helpfor studient

Dependents:   STM32_F103-C8T6basecanblink_led

Fork of mbed-dev by mbed official

Committer:
Kojto
Date:
Thu Aug 03 13:13:39 2017 +0100
Revision:
170:19eb464bc2be
Parent:
167:e84263d55307
Child:
172:7d866c31b3c5
This updates the lib to the mbed lib v 148

Who changed what in which revision?

UserRevisionLine numberNew contents of line
<> 149:156823d33999 1 /* mbed Microcontroller Library
<> 149:156823d33999 2 * Copyright (c) 2015-2016 Nuvoton
<> 149:156823d33999 3 *
<> 149:156823d33999 4 * Licensed under the Apache License, Version 2.0 (the "License");
<> 149:156823d33999 5 * you may not use this file except in compliance with the License.
<> 149:156823d33999 6 * You may obtain a copy of the License at
<> 149:156823d33999 7 *
<> 149:156823d33999 8 * http://www.apache.org/licenses/LICENSE-2.0
<> 149:156823d33999 9 *
<> 149:156823d33999 10 * Unless required by applicable law or agreed to in writing, software
<> 149:156823d33999 11 * distributed under the License is distributed on an "AS IS" BASIS,
<> 149:156823d33999 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
<> 149:156823d33999 13 * See the License for the specific language governing permissions and
<> 149:156823d33999 14 * limitations under the License.
<> 149:156823d33999 15 */
<> 149:156823d33999 16
<> 149:156823d33999 17 #include "spi_api.h"
<> 149:156823d33999 18
<> 149:156823d33999 19 #if DEVICE_SPI
<> 149:156823d33999 20
<> 149:156823d33999 21 #include "cmsis.h"
<> 149:156823d33999 22 #include "pinmap.h"
<> 149:156823d33999 23 #include "PeripheralPins.h"
<> 149:156823d33999 24 #include "nu_modutil.h"
<> 149:156823d33999 25 #include "nu_miscutil.h"
<> 149:156823d33999 26 #include "nu_bitutil.h"
<> 149:156823d33999 27
<> 149:156823d33999 28 #if DEVICE_SPI_ASYNCH
<> 149:156823d33999 29 #include "dma_api.h"
<> 149:156823d33999 30 #include "dma.h"
<> 149:156823d33999 31 #endif
<> 149:156823d33999 32
<> 149:156823d33999 33 #define NU_SPI_FRAME_MIN 8
<> 149:156823d33999 34 #define NU_SPI_FRAME_MAX 32
<> 149:156823d33999 35 #define NU_SPI_FIFO_DEPTH 8
<> 149:156823d33999 36
<> 149:156823d33999 37 struct nu_spi_var {
<> 149:156823d33999 38 #if DEVICE_SPI_ASYNCH
<> 149:156823d33999 39 uint8_t pdma_perp_tx;
<> 149:156823d33999 40 uint8_t pdma_perp_rx;
<> 149:156823d33999 41 #endif
<> 149:156823d33999 42 };
<> 149:156823d33999 43
<> 149:156823d33999 44 static struct nu_spi_var spi0_var = {
<> 149:156823d33999 45 #if DEVICE_SPI_ASYNCH
<> 149:156823d33999 46 .pdma_perp_tx = PDMA_SPI0_TX,
<> 149:156823d33999 47 .pdma_perp_rx = PDMA_SPI0_RX
<> 149:156823d33999 48 #endif
<> 149:156823d33999 49 };
<> 149:156823d33999 50 static struct nu_spi_var spi1_var = {
<> 149:156823d33999 51 #if DEVICE_SPI_ASYNCH
<> 149:156823d33999 52 .pdma_perp_tx = PDMA_SPI1_TX,
<> 149:156823d33999 53 .pdma_perp_rx = PDMA_SPI1_RX
<> 149:156823d33999 54 #endif
<> 149:156823d33999 55 };
<> 149:156823d33999 56 static struct nu_spi_var spi2_var = {
<> 149:156823d33999 57 #if DEVICE_SPI_ASYNCH
<> 149:156823d33999 58 .pdma_perp_tx = PDMA_SPI2_TX,
<> 149:156823d33999 59 .pdma_perp_rx = PDMA_SPI2_RX
<> 149:156823d33999 60 #endif
<> 149:156823d33999 61 };
<> 149:156823d33999 62 static struct nu_spi_var spi3_var = {
<> 149:156823d33999 63 #if DEVICE_SPI_ASYNCH
<> 149:156823d33999 64 .pdma_perp_tx = PDMA_SPI3_TX,
<> 149:156823d33999 65 .pdma_perp_rx = PDMA_SPI3_RX
<> 149:156823d33999 66 #endif
<> 149:156823d33999 67 };
<> 149:156823d33999 68
<> 149:156823d33999 69 #if DEVICE_SPI_ASYNCH
<> 149:156823d33999 70 static void spi_enable_vector_interrupt(spi_t *obj, uint32_t handler, uint8_t enable);
<> 149:156823d33999 71 static void spi_master_enable_interrupt(spi_t *obj, uint8_t enable);
<> 149:156823d33999 72 static uint32_t spi_master_write_asynch(spi_t *obj, uint32_t tx_limit);
<> 149:156823d33999 73 static uint32_t spi_master_read_asynch(spi_t *obj);
<> 149:156823d33999 74 static uint32_t spi_event_check(spi_t *obj);
<> 149:156823d33999 75 static void spi_enable_event(spi_t *obj, uint32_t event, uint8_t enable);
<> 149:156823d33999 76 static void spi_buffer_set(spi_t *obj, const void *tx, size_t tx_length, void *rx, size_t rx_length);
<> 149:156823d33999 77 static void spi_check_dma_usage(DMAUsage *dma_usage, int *dma_ch_tx, int *dma_ch_rx);
<> 149:156823d33999 78 static uint8_t spi_get_data_width(spi_t *obj);
<> 149:156823d33999 79 static int spi_is_tx_complete(spi_t *obj);
<> 149:156823d33999 80 static int spi_is_rx_complete(spi_t *obj);
<> 149:156823d33999 81 static int spi_writeable(spi_t * obj);
<> 149:156823d33999 82 static int spi_readable(spi_t * obj);
<> 149:156823d33999 83 static void spi_dma_handler_tx(uint32_t id, uint32_t event_dma);
<> 149:156823d33999 84 static void spi_dma_handler_rx(uint32_t id, uint32_t event_dma);
<> 149:156823d33999 85 #endif
<> 149:156823d33999 86
<> 149:156823d33999 87 static uint32_t spi_modinit_mask = 0;
<> 149:156823d33999 88
<> 149:156823d33999 89 static const struct nu_modinit_s spi_modinit_tab[] = {
<> 149:156823d33999 90 {SPI_0, SPI0_MODULE, 0, 0, SPI0_RST, SPI0_IRQn, &spi0_var},
<> 149:156823d33999 91 {SPI_1, SPI1_MODULE, 0, 0, SPI1_RST, SPI1_IRQn, &spi1_var},
<> 149:156823d33999 92 {SPI_2, SPI2_MODULE, 0, 0, SPI2_RST, SPI2_IRQn, &spi2_var},
<> 149:156823d33999 93 {SPI_3, SPI3_MODULE, 0, 0, SPI3_RST, SPI3_IRQn, &spi3_var},
<> 149:156823d33999 94
<> 149:156823d33999 95 {NC, 0, 0, 0, 0, (IRQn_Type) 0, NULL}
<> 149:156823d33999 96 };
<> 149:156823d33999 97
<> 149:156823d33999 98 void spi_init(spi_t *obj, PinName mosi, PinName miso, PinName sclk, PinName ssel) {
<> 149:156823d33999 99 // Determine which SPI_x the pins are used for
<> 149:156823d33999 100 uint32_t spi_mosi = pinmap_peripheral(mosi, PinMap_SPI_MOSI);
<> 149:156823d33999 101 uint32_t spi_miso = pinmap_peripheral(miso, PinMap_SPI_MISO);
<> 149:156823d33999 102 uint32_t spi_sclk = pinmap_peripheral(sclk, PinMap_SPI_SCLK);
<> 149:156823d33999 103 uint32_t spi_ssel = pinmap_peripheral(ssel, PinMap_SPI_SSEL);
<> 149:156823d33999 104 uint32_t spi_data = pinmap_merge(spi_mosi, spi_miso);
<> 149:156823d33999 105 uint32_t spi_cntl = pinmap_merge(spi_sclk, spi_ssel);
<> 149:156823d33999 106 obj->spi.spi = (SPIName) pinmap_merge(spi_data, spi_cntl);
<> 149:156823d33999 107 MBED_ASSERT((int)obj->spi.spi != NC);
<> 149:156823d33999 108
<> 149:156823d33999 109 const struct nu_modinit_s *modinit = get_modinit(obj->spi.spi, spi_modinit_tab);
<> 149:156823d33999 110 MBED_ASSERT(modinit != NULL);
<> 149:156823d33999 111 MBED_ASSERT(modinit->modname == obj->spi.spi);
<> 149:156823d33999 112
<> 149:156823d33999 113 // Reset this module
<> 149:156823d33999 114 SYS_ResetModule(modinit->rsetidx);
<> 149:156823d33999 115
<> 149:156823d33999 116 // Enable IP clock
<> 149:156823d33999 117 CLK_EnableModuleClock(modinit->clkidx);
<> 149:156823d33999 118
<> 149:156823d33999 119 //SPI_T *spi_base = (SPI_T *) NU_MODBASE(obj->spi.spi);
<> 149:156823d33999 120
<> 149:156823d33999 121 pinmap_pinout(mosi, PinMap_SPI_MOSI);
<> 149:156823d33999 122 pinmap_pinout(miso, PinMap_SPI_MISO);
<> 149:156823d33999 123 pinmap_pinout(sclk, PinMap_SPI_SCLK);
<> 149:156823d33999 124 pinmap_pinout(ssel, PinMap_SPI_SSEL);
<> 149:156823d33999 125
<> 149:156823d33999 126 obj->spi.pin_mosi = mosi;
<> 149:156823d33999 127 obj->spi.pin_miso = miso;
<> 149:156823d33999 128 obj->spi.pin_sclk = sclk;
<> 149:156823d33999 129 obj->spi.pin_ssel = ssel;
<> 149:156823d33999 130
<> 149:156823d33999 131 // Configure the SPI data format and frequency
<> 149:156823d33999 132 //spi_format(obj, 8, 0, SPI_MSB); // 8 bits, mode 0
<> 149:156823d33999 133 //spi_frequency(obj, 1000000);
<> 149:156823d33999 134
<> 149:156823d33999 135 #if DEVICE_SPI_ASYNCH
<> 149:156823d33999 136 obj->spi.dma_usage = DMA_USAGE_NEVER;
<> 149:156823d33999 137 obj->spi.event = 0;
<> 149:156823d33999 138 obj->spi.dma_chn_id_tx = DMA_ERROR_OUT_OF_CHANNELS;
<> 149:156823d33999 139 obj->spi.dma_chn_id_rx = DMA_ERROR_OUT_OF_CHANNELS;
<> 149:156823d33999 140 #endif
<> 149:156823d33999 141
<> 149:156823d33999 142 // Mark this module to be inited.
<> 149:156823d33999 143 int i = modinit - spi_modinit_tab;
<> 149:156823d33999 144 spi_modinit_mask |= 1 << i;
<> 149:156823d33999 145 }
<> 149:156823d33999 146
<> 149:156823d33999 147 void spi_free(spi_t *obj)
<> 149:156823d33999 148 {
<> 149:156823d33999 149 #if DEVICE_SPI_ASYNCH
<> 149:156823d33999 150 if (obj->spi.dma_chn_id_tx != DMA_ERROR_OUT_OF_CHANNELS) {
<> 149:156823d33999 151 dma_channel_free(obj->spi.dma_chn_id_tx);
<> 149:156823d33999 152 obj->spi.dma_chn_id_tx = DMA_ERROR_OUT_OF_CHANNELS;
<> 149:156823d33999 153 }
<> 149:156823d33999 154 if (obj->spi.dma_chn_id_rx != DMA_ERROR_OUT_OF_CHANNELS) {
<> 149:156823d33999 155 dma_channel_free(obj->spi.dma_chn_id_rx);
<> 149:156823d33999 156 obj->spi.dma_chn_id_rx = DMA_ERROR_OUT_OF_CHANNELS;
<> 149:156823d33999 157 }
<> 149:156823d33999 158 #endif
<> 149:156823d33999 159
<> 149:156823d33999 160 SPI_Close((SPI_T *) NU_MODBASE(obj->spi.spi));
<> 149:156823d33999 161
<> 149:156823d33999 162 const struct nu_modinit_s *modinit = get_modinit(obj->spi.spi, spi_modinit_tab);
<> 149:156823d33999 163 MBED_ASSERT(modinit != NULL);
<> 149:156823d33999 164 MBED_ASSERT(modinit->modname == obj->spi.spi);
<> 149:156823d33999 165
<> 149:156823d33999 166 SPI_DisableInt(((SPI_T *) NU_MODBASE(obj->spi.spi)), (SPI_FIFO_RXOVIEN_MASK | SPI_FIFO_RXTHIEN_MASK | SPI_FIFO_TXTHIEN_MASK));
<> 149:156823d33999 167 NVIC_DisableIRQ(modinit->irq_n);
<> 149:156823d33999 168
<> 149:156823d33999 169 // Disable IP clock
<> 149:156823d33999 170 CLK_DisableModuleClock(modinit->clkidx);
<> 149:156823d33999 171
<> 149:156823d33999 172 //((struct nu_spi_var *) modinit->var)->obj = NULL;
<> 149:156823d33999 173
<> 149:156823d33999 174 // Mark this module to be deinited.
<> 149:156823d33999 175 int i = modinit - spi_modinit_tab;
<> 149:156823d33999 176 spi_modinit_mask &= ~(1 << i);
<> 149:156823d33999 177 }
<> 149:156823d33999 178 void spi_format(spi_t *obj, int bits, int mode, int slave)
<> 149:156823d33999 179 {
<> 149:156823d33999 180 MBED_ASSERT(bits >= NU_SPI_FRAME_MIN && bits <= NU_SPI_FRAME_MAX);
<> 149:156823d33999 181
<> 149:156823d33999 182 SPI_T *spi_base = (SPI_T *) NU_MODBASE(obj->spi.spi);
<> 149:156823d33999 183
<> 149:156823d33999 184 // NOTE 1: All configurations should be ready before enabling SPI peripheral.
<> 149:156823d33999 185 // NOTE 2: Re-configuration is allowed only as SPI peripheral is idle.
<> 149:156823d33999 186 while (SPI_IS_BUSY(spi_base));
<> 149:156823d33999 187 SPI_DISABLE(spi_base);
<> 149:156823d33999 188
<> 149:156823d33999 189 SPI_Open(spi_base,
<> 149:156823d33999 190 slave ? SPI_SLAVE : SPI_MASTER,
<> 149:156823d33999 191 (mode == 0) ? SPI_MODE_0 : (mode == 1) ? SPI_MODE_1 : (mode == 2) ? SPI_MODE_2 : SPI_MODE_3,
<> 149:156823d33999 192 bits,
<> 149:156823d33999 193 SPI_GetBusClock(spi_base));
<> 149:156823d33999 194 // NOTE: Hardcode to be MSB first.
<> 149:156823d33999 195 SPI_SET_MSB_FIRST(spi_base);
<> 149:156823d33999 196
<> 149:156823d33999 197 if (! slave) {
<> 149:156823d33999 198 // Master
<> 149:156823d33999 199 if (obj->spi.pin_ssel != NC) {
<> 149:156823d33999 200 // Configure SS as low active.
<> 149:156823d33999 201 SPI_EnableAutoSS(spi_base, SPI_SS0, SPI_SS_ACTIVE_LOW);
<> 149:156823d33999 202 // NOTE: In NUC472 series, all SPI SS pins are SS0, so we can hardcode SS0 here.
<> 149:156823d33999 203 }
<> 149:156823d33999 204 else {
<> 149:156823d33999 205 SPI_DisableAutoSS(spi_base);
<> 149:156823d33999 206 }
<> 149:156823d33999 207 }
<> 149:156823d33999 208 else {
<> 149:156823d33999 209 // Slave
<> 149:156823d33999 210 // Configure SS as low active.
<> 149:156823d33999 211 spi_base->SSCTL &= ~SPI_SSCTL_SSACTPOL_Msk;
<> 149:156823d33999 212 // NOTE: SPI_SS0 is defined as the slave select input in Slave mode.
<> 149:156823d33999 213 }
<> 149:156823d33999 214 }
<> 149:156823d33999 215
<> 149:156823d33999 216 void spi_frequency(spi_t *obj, int hz)
<> 149:156823d33999 217 {
<> 149:156823d33999 218 SPI_T *spi_base = (SPI_T *) NU_MODBASE(obj->spi.spi);
<> 149:156823d33999 219
<> 149:156823d33999 220 while (SPI_IS_BUSY(spi_base));
<> 149:156823d33999 221 SPI_DISABLE(spi_base);
<> 149:156823d33999 222
<> 149:156823d33999 223 SPI_SetBusClock((SPI_T *) NU_MODBASE(obj->spi.spi), hz);
<> 149:156823d33999 224 }
<> 149:156823d33999 225
<> 149:156823d33999 226
<> 149:156823d33999 227 int spi_master_write(spi_t *obj, int value)
<> 149:156823d33999 228 {
<> 149:156823d33999 229 SPI_T *spi_base = (SPI_T *) NU_MODBASE(obj->spi.spi);
<> 149:156823d33999 230
<> 149:156823d33999 231 // NOTE: Data in receive FIFO can be read out via ICE.
<> 149:156823d33999 232 SPI_ENABLE(spi_base);
<> 149:156823d33999 233
<> 149:156823d33999 234 // Wait for tx buffer empty
<> 149:156823d33999 235 while(! spi_writeable(obj));
<> 149:156823d33999 236 SPI_WRITE_TX(spi_base, value);
<> 149:156823d33999 237
<> 149:156823d33999 238 // Wait for rx buffer full
<> 149:156823d33999 239 while (! spi_readable(obj));
<> 149:156823d33999 240 int value2 = SPI_READ_RX(spi_base);
<> 149:156823d33999 241
<> 149:156823d33999 242 SPI_DISABLE(spi_base);
<> 149:156823d33999 243
<> 149:156823d33999 244 return value2;
<> 149:156823d33999 245 }
<> 149:156823d33999 246
Kojto 170:19eb464bc2be 247 int spi_master_block_write(spi_t *obj, const char *tx_buffer, int tx_length,
Kojto 170:19eb464bc2be 248 char *rx_buffer, int rx_length, char write_fill) {
AnnaBridge 167:e84263d55307 249 int total = (tx_length > rx_length) ? tx_length : rx_length;
AnnaBridge 167:e84263d55307 250
AnnaBridge 167:e84263d55307 251 for (int i = 0; i < total; i++) {
Kojto 170:19eb464bc2be 252 char out = (i < tx_length) ? tx_buffer[i] : write_fill;
AnnaBridge 167:e84263d55307 253 char in = spi_master_write(obj, out);
AnnaBridge 167:e84263d55307 254 if (i < rx_length) {
AnnaBridge 167:e84263d55307 255 rx_buffer[i] = in;
AnnaBridge 167:e84263d55307 256 }
AnnaBridge 167:e84263d55307 257 }
AnnaBridge 167:e84263d55307 258
AnnaBridge 167:e84263d55307 259 return total;
AnnaBridge 167:e84263d55307 260 }
AnnaBridge 167:e84263d55307 261
<> 149:156823d33999 262 #if DEVICE_SPISLAVE
<> 149:156823d33999 263 int spi_slave_receive(spi_t *obj)
<> 149:156823d33999 264 {
<> 149:156823d33999 265 SPI_T *spi_base = (SPI_T *) NU_MODBASE(obj->spi.spi);
<> 149:156823d33999 266
<> 149:156823d33999 267 SPI_ENABLE(spi_base);
<> 149:156823d33999 268
<> 149:156823d33999 269 return spi_readable(obj);
<> 149:156823d33999 270 };
<> 149:156823d33999 271
<> 149:156823d33999 272 int spi_slave_read(spi_t *obj)
<> 149:156823d33999 273 {
<> 149:156823d33999 274 SPI_T *spi_base = (SPI_T *) NU_MODBASE(obj->spi.spi);
<> 149:156823d33999 275
<> 149:156823d33999 276 SPI_ENABLE(spi_base);
<> 149:156823d33999 277
<> 149:156823d33999 278 // Wait for rx buffer full
<> 149:156823d33999 279 while (! spi_readable(obj));
<> 149:156823d33999 280 int value = SPI_READ_RX(spi_base);
<> 149:156823d33999 281 return value;
<> 149:156823d33999 282 }
<> 149:156823d33999 283
<> 149:156823d33999 284 void spi_slave_write(spi_t *obj, int value)
<> 149:156823d33999 285 {
<> 149:156823d33999 286 SPI_T *spi_base = (SPI_T *) NU_MODBASE(obj->spi.spi);
<> 149:156823d33999 287
<> 149:156823d33999 288 SPI_ENABLE(spi_base);
<> 149:156823d33999 289
<> 149:156823d33999 290 // Wait for tx buffer empty
<> 149:156823d33999 291 while(! spi_writeable(obj));
<> 149:156823d33999 292 SPI_WRITE_TX(spi_base, value);
<> 149:156823d33999 293 }
<> 149:156823d33999 294 #endif
<> 149:156823d33999 295
<> 149:156823d33999 296 #if DEVICE_SPI_ASYNCH
<> 149:156823d33999 297 void spi_master_transfer(spi_t *obj, const void *tx, size_t tx_length, void *rx, size_t rx_length, uint8_t bit_width, uint32_t handler, uint32_t event, DMAUsage hint)
<> 149:156823d33999 298 {
<> 149:156823d33999 299 //MBED_ASSERT(bits >= NU_SPI_FRAME_MIN && bits <= NU_SPI_FRAME_MAX);
<> 149:156823d33999 300 SPI_T *spi_base = (SPI_T *) NU_MODBASE(obj->spi.spi);
<> 149:156823d33999 301 SPI_SET_DATA_WIDTH(spi_base, bit_width);
<> 149:156823d33999 302
<> 149:156823d33999 303 obj->spi.dma_usage = hint;
<> 149:156823d33999 304 spi_check_dma_usage(&obj->spi.dma_usage, &obj->spi.dma_chn_id_tx, &obj->spi.dma_chn_id_rx);
<> 149:156823d33999 305 uint32_t data_width = spi_get_data_width(obj);
<> 149:156823d33999 306 // Conditions to go DMA way:
<> 149:156823d33999 307 // (1) No DMA support for non-8 multiple data width.
<> 149:156823d33999 308 // (2) tx length >= rx length. Otherwise, as tx DMA is done, no bus activity for remaining rx.
<> 149:156823d33999 309 if ((data_width % 8) ||
<> 149:156823d33999 310 (tx_length < rx_length)) {
<> 149:156823d33999 311 obj->spi.dma_usage = DMA_USAGE_NEVER;
<> 149:156823d33999 312 dma_channel_free(obj->spi.dma_chn_id_tx);
<> 149:156823d33999 313 obj->spi.dma_chn_id_tx = DMA_ERROR_OUT_OF_CHANNELS;
<> 149:156823d33999 314 dma_channel_free(obj->spi.dma_chn_id_rx);
<> 149:156823d33999 315 obj->spi.dma_chn_id_rx = DMA_ERROR_OUT_OF_CHANNELS;
<> 149:156823d33999 316 }
<> 149:156823d33999 317
<> 149:156823d33999 318 // SPI IRQ is necessary for both interrupt way and DMA way
<> 149:156823d33999 319 spi_enable_event(obj, event, 1);
<> 149:156823d33999 320 spi_buffer_set(obj, tx, tx_length, rx, rx_length);
<> 149:156823d33999 321
<> 149:156823d33999 322 SPI_ENABLE(spi_base);
<> 149:156823d33999 323
<> 149:156823d33999 324 if (obj->spi.dma_usage == DMA_USAGE_NEVER) {
<> 149:156823d33999 325 // Interrupt way
<> 149:156823d33999 326 spi_master_write_asynch(obj, NU_SPI_FIFO_DEPTH / 2);
<> 149:156823d33999 327 spi_enable_vector_interrupt(obj, handler, 1);
<> 149:156823d33999 328 spi_master_enable_interrupt(obj, 1);
<> 149:156823d33999 329 } else {
<> 149:156823d33999 330 // DMA way
<> 149:156823d33999 331 const struct nu_modinit_s *modinit = get_modinit(obj->spi.spi, spi_modinit_tab);
<> 149:156823d33999 332 MBED_ASSERT(modinit != NULL);
<> 149:156823d33999 333 MBED_ASSERT(modinit->modname == obj->spi.spi);
<> 149:156823d33999 334
<> 161:2cc1468da177 335 PDMA_T *pdma_base = dma_modbase();
<> 161:2cc1468da177 336
<> 149:156823d33999 337 // Configure tx DMA
<> 161:2cc1468da177 338 pdma_base->CHCTL |= 1 << obj->spi.dma_chn_id_tx; // Enable this DMA channel
<> 149:156823d33999 339 PDMA_SetTransferMode(obj->spi.dma_chn_id_tx,
<> 149:156823d33999 340 ((struct nu_spi_var *) modinit->var)->pdma_perp_tx, // Peripheral connected to this PDMA
<> 149:156823d33999 341 0, // Scatter-gather disabled
<> 149:156823d33999 342 0); // Scatter-gather descriptor address
<> 149:156823d33999 343 PDMA_SetTransferCnt(obj->spi.dma_chn_id_tx,
<> 149:156823d33999 344 (data_width == 8) ? PDMA_WIDTH_8 : (data_width == 16) ? PDMA_WIDTH_16 : PDMA_WIDTH_32,
<> 149:156823d33999 345 tx_length);
<> 149:156823d33999 346 PDMA_SetTransferAddr(obj->spi.dma_chn_id_tx,
<> 149:156823d33999 347 ((uint32_t) tx) + (data_width / 8) * tx_length, // NOTE: End of source address
<> 149:156823d33999 348 PDMA_SAR_INC, // Source address incremental
<> 149:156823d33999 349 (uint32_t) &spi_base->TX, // Destination address
<> 149:156823d33999 350 PDMA_DAR_FIX); // Destination address fixed
<> 149:156823d33999 351 PDMA_SetBurstType(obj->spi.dma_chn_id_tx,
<> 149:156823d33999 352 PDMA_REQ_SINGLE, // Single mode
<> 149:156823d33999 353 0); // Burst size
<> 149:156823d33999 354 PDMA_EnableInt(obj->spi.dma_chn_id_tx,
<> 149:156823d33999 355 0); // Interrupt type. No use here
<> 149:156823d33999 356 // Register DMA event handler
<> 149:156823d33999 357 dma_set_handler(obj->spi.dma_chn_id_tx, (uint32_t) spi_dma_handler_tx, (uint32_t) obj, DMA_EVENT_ALL);
<> 149:156823d33999 358
<> 149:156823d33999 359 // Configure rx DMA
<> 161:2cc1468da177 360 pdma_base->CHCTL |= 1 << obj->spi.dma_chn_id_rx; // Enable this DMA channel
<> 149:156823d33999 361 PDMA_SetTransferMode(obj->spi.dma_chn_id_rx,
<> 149:156823d33999 362 ((struct nu_spi_var *) modinit->var)->pdma_perp_rx, // Peripheral connected to this PDMA
<> 149:156823d33999 363 0, // Scatter-gather disabled
<> 149:156823d33999 364 0); // Scatter-gather descriptor address
<> 149:156823d33999 365 PDMA_SetTransferCnt(obj->spi.dma_chn_id_rx,
<> 149:156823d33999 366 (data_width == 8) ? PDMA_WIDTH_8 : (data_width == 16) ? PDMA_WIDTH_16 : PDMA_WIDTH_32,
<> 149:156823d33999 367 rx_length);
<> 149:156823d33999 368 PDMA_SetTransferAddr(obj->spi.dma_chn_id_rx,
<> 149:156823d33999 369 (uint32_t) &spi_base->RX, // Source address
<> 149:156823d33999 370 PDMA_SAR_FIX, // Source address fixed
<> 149:156823d33999 371 ((uint32_t) rx) + (data_width / 8) * rx_length, // NOTE: End of destination address
<> 149:156823d33999 372 PDMA_DAR_INC); // Destination address incremental
<> 149:156823d33999 373 PDMA_SetBurstType(obj->spi.dma_chn_id_rx,
<> 149:156823d33999 374 PDMA_REQ_SINGLE, // Single mode
<> 149:156823d33999 375 0); // Burst size
<> 149:156823d33999 376 PDMA_EnableInt(obj->spi.dma_chn_id_rx,
<> 149:156823d33999 377 0); // Interrupt type. No use here
<> 149:156823d33999 378 // Register DMA event handler
<> 149:156823d33999 379 dma_set_handler(obj->spi.dma_chn_id_rx, (uint32_t) spi_dma_handler_rx, (uint32_t) obj, DMA_EVENT_ALL);
<> 149:156823d33999 380
<> 149:156823d33999 381 // Start tx/rx DMA transfer
<> 149:156823d33999 382 spi_enable_vector_interrupt(obj, handler, 1);
<> 149:156823d33999 383 // NOTE: It is safer to start rx DMA first and then tx DMA. Otherwise, receive FIFO is subject to overflow by tx DMA.
<> 149:156823d33999 384 SPI_TRIGGER_RX_PDMA(((SPI_T *) NU_MODBASE(obj->spi.spi)));
<> 149:156823d33999 385 SPI_TRIGGER_TX_PDMA(((SPI_T *) NU_MODBASE(obj->spi.spi)));
<> 149:156823d33999 386 spi_master_enable_interrupt(obj, 1);
<> 149:156823d33999 387 }
<> 149:156823d33999 388 }
<> 149:156823d33999 389
<> 149:156823d33999 390 /**
<> 149:156823d33999 391 * Abort an SPI transfer
<> 149:156823d33999 392 * This is a helper function for event handling. When any of the events listed occurs, the HAL will abort any ongoing
<> 149:156823d33999 393 * transfers
<> 149:156823d33999 394 * @param[in] obj The SPI peripheral to stop
<> 149:156823d33999 395 */
<> 149:156823d33999 396 void spi_abort_asynch(spi_t *obj)
<> 149:156823d33999 397 {
<> 149:156823d33999 398 SPI_T *spi_base = (SPI_T *) NU_MODBASE(obj->spi.spi);
<> 161:2cc1468da177 399 PDMA_T *pdma_base = dma_modbase();
<> 149:156823d33999 400
<> 149:156823d33999 401 if (obj->spi.dma_usage != DMA_USAGE_NEVER) {
<> 149:156823d33999 402 // Receive FIFO Overrun in case of tx length > rx length on DMA way
<> 149:156823d33999 403 if (spi_base->STATUS & SPI_STATUS_RXOVIF_Msk) {
<> 149:156823d33999 404 spi_base->STATUS = SPI_STATUS_RXOVIF_Msk;
<> 149:156823d33999 405 }
<> 149:156823d33999 406
<> 149:156823d33999 407 if (obj->spi.dma_chn_id_tx != DMA_ERROR_OUT_OF_CHANNELS) {
<> 149:156823d33999 408 PDMA_DisableInt(obj->spi.dma_chn_id_tx, 0);
<> 149:156823d33999 409 // FIXME: Next PDMA transfer will fail with PDMA_STOP() called. Cause is unknown.
<> 149:156823d33999 410 //PDMA_STOP(obj->spi.dma_chn_id_tx);
<> 161:2cc1468da177 411 pdma_base->CHCTL &= ~(1 << obj->spi.dma_chn_id_tx);
<> 149:156823d33999 412 }
<> 149:156823d33999 413 SPI_DISABLE_TX_PDMA(((SPI_T *) NU_MODBASE(obj->spi.spi)));
<> 149:156823d33999 414
<> 149:156823d33999 415 if (obj->spi.dma_chn_id_rx != DMA_ERROR_OUT_OF_CHANNELS) {
<> 149:156823d33999 416 PDMA_DisableInt(obj->spi.dma_chn_id_rx, 0);
<> 149:156823d33999 417 // FIXME: Next PDMA transfer will fail with PDMA_STOP() called. Cause is unknown.
<> 149:156823d33999 418 //PDMA_STOP(obj->spi.dma_chn_id_rx);
<> 161:2cc1468da177 419 pdma_base->CHCTL &= ~(1 << obj->spi.dma_chn_id_rx);
<> 149:156823d33999 420 }
<> 149:156823d33999 421 SPI_DISABLE_RX_PDMA(((SPI_T *) NU_MODBASE(obj->spi.spi)));
<> 149:156823d33999 422 }
<> 149:156823d33999 423
<> 149:156823d33999 424 // Necessary for both interrupt way and DMA way
<> 149:156823d33999 425 spi_enable_vector_interrupt(obj, 0, 0);
<> 149:156823d33999 426 spi_master_enable_interrupt(obj, 0);
<> 149:156823d33999 427
<> 149:156823d33999 428 // FIXME: SPI H/W may get out of state without the busy check.
<> 149:156823d33999 429 while (SPI_IS_BUSY(spi_base));
<> 149:156823d33999 430 SPI_DISABLE(spi_base);
<> 149:156823d33999 431
<> 149:156823d33999 432 SPI_ClearRxFIFO(spi_base);
<> 149:156823d33999 433 SPI_ClearTxFIFO(spi_base);
<> 149:156823d33999 434 }
<> 149:156823d33999 435
<> 149:156823d33999 436 /**
<> 149:156823d33999 437 * Handle the SPI interrupt
<> 149:156823d33999 438 * Read frames until the RX FIFO is empty. Write at most as many frames as were read. This way,
<> 149:156823d33999 439 * it is unlikely that the RX FIFO will overflow.
<> 149:156823d33999 440 * @param[in] obj The SPI peripheral that generated the interrupt
<> 149:156823d33999 441 * @return
<> 149:156823d33999 442 */
<> 149:156823d33999 443 uint32_t spi_irq_handler_asynch(spi_t *obj)
<> 149:156823d33999 444 {
<> 149:156823d33999 445 // Check for SPI events
<> 149:156823d33999 446 uint32_t event = spi_event_check(obj);
<> 149:156823d33999 447 if (event) {
<> 149:156823d33999 448 spi_abort_asynch(obj);
<> 149:156823d33999 449 }
<> 149:156823d33999 450
<> 149:156823d33999 451 return (obj->spi.event & event) | ((event & SPI_EVENT_COMPLETE) ? SPI_EVENT_INTERNAL_TRANSFER_COMPLETE : 0);
<> 149:156823d33999 452 }
<> 149:156823d33999 453
<> 149:156823d33999 454 uint8_t spi_active(spi_t *obj)
<> 149:156823d33999 455 {
<> 149:156823d33999 456 SPI_T *spi_base = (SPI_T *) NU_MODBASE(obj->spi.spi);
<> 149:156823d33999 457 // FIXME
<> 149:156823d33999 458 /*
<> 149:156823d33999 459 if ((obj->rx_buff.buffer && obj->rx_buff.pos < obj->rx_buff.length)
<> 149:156823d33999 460 || (obj->tx_buff.buffer && obj->tx_buff.pos < obj->tx_buff.length) ){
<> 149:156823d33999 461 return 1;
<> 149:156823d33999 462 } else {
<> 149:156823d33999 463 // interrupts are disabled, all transaction have been completed
<> 149:156823d33999 464 // TODO: checking rx fifo, it reports data eventhough RFDF is not set
<> 149:156823d33999 465 return DSPI_HAL_GetIntMode(obj->spi.address, kDspiRxFifoDrainRequest);
<> 149:156823d33999 466 }*/
<> 149:156823d33999 467
<> 149:156823d33999 468 //return SPI_IS_BUSY(spi_base);
<> 149:156823d33999 469 return (spi_base->CTL & SPI_CTL_SPIEN_Msk);
<> 149:156823d33999 470 }
<> 149:156823d33999 471
<> 149:156823d33999 472 int spi_allow_powerdown(void)
<> 149:156823d33999 473 {
<> 149:156823d33999 474 uint32_t modinit_mask = spi_modinit_mask;
<> 149:156823d33999 475 while (modinit_mask) {
<> 149:156823d33999 476 int spi_idx = nu_ctz(modinit_mask);
<> 149:156823d33999 477 const struct nu_modinit_s *modinit = spi_modinit_tab + spi_idx;
<> 149:156823d33999 478 if (modinit->modname != NC) {
<> 149:156823d33999 479 SPI_T *spi_base = (SPI_T *) NU_MODBASE(modinit->modname);
<> 149:156823d33999 480 // Disallow entering power-down mode if SPI transfer is enabled.
<> 149:156823d33999 481 if (spi_base->CTL & SPI_CTL_SPIEN_Msk) {
<> 149:156823d33999 482 return 0;
<> 149:156823d33999 483 }
<> 149:156823d33999 484 }
<> 149:156823d33999 485 modinit_mask &= ~(1 << spi_idx);
<> 149:156823d33999 486 }
<> 149:156823d33999 487
<> 149:156823d33999 488 return 1;
<> 149:156823d33999 489 }
<> 149:156823d33999 490
<> 149:156823d33999 491 static int spi_writeable(spi_t * obj)
<> 149:156823d33999 492 {
<> 149:156823d33999 493 // Receive FIFO must not be full to avoid receive FIFO overflow on next transmit/receive
<> 149:156823d33999 494 //return (! SPI_GET_TX_FIFO_FULL_FLAG(((SPI_T *) NU_MODBASE(obj->spi.spi)))) && (SPI_GET_RX_FIFO_COUNT(((SPI_T *) NU_MODBASE(obj->spi.spi))) < NU_SPI_FIFO_DEPTH);
<> 149:156823d33999 495 return (! SPI_GET_TX_FIFO_FULL_FLAG(((SPI_T *) NU_MODBASE(obj->spi.spi))));
<> 149:156823d33999 496 }
<> 149:156823d33999 497
<> 149:156823d33999 498 static int spi_readable(spi_t * obj)
<> 149:156823d33999 499 {
<> 149:156823d33999 500 return ! SPI_GET_RX_FIFO_EMPTY_FLAG(((SPI_T *) NU_MODBASE(obj->spi.spi)));
<> 149:156823d33999 501 }
<> 149:156823d33999 502
<> 149:156823d33999 503 static void spi_enable_event(spi_t *obj, uint32_t event, uint8_t enable)
<> 149:156823d33999 504 {
<> 149:156823d33999 505 obj->spi.event &= ~SPI_EVENT_ALL;
<> 149:156823d33999 506 obj->spi.event |= (event & SPI_EVENT_ALL);
<> 149:156823d33999 507 if (event & SPI_EVENT_RX_OVERFLOW) {
<> 149:156823d33999 508 SPI_EnableInt((SPI_T *) NU_MODBASE(obj->spi.spi), SPI_FIFO_RXOVIEN_MASK);
<> 149:156823d33999 509 }
<> 149:156823d33999 510 }
<> 149:156823d33999 511
<> 149:156823d33999 512 static void spi_enable_vector_interrupt(spi_t *obj, uint32_t handler, uint8_t enable)
<> 149:156823d33999 513 {
<> 149:156823d33999 514 const struct nu_modinit_s *modinit = get_modinit(obj->spi.spi, spi_modinit_tab);
<> 149:156823d33999 515 MBED_ASSERT(modinit != NULL);
<> 149:156823d33999 516 MBED_ASSERT(modinit->modname == obj->spi.spi);
<> 149:156823d33999 517
<> 149:156823d33999 518 if (enable) {
<> 149:156823d33999 519 NVIC_SetVector(modinit->irq_n, handler);
<> 149:156823d33999 520 NVIC_EnableIRQ(modinit->irq_n);
<> 149:156823d33999 521 }
<> 149:156823d33999 522 else {
<> 149:156823d33999 523 //NVIC_SetVector(modinit->irq_n, handler);
<> 149:156823d33999 524 NVIC_DisableIRQ(modinit->irq_n);
<> 149:156823d33999 525 }
<> 149:156823d33999 526 }
<> 149:156823d33999 527
<> 149:156823d33999 528 static void spi_master_enable_interrupt(spi_t *obj, uint8_t enable)
<> 149:156823d33999 529 {
<> 149:156823d33999 530 SPI_T *spi_base = (SPI_T *) NU_MODBASE(obj->spi.spi);
<> 149:156823d33999 531
<> 149:156823d33999 532 if (enable) {
<> 149:156823d33999 533 SPI_SetFIFOThreshold(spi_base, 4, 4);
<> 149:156823d33999 534 //SPI_SET_SUSPEND_CYCLE(spi_base, 4);
<> 149:156823d33999 535 // Enable tx/rx FIFO threshold interrupt
<> 149:156823d33999 536 SPI_EnableInt(spi_base, SPI_FIFO_RXTHIEN_MASK | SPI_FIFO_TXTHIEN_MASK);
<> 149:156823d33999 537 }
<> 149:156823d33999 538 else {
<> 149:156823d33999 539 SPI_DisableInt(spi_base, SPI_FIFO_RXTHIEN_MASK | SPI_FIFO_TXTHIEN_MASK);
<> 149:156823d33999 540 }
<> 149:156823d33999 541 }
<> 149:156823d33999 542
<> 149:156823d33999 543 static uint32_t spi_event_check(spi_t *obj)
<> 149:156823d33999 544 {
<> 149:156823d33999 545 SPI_T *spi_base = (SPI_T *) NU_MODBASE(obj->spi.spi);
<> 149:156823d33999 546 uint32_t event = 0;
<> 149:156823d33999 547
<> 149:156823d33999 548 if (obj->spi.dma_usage == DMA_USAGE_NEVER) {
<> 149:156823d33999 549 uint32_t n_rec = spi_master_read_asynch(obj);
<> 149:156823d33999 550 spi_master_write_asynch(obj, n_rec);
<> 149:156823d33999 551 }
<> 149:156823d33999 552
<> 149:156823d33999 553 if (spi_is_tx_complete(obj) && spi_is_rx_complete(obj)) {
<> 149:156823d33999 554 event |= SPI_EVENT_COMPLETE;
<> 149:156823d33999 555 }
<> 149:156823d33999 556
<> 149:156823d33999 557 // Receive FIFO Overrun
<> 149:156823d33999 558 if (spi_base->STATUS & SPI_STATUS_RXOVIF_Msk) {
<> 149:156823d33999 559 spi_base->STATUS = SPI_STATUS_RXOVIF_Msk;
<> 149:156823d33999 560 // In case of tx length > rx length on DMA way
<> 149:156823d33999 561 if (obj->spi.dma_usage == DMA_USAGE_NEVER) {
<> 149:156823d33999 562 event |= SPI_EVENT_RX_OVERFLOW;
<> 149:156823d33999 563 }
<> 149:156823d33999 564 }
<> 149:156823d33999 565
<> 149:156823d33999 566 // Receive Time-Out
<> 149:156823d33999 567 if (spi_base->STATUS & SPI_STATUS_RXTOIF_Msk) {
<> 149:156823d33999 568 spi_base->STATUS = SPI_STATUS_RXTOIF_Msk;
<> 149:156823d33999 569 //event |= SPI_EVENT_ERROR;
<> 149:156823d33999 570 }
<> 149:156823d33999 571 // Transmit FIFO Under-Run
<> 149:156823d33999 572 if (spi_base->STATUS & SPI_STATUS_TXUFIF_Msk) {
<> 149:156823d33999 573 spi_base->STATUS = SPI_STATUS_TXUFIF_Msk;
<> 149:156823d33999 574 event |= SPI_EVENT_ERROR;
<> 149:156823d33999 575 }
<> 149:156823d33999 576
<> 149:156823d33999 577 return event;
<> 149:156823d33999 578 }
<> 149:156823d33999 579
<> 149:156823d33999 580 /**
<> 149:156823d33999 581 * Send words from the SPI TX buffer until the send limit is reached or the TX FIFO is full
<> 149:156823d33999 582 * tx_limit is provided to ensure that the number of SPI frames (words) in flight can be managed.
<> 149:156823d33999 583 * @param[in] obj The SPI object on which to operate
<> 149:156823d33999 584 * @param[in] tx_limit The maximum number of words to send
<> 149:156823d33999 585 * @return The number of SPI words that have been transfered
<> 149:156823d33999 586 */
<> 149:156823d33999 587 static uint32_t spi_master_write_asynch(spi_t *obj, uint32_t tx_limit)
<> 149:156823d33999 588 {
<> 149:156823d33999 589 uint32_t n_words = 0;
<> 149:156823d33999 590 uint32_t tx_rmn = obj->tx_buff.length - obj->tx_buff.pos;
<> 149:156823d33999 591 uint32_t rx_rmn = obj->rx_buff.length - obj->rx_buff.pos;
<> 149:156823d33999 592 uint32_t max_tx = NU_MAX(tx_rmn, rx_rmn);
<> 149:156823d33999 593 max_tx = NU_MIN(max_tx, tx_limit);
<> 149:156823d33999 594 uint8_t data_width = spi_get_data_width(obj);
<> 149:156823d33999 595 uint8_t bytes_per_word = (data_width + 7) / 8;
<> 149:156823d33999 596 uint8_t *tx = (uint8_t *)(obj->tx_buff.buffer) + bytes_per_word * obj->tx_buff.pos;
<> 149:156823d33999 597 SPI_T *spi_base = (SPI_T *) NU_MODBASE(obj->spi.spi);
<> 149:156823d33999 598
<> 149:156823d33999 599 while ((n_words < max_tx) && spi_writeable(obj)) {
<> 149:156823d33999 600 if (spi_is_tx_complete(obj)) {
<> 149:156823d33999 601 // Transmit dummy as transmit buffer is empty
<> 149:156823d33999 602 SPI_WRITE_TX(spi_base, 0);
<> 149:156823d33999 603 }
<> 149:156823d33999 604 else {
<> 149:156823d33999 605 switch (bytes_per_word) {
<> 149:156823d33999 606 case 4:
<> 149:156823d33999 607 SPI_WRITE_TX(spi_base, nu_get32_le(tx));
<> 149:156823d33999 608 tx += 4;
<> 149:156823d33999 609 break;
<> 149:156823d33999 610 case 2:
<> 149:156823d33999 611 SPI_WRITE_TX(spi_base, nu_get16_le(tx));
<> 149:156823d33999 612 tx += 2;
<> 149:156823d33999 613 break;
<> 149:156823d33999 614 case 1:
<> 149:156823d33999 615 SPI_WRITE_TX(spi_base, *((uint8_t *) tx));
<> 149:156823d33999 616 tx += 1;
<> 149:156823d33999 617 break;
<> 149:156823d33999 618 }
<> 149:156823d33999 619
<> 149:156823d33999 620 obj->tx_buff.pos ++;
<> 149:156823d33999 621 }
<> 149:156823d33999 622 n_words ++;
<> 149:156823d33999 623 }
<> 149:156823d33999 624
<> 149:156823d33999 625 //Return the number of words that have been sent
<> 149:156823d33999 626 return n_words;
<> 149:156823d33999 627 }
<> 149:156823d33999 628
<> 149:156823d33999 629 /**
<> 149:156823d33999 630 * Read SPI words out of the RX FIFO
<> 149:156823d33999 631 * Continues reading words out of the RX FIFO until the following condition is met:
<> 149:156823d33999 632 * o There are no more words in the FIFO
<> 149:156823d33999 633 * OR BOTH OF:
<> 149:156823d33999 634 * o At least as many words as the TX buffer have been received
<> 149:156823d33999 635 * o At least as many words as the RX buffer have been received
<> 149:156823d33999 636 * This way, RX overflows are not generated when the TX buffer size exceeds the RX buffer size
<> 149:156823d33999 637 * @param[in] obj The SPI object on which to operate
<> 149:156823d33999 638 * @return Returns the number of words extracted from the RX FIFO
<> 149:156823d33999 639 */
<> 149:156823d33999 640 static uint32_t spi_master_read_asynch(spi_t *obj)
<> 149:156823d33999 641 {
<> 149:156823d33999 642 uint32_t n_words = 0;
<> 149:156823d33999 643 uint32_t tx_rmn = obj->tx_buff.length - obj->tx_buff.pos;
<> 149:156823d33999 644 uint32_t rx_rmn = obj->rx_buff.length - obj->rx_buff.pos;
<> 149:156823d33999 645 uint32_t max_rx = NU_MAX(tx_rmn, rx_rmn);
<> 149:156823d33999 646 uint8_t data_width = spi_get_data_width(obj);
<> 149:156823d33999 647 uint8_t bytes_per_word = (data_width + 7) / 8;
<> 149:156823d33999 648 uint8_t *rx = (uint8_t *)(obj->rx_buff.buffer) + bytes_per_word * obj->rx_buff.pos;
<> 149:156823d33999 649 SPI_T *spi_base = (SPI_T *) NU_MODBASE(obj->spi.spi);
<> 149:156823d33999 650
<> 149:156823d33999 651 while ((n_words < max_rx) && spi_readable(obj)) {
<> 149:156823d33999 652 if (spi_is_rx_complete(obj)) {
<> 149:156823d33999 653 // Disregard as receive buffer is full
<> 149:156823d33999 654 SPI_READ_RX(spi_base);
<> 149:156823d33999 655 }
<> 149:156823d33999 656 else {
<> 149:156823d33999 657 switch (bytes_per_word) {
<> 149:156823d33999 658 case 4: {
<> 149:156823d33999 659 uint32_t val = SPI_READ_RX(spi_base);
<> 149:156823d33999 660 nu_set32_le(rx, val);
<> 149:156823d33999 661 rx += 4;
<> 149:156823d33999 662 break;
<> 149:156823d33999 663 }
<> 149:156823d33999 664 case 2: {
<> 149:156823d33999 665 uint16_t val = SPI_READ_RX(spi_base);
<> 149:156823d33999 666 nu_set16_le(rx, val);
<> 149:156823d33999 667 rx += 2;
<> 149:156823d33999 668 break;
<> 149:156823d33999 669 }
<> 149:156823d33999 670 case 1:
<> 149:156823d33999 671 *rx ++ = SPI_READ_RX(spi_base);
<> 149:156823d33999 672 break;
<> 149:156823d33999 673 }
<> 149:156823d33999 674
<> 149:156823d33999 675 obj->rx_buff.pos ++;
<> 149:156823d33999 676 }
<> 149:156823d33999 677 n_words ++;
<> 149:156823d33999 678 }
<> 149:156823d33999 679
<> 149:156823d33999 680 // Return the number of words received
<> 149:156823d33999 681 return n_words;
<> 149:156823d33999 682 }
<> 149:156823d33999 683
<> 149:156823d33999 684 static void spi_buffer_set(spi_t *obj, const void *tx, size_t tx_length, void *rx, size_t rx_length)
<> 149:156823d33999 685 {
<> 149:156823d33999 686 obj->tx_buff.buffer = (void *) tx;
<> 149:156823d33999 687 obj->tx_buff.length = tx_length;
<> 149:156823d33999 688 obj->tx_buff.pos = 0;
<> 149:156823d33999 689 obj->tx_buff.width = spi_get_data_width(obj);
<> 149:156823d33999 690 obj->rx_buff.buffer = rx;
<> 149:156823d33999 691 obj->rx_buff.length = rx_length;
<> 149:156823d33999 692 obj->rx_buff.pos = 0;
<> 149:156823d33999 693 obj->rx_buff.width = spi_get_data_width(obj);
<> 149:156823d33999 694 }
<> 149:156823d33999 695
<> 149:156823d33999 696 static void spi_check_dma_usage(DMAUsage *dma_usage, int *dma_ch_tx, int *dma_ch_rx)
<> 149:156823d33999 697 {
<> 149:156823d33999 698 if (*dma_usage != DMA_USAGE_NEVER) {
<> 149:156823d33999 699 if (*dma_ch_tx == DMA_ERROR_OUT_OF_CHANNELS) {
<> 149:156823d33999 700 *dma_ch_tx = dma_channel_allocate(DMA_CAP_NONE);
<> 149:156823d33999 701 }
<> 149:156823d33999 702 if (*dma_ch_rx == DMA_ERROR_OUT_OF_CHANNELS) {
<> 149:156823d33999 703 *dma_ch_rx = dma_channel_allocate(DMA_CAP_NONE);
<> 149:156823d33999 704 }
<> 149:156823d33999 705
<> 149:156823d33999 706 if (*dma_ch_tx == DMA_ERROR_OUT_OF_CHANNELS || *dma_ch_rx == DMA_ERROR_OUT_OF_CHANNELS) {
<> 149:156823d33999 707 *dma_usage = DMA_USAGE_NEVER;
<> 149:156823d33999 708 }
<> 149:156823d33999 709 }
<> 149:156823d33999 710
<> 149:156823d33999 711 if (*dma_usage == DMA_USAGE_NEVER) {
<> 149:156823d33999 712 dma_channel_free(*dma_ch_tx);
<> 149:156823d33999 713 *dma_ch_tx = DMA_ERROR_OUT_OF_CHANNELS;
<> 149:156823d33999 714 dma_channel_free(*dma_ch_rx);
<> 149:156823d33999 715 *dma_ch_rx = DMA_ERROR_OUT_OF_CHANNELS;
<> 149:156823d33999 716 }
<> 149:156823d33999 717 }
<> 149:156823d33999 718
<> 149:156823d33999 719 static uint8_t spi_get_data_width(spi_t *obj)
<> 149:156823d33999 720 {
<> 149:156823d33999 721 SPI_T *spi_base = (SPI_T *) NU_MODBASE(obj->spi.spi);
<> 149:156823d33999 722
<> 153:fa9ff456f731 723 uint32_t data_width = ((spi_base->CTL & SPI_CTL_DWIDTH_Msk) >> SPI_CTL_DWIDTH_Pos);
<> 153:fa9ff456f731 724 if (data_width == 0) {
<> 153:fa9ff456f731 725 data_width = 32;
<> 153:fa9ff456f731 726 }
<> 153:fa9ff456f731 727
<> 153:fa9ff456f731 728 return data_width;
<> 149:156823d33999 729 }
<> 149:156823d33999 730
<> 149:156823d33999 731 static int spi_is_tx_complete(spi_t *obj)
<> 149:156823d33999 732 {
<> 149:156823d33999 733 // ???: Exclude tx fifo empty check due to no such interrupt on DMA way
<> 149:156823d33999 734 return (obj->tx_buff.pos == obj->tx_buff.length);
<> 149:156823d33999 735 //return (obj->tx_buff.pos == obj->tx_buff.length && SPI_GET_TX_FIFO_EMPTY_FLAG(((SPI_T *) NU_MODBASE(obj->spi.spi))));
<> 149:156823d33999 736 }
<> 149:156823d33999 737
<> 149:156823d33999 738 static int spi_is_rx_complete(spi_t *obj)
<> 149:156823d33999 739 {
<> 149:156823d33999 740 return (obj->rx_buff.pos == obj->rx_buff.length);
<> 149:156823d33999 741 }
<> 149:156823d33999 742
<> 149:156823d33999 743 static void spi_dma_handler_tx(uint32_t id, uint32_t event_dma)
<> 149:156823d33999 744 {
<> 149:156823d33999 745 spi_t *obj = (spi_t *) id;
<> 149:156823d33999 746
<> 149:156823d33999 747 // FIXME: Pass this error to caller
<> 149:156823d33999 748 if (event_dma & DMA_EVENT_ABORT) {
<> 149:156823d33999 749 }
<> 149:156823d33999 750 // Expect SPI IRQ will catch this transfer done event
<> 149:156823d33999 751 if (event_dma & DMA_EVENT_TRANSFER_DONE) {
<> 149:156823d33999 752 obj->tx_buff.pos = obj->tx_buff.length;
<> 149:156823d33999 753 }
<> 149:156823d33999 754 // FIXME: Pass this error to caller
<> 149:156823d33999 755 if (event_dma & DMA_EVENT_TIMEOUT) {
<> 149:156823d33999 756 }
<> 149:156823d33999 757
<> 149:156823d33999 758 const struct nu_modinit_s *modinit = get_modinit(obj->spi.spi, spi_modinit_tab);
<> 149:156823d33999 759 MBED_ASSERT(modinit != NULL);
<> 149:156823d33999 760 MBED_ASSERT(modinit->modname == obj->spi.spi);
<> 149:156823d33999 761
<> 149:156823d33999 762 void (*vec)(void) = (void (*)(void)) NVIC_GetVector(modinit->irq_n);
<> 149:156823d33999 763 vec();
<> 149:156823d33999 764 }
<> 149:156823d33999 765
<> 149:156823d33999 766 static void spi_dma_handler_rx(uint32_t id, uint32_t event_dma)
<> 149:156823d33999 767 {
<> 149:156823d33999 768 spi_t *obj = (spi_t *) id;
<> 149:156823d33999 769
<> 149:156823d33999 770 // FIXME: Pass this error to caller
<> 149:156823d33999 771 if (event_dma & DMA_EVENT_ABORT) {
<> 149:156823d33999 772 }
<> 149:156823d33999 773 // Expect SPI IRQ will catch this transfer done event
<> 149:156823d33999 774 if (event_dma & DMA_EVENT_TRANSFER_DONE) {
<> 149:156823d33999 775 obj->rx_buff.pos = obj->rx_buff.length;
<> 149:156823d33999 776 }
<> 149:156823d33999 777 // FIXME: Pass this error to caller
<> 149:156823d33999 778 if (event_dma & DMA_EVENT_TIMEOUT) {
<> 149:156823d33999 779 }
<> 149:156823d33999 780
<> 149:156823d33999 781 const struct nu_modinit_s *modinit = get_modinit(obj->spi.spi, spi_modinit_tab);
<> 149:156823d33999 782 MBED_ASSERT(modinit != NULL);
<> 149:156823d33999 783 MBED_ASSERT(modinit->modname == obj->spi.spi);
<> 149:156823d33999 784
<> 149:156823d33999 785 void (*vec)(void) = (void (*)(void)) NVIC_GetVector(modinit->irq_n);
<> 149:156823d33999 786 vec();
<> 149:156823d33999 787 }
<> 149:156823d33999 788
<> 149:156823d33999 789 #endif
<> 149:156823d33999 790
<> 149:156823d33999 791 #endif