sara matheu
/
CurvasElipticas
Operaciones de generacion de claves, D-H, firma y validacion.
ecc.cpp
- Committer:
- saranieves92
- Date:
- 2015-02-20
- Revision:
- 5:4f619b9a7bb2
- Parent:
- 1:4875e39abd1e
File content as of revision 5:4f619b9a7bb2:
#include "ecc.h" #include <string.h> typedef unsigned int uint; #define Curve_P_1 {0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFD} #define Curve_P_2 {0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFE, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF} #define Curve_P_3 {0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000, 0x00000000, 0x00000001, 0xFFFFFFFF} #define Curve_P_4 {0xFFFFFFFF, 0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFE, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, \ 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF} #define Curve_P_5 {0xFFFFFC2F, 0xFFFFFFFE, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF} #define Curve_B_1 {0x2CEE5ED3, 0xD824993C, 0x1079F43D, 0xE87579C1} #define Curve_B_2 {0xC146B9B1, 0xFEB8DEEC, 0x72243049, 0x0FA7E9AB, 0xE59C80E7, 0x64210519} #define Curve_B_3 {0x27D2604B, 0x3BCE3C3E, 0xCC53B0F6, 0x651D06B0, 0x769886BC, 0xB3EBBD55, 0xAA3A93E7, 0x5AC635D8} #define Curve_B_4 {0xD3EC2AEF, 0x2A85C8ED, 0x8A2ED19D, 0xC656398D, 0x5013875A, 0x0314088F, 0xFE814112, 0x181D9C6E, \ 0xE3F82D19, 0x988E056B, 0xE23EE7E4, 0xB3312FA7} #define Curve_B_5 {0x00000007, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000} #define Curve_G_1 { \ {0xA52C5B86, 0x0C28607C, 0x8B899B2D, 0x161FF752}, \ {0xDDED7A83, 0xC02DA292, 0x5BAFEB13, 0xCF5AC839}} #define Curve_G_2 { \ {0x82FF1012, 0xF4FF0AFD, 0x43A18800, 0x7CBF20EB, 0xB03090F6, 0x188DA80E}, \ {0x1E794811, 0x73F977A1, 0x6B24CDD5, 0x631011ED, 0xFFC8DA78, 0x07192B95}} #define Curve_G_3 { \ {0xD898C296, 0xF4A13945, 0x2DEB33A0, 0x77037D81, 0x63A440F2, 0xF8BCE6E5, 0xE12C4247, 0x6B17D1F2}, \ {0x37BF51F5, 0xCBB64068, 0x6B315ECE, 0x2BCE3357, 0x7C0F9E16, 0x8EE7EB4A, 0xFE1A7F9B, 0x4FE342E2}} #define Curve_G_4 { \ {0x72760AB7, 0x3A545E38, 0xBF55296C, 0x5502F25D, 0x82542A38, 0x59F741E0, 0x8BA79B98, 0x6E1D3B62, \ 0xF320AD74, 0x8EB1C71E, 0xBE8B0537, 0xAA87CA22}, \ {0x90EA0E5F, 0x7A431D7C, 0x1D7E819D, 0x0A60B1CE, 0xB5F0B8C0, 0xE9DA3113, 0x289A147C, 0xF8F41DBD, \ 0x9292DC29, 0x5D9E98BF, 0x96262C6F, 0x3617DE4A}} #define Curve_G_5 { \ {0x16F81798, 0x59F2815B, 0x2DCE28D9, 0x029BFCDB, 0xCE870B07, 0x55A06295, 0xF9DCBBAC, 0x79BE667E}, \ {0xFB10D4B8, 0x9C47D08F, 0xA6855419, 0xFD17B448, 0x0E1108A8, 0x5DA4FBFC, 0x26A3C465, 0x483ADA77}} #define Curve_N_1 {0x9038A115, 0x75A30D1B, 0x00000000, 0xFFFFFFFE} #define Curve_N_2 {0xB4D22831, 0x146BC9B1, 0x99DEF836, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF} #define Curve_N_3 {0xFC632551, 0xF3B9CAC2, 0xA7179E84, 0xBCE6FAAD, 0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0xFFFFFFFF} #define Curve_N_4 {0xCCC52973, 0xECEC196A, 0x48B0A77A, 0x581A0DB2, 0xF4372DDF, 0xC7634D81, 0xFFFFFFFF, 0xFFFFFFFF, \ 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF} #define Curve_N_5 {0xD0364141, 0xBFD25E8C, 0xAF48A03B, 0xBAAEDCE6, 0xFFFFFFFE, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF} static uint32_t curve_p[NUM_ECC_DIGITS] = ECC_CONCAT(Curve_P_, ECC_CURVE); static uint32_t curve_b[NUM_ECC_DIGITS] = ECC_CONCAT(Curve_B_, ECC_CURVE); static EccPoint curve_G = ECC_CONCAT(Curve_G_, ECC_CURVE); static uint32_t curve_n[NUM_ECC_DIGITS] = ECC_CONCAT(Curve_N_, ECC_CURVE); static void vli_clear(uint32_t *p_vli) { uint i; for(i=0; i<NUM_ECC_DIGITS; ++i) { p_vli[i] = 0; } } /* Returns 1 if p_vli == 0, 0 otherwise. */ static int vli_isZero(const uint32_t *p_vli) { uint i; for(i = 0; i < NUM_ECC_DIGITS; ++i) { if(p_vli[i]) { return 0; } } return 1; } /* Returns nonzero if bit p_bit of p_vli is set. */ static uint32_t vli_testBit(const uint32_t *p_vli, const unsigned int p_bit) { return (p_vli[p_bit/32] & (1 << (p_bit % 32))); } /* Counts the number of 32-bit "digits" in p_vli. */ static uint vli_numDigits(const uint32_t *p_vli) { int i; /* Search from the end until we find a non-zero digit. We do it in reverse because we expect that most digits will be nonzero. */ for(i = NUM_ECC_DIGITS - 1; i >= 0 && p_vli[i] == 0; --i) { } return (i + 1); } /* Counts the number of bits required for p_vli. */ static uint vli_numBits(const uint32_t *p_vli) { uint i; uint32_t l_digit; uint l_numDigits = vli_numDigits(p_vli); if(l_numDigits == 0) { return 0; } l_digit = p_vli[l_numDigits - 1]; for(i=0; l_digit; ++i) { l_digit >>= 1; } return ((l_numDigits - 1) * 32 + i); } /* Sets p_dest = p_src. */ static void vli_set(uint32_t *p_dest, const uint32_t *p_src) { uint i; for(i=0; i<NUM_ECC_DIGITS; ++i) { p_dest[i] = p_src[i]; } } /* Returns sign of p_left - p_right. */ static int vli_cmp(const uint32_t *p_left, const uint32_t *p_right) { int i; for(i = NUM_ECC_DIGITS-1; i >= 0; --i) { if(p_left[i] > p_right[i]) { return 1; } else if(p_left[i] < p_right[i]) { return -1; } } return 0; } /* Computes p_result = p_in << c, returning carry. Can modify in place (if p_result == p_in). 0 < p_shift < 32. */ static uint32_t vli_lshift(uint32_t *p_result, const uint32_t *p_in, const unsigned int p_shift) { uint32_t l_carry = 0; uint i; for(i = 0; i < NUM_ECC_DIGITS; ++i) { uint32_t l_temp = p_in[i]; p_result[i] = (l_temp << p_shift) | l_carry; l_carry = l_temp >> (32 - p_shift); } return l_carry; } /* Computes p_vli = p_vli >> 1. */ static void vli_rshift1(uint32_t *p_vli) { uint32_t *l_end = p_vli; uint32_t l_carry = 0; p_vli += NUM_ECC_DIGITS; while(p_vli-- > l_end) { uint32_t l_temp = *p_vli; *p_vli = (l_temp >> 1) | l_carry; l_carry = l_temp << 31; } } /* Computes p_result = p_left + p_right, returning carry. Can modify in place. */ static uint32_t vli_add(uint32_t *p_result, const uint32_t *p_left, const uint32_t *p_right) { #if (ECC_ASM == ecc_asm_thumb || ECC_ASM == ecc_asm_thumb2 || ECC_ASM == ecc_asm_arm) uint32_t l_counter = NUM_ECC_DIGITS; uint32_t l_carry = 0; /* carry = 0 initially */ uint32_t l_left; uint32_t l_right; asm volatile ( ".syntax unified \n\t" "1: \n\t" "ldmia %[lptr]!, {%[left]} \n\t" /* Load left word. */ "ldmia %[rptr]!, {%[right]} \n\t" /* Load right word. */ "lsrs %[carry], #1 \n\t" /* Set up carry flag (l_carry = 0 after this). */ "adcs %[left], %[right] \n\t" /* Add with carry. */ "adcs %[carry], %[carry] \n\t" /* Store carry bit in l_carry. */ "stmia %[dptr]!, {%[left]} \n\t" /* Store result word. */ "subs %[ctr], #1 \n\t" /* Decrement index. */ "bne 1b \n\t" /* Loop until index == 0. */ #if (ECC_ASM != ecc_asm_thumb2) ".syntax divided \n\t" #endif #if (ECC_ASM == ecc_asm_thumb) : [dptr] "+l" (p_result), [lptr] "+l" (p_left), [rptr] "+l" (p_right), [ctr] "+l" (l_counter), [carry] "+l" (l_carry), [left] "=l" (l_left), [right] "=l" (l_right) #else : [dptr] "+r" (p_result), [lptr] "+r" (p_left), [rptr] "+r" (p_right), [ctr] "+r" (l_counter), [carry] "+r" (l_carry), [left] "=r" (l_left), [right] "=r" (l_right) #endif : : "cc", "memory" ); return l_carry; #else uint32_t l_carry = 0; uint i; for(i=0; i<NUM_ECC_DIGITS; ++i) { uint32_t l_sum = p_left[i] + p_right[i] + l_carry; if(l_sum != p_left[i]) { l_carry = (l_sum < p_left[i]); } p_result[i] = l_sum; } return l_carry; #endif } /* Computes p_result = p_left - p_right, returning borrow. Can modify in place. */ static uint32_t vli_sub(uint32_t *p_result, const uint32_t *p_left, const uint32_t *p_right) { #if (ECC_ASM == ecc_asm_thumb || ECC_ASM == ecc_asm_thumb2 || ECC_ASM == ecc_asm_arm) uint32_t l_counter = NUM_ECC_DIGITS; uint32_t l_carry = 1; /* carry = 1 initially (means don't borrow) */ uint32_t l_left; uint32_t l_right; asm volatile ( ".syntax unified \n\t" "1: \n\t" "ldmia %[lptr]!, {%[left]} \n\t" /* Load left word. */ "ldmia %[rptr]!, {%[right]} \n\t" /* Load right word. */ "lsrs %[carry], #1 \n\t" /* Set up carry flag (l_carry = 0 after this). */ "sbcs %[left], %[right] \n\t" /* Subtract with borrow. */ "adcs %[carry], %[carry] \n\t" /* Store carry bit in l_carry. */ "stmia %[dptr]!, {%[left]} \n\t" /* Store result word. */ "subs %[ctr], #1 \n\t" /* Decrement index. */ "bne 1b \n\t" /* Loop until index == 0. */ #if (ECC_ASM != ecc_asm_thumb2) ".syntax divided \n\t" #endif #if (ECC_ASM == ecc_asm_thumb) : [dptr] "+l" (p_result), [lptr] "+l" (p_left), [rptr] "+l" (p_right), [ctr] "+l" (l_counter), [carry] "+l" (l_carry), [left] "=l" (l_left), [right] "=l" (l_right) #else : [dptr] "+r" (p_result), [lptr] "+r" (p_left), [rptr] "+r" (p_right), [ctr] "+r" (l_counter), [carry] "+r" (l_carry), [left] "=r" (l_left), [right] "=r" (l_right) #endif : : "cc", "memory" ); return !l_carry; #else uint32_t l_borrow = 0; uint i; for(i=0; i<NUM_ECC_DIGITS; ++i) { uint32_t l_diff = p_left[i] - p_right[i] - l_borrow; if(l_diff != p_left[i]) { l_borrow = (l_diff > p_left[i]); } p_result[i] = l_diff; } return l_borrow; #endif } /* Computes p_result = p_left * p_right. */ static void vli_mult(uint32_t *p_result, const uint32_t *p_left, const uint32_t *p_right) { #if (ECC_ASM == ecc_asm_thumb2 || ECC_ASM == ecc_asm_arm) uint32_t c0 = 0; uint32_t c1 = 0; uint32_t c2 = 0; uint32_t k = 0; uint32_t i; uint32_t t0, t1; asm volatile ( ".syntax unified \n\t" "1: \n\t" /* outer loop (k < NUM_ECC_DIGITS) */ "movs %[i], #0 \n\t" /* i = 0 */ "b 3f \n\t" "2: \n\t" /* outer loop (k >= NUM_ECC_DIGITS) */ "movs %[i], %[k] \n\t" /* i = k */ "subs %[i], %[eccdm1] \n\t" /* i = k - (NUM_ECC_DIGITS - 1) (times 4) */ "3: \n\t" /* inner loop */ "subs %[t0], %[k], %[i] \n\t" /* t0 = k-i */ "ldr %[t1], [%[right], %[t0]] \n\t" /* t1 = p_right[k-i] */ "ldr %[t0], [%[left], %[i]] \n\t" /* t0 = p_left[i] */ "umull %[t0], %[t1], %[t0], %[t1] \n\t" /* (t0, t1) = p_left[i] * p_right[k-i] */ "adds %[c0], %[t0] \n\t" /* add low word to c0 */ "adcs %[c1], %[t1] \n\t" /* add high word to c1, including carry */ "adcs %[c2], #0 \n\t" /* add carry to c2 */ "adds %[i], #4 \n\t" /* i += 4 */ "cmp %[i], %[eccd] \n\t" /* i < NUM_ECC_DIGITS (times 4)? */ "bge 4f \n\t" /* if not, exit the loop */ "cmp %[i], %[k] \n\t" /* i <= k? */ "ble 3b \n\t" /* if so, continue looping */ "4: \n\t" /* end inner loop */ "str %[c0], [%[result], %[k]] \n\t" /* p_result[k] = c0 */ "mov %[c0], %[c1] \n\t" /* c0 = c1 */ "mov %[c1], %[c2] \n\t" /* c1 = c2 */ "movs %[c2], #0 \n\t" /* c2 = 0 */ "adds %[k], #4 \n\t" /* k += 4 */ "cmp %[k], %[eccd] \n\t" /* k < NUM_ECC_DIGITS (times 4) ? */ "blt 1b \n\t" /* if not, loop back, start with i = 0 */ "cmp %[k], %[eccd2m1] \n\t" /* k < NUM_ECC_DIGITS * 2 - 1 (times 4) ? */ "blt 2b \n\t" /* if not, loop back, start with i = (k+1) - NUM_ECC_DIGITS */ /* end outer loop */ "str %[c0], [%[result], %[k]] \n\t" /* p_result[NUM_ECC_DIGITS * 2 - 1] = c0 */ #if (ECC_ASM != ecc_asm_thumb2) ".syntax divided \n\t" #endif : [c0] "+r" (c0), [c1] "+r" (c1), [c2] "+r" (c2), [k] "+r" (k), [i] "=&r" (i), [t0] "=&r" (t0), [t1] "=&r" (t1) : [result] "r" (p_result), [left] "r" (p_left), [right] "r" (p_right), [eccd] "I" (NUM_ECC_DIGITS * 4), [eccdm1] "I" ((NUM_ECC_DIGITS-1) * 4), [eccd2m1] "I" ((NUM_ECC_DIGITS * 2 - 1) * 4) : "cc", "memory" ); #elif (ECC_ASM == ecc_asm_thumb) register uint32_t *r0 asm("r0") = p_result; register uint32_t *r1 asm("r1") = p_left; register uint32_t *r2 asm("r2") = p_right; asm volatile ( ".syntax unified \n\t" "movs r3, #0 \n\t" /* c0 = 0 */ "movs r4, #0 \n\t" /* c1 = 0 */ "movs r5, #0 \n\t" /* c2 = 0 */ "movs r6, #0 \n\t" /* k = 0 */ "push {r0} \n\t" /* keep p_result on the stack */ "1: \n\t" /* outer loop (k < NUM_ECC_DIGITS) */ "movs r7, #0 \n\t" /* r7 = i = 0 */ "b 3f \n\t" "2: \n\t" /* outer loop (k >= NUM_ECC_DIGITS) */ "movs r7, r6 \n\t" /* r7 = k */ "subs r7, %[eccdm1] \n\t" /* r7 = i = k - (NUM_ECC_DIGITS - 1) (times 4) */ "3: \n\t" /* inner loop */ "push {r3, r4, r5, r6} \n\t" /* push things, r3 (c0) is at the top of stack. */ "subs r0, r6, r7 \n\t" /* r0 = k-i */ "ldr r4, [r2, r0] \n\t" /* r4 = p_right[k-i] */ "ldr r0, [r1, r7] \n\t" /* r0 = p_left[i] */ "lsrs r3, r0, #16 \n\t" /* r3 = a1 */ "uxth r0, r0 \n\t" /* r0 = a0 */ "lsrs r5, r4, #16 \n\t" /* r5 = b1 */ "uxth r4, r4 \n\t" /* r4 = b0 */ "movs r6, r3 \n\t" /* r6 = a1 */ "muls r6, r5, r6 \n\t" /* r6 = a1*b1 */ "muls r3, r4, r3 \n\t" /* r3 = b0*a1 */ "muls r5, r0, r5 \n\t" /* r5 = a0*b1 */ "muls r0, r4, r0 \n\t" /* r0 = a0*b0 */ "movs r4, #0 \n\t" /* r4 = 0 */ "adds r3, r5 \n\t" /* r3 = b0*a1 + a0*b1 */ "adcs r4, r4 \n\t" /* r4 = carry */ "lsls r4, #16 \n\t" /* r4 = carry << 16 */ "adds r6, r4 \n\t" /* r6 = a1*b1 + carry */ "lsls r4, r3, #16 \n\t" /* r4 = (b0*a1 + a0*b1) << 16 */ "lsrs r3, #16 \n\t" /* r3 = (b0*a1 + a0*b1) >> 16 */ "adds r0, r4 \n\t" /* r0 = low word = a0*b0 + ((b0*a1 + a0*b1) << 16) */ "adcs r6, r3 \n\t" /* r6 = high word = a1*b1 + carry + ((b0*a1 + a0*b1) >> 16) */ "pop {r3, r4, r5} \n\t" /* r3 = c0, r4 = c1, r5 = c2 */ "adds r3, r0 \n\t" /* add low word to c0 */ "adcs r4, r6 \n\t" /* add high word to c1, including carry */ "movs r0, #0 \n\t" /* r0 = 0 (does not affect carry bit) */ "adcs r5, r0 \n\t" /* add carry to c2 */ "pop {r6} \n\t" /* r6 = k */ "adds r7, #4 \n\t" /* i += 4 */ "cmp r7, %[eccd] \n\t" /* i < NUM_ECC_DIGITS (times 4)? */ "bge 4f \n\t" /* if not, exit the loop */ "cmp r7, r6 \n\t" /* i <= k? */ "ble 3b \n\t" /* if so, continue looping */ "4: \n\t" /* end inner loop */ "ldr r0, [sp, #0] \n\t" /* r0 = p_result */ "str r3, [r0, r6] \n\t" /* p_result[k] = c0 */ "mov r3, r4 \n\t" /* c0 = c1 */ "mov r4, r5 \n\t" /* c1 = c2 */ "movs r5, #0 \n\t" /* c2 = 0 */ "adds r6, #4 \n\t" /* k += 4 */ "cmp r6, %[eccd] \n\t" /* k < NUM_ECC_DIGITS (times 4) ? */ "blt 1b \n\t" /* if not, loop back, start with i = 0 */ "cmp r6, %[eccd2m1] \n\t" /* k < NUM_ECC_DIGITS * 2 - 1 (times 4) ? */ "blt 2b \n\t" /* if not, loop back, start with i = (k+1) - NUM_ECC_DIGITS */ /* end outer loop */ "str r3, [r0, r6] \n\t" /* p_result[NUM_ECC_DIGITS * 2 - 1] = c0 */ "pop {r0} \n\t" /* pop p_result off the stack */ ".syntax divided \n\t" : : [r0] "l" (r0), [r1] "l" (r1), [r2] "l" (r2), [eccd] "I" (NUM_ECC_DIGITS * 4), [eccdm1] "I" ((NUM_ECC_DIGITS-1) * 4), [eccd2m1] "I" ((NUM_ECC_DIGITS * 2 - 1) * 4) : "r3", "r4", "r5", "r6", "r7", "cc", "memory" ); #else uint64_t r01 = 0; uint32_t r2 = 0; uint i, k; /* Compute each digit of p_result in sequence, maintaining the carries. */ for(k=0; k < NUM_ECC_DIGITS*2 - 1; ++k) { uint l_min = (k < NUM_ECC_DIGITS ? 0 : (k + 1) - NUM_ECC_DIGITS); for(i=l_min; i<=k && i<NUM_ECC_DIGITS; ++i) { uint64_t l_product = (uint64_t)p_left[i] * p_right[k-i]; r01 += l_product; r2 += (r01 < l_product); } p_result[k] = (uint32_t)r01; r01 = (r01 >> 32) | (((uint64_t)r2) << 32); r2 = 0; } p_result[NUM_ECC_DIGITS*2 - 1] = (uint32_t)r01; #endif } /* Computes p_result = (p_left + p_right) % p_mod. Assumes that p_left < p_mod and p_right < p_mod, p_result != p_mod. */ static void vli_modAdd(uint32_t *p_result, const uint32_t *p_left, const uint32_t *p_right, const uint32_t *p_mod) { uint32_t l_carry = vli_add(p_result, p_left, p_right); if(l_carry || vli_cmp(p_result, p_mod) >= 0) { /* p_result > p_mod (p_result = p_mod + remainder), so subtract p_mod to get remainder. */ vli_sub(p_result, p_result, p_mod); } } /* Computes p_result = (p_left - p_right) % p_mod. Assumes that p_left < p_mod and p_right < p_mod, p_result != p_mod. */ static void vli_modSub(uint32_t *p_result, const uint32_t *p_left, const uint32_t *p_right, const uint32_t *p_mod) { uint32_t l_borrow = vli_sub(p_result, p_left, p_right); if(l_borrow) { /* In this case, p_result == -diff == (max int) - diff. Since -x % d == d - x, we can get the correct result from p_result + p_mod (with overflow). */ vli_add(p_result, p_result, p_mod); } } #if (ECC_CURVE == secp128r1) /* Computes p_result = p_product % curve_p. See algorithm 5 and 6 from http://www.isys.uni-klu.ac.at/PDF/2001-0126-MT.pdf */ static void vli_mmod_fast(uint32_t *p_result, const uint32_t *p_product) { uint32_t l_tmp[NUM_ECC_DIGITS]; int l_carry; vli_set(p_result, p_product); l_tmp[0] = p_product[4]; l_tmp[1] = p_product[5]; l_tmp[2] = p_product[6]; l_tmp[3] = (p_product[7] & 0x00000001) | (p_product[4] << 1); l_carry = vli_add(p_result, p_result, l_tmp); l_tmp[0] = (p_product[4] >> 31) | (p_product[5] << 1); l_tmp[1] = (p_product[5] >> 31) | (p_product[6] << 1); l_tmp[2] = (p_product[6] >> 31) | (p_product[7] << 1); l_tmp[3] = (p_product[7] >> 31) | ((p_product[4] & 0x80000000) >> 30) | (p_product[5] << 2); l_carry += vli_add(p_result, p_result, l_tmp); l_tmp[0] = (p_product[5] >> 30) | (p_product[6] << 2); l_tmp[1] = (p_product[6] >> 30) | (p_product[7] << 2); l_tmp[2] = (p_product[7] >> 30); l_tmp[3] = ((p_product[5] & 0xC0000000) >> 29) | (p_product[6] << 3); l_carry += vli_add(p_result, p_result, l_tmp); l_tmp[0] = (p_product[6] >> 29) | (p_product[7] << 3); l_tmp[1] = (p_product[7] >> 29); l_tmp[2] = 0; l_tmp[3] = ((p_product[6] & 0xE0000000) >> 28) | (p_product[7] << 4); l_carry += vli_add(p_result, p_result, l_tmp); l_tmp[0] = (p_product[7] >> 28); l_tmp[1] = 0; l_tmp[2] = 0; l_tmp[3] = (p_product[7] & 0xFFFFFFFE); l_carry += vli_add(p_result, p_result, l_tmp); l_tmp[0] = 0; l_tmp[1] = 0; l_tmp[2] = 0; l_tmp[3] = ((p_product[7] & 0xF0000000) >> 27); l_carry += vli_add(p_result, p_result, l_tmp); while(l_carry || vli_cmp(curve_p, p_result) != 1) { l_carry -= vli_sub(p_result, p_result, curve_p); } } #elif (ECC_CURVE == secp192r1) /* Computes p_result = p_product % curve_p. See algorithm 5 and 6 from http://www.isys.uni-klu.ac.at/PDF/2001-0126-MT.pdf */ static void vli_mmod_fast(uint32_t *p_result, const uint32_t *p_product) { uint32_t l_tmp[NUM_ECC_DIGITS]; int l_carry; vli_set(p_result, p_product); vli_set(l_tmp, &p_product[6]); l_carry = vli_add(p_result, p_result, l_tmp); l_tmp[0] = l_tmp[1] = 0; l_tmp[2] = p_product[6]; l_tmp[3] = p_product[7]; l_tmp[4] = p_product[8]; l_tmp[5] = p_product[9]; l_carry += vli_add(p_result, p_result, l_tmp); l_tmp[0] = l_tmp[2] = p_product[10]; l_tmp[1] = l_tmp[3] = p_product[11]; l_tmp[4] = l_tmp[5] = 0; l_carry += vli_add(p_result, p_result, l_tmp); while(l_carry || vli_cmp(curve_p, p_result) != 1) { l_carry -= vli_sub(p_result, p_result, curve_p); } } #elif (ECC_CURVE == secp256r1) /* Computes p_result = p_product % curve_p from http://www.nsa.gov/ia/_files/nist-routines.pdf */ static void vli_mmod_fast(uint32_t *p_result, const uint32_t *p_product) { uint32_t l_tmp[NUM_ECC_DIGITS]; int l_carry; /* t */ vli_set(p_result, p_product); /* s1 */ l_tmp[0] = l_tmp[1] = l_tmp[2] = 0; l_tmp[3] = p_product[11]; l_tmp[4] = p_product[12]; l_tmp[5] = p_product[13]; l_tmp[6] = p_product[14]; l_tmp[7] = p_product[15]; l_carry = vli_lshift(l_tmp, l_tmp, 1); l_carry += vli_add(p_result, p_result, l_tmp); /* s2 */ l_tmp[3] = p_product[12]; l_tmp[4] = p_product[13]; l_tmp[5] = p_product[14]; l_tmp[6] = p_product[15]; l_tmp[7] = 0; l_carry += vli_lshift(l_tmp, l_tmp, 1); l_carry += vli_add(p_result, p_result, l_tmp); /* s3 */ l_tmp[0] = p_product[8]; l_tmp[1] = p_product[9]; l_tmp[2] = p_product[10]; l_tmp[3] = l_tmp[4] = l_tmp[5] = 0; l_tmp[6] = p_product[14]; l_tmp[7] = p_product[15]; l_carry += vli_add(p_result, p_result, l_tmp); /* s4 */ l_tmp[0] = p_product[9]; l_tmp[1] = p_product[10]; l_tmp[2] = p_product[11]; l_tmp[3] = p_product[13]; l_tmp[4] = p_product[14]; l_tmp[5] = p_product[15]; l_tmp[6] = p_product[13]; l_tmp[7] = p_product[8]; l_carry += vli_add(p_result, p_result, l_tmp); /* d1 */ l_tmp[0] = p_product[11]; l_tmp[1] = p_product[12]; l_tmp[2] = p_product[13]; l_tmp[3] = l_tmp[4] = l_tmp[5] = 0; l_tmp[6] = p_product[8]; l_tmp[7] = p_product[10]; l_carry -= vli_sub(p_result, p_result, l_tmp); /* d2 */ l_tmp[0] = p_product[12]; l_tmp[1] = p_product[13]; l_tmp[2] = p_product[14]; l_tmp[3] = p_product[15]; l_tmp[4] = l_tmp[5] = 0; l_tmp[6] = p_product[9]; l_tmp[7] = p_product[11]; l_carry -= vli_sub(p_result, p_result, l_tmp); /* d3 */ l_tmp[0] = p_product[13]; l_tmp[1] = p_product[14]; l_tmp[2] = p_product[15]; l_tmp[3] = p_product[8]; l_tmp[4] = p_product[9]; l_tmp[5] = p_product[10]; l_tmp[6] = 0; l_tmp[7] = p_product[12]; l_carry -= vli_sub(p_result, p_result, l_tmp); /* d4 */ l_tmp[0] = p_product[14]; l_tmp[1] = p_product[15]; l_tmp[2] = 0; l_tmp[3] = p_product[9]; l_tmp[4] = p_product[10]; l_tmp[5] = p_product[11]; l_tmp[6] = 0; l_tmp[7] = p_product[13]; l_carry -= vli_sub(p_result, p_result, l_tmp); if(l_carry < 0) { do { l_carry += vli_add(p_result, p_result, curve_p); } while(l_carry < 0); } else { while(l_carry || vli_cmp(curve_p, p_result) != 1) { l_carry -= vli_sub(p_result, p_result, curve_p); } } } #elif (ECC_CURVE == secp384r1) static void omega_mult(uint32_t *p_result, const uint32_t *p_right) { /* Multiply by (2^128 + 2^96 - 2^32 + 1). */ vli_set(p_result, p_right); /* 1 */ p_result[3 + NUM_ECC_DIGITS] = vli_add(p_result + 3, p_result + 3, p_right); /* 2^96 + 1 */ p_result[4 + NUM_ECC_DIGITS] = vli_add(p_result + 4, p_result + 4, p_right); /* 2^128 + 2^96 + 1 */ if(vli_sub(p_result + 1, p_result + 1, p_right)) /* 2^128 + 2^96 - 2^32 + 1 */ { /* Propagate borrow if necessary. */ uint i; for(i = 1 + NUM_ECC_DIGITS; ; ++i) { --p_result[i]; if(p_result[i] != 0xffffffff) { break; } } } } /* Computes p_result = p_product % curve_p see PDF "Comparing Elliptic Curve Cryptography and RSA on 8-bit CPUs" section "Curve-Specific Optimizations" */ static void vli_mmod_fast(uint32_t *p_result, const uint32_t *p_product) { uint32_t l_tmp[2*NUM_ECC_DIGITS]; while(!vli_isZero(p_product + NUM_ECC_DIGITS)) /* While c1 != 0 */ { uint32_t l_carry = 0; uint i; vli_clear(l_tmp); vli_clear(l_tmp + NUM_ECC_DIGITS); omega_mult(l_tmp, p_product + NUM_ECC_DIGITS); /* tmp = w * c1 */ vli_clear(p_product + NUM_ECC_DIGITS); /* p = c0 */ /* (c1, c0) = c0 + w * c1 */ for(i=0; i<NUM_ECC_DIGITS+5; ++i) { uint32_t l_sum = p_product[i] + l_tmp[i] + l_carry; if(l_sum != p_product[i]) { l_carry = (l_sum < p_product[i]); } p_product[i] = l_sum; } } while(vli_cmp(p_product, curve_p) > 0) { vli_sub(p_product, p_product, curve_p); } vli_set(p_result, p_product); } #elif (ECC_CURVE == secp256k1) static void omega_mult(uint32_t *p_result, const uint32_t *p_right) { /* Multiply by (2^32 + 2^9 + 2^8 + 2^7 + 2^6 + 2^4 + 1). */ uint64_t l_mult = 0x3D1; /* everything except 2^32 */ uint32_t l_carry = 0; uint i; for(i=0; i<NUM_ECC_DIGITS; ++i) { uint64_t p = l_mult * p_right[i] + l_carry; p_result[i] = (p & 0xffffffff); l_carry = p >> 32; } p_result[NUM_ECC_DIGITS] = l_carry; p_result[1 + NUM_ECC_DIGITS] = vli_add(p_result + 1, p_result + 1, p_right); /* add the 2^32 multiple */ } /* Computes p_result = p_product % curve_p */ static void vli_mmod_fast(uint32_t *p_result, const uint32_t *p_product) { uint32_t l_tmp[2*NUM_ECC_DIGITS]; while(!vli_isZero(p_product + NUM_ECC_DIGITS)) /* While c1 != 0 */ { uint32_t l_carry = 0; uint i; vli_clear(l_tmp); vli_clear(l_tmp + NUM_ECC_DIGITS); omega_mult(l_tmp, p_product + NUM_ECC_DIGITS); /* tmp = w * c1 */ vli_clear(p_product + NUM_ECC_DIGITS); /* p = c0 */ /* (c1, c0) = c0 + w * c1 */ for(i=0; i<NUM_ECC_DIGITS+2; ++i) { uint32_t l_sum = p_product[i] + l_tmp[i] + l_carry; if(l_sum != p_product[i]) { l_carry = (l_sum < p_product[i]); } p_product[i] = l_sum; } } while(vli_cmp(p_product, curve_p) > 0) { vli_sub(p_product, p_product, curve_p); } vli_set(p_result, p_product); } #endif /* Computes p_result = (p_left * p_right) % curve_p. */ static void vli_modMult_fast(uint32_t *p_result, const uint32_t *p_left, const uint32_t *p_right) { uint32_t l_product[2 * NUM_ECC_DIGITS]; vli_mult(l_product, p_left, p_right); vli_mmod_fast(p_result, l_product); } #if ECC_SQUARE_FUNC /* Computes p_result = p_left^2. */ static void vli_square(uint32_t *p_result, const uint32_t *p_left) { #if (ECC_ASM == ecc_asm_thumb2 || ECC_ASM == ecc_asm_arm) uint32_t c0 = 0; uint32_t c1 = 0; uint32_t c2 = 0; uint32_t k = 0; uint32_t i, tt; uint32_t t0, t1; asm volatile ( ".syntax unified \n\t" "1: \n\t" /* outer loop (k < NUM_ECC_DIGITS) */ "movs %[i], #0 \n\t" /* i = 0 */ "b 3f \n\t" "2: \n\t" /* outer loop (k >= NUM_ECC_DIGITS) */ "movs %[i], %[k] \n\t" /* i = k */ "subs %[i], %[eccdm1] \n\t" /* i = k - (NUM_ECC_DIGITS - 1) (times 4) */ "3: \n\t" /* inner loop */ "subs %[tt], %[k], %[i] \n\t" /* tt = k-i */ "ldr %[t1], [%[left], %[tt]] \n\t" /* t1 = p_left[k-i] */ "ldr %[t0], [%[left], %[i]] \n\t" /* t0 = p_left[i] */ "umull %[t0], %[t1], %[t0], %[t1] \n\t" /* (t0, t1) = p_left[i] * p_right[k-i] */ "cmp %[i], %[tt] \n\t" /* (i < k-i) ? */ "bge 4f \n\t" /* if i >= k-i, skip */ "lsls %[t1], #1 \n\t" /* high word << 1 */ "adc %[c2], #0 \n\t" /* add carry bit to c2 */ "lsls %[t0], #1 \n\t" /* low word << 1 */ "adc %[t1], #0 \n\t" /* add carry bit to high word */ "4: \n\t" "adds %[c0], %[t0] \n\t" /* add low word to c0 */ "adcs %[c1], %[t1] \n\t" /* add high word to c1, including carry */ "adc %[c2], #0 \n\t" /* add carry to c2 */ "adds %[i], #4 \n\t" /* i += 4 */ "cmp %[i], %[k] \n\t" /* i <= k? */ "bge 5f \n\t" /* if not, exit the loop */ "subs %[tt], %[k], %[i] \n\t" /* tt = k-i */ "cmp %[i], %[tt] \n\t" /* i <= k-i? */ "ble 3b \n\t" /* if so, continue looping */ "5: \n\t" /* end inner loop */ "str %[c0], [%[result], %[k]] \n\t" /* p_result[k] = c0 */ "mov %[c0], %[c1] \n\t" /* c0 = c1 */ "mov %[c1], %[c2] \n\t" /* c1 = c2 */ "movs %[c2], #0 \n\t" /* c2 = 0 */ "adds %[k], #4 \n\t" /* k += 4 */ "cmp %[k], %[eccd] \n\t" /* k < NUM_ECC_DIGITS (times 4) ? */ "blt 1b \n\t" /* if not, loop back, start with i = 0 */ "cmp %[k], %[eccd2m1] \n\t" /* k < NUM_ECC_DIGITS * 2 - 1 (times 4) ? */ "blt 2b \n\t" /* if not, loop back, start with i = (k+1) - NUM_ECC_DIGITS */ /* end outer loop */ "str %[c0], [%[result], %[k]] \n\t" /* p_result[NUM_ECC_DIGITS * 2 - 1] = c0 */ #if (ECC_ASM != ecc_asm_thumb2) ".syntax divided \n\t" #endif : [c0] "+r" (c0), [c1] "+r" (c1), [c2] "+r" (c2), [k] "+r" (k), [i] "=&r" (i), [tt] "=&r" (tt), [t0] "=&r" (t0), [t1] "=&r" (t1) : [result] "r" (p_result), [left] "r" (p_left), [eccd] "I" (NUM_ECC_DIGITS * 4), [eccdm1] "I" ((NUM_ECC_DIGITS-1) * 4), [eccd2m1] "I" ((NUM_ECC_DIGITS * 2 - 1) * 4) : "cc", "memory" ); #elif (ECC_ASM == ecc_asm_thumb) register uint32_t *r0 asm("r0") = p_result; register uint32_t *r1 asm("r1") = p_left; asm volatile ( ".syntax unified \n\t" "movs r2, #0 \n\t" /* c0 = 0 */ "movs r3, #0 \n\t" /* c1 = 0 */ "movs r4, #0 \n\t" /* c2 = 0 */ "movs r5, #0 \n\t" /* k = 0 */ "push {r0} \n\t" /* keep p_result on the stack */ "1: \n\t" /* outer loop (k < NUM_ECC_DIGITS) */ "movs r6, #0 \n\t" /* r6 = i = 0 */ "b 3f \n\t" "2: \n\t" /* outer loop (k >= NUM_ECC_DIGITS) */ "movs r6, r5 \n\t" /* r6 = k */ "subs r6, %[eccdm1] \n\t" /* r6 = i = k - (NUM_ECC_DIGITS - 1) (times 4) */ "3: \n\t" /* inner loop */ "push {r2, r3, r4, r5} \n\t" /* push things, r2 (c0) is at the top of stack. */ "subs r7, r5, r6 \n\t" /* r7 = k-i */ "ldr r3, [r1, r7] \n\t" /* r3 = p_left[k-i] */ "ldr r0, [r1, r6] \n\t" /* r0 = p_left[i] */ "lsrs r2, r0, #16 \n\t" /* r2 = a1 */ "uxth r0, r0 \n\t" /* r0 = a0 */ "lsrs r4, r3, #16 \n\t" /* r4 = b1 */ "uxth r3, r3 \n\t" /* r3 = b0 */ "movs r5, r2 \n\t" /* r5 = a1 */ "muls r5, r4, r5 \n\t" /* r5 = a1*b1 */ "muls r2, r3, r2 \n\t" /* r2 = b0*a1 */ "muls r4, r0, r4 \n\t" /* r4 = a0*b1 */ "muls r0, r3, r0 \n\t" /* r0 = a0*b0 */ "movs r3, #0 \n\t" /* r3 = 0 */ "adds r2, r4 \n\t" /* r2 = b0*a1 + a0*b1 */ "adcs r3, r3 \n\t" /* r3 = carry */ "lsls r3, #16 \n\t" /* r3 = carry << 16 */ "adds r5, r3 \n\t" /* r5 = a1*b1 + carry */ "lsls r3, r2, #16 \n\t" /* r3 = (b0*a1 + a0*b1) << 16 */ "lsrs r2, #16 \n\t" /* r2 = (b0*a1 + a0*b1) >> 16 */ "adds r0, r3 \n\t" /* r0 = low word = a0*b0 + ((b0*a1 + a0*b1) << 16) */ "adcs r5, r2 \n\t" /* r5 = high word = a1*b1 + carry + ((b0*a1 + a0*b1) >> 16) */ "movs r3, #0 \n\t" /* r3 = 0 */ "cmp r6, r7 \n\t" /* (i < k-i) ? */ "mov r7, r3 \n\t" /* r7 = 0 (does not affect condition)*/ "bge 4f \n\t" /* if i >= k-i, skip */ "lsls r5, #1 \n\t" /* high word << 1 */ "adcs r7, r3 \n\t" /* r7 = carry bit for c2 */ "lsls r0, #1 \n\t" /* low word << 1 */ "adcs r5, r3 \n\t" /* add carry from shift to high word */ "4: \n\t" "pop {r2, r3, r4} \n\t" /* r2 = c0, r3 = c1, r4 = c2 */ "adds r2, r0 \n\t" /* add low word to c0 */ "adcs r3, r5 \n\t" /* add high word to c1, including carry */ "movs r0, #0 \n\t" /* r0 = 0 (does not affect carry bit) */ "adcs r4, r0 \n\t" /* add carry to c2 */ "adds r4, r7 \n\t" /* add carry from doubling (if any) */ "pop {r5} \n\t" /* r5 = k */ "adds r6, #4 \n\t" /* i += 4 */ "cmp r6, r5 \n\t" /* i <= k? */ "bge 5f \n\t" /* if not, exit the loop */ "subs r7, r5, r6 \n\t" /* r7 = k-i */ "cmp r6, r7 \n\t" /* i <= k-i? */ "ble 3b \n\t" /* if so, continue looping */ "5: \n\t" /* end inner loop */ "ldr r0, [sp, #0] \n\t" /* r0 = p_result */ "str r2, [r0, r5] \n\t" /* p_result[k] = c0 */ "mov r2, r3 \n\t" /* c0 = c1 */ "mov r3, r4 \n\t" /* c1 = c2 */ "movs r4, #0 \n\t" /* c2 = 0 */ "adds r5, #4 \n\t" /* k += 4 */ "cmp r5, %[eccd] \n\t" /* k < NUM_ECC_DIGITS (times 4) ? */ "blt 1b \n\t" /* if not, loop back, start with i = 0 */ "cmp r5, %[eccd2m1] \n\t" /* k < NUM_ECC_DIGITS * 2 - 1 (times 4) ? */ "blt 2b \n\t" /* if not, loop back, start with i = (k+1) - NUM_ECC_DIGITS */ /* end outer loop */ "str r2, [r0, r5] \n\t" /* p_result[NUM_ECC_DIGITS * 2 - 1] = c0 */ "pop {r0} \n\t" /* pop p_result off the stack */ ".syntax divided \n\t" : [r0] "+l" (r0), [r1] "+l" (r1) : [eccd] "I" (NUM_ECC_DIGITS * 4), [eccdm1] "I" ((NUM_ECC_DIGITS-1) * 4), [eccd2m1] "I" ((NUM_ECC_DIGITS * 2 - 1) * 4) : "r2", "r3", "r4", "r5", "r6", "r7", "cc", "memory" ); #else uint64_t r01 = 0; uint32_t r2 = 0; uint i, k; for(k=0; k < NUM_ECC_DIGITS*2 - 1; ++k) { uint l_min = (k < NUM_ECC_DIGITS ? 0 : (k + 1) - NUM_ECC_DIGITS); for(i=l_min; i<=k && i<=k-i; ++i) { uint64_t l_product = (uint64_t)p_left[i] * p_left[k-i]; if(i < k-i) { r2 += l_product >> 63; l_product *= 2; } r01 += l_product; r2 += (r01 < l_product); } p_result[k] = (uint32_t)r01; r01 = (r01 >> 32) | (((uint64_t)r2) << 32); r2 = 0; } p_result[NUM_ECC_DIGITS*2 - 1] = (uint32_t)r01; #endif } /* Computes p_result = p_left^2 % curve_p. */ static void vli_modSquare_fast(uint32_t *p_result, const uint32_t *p_left) { uint32_t l_product[2 * NUM_ECC_DIGITS]; vli_square(l_product, p_left); vli_mmod_fast(p_result, l_product); } #else /* ECC_SQUARE_FUNC */ #define vli_square(result, left, size) vli_mult((result), (left), (left), (size)) #define vli_modSquare_fast(result, left) vli_modMult_fast((result), (left), (left)) #endif /* ECC_SQUARE_FUNC */ #define EVEN(vli) (!(vli[0] & 1)) /* Computes p_result = (1 / p_input) % p_mod. All VLIs are the same size. See "From Euclid's GCD to Montgomery Multiplication to the Great Divide" https://labs.oracle.com/techrep/2001/smli_tr-2001-95.pdf */ static void vli_modInv(uint32_t *p_result, const uint32_t *p_input, const uint32_t *p_mod) { uint32_t a[NUM_ECC_DIGITS], b[NUM_ECC_DIGITS], u[NUM_ECC_DIGITS], v[NUM_ECC_DIGITS]; uint32_t l_carry; vli_set(a, p_input); vli_set(b, p_mod); vli_clear(u); u[0] = 1; vli_clear(v); int l_cmpResult; while((l_cmpResult = vli_cmp(a, b)) != 0) { l_carry = 0; if(EVEN(a)) { vli_rshift1(a); if(!EVEN(u)) { l_carry = vli_add(u, u, p_mod); } vli_rshift1(u); if(l_carry) { u[NUM_ECC_DIGITS-1] |= 0x80000000; } } else if(EVEN(b)) { vli_rshift1(b); if(!EVEN(v)) { l_carry = vli_add(v, v, p_mod); } vli_rshift1(v); if(l_carry) { v[NUM_ECC_DIGITS-1] |= 0x80000000; } } else if(l_cmpResult > 0) { vli_sub(a, a, b); vli_rshift1(a); if(vli_cmp(u, v) < 0) { vli_add(u, u, p_mod); } vli_sub(u, u, v); if(!EVEN(u)) { l_carry = vli_add(u, u, p_mod); } vli_rshift1(u); if(l_carry) { u[NUM_ECC_DIGITS-1] |= 0x80000000; } } else { vli_sub(b, b, a); vli_rshift1(b); if(vli_cmp(v, u) < 0) { vli_add(v, v, p_mod); } vli_sub(v, v, u); if(!EVEN(v)) { l_carry = vli_add(v, v, p_mod); } vli_rshift1(v); if(l_carry) { v[NUM_ECC_DIGITS-1] |= 0x80000000; } } } vli_set(p_result, u); } /* ------ Point operations ------ */ /* Returns 1 if p_point is the point at infinity, 0 otherwise. */ static int EccPoint_isZero(const EccPoint *p_point) { return (vli_isZero(p_point->x) && vli_isZero(p_point->y)); } /* Point multiplication algorithm using Montgomery's ladder with co-Z coordinates. From http://eprint.iacr.org/2011/338.pdf */ /* Double in place */ #if (ECC_CURVE == secp256k1) static void EccPoint_double_jacobian(uint32_t *X1, uint32_t *Y1, uint32_t *Z1) { /* t1 = X, t2 = Y, t3 = Z */ uint32_t t4[NUM_ECC_DIGITS]; uint32_t t5[NUM_ECC_DIGITS]; if(vli_isZero(Z1)) { return; } vli_modSquare_fast(t5, Y1); /* t5 = y1^2 */ vli_modMult_fast(t4, X1, t5); /* t4 = x1*y1^2 = A */ vli_modSquare_fast(X1, X1); /* t1 = x1^2 */ vli_modSquare_fast(t5, t5); /* t5 = y1^4 */ vli_modMult_fast(Z1, Y1, Z1); /* t3 = y1*z1 = z3 */ vli_modAdd(Y1, X1, X1, curve_p); /* t2 = 2*x1^2 */ vli_modAdd(Y1, Y1, X1, curve_p); /* t2 = 3*x1^2 */ if(vli_testBit(Y1, 0)) { uint32_t l_carry = vli_add(Y1, Y1, curve_p); vli_rshift1(Y1); Y1[NUM_ECC_DIGITS-1] |= l_carry << 31; } else { vli_rshift1(Y1); } /* t2 = 3/2*(x1^2) = B */ vli_modSquare_fast(X1, Y1); /* t1 = B^2 */ vli_modSub(X1, X1, t4, curve_p); /* t1 = B^2 - A */ vli_modSub(X1, X1, t4, curve_p); /* t1 = B^2 - 2A = x3 */ vli_modSub(t4, t4, X1, curve_p); /* t4 = A - x3 */ vli_modMult_fast(Y1, Y1, t4); /* t2 = B * (A - x3) */ vli_modSub(Y1, Y1, t5, curve_p); /* t2 = B * (A - x3) - y1^4 = y3 */ } #else static void EccPoint_double_jacobian(uint32_t *X1, uint32_t *Y1, uint32_t *Z1) { /* t1 = X, t2 = Y, t3 = Z */ uint32_t t4[NUM_ECC_DIGITS]; uint32_t t5[NUM_ECC_DIGITS]; if(vli_isZero(Z1)) { return; } vli_modSquare_fast(t4, Y1); /* t4 = y1^2 */ vli_modMult_fast(t5, X1, t4); /* t5 = x1*y1^2 = A */ vli_modSquare_fast(t4, t4); /* t4 = y1^4 */ vli_modMult_fast(Y1, Y1, Z1); /* t2 = y1*z1 = z3 */ vli_modSquare_fast(Z1, Z1); /* t3 = z1^2 */ vli_modAdd(X1, X1, Z1, curve_p); /* t1 = x1 + z1^2 */ vli_modAdd(Z1, Z1, Z1, curve_p); /* t3 = 2*z1^2 */ vli_modSub(Z1, X1, Z1, curve_p); /* t3 = x1 - z1^2 */ vli_modMult_fast(X1, X1, Z1); /* t1 = x1^2 - z1^4 */ vli_modAdd(Z1, X1, X1, curve_p); /* t3 = 2*(x1^2 - z1^4) */ vli_modAdd(X1, X1, Z1, curve_p); /* t1 = 3*(x1^2 - z1^4) */ if(vli_testBit(X1, 0)) { uint32_t l_carry = vli_add(X1, X1, curve_p); vli_rshift1(X1); X1[NUM_ECC_DIGITS-1] |= l_carry << 31; } else { vli_rshift1(X1); } /* t1 = 3/2*(x1^2 - z1^4) = B */ vli_modSquare_fast(Z1, X1); /* t3 = B^2 */ vli_modSub(Z1, Z1, t5, curve_p); /* t3 = B^2 - A */ vli_modSub(Z1, Z1, t5, curve_p); /* t3 = B^2 - 2A = x3 */ vli_modSub(t5, t5, Z1, curve_p); /* t5 = A - x3 */ vli_modMult_fast(X1, X1, t5); /* t1 = B * (A - x3) */ vli_modSub(t4, X1, t4, curve_p); /* t4 = B * (A - x3) - y1^4 = y3 */ vli_set(X1, Z1); vli_set(Z1, Y1); vli_set(Y1, t4); } #endif /* Modify (x1, y1) => (x1 * z^2, y1 * z^3) */ static void apply_z(uint32_t *X1, uint32_t *Y1, uint32_t *Z) { uint32_t t1[NUM_ECC_DIGITS]; vli_modSquare_fast(t1, Z); /* z^2 */ vli_modMult_fast(X1, X1, t1); /* x1 * z^2 */ vli_modMult_fast(t1, t1, Z); /* z^3 */ vli_modMult_fast(Y1, Y1, t1); /* y1 * z^3 */ } /* P = (x1, y1) => 2P, (x2, y2) => P' */ static void XYcZ_initial_double(uint32_t *X1, uint32_t *Y1, uint32_t *X2, uint32_t *Y2, const uint32_t *p_initialZ) { uint32_t z[NUM_ECC_DIGITS]; vli_set(X2, X1); vli_set(Y2, Y1); vli_clear(z); z[0] = 1; if(p_initialZ) { vli_set(z, p_initialZ); } apply_z(X1, Y1, z); EccPoint_double_jacobian(X1, Y1, z); apply_z(X2, Y2, z); } /* Input P = (x1, y1, Z), Q = (x2, y2, Z) Output P' = (x1', y1', Z3), P + Q = (x3, y3, Z3) or P => P', Q => P + Q */ static void XYcZ_add(uint32_t *X1, uint32_t *Y1, uint32_t *X2, uint32_t *Y2) { /* t1 = X1, t2 = Y1, t3 = X2, t4 = Y2 */ uint32_t t5[NUM_ECC_DIGITS]; vli_modSub(t5, X2, X1, curve_p); /* t5 = x2 - x1 */ vli_modSquare_fast(t5, t5); /* t5 = (x2 - x1)^2 = A */ vli_modMult_fast(X1, X1, t5); /* t1 = x1*A = B */ vli_modMult_fast(X2, X2, t5); /* t3 = x2*A = C */ vli_modSub(Y2, Y2, Y1, curve_p); /* t4 = y2 - y1 */ vli_modSquare_fast(t5, Y2); /* t5 = (y2 - y1)^2 = D */ vli_modSub(t5, t5, X1, curve_p); /* t5 = D - B */ vli_modSub(t5, t5, X2, curve_p); /* t5 = D - B - C = x3 */ vli_modSub(X2, X2, X1, curve_p); /* t3 = C - B */ vli_modMult_fast(Y1, Y1, X2); /* t2 = y1*(C - B) */ vli_modSub(X2, X1, t5, curve_p); /* t3 = B - x3 */ vli_modMult_fast(Y2, Y2, X2); /* t4 = (y2 - y1)*(B - x3) */ vli_modSub(Y2, Y2, Y1, curve_p); /* t4 = y3 */ vli_set(X2, t5); } /* Input P = (x1, y1, Z), Q = (x2, y2, Z) Output P + Q = (x3, y3, Z3), P - Q = (x3', y3', Z3) or P => P - Q, Q => P + Q */ static void XYcZ_addC(uint32_t *X1, uint32_t *Y1, uint32_t *X2, uint32_t *Y2) { /* t1 = X1, t2 = Y1, t3 = X2, t4 = Y2 */ uint32_t t5[NUM_ECC_DIGITS]; uint32_t t6[NUM_ECC_DIGITS]; uint32_t t7[NUM_ECC_DIGITS]; vli_modSub(t5, X2, X1, curve_p); /* t5 = x2 - x1 */ vli_modSquare_fast(t5, t5); /* t5 = (x2 - x1)^2 = A */ vli_modMult_fast(X1, X1, t5); /* t1 = x1*A = B */ vli_modMult_fast(X2, X2, t5); /* t3 = x2*A = C */ vli_modAdd(t5, Y2, Y1, curve_p); /* t4 = y2 + y1 */ vli_modSub(Y2, Y2, Y1, curve_p); /* t4 = y2 - y1 */ vli_modSub(t6, X2, X1, curve_p); /* t6 = C - B */ vli_modMult_fast(Y1, Y1, t6); /* t2 = y1 * (C - B) */ vli_modAdd(t6, X1, X2, curve_p); /* t6 = B + C */ vli_modSquare_fast(X2, Y2); /* t3 = (y2 - y1)^2 */ vli_modSub(X2, X2, t6, curve_p); /* t3 = x3 */ vli_modSub(t7, X1, X2, curve_p); /* t7 = B - x3 */ vli_modMult_fast(Y2, Y2, t7); /* t4 = (y2 - y1)*(B - x3) */ vli_modSub(Y2, Y2, Y1, curve_p); /* t4 = y3 */ vli_modSquare_fast(t7, t5); /* t7 = (y2 + y1)^2 = F */ vli_modSub(t7, t7, t6, curve_p); /* t7 = x3' */ vli_modSub(t6, t7, X1, curve_p); /* t6 = x3' - B */ vli_modMult_fast(t6, t6, t5); /* t6 = (y2 + y1)*(x3' - B) */ vli_modSub(Y1, t6, Y1, curve_p); /* t2 = y3' */ vli_set(X1, t7); } static void EccPoint_mult(EccPoint *p_result, const EccPoint *p_point, const uint32_t *p_scalar, const uint32_t *p_initialZ) { /* R0 and R1 */ uint32_t Rx[2][NUM_ECC_DIGITS]; uint32_t Ry[2][NUM_ECC_DIGITS]; uint32_t z[NUM_ECC_DIGITS]; int i, nb; vli_set(Rx[1], p_point->x); vli_set(Ry[1], p_point->y); XYcZ_initial_double(Rx[1], Ry[1], Rx[0], Ry[0], p_initialZ); for(i = vli_numBits(p_scalar) - 2; i > 0; --i) { nb = !vli_testBit(p_scalar, i); XYcZ_addC(Rx[1-nb], Ry[1-nb], Rx[nb], Ry[nb]); XYcZ_add(Rx[nb], Ry[nb], Rx[1-nb], Ry[1-nb]); } nb = !vli_testBit(p_scalar, 0); XYcZ_addC(Rx[1-nb], Ry[1-nb], Rx[nb], Ry[nb]); /* Find final 1/Z value. */ vli_modSub(z, Rx[1], Rx[0], curve_p); /* X1 - X0 */ vli_modMult_fast(z, z, Ry[1-nb]); /* Yb * (X1 - X0) */ vli_modMult_fast(z, z, p_point->x); /* xP * Yb * (X1 - X0) */ vli_modInv(z, z, curve_p); /* 1 / (xP * Yb * (X1 - X0)) */ vli_modMult_fast(z, z, p_point->y); /* yP / (xP * Yb * (X1 - X0)) */ vli_modMult_fast(z, z, Rx[1-nb]); /* Xb * yP / (xP * Yb * (X1 - X0)) */ /* End 1/Z calculation */ XYcZ_add(Rx[nb], Ry[nb], Rx[1-nb], Ry[1-nb]); apply_z(Rx[0], Ry[0], z); vli_set(p_result->x, Rx[0]); vli_set(p_result->y, Ry[0]); } int ecc_make_key(EccPoint *p_publicKey, uint32_t p_privateKey[NUM_ECC_DIGITS], const uint32_t p_random[NUM_ECC_DIGITS]) { /* Make sure the private key is in the range [1, n-1]. For the supported curves, n is always large enough that we only need to subtract once at most. */ vli_set(p_privateKey, p_random); if(vli_cmp(curve_n, p_privateKey) != 1) { vli_sub(p_privateKey, p_privateKey, curve_n); } if(vli_isZero(p_privateKey)) { return 0; /* The private key cannot be 0 (mod p). */ } EccPoint_mult(p_publicKey, &curve_G, p_privateKey, NULL); return 1; } #if (ECC_CURVE == secp256k1) /* Compute p_result = x^3 + b */ static void curve_x_side(uint32_t p_result[NUM_ECC_DIGITS], const uint32_t x[NUM_ECC_DIGITS]) { vli_modSquare_fast(p_result, x); /* r = x^2 */ vli_modMult_fast(p_result, p_result, x); /* r = x^3 */ vli_modAdd(p_result, p_result, curve_b, curve_p); /* r = x^3 + b */ } #else /* Compute p_result = x^3 - 3x + b */ static void curve_x_side(uint32_t p_result[NUM_ECC_DIGITS], const uint32_t x[NUM_ECC_DIGITS]) { uint32_t _3[NUM_ECC_DIGITS] = {3}; /* -a = 3 */ vli_modSquare_fast(p_result, x); /* r = x^2 */ vli_modSub(p_result, p_result, _3, curve_p); /* r = x^2 - 3 */ vli_modMult_fast(p_result, p_result, x); /* r = x^3 - 3x */ vli_modAdd(p_result, p_result, curve_b, curve_p); /* r = x^3 - 3x + b */ } #endif int ecc_valid_public_key(const EccPoint *p_publicKey) { uint32_t l_tmp1[NUM_ECC_DIGITS]; uint32_t l_tmp2[NUM_ECC_DIGITS]; if(EccPoint_isZero(p_publicKey)) { return 0; } if(vli_cmp(curve_p, p_publicKey->x) != 1 || vli_cmp(curve_p, p_publicKey->y) != 1) { return 0; } vli_modSquare_fast(l_tmp1, p_publicKey->y); /* tmp1 = y^2 */ curve_x_side(l_tmp2, p_publicKey->x); /* tmp2 = x^3 - 3x + b */ /* Make sure that y^2 == x^3 + ax + b */ if(vli_cmp(l_tmp1, l_tmp2) != 0) { return 0; } return 1; } int ecdh_shared_secret(uint32_t p_secret[NUM_ECC_DIGITS], const EccPoint *p_publicKey, const uint32_t p_privateKey[NUM_ECC_DIGITS], const uint32_t p_random[NUM_ECC_DIGITS]) { EccPoint l_product; EccPoint_mult(&l_product, p_publicKey, p_privateKey, p_random); if(EccPoint_isZero(&l_product)) { return 0; } vli_set(p_secret, l_product.x); return 1; } /* -------- ECDSA code -------- */ /* Computes p_result = (p_left * p_right) % p_mod. */ static void vli_modMult(uint32_t *p_result, const uint32_t *p_left, const uint32_t *p_right, const uint32_t *p_mod) { uint32_t l_product[2 * NUM_ECC_DIGITS]; uint32_t l_modMultiple[2 * NUM_ECC_DIGITS]; uint l_digitShift, l_bitShift; uint l_productBits; uint l_modBits = vli_numBits(p_mod); vli_mult(l_product, p_left, p_right); l_productBits = vli_numBits(l_product + NUM_ECC_DIGITS); if(l_productBits) { l_productBits += NUM_ECC_DIGITS * 32; } else { l_productBits = vli_numBits(l_product); } if(l_productBits < l_modBits) { /* l_product < p_mod. */ vli_set(p_result, l_product); return; } /* Shift p_mod by (l_leftBits - l_modBits). This multiplies p_mod by the largest power of two possible while still resulting in a number less than p_left. */ vli_clear(l_modMultiple); vli_clear(l_modMultiple + NUM_ECC_DIGITS); l_digitShift = (l_productBits - l_modBits) / 32; l_bitShift = (l_productBits - l_modBits) % 32; if(l_bitShift) { l_modMultiple[l_digitShift + NUM_ECC_DIGITS] = vli_lshift(l_modMultiple + l_digitShift, p_mod, l_bitShift); } else { vli_set(l_modMultiple + l_digitShift, p_mod); } /* Subtract all multiples of p_mod to get the remainder. */ vli_clear(p_result); p_result[0] = 1; /* Use p_result as a temp var to store 1 (for subtraction) */ while(l_productBits > NUM_ECC_DIGITS * 32 || vli_cmp(l_modMultiple, p_mod) >= 0) { int l_cmp = vli_cmp(l_modMultiple + NUM_ECC_DIGITS, l_product + NUM_ECC_DIGITS); if(l_cmp < 0 || (l_cmp == 0 && vli_cmp(l_modMultiple, l_product) <= 0)) { if(vli_sub(l_product, l_product, l_modMultiple)) { /* borrow */ vli_sub(l_product + NUM_ECC_DIGITS, l_product + NUM_ECC_DIGITS, p_result); } vli_sub(l_product + NUM_ECC_DIGITS, l_product + NUM_ECC_DIGITS, l_modMultiple + NUM_ECC_DIGITS); } uint32_t l_carry = (l_modMultiple[NUM_ECC_DIGITS] & 0x01) << 31; vli_rshift1(l_modMultiple + NUM_ECC_DIGITS); vli_rshift1(l_modMultiple); l_modMultiple[NUM_ECC_DIGITS-1] |= l_carry; --l_productBits; } vli_set(p_result, l_product); } static inline unsigned int max(const unsigned int a, const unsigned int b) { return (a > b ? a : b); } int ecdsa_sign(uint32_t r[NUM_ECC_DIGITS], uint32_t s[NUM_ECC_DIGITS], const uint32_t p_privateKey[NUM_ECC_DIGITS], const uint32_t p_random[NUM_ECC_DIGITS], const uint32_t p_hash[NUM_ECC_DIGITS]) { uint32_t k[NUM_ECC_DIGITS]; EccPoint p; if(vli_isZero(p_random)) { /* The random number must not be 0. */ return 0; } vli_set(k, p_random); if(vli_cmp(curve_n, k) != 1) { vli_sub(k, k, curve_n); } /* tmp = k * G */ EccPoint_mult(&p, &curve_G, k, NULL); /* r = x1 (mod n) */ vli_set(r, p.x); if(vli_cmp(curve_n, r) != 1) { vli_sub(r, r, curve_n); } if(vli_isZero(r)) { /* If r == 0, fail (need a different random number). */ return 0; } vli_modMult(s, r, p_privateKey, curve_n); /* s = r*d */ vli_modAdd(s, p_hash, s, curve_n); /* s = e + r*d */ vli_modInv(k, k, curve_n); /* k = 1 / k */ vli_modMult(s, s, k, curve_n); /* s = (e + r*d) / k */ return 1; } int ecdsa_verify(const EccPoint *p_publicKey, const uint32_t p_hash[NUM_ECC_DIGITS], const uint32_t r[NUM_ECC_DIGITS], const uint32_t s[NUM_ECC_DIGITS]) { uint32_t u1[NUM_ECC_DIGITS], u2[NUM_ECC_DIGITS]; uint32_t z[NUM_ECC_DIGITS]; EccPoint l_sum; uint32_t rx[NUM_ECC_DIGITS]; uint32_t ry[NUM_ECC_DIGITS]; uint32_t tx[NUM_ECC_DIGITS]; uint32_t ty[NUM_ECC_DIGITS]; uint32_t tz[NUM_ECC_DIGITS]; if(vli_isZero(r) || vli_isZero(s)) { /* r, s must not be 0. */ return 0; } if(vli_cmp(curve_n, r) != 1 || vli_cmp(curve_n, s) != 1) { /* r, s must be < n. */ return 0; } /* Calculate u1 and u2. */ vli_modInv(z, s, curve_n); /* Z = s^-1 */ vli_modMult(u1, p_hash, z, curve_n); /* u1 = e/s */ vli_modMult(u2, r, z, curve_n); /* u2 = r/s */ /* Calculate l_sum = G + Q. */ vli_set(l_sum.x, p_publicKey->x); vli_set(l_sum.y, p_publicKey->y); vli_set(tx, curve_G.x); vli_set(ty, curve_G.y); vli_modSub(z, l_sum.x, tx, curve_p); /* Z = x2 - x1 */ XYcZ_add(tx, ty, l_sum.x, l_sum.y); vli_modInv(z, z, curve_p); /* Z = 1/Z */ apply_z(l_sum.x, l_sum.y, z); /* Use Shamir's trick to calculate u1*G + u2*Q */ const EccPoint *l_points[4] = {NULL, &curve_G, p_publicKey, &l_sum}; uint l_numBits = max(vli_numBits(u1), vli_numBits(u2)); const EccPoint *l_point = l_points[(!!vli_testBit(u1, l_numBits-1)) | ((!!vli_testBit(u2, l_numBits-1)) << 1)]; vli_set(rx, l_point->x); vli_set(ry, l_point->y); vli_clear(z); z[0] = 1; int i; for(i = l_numBits - 2; i >= 0; --i) { EccPoint_double_jacobian(rx, ry, z); int l_index = (!!vli_testBit(u1, i)) | ((!!vli_testBit(u2, i)) << 1); l_point = l_points[l_index]; if(l_point) { vli_set(tx, l_point->x); vli_set(ty, l_point->y); apply_z(tx, ty, z); vli_modSub(tz, rx, tx, curve_p); /* Z = x2 - x1 */ XYcZ_add(tx, ty, rx, ry); vli_modMult_fast(z, z, tz); } } vli_modInv(z, z, curve_p); /* Z = 1/Z */ apply_z(rx, ry, z); /* v = x1 (mod n) */ if(vli_cmp(curve_n, rx) != 1) { vli_sub(rx, rx, curve_n); } /* Accept only if v == r. */ return (vli_cmp(rx, r) == 0); } void ecc_bytes2native(uint32_t p_native[NUM_ECC_DIGITS], const uint8_t p_bytes[NUM_ECC_DIGITS*4]) { unsigned i; for(i=0; i<NUM_ECC_DIGITS; ++i) { uint8_t *p_digit = (uint8_t *)(p_bytes + 4 * (NUM_ECC_DIGITS - 1 - i)); p_native[i] = ((uint32_t)p_digit[0] << 24) | ((uint32_t)p_digit[1] << 16) | ((uint32_t)p_digit[2] << 8) | (uint32_t)p_digit[3]; } } void ecc_native2bytes(uint8_t p_bytes[NUM_ECC_DIGITS*4], const uint32_t p_native[NUM_ECC_DIGITS]) { unsigned i; for(i=0; i<NUM_ECC_DIGITS; ++i) { uint8_t *p_digit = p_bytes + 4 * (NUM_ECC_DIGITS - 1 - i); p_digit[0] = p_native[i] >> 24; p_digit[1] = p_native[i] >> 16; p_digit[2] = p_native[i] >> 8; p_digit[3] = p_native[i]; } } /* Compute a = sqrt(a) (mod curve_p). */ static void mod_sqrt(uint32_t a[NUM_ECC_DIGITS]) { unsigned i; uint32_t p1[NUM_ECC_DIGITS] = {1}; uint32_t l_result[NUM_ECC_DIGITS] = {1}; /* Since curve_p == 3 (mod 4) for all supported curves, we can compute sqrt(a) = a^((curve_p + 1) / 4) (mod curve_p). */ vli_add(p1, curve_p, p1); /* p1 = curve_p + 1 */ for(i = vli_numBits(p1) - 1; i > 1; --i) { vli_modSquare_fast(l_result, l_result); if(vli_testBit(p1, i)) { vli_modMult_fast(l_result, l_result, a); } } vli_set(a, l_result); } void ecc_point_compress(uint8_t p_compressed[NUM_ECC_DIGITS*4 + 1], const EccPoint *p_point) { p_compressed[0] = 2 + (p_point->y[0] & 0x01); ecc_native2bytes(p_compressed + 1, p_point->x); } void ecc_point_decompress(EccPoint *p_point, const uint8_t p_compressed[NUM_ECC_DIGITS*4 + 1]) { ecc_bytes2native(p_point->x, p_compressed + 1); curve_x_side(p_point->y, p_point->x); mod_sqrt(p_point->y); if((p_point->y[0] & 0x01) != (p_compressed[0] & 0x01)) { vli_sub(p_point->y, curve_p, p_point->y); } }