sara matheu
/
cifrado_ecc
cifrado con ecc
Diff: FiniteFieldElement.hpp
- Revision:
- 0:71704ec698ca
diff -r 000000000000 -r 71704ec698ca FiniteFieldElement.hpp --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/FiniteFieldElement.hpp Fri Feb 20 18:18:19 2015 +0000 @@ -0,0 +1,175 @@ + + +namespace Cryptography +{ + // helper functions + namespace detail + { + //From Knuth; Extended GCD gives g = a*u + b*v + int EGCD(int a, int b, int& u, int &v) + { + u = 1; + v = 0; + int g = a; + int u1 = 0; + int v1 = 1; + int g1 = b; + while (g1 != 0) + { + int q = g/g1; // Integer divide + int t1 = u - q*u1; + int t2 = v - q*v1; + int t3 = g - q*g1; + u = u1; v = v1; g = g1; + u1 = t1; v1 = t2; g1 = t3; + } + + return g; + } + + int InvMod(int x, int n) // Solve linear congruence equation x * z == 1 (mod n) for z + { + //n = Abs(n); + x = x % n; // % is the remainder function, 0 <= x % n < |n| + int u,v,g,z; + g = EGCD(x, n, u,v); + if (g != 1) + { + // x and n have to be relative prime for there to exist an x^-1 mod n + z = 0; + } + else + { + z = u % n; + } + return z; + } + } + + /* + An element in a Galois field FP + Adapted for the specific behaviour of the "mod" function where (-n) mod m returns a negative number + Allows basic arithmetic operations between elements: + +,-,/,scalar multiply + + The template argument P is the order of the field + */ + template<int P> + class FiniteFieldElement + { + int i_; + + void assign(int i) + { + i_ = i; + if ( i<0 ) + { + // ensure (-i) mod p correct behaviour + // the (i%P) term is to ensure that i is in the correct range before normalizing + i_ = (i%P) + 2*P; + } + + i_ %= P; + } + + public: + // ctor + FiniteFieldElement() + : i_(0) + {} + // ctor + explicit FiniteFieldElement(int i) + { + assign(i); + } + // copy ctor + FiniteFieldElement(const FiniteFieldElement<P>& rhs) + : i_(rhs.i_) + { + } + + // access "raw" integer + int i() const { return i_; } + // negate + FiniteFieldElement operator-() const + { + return FiniteFieldElement(-i_); + } + // assign from integer + FiniteFieldElement& operator=(int i) + { + assign(i); + return *this; + } + // assign from field element + FiniteFieldElement<P>& operator=(const FiniteFieldElement<P>& rhs) + { + i_ = rhs.i_; + return *this; + } + // *= + FiniteFieldElement<P>& operator*=(const FiniteFieldElement<P>& rhs) + { + i_ = (i_*rhs.i_) % P; + return *this; + } + // == + friend bool operator==(const FiniteFieldElement<P>& lhs, const FiniteFieldElement<P>& rhs) + { + return (lhs.i_ == rhs.i_); + } + // == int + friend bool operator==(const FiniteFieldElement<P>& lhs, int rhs) + { + return (lhs.i_ == rhs); + } + // != + friend bool operator!=(const FiniteFieldElement<P>& lhs, int rhs) + { + return (lhs.i_ != rhs); + } + // a / b + friend FiniteFieldElement<P> operator/(const FiniteFieldElement<P>& lhs, const FiniteFieldElement<P>& rhs) + { + return FiniteFieldElement<P>( lhs.i_ * detail::InvMod(rhs.i_,P)); + } + // a + b + friend FiniteFieldElement<P> operator+(const FiniteFieldElement<P>& lhs, const FiniteFieldElement<P>& rhs) + { + return FiniteFieldElement<P>( lhs.i_ + rhs.i_); + } + // a - b + friend FiniteFieldElement<P> operator-(const FiniteFieldElement<P>& lhs, const FiniteFieldElement<P>& rhs) + { + return FiniteFieldElement<P>( lhs.i_ - rhs.i_); + } + // a + int + friend FiniteFieldElement<P> operator+(const FiniteFieldElement<P>& lhs, int i) + { + return FiniteFieldElement<P>( lhs.i_+i); + } + // int + a + friend FiniteFieldElement<P> operator+(int i, const FiniteFieldElement<P>& rhs) + { + return FiniteFieldElement<P>( rhs.i_+i); + } + // int * a + friend FiniteFieldElement<P> operator*(int n, const FiniteFieldElement<P>& rhs) + { + return FiniteFieldElement<P>( n*rhs.i_); + } + // a * b + friend FiniteFieldElement<P> operator*(const FiniteFieldElement<P>& lhs, const FiniteFieldElement<P>& rhs) + { + return FiniteFieldElement<P>( lhs.i_ * rhs.i_); + } + // ostream handler + template<int T> + friend ostream& operator<<(ostream& os, const FiniteFieldElement<T>& g) + { + return os << g.i_; + } + }; +} + +