Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Dependencies: mbed USBMSD_SD USBDevice
Diff: ChaNFSSD/SDFileSystem.cpp
- Revision:
- 14:757226626acb
- Parent:
- 13:32b8a767cf0e
- Child:
- 16:c753717bfd4d
diff -r 32b8a767cf0e -r 757226626acb ChaNFSSD/SDFileSystem.cpp
--- a/ChaNFSSD/SDFileSystem.cpp Mon Dec 05 14:34:29 2011 +0000
+++ b/ChaNFSSD/SDFileSystem.cpp Tue Dec 06 12:07:12 2011 +0000
@@ -24,20 +24,20 @@
* ------------
* SD and MMC cards support a number of interfaces, but common to them all
* is one based on SPI. This is the one I'm implmenting because it means
- * it is much more portable even though not so performant, and we already
+ * it is much more portable even though not so performant, and we already
* have the mbed SPI Interface!
*
- * The main reference I'm using is Chapter 7, "SPI Mode" of:
+ * The main reference I'm using is Chapter 7, "SPI Mode" of:
* http://www.sdcard.org/developers/tech/sdcard/pls/Simplified_Physical_Layer_Spec.pdf
*
* SPI Startup
* -----------
* The SD card powers up in SD mode. The SPI interface mode is selected by
- * asserting CS low and sending the reset command (CMD0). The card will
+ * asserting CS low and sending the reset command (CMD0). The card will
* respond with a (R1) response.
*
- * CMD8 is optionally sent to determine the voltage range supported, and
- * indirectly determine whether it is a version 1.x SD/non-SD card or
+ * CMD8 is optionally sent to determine the voltage range supported, and
+ * indirectly determine whether it is a version 1.x SD/non-SD card or
* version 2.x. I'll just ignore this for now.
*
* ACMD41 is repeatedly issued to initialise the card, until "in idle"
@@ -51,21 +51,21 @@
* The SD SPI protocol is based on transactions made up of 8-bit words, with
* the host starting every bus transaction by asserting the CS signal low. The
* card always responds to commands, data blocks and errors.
- *
- * The protocol supports a CRC, but by default it is off (except for the
+ *
+ * The protocol supports a CRC, but by default it is off (except for the
* first reset CMD0, where the CRC can just be pre-calculated, and CMD8)
- * I'll leave the CRC off I think!
- *
- * Standard capacity cards have variable data block sizes, whereas High
+ * I'll leave the CRC off I think!
+ *
+ * Standard capacity cards have variable data block sizes, whereas High
* Capacity cards fix the size of data block to 512 bytes. I'll therefore
* just always use the Standard Capacity cards with a block size of 512 bytes.
* This is set with CMD16.
*
- * You can read and write single blocks (CMD17, CMD25) or multiple blocks
+ * You can read and write single blocks (CMD17, CMD25) or multiple blocks
* (CMD18, CMD25). For simplicity, I'll just use single block accesses. When
- * the card gets a read command, it responds with a response token, and then
+ * the card gets a read command, it responds with a response token, and then
* a data token or an error.
- *
+ *
* SPI Command Format
* ------------------
* Commands are 6-bytes long, containing the command, 32-bit argument, and CRC.
@@ -81,7 +81,7 @@
* SPI Response Format
* -------------------
* The main response format (R1) is a status byte (normally zero). Key flags:
- * idle - 1 if the card is in an idle state/initialising
+ * idle - 1 if the card is in an idle state/initialising
* cmd - 1 if an illegal command code was detected
*
* +-------------------------------------------------+
@@ -93,7 +93,7 @@
*
* Data Response Token
* -------------------
- * Every data block written to the card is acknowledged by a byte
+ * Every data block written to the card is acknowledged by a byte
* response token
*
* +----------------------+
@@ -108,19 +108,20 @@
*
* Block transfers have a byte header, followed by the data, followed
* by a 16-bit CRC. In our case, the data will always be 512 bytes.
- *
+ *
* +------+---------+---------+- - - -+---------+-----------+----------+
- * | 0xFE | data[0] | data[1] | | data[n] | crc[15:8] | crc[7:0] |
+ * | 0xFE | data[0] | data[1] | | data[n] | crc[15:8] | crc[7:0] |
* +------+---------+---------+- - - -+---------+-----------+----------+
*/
-
+
#include "SDFileSystem.h"
#define SD_COMMAND_TIMEOUT 5000
SDFileSystem::SDFileSystem(PinName mosi, PinName miso, PinName sclk, PinName cs, const char* name) :
- FATFileSystem(name), _spi(mosi, miso, sclk), _cs(cs) {
- _cs = 1;
+ FATFileSystem(name), _spi(mosi, miso, sclk), _cs(cs) {
+ _status = 0;
+ _cs = 1;
}
#define R1_IDLE_STATE (1 << 0)
@@ -144,23 +145,23 @@
int SDFileSystem::initialise_card() {
// Set to 100kHz for initialisation, and clock card with cs = 1
- _spi.frequency(100000);
+ _spi.frequency(100000);
_cs = 1;
- for(int i=0; i<16; i++) {
+ for (int i=0; i<16; i++) {
_spi.write(0xFF);
}
// send CMD0, should return with all zeros except IDLE STATE set (bit 0)
- if(_cmd(0, 0) != R1_IDLE_STATE) {
+ if (_cmd(0, 0) != R1_IDLE_STATE) {
fprintf(stderr, "No disk, or could not put SD card in to SPI idle state\n");
return SDCARD_FAIL;
}
// send CMD8 to determine whther it is ver 2.x
int r = _cmd8();
- if(r == R1_IDLE_STATE) {
+ if (r == R1_IDLE_STATE) {
return initialise_card_v2();
- } else if(r == (R1_IDLE_STATE | R1_ILLEGAL_COMMAND)) {
+ } else if (r == (R1_IDLE_STATE | R1_ILLEGAL_COMMAND)) {
return initialise_card_v1();
} else {
fprintf(stderr, "Not in idle state after sending CMD8 (not an SD card?)\n");
@@ -169,9 +170,9 @@
}
int SDFileSystem::initialise_card_v1() {
- for(int i=0; i<SD_COMMAND_TIMEOUT; i++) {
- _cmd(55, 0);
- if(_cmd(41, 0) == 0) {
+ for (int i=0; i<SD_COMMAND_TIMEOUT; i++) {
+ _cmd(55, 0);
+ if (_cmd(41, 0) == 0) {
return SDCARD_V1;
}
}
@@ -181,10 +182,10 @@
}
int SDFileSystem::initialise_card_v2() {
-
- for(int i=0; i<SD_COMMAND_TIMEOUT; i++) {
- _cmd(55, 0);
- if(_cmd(41, 0) == 0) {
+
+ for (int i=0; i<SD_COMMAND_TIMEOUT; i++) {
+ _cmd(55, 0);
+ if (_cmd(41, 0) == 0) {
_cmd58();
return SDCARD_V2;
}
@@ -203,45 +204,51 @@
_sectors = _sd_sectors();
// Set block length to 512 (CMD16)
- if(_cmd(16, 512) != 0) {
+ if (_cmd(16, 512) != 0) {
fprintf(stderr, "Set 512-byte block timed out\n");
return 1;
}
-
+
_spi.frequency(5000000); // Set to 5MHz for data transfer
- return 0;
+ return _status;
}
int SDFileSystem::disk_write(const char *buffer, int block_number) {
// set write address for single block (CMD24)
- if(_cmd(24, block_number * 512) != 0) {
+ if (_cmd(24, block_number * 512) != 0) {
return 1;
}
// send the data block
- _write(buffer, 512);
- return 0;
+ _write(buffer, 512);
+ return 0;
}
-int SDFileSystem::disk_read(char *buffer, int block_number) {
+int SDFileSystem::disk_read(char *buffer, int block_number) {
// set read address for single block (CMD17)
- if(_cmd(17, block_number * 512) != 0) {
+ if (_cmd(17, block_number * 512) != 0) {
return 1;
}
-
+
// receive the data
_read(buffer, 512);
return 0;
}
-int SDFileSystem::disk_status() { return 0; }
-int SDFileSystem::disk_sync() { return 0; }
-int SDFileSystem::disk_sectors() { return _sectors; }
+int SDFileSystem::disk_status() {
+ return _status;
+}
+int SDFileSystem::disk_sync() {
+ return 0;
+}
+int SDFileSystem::disk_sectors() {
+ return _sectors;
+}
// PRIVATE FUNCTIONS
int SDFileSystem::_cmd(int cmd, int arg) {
- _cs = 0;
+ _cs = 0;
// send a command
_spi.write(0x40 | cmd);
@@ -252,9 +259,9 @@
_spi.write(0x95);
// wait for the repsonse (response[7] == 0)
- for(int i=0; i<SD_COMMAND_TIMEOUT; i++) {
+ for (int i=0; i<SD_COMMAND_TIMEOUT; i++) {
int response = _spi.write(0xFF);
- if(!(response & 0x80)) {
+ if (!(response & 0x80)) {
_cs = 1;
_spi.write(0xFF);
return response;
@@ -265,7 +272,7 @@
return -1; // timeout
}
int SDFileSystem::_cmdx(int cmd, int arg) {
- _cs = 0;
+ _cs = 0;
// send a command
_spi.write(0x40 | cmd);
@@ -276,9 +283,9 @@
_spi.write(0x95);
// wait for the repsonse (response[7] == 0)
- for(int i=0; i<SD_COMMAND_TIMEOUT; i++) {
+ for (int i=0; i<SD_COMMAND_TIMEOUT; i++) {
int response = _spi.write(0xFF);
- if(!(response & 0x80)) {
+ if (!(response & 0x80)) {
return response;
}
}
@@ -289,9 +296,9 @@
int SDFileSystem::_cmd58() {
- _cs = 0;
+ _cs = 0;
int arg = 0;
-
+
// send a command
_spi.write(0x40 | 58);
_spi.write(arg >> 24);
@@ -301,9 +308,9 @@
_spi.write(0x95);
// wait for the repsonse (response[7] == 0)
- for(int i=0; i<SD_COMMAND_TIMEOUT; i++) {
+ for (int i=0; i<SD_COMMAND_TIMEOUT; i++) {
int response = _spi.write(0xFF);
- if(!(response & 0x80)) {
+ if (!(response & 0x80)) {
int ocr = _spi.write(0xFF) << 24;
ocr |= _spi.write(0xFF) << 16;
ocr |= _spi.write(0xFF) << 8;
@@ -320,8 +327,8 @@
}
int SDFileSystem::_cmd8() {
- _cs = 0;
-
+ _cs = 0;
+
// send a command
_spi.write(0x40 | 8); // CMD8
_spi.write(0x00); // reserved
@@ -331,16 +338,16 @@
_spi.write(0x87); // crc
// wait for the repsonse (response[7] == 0)
- for(int i=0; i<SD_COMMAND_TIMEOUT * 1000; i++) {
+ for (int i=0; i<SD_COMMAND_TIMEOUT * 1000; i++) {
char response[5];
response[0] = _spi.write(0xFF);
- if(!(response[0] & 0x80)) {
- for(int j=1; j<5; j++) {
- response[i] = _spi.write(0xFF);
- }
- _cs = 1;
- _spi.write(0xFF);
- return response[0];
+ if (!(response[0] & 0x80)) {
+ for (int j=1; j<5; j++) {
+ response[i] = _spi.write(0xFF);
+ }
+ _cs = 1;
+ _spi.write(0xFF);
+ return response[0];
}
}
_cs = 1;
@@ -352,54 +359,54 @@
_cs = 0;
// read until start byte (0xFF)
- while(_spi.write(0xFF) != 0xFE);
+ while (_spi.write(0xFF) != 0xFE);
// read data
- for(int i=0; i<length; i++) {
+ for (int i=0; i<length; i++) {
buffer[i] = _spi.write(0xFF);
}
_spi.write(0xFF); // checksum
_spi.write(0xFF);
- _cs = 1;
+ _cs = 1;
_spi.write(0xFF);
return 0;
}
int SDFileSystem::_write(const char *buffer, int length) {
_cs = 0;
-
+
// indicate start of block
_spi.write(0xFE);
-
+
// write the data
- for(int i=0; i<length; i++) {
+ for (int i=0; i<length; i++) {
_spi.write(buffer[i]);
}
-
+
// write the checksum
- _spi.write(0xFF);
+ _spi.write(0xFF);
_spi.write(0xFF);
// check the repsonse token
- if((_spi.write(0xFF) & 0x1F) != 0x05) {
+ if ((_spi.write(0xFF) & 0x1F) != 0x05) {
_cs = 1;
- _spi.write(0xFF);
+ _spi.write(0xFF);
return 1;
}
// wait for write to finish
- while(_spi.write(0xFF) == 0);
+ while (_spi.write(0xFF) == 0);
- _cs = 1;
+ _cs = 1;
_spi.write(0xFF);
return 0;
}
static int ext_bits(char *data, int msb, int lsb) {
int bits = 0;
- int size = 1 + msb - lsb;
- for(int i=0; i<size; i++) {
+ int size = 1 + msb - lsb;
+ for (int i=0; i<size; i++) {
int position = lsb + i;
int byte = 15 - (position >> 3);
int bit = position & 0x7;
@@ -412,13 +419,13 @@
int SDFileSystem::_sd_sectors() {
// CMD9, Response R2 (R1 byte + 16-byte block read)
- if(_cmdx(9, 0) != 0) {
+ if (_cmdx(9, 0) != 0) {
fprintf(stderr, "Didn't get a response from the disk\n");
return 0;
}
-
- char csd[16];
- if(_read(csd, 16) != 0) {
+
+ char csd[16];
+ if (_read(csd, 16) != 0) {
fprintf(stderr, "Couldn't read csd response from disk\n");
return 0;
}
@@ -434,8 +441,8 @@
int read_bl_len = ext_bits(csd, 83, 80);
// printf("CSD_STRUCT = %d\n", csd_structure);
-
- if(csd_structure != 0) {
+
+ if (csd_structure != 0) {
fprintf(stderr, "This disk tastes funny! I only know about type 0 CSD structures\n");
return 0;
}
@@ -444,7 +451,7 @@
// where
// BLOCKNR = (C_SIZE+1) * MULT
// MULT = 2^(C_SIZE_MULT+2) (C_SIZE_MULT < 8)
- // BLOCK_LEN = 2^READ_BL_LEN, (READ_BL_LEN < 12)
+ // BLOCK_LEN = 2^READ_BL_LEN, (READ_BL_LEN < 12)
int block_len = 1 << read_bl_len;
int mult = 1 << (c_size_mult + 2);
@@ -452,7 +459,7 @@
capacity = blocknr * block_len;
int blocks = capacity / 512;
-
+
return blocks;
}
@@ -460,3 +467,10 @@
int SDFileSystem::disk_size() {
return capacity;
}
+
+void SDFileSystem::suspendStateChanged(unsigned int suspended) {
+ printf("st: %d\r\n", suspended);
+ _status = (suspended) ? 0 : 0x04;
+}
+
+