0_EADC(8), EADC_RST, ADC00_IRQn, &adc3_var}, {ADC_0_4, EADC_MODULE, 0, CLK_CLKDIV0_EADC(8), EADC_RST, ADC00_IRQn, &adc4_var}, {ADC_0_5, EADC_MODULE, 0, CLK_CLKDIV0_EADC(8), EADC_RST, ADC00_IRQn, &adc5_var}, {ADC_0_6, EADC_MODULE, 0, CLK_CLKDIV0_EADC(8), EADC_RST, ADC00_IRQn, &adc6_var}, {ADC_0_7, EADC_MODULE, 0, CLK_CLKDIV0_EADC(8), EADC_RST, ADC00_IRQn, &adc7_var}, {ADC_0_8, EADC_MODULE, 0, CLK_CLKDIV0_EADC(8), EADC_RST, ADC00_IRQn, &adc8_var}, {ADC_0_9, EADC_MODULE, 0, CLK_CLKDIV0_EADC(8), EADC_RST, ADC00_IRQn, &adc9_var}, {ADC_0_10, EADC_MODULE, 0, CLK_CLKDIV0_EADC(8), EADC_RST, ADC00_IRQn, &adc10_var}, {ADC_0_11, EADC_MODULE, 0, CLK_CLKDIV0_EADC(8), EADC_RST, ADC00_IRQn, &adc11_var}, {ADC_0_12, EADC_MODULE, 0, CLK_CLKDIV0_EADC(8), EADC_RST, ADC00_IRQn, &adc12_var}, {ADC_0_13, EADC_MODULE, 0, CLK_CLKDIV0_EADC(8), EADC_RST, ADC00_IRQn, &adc13_var}, {ADC_0_14, EADC_MODULE, 0, CLK_CLKDIV0_EADC(8), EADC_RST, ADC00_IRQn, &adc14_var}, {ADC_0_15, EADC_MODULE, 0, CLK_CLKDIV0_EADC(8), EADC_RST, ADC00_IRQn, &adc15_var}, }; void analogin_init(analogin_t *obj, PinName pin) { obj->adc = (ADCName) pinmap_peripheral(pin, PinMap_ADC); MBED_ASSERT(obj->adc != (ADCName) NC); const struct nu_modinit_s *modinit = get_modinit(obj->adc, adc_modinit_tab); MBED_ASSERT(modinit != NULL); MBED_ASSERT(modinit->modname == obj->adc); EADC_T *eadc_base = (EADC_T *) NU_MODBASE(obj->adc); // NOTE: All channels (identified by ADCName) share a ADC module. This reset will also affect other channels of the same ADC module. if (! ((struct nu_adc_var *) modinit->var)->en_msk) { // Reset this module if no channel enabled SYS_ResetModule(modinit->rsetidx); // Select clock source of paired channels CLK_SetModuleClock(modinit->clkidx, modinit->clksrc, modinit->clkdiv); // Enable clock of paired channels CLK_EnableModuleClock(modinit->clkidx); // Power on ADC //ADC_POWER_ON(ADC); // Set the ADC internal sampling time, input mode as single-end and enable the A/D converter EADC_Open(eadc_base, EADC_CTL_DIFFEN_SINGLE_END); EADC_SetInternalSampleTime(eadc_base, 6); } uint32_t chn = NU_MODSUBINDEX(obj->adc); // Wire pinout pinmap_pinout(pin, PinMap_ADC); // Configure the sample module Nmod for analog input channel Nch and software trigger source EADC_ConfigSampleModule(EADC, chn, EADC_SOFTWARE_TRIGGER, chn); ((struct nu_adc_var *) modinit->var)->en_msk |= 1 << chn; } uint16_t analogin_read_u16(analogin_t *obj) { EADC_T *eadc_base = (EADC_T *) NU_MODBASE(obj->adc); uint32_t chn = NU_MODSUBINDEX(obj->adc); EADC_START_CONV(eadc_base, 1 << chn); while (EADC_GET_PENDING_CONV(eadc_base) & (1 << chn)); uint16_t conv_res_12 = EADC_GET_CONV_DATA(eadc_base, chn); // Just 12 bits are effective. Convert to 16 bits. // conv_res_12: 0000 b11b10b9b8 b7b6b5b4 b3b2b1b0 // conv_res_16: b11b10b9b8 b7b6b5b4 b3b2b1b0 b11b10b9b8 uint16_t conv_res_16 = (conv_res_12 << 4) | (conv_res_12 >> 8); return conv_res_16; } float analogin_read(analogin_t *obj) { uint16_t value = analogin_read_u16(obj); return (float) value * (1.0f / (float) 0xFFFF); } #endif