Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Dependencies: FreescaleIAP SimpleDMA eeprom mbed-rtos mbed
Fork of CDMS_QM_03MAR2017_Flash_with_obsrs by
cdms_sd.h
- Committer:
- ee12b079
- Date:
- 2016-01-26
- Revision:
- 99:efde3df6cd94
- Parent:
- 96:4ca92f9775e0
- Child:
- 132:d4a4461214ad
- Child:
- 134:4694fc291ce1
- Child:
- 174:44a6d7c7674c
File content as of revision 99:efde3df6cd94:
//SPI spi(PTE1, PTE3, PTE2); // MOSI,MISO, CLOCK microcontroller(in order)
//DigitalOut cs_sd(PTE22);
//Serial sd1(USBTX,USBRX);
#define SD_COMMAND_TIMEOUT 5000
#define SD_DBG 0
#define R1_IDLE_STATE (1 << 0)
#define R1_ERASE_RESET (1 << 1)
#define R1_ILLEGAL_COMMAND (1 << 2)
#define R1_COM_CRC_ERROR (1 << 3)
#define R1_ERASE_SEQUENCE_ERROR (1 << 4)
#define R1_ADDRESS_ERROR (1 << 5)
#define R1_PARAMETER_ERROR (1 << 6)
#define SD_MAX_CYCLES 10000
extern uint8_t SD_INIT_FLAGS;
int initialise_card();
int initialise_card_v1();
int initialise_card_v2();
int disk_write(const uint8_t *, uint64_t);
int disk_read(uint8_t *, uint64_t);
int disk_initialize();
int disk_erase(int,int);
//void FCTN_CDMS_INIT_SD();
//int FCTN_CDMS_WR_SD(const uint8_t *, uint64_t);
//int FCTN_CDMS_RD_SD(uint8_t *, uint64_t);
uint32_t FCTN_SD_MNGR(uint8_t);
int cmd(int, int);
int cmd58();
int cmdx(int, int);
int cmd8();
int read(uint8_t*, uint32_t );
int write(const uint8_t*, uint32_t );
static uint32_t ext_bits(unsigned char *, int , int );
int SD_WRITE(uint8_t*,uint32_t,uint8_t);
void FCTN_CDMS_SD_INIT();
int SD_READ(uint8_t*,uint32_t,uint8_t);
#define SDCARD_FAIL 0
#define SDCARD_V1 1
#define SDCARD_V2 2
#define SDCARD_V2HC 3
int cdv;
uint64_t sd_sectors();
uint64_t sectors;
void FCTN_CDMS_SD_INIT()
{
initialise_card();
disk_initialize();
}
uint32_t FCTN_SD_MNGR(uint8_t sid)
{
uint32_t SD_MNG_SECT=7000;
uint32_t fsc;
uint8_t buffer[512];
int b=disk_read(buffer, SD_MNG_SECT);
if(sid==0x0)
{
fsc=(uint32_t)(buffer[0]<<24)+(uint32_t)(buffer[1]<<16)+(uint32_t)(buffer[2]<<8)+(uint32_t)buffer[3];
uint32_t next_fsc=fsc+1;
buffer[0]=(uint8_t) (next_fsc>>24 & 0xFF);
buffer[1]=(uint8_t) (next_fsc>>16 & 0xFF);
buffer[2]=(uint8_t) (next_fsc>>8 & 0xFF);
buffer[3]=(uint8_t) (next_fsc & 0xFF);
buffer[511]+=2;
disk_write(buffer,SD_MNG_SECT);
}
if(sid==0x1)
{
fsc=(uint32_t)(buffer[4]<<24)+(uint32_t)(buffer[5]<<16)+(uint32_t)(buffer[6]<<8)+(uint32_t)buffer[7];
uint32_t next_fsc=fsc+1;
buffer[4]=(uint8_t) (next_fsc>>24 & 0xFF);
buffer[5]=(uint8_t) (next_fsc>>16 & 0xFF);
buffer[6]=(uint8_t) (next_fsc>>8 & 0xFF);
buffer[7]=(uint8_t) (next_fsc & 0xFF);
buffer[511]+=2;
disk_write(buffer,SD_MNG_SECT);
}
if(sid==0x2)
{
fsc=(uint32_t)(buffer[8]<<24)+(uint32_t)(buffer[9]<<16)+(uint32_t)(buffer[10]<<8)+(uint32_t)buffer[11];
uint32_t next_fsc=fsc+1;
buffer[8]=(uint8_t) (next_fsc>>24 & 0xFF);
buffer[9]=(uint8_t) (next_fsc>>16 & 0xFF);
buffer[10]=(uint8_t) (next_fsc>>8 & 0xFF);
buffer[11]=(uint8_t) (next_fsc & 0xFF);
buffer[511]+=2;
disk_write(buffer,SD_MNG_SECT);
}
if(sid==0x3)
{
fsc=(uint32_t)(buffer[12]<<24)+(uint32_t)(buffer[13]<<16)+(uint32_t)(buffer[14]<<8)+(uint32_t)buffer[15];
uint32_t next_fsc=fsc+1;
buffer[12]=(uint8_t) (next_fsc>>24 & 0xFF);
buffer[13]=(uint8_t) (next_fsc>>16 & 0xFF);
buffer[14]=(uint8_t) (next_fsc>>8 & 0xFF);
buffer[15]=(uint8_t) (next_fsc & 0xFF);
buffer[511]+=2;
disk_write(buffer,SD_MNG_SECT);
}
if(sid==0x4)
{
fsc=(uint32_t)(buffer[16]<<24)+(uint32_t)(buffer[17]<<16)+(uint32_t)(buffer[18]<<8)+(uint32_t)buffer[19];
uint32_t next_fsc=fsc+1;
buffer[16]=(uint8_t) (next_fsc>>24 & 0xFF);
buffer[17]=(uint8_t) (next_fsc>>16 & 0xFF);
buffer[18]=(uint8_t) (next_fsc>>8 & 0xFF);
buffer[19]=(uint8_t) (next_fsc & 0xFF);
buffer[511]+=2;
disk_write(buffer,SD_MNG_SECT);
}
return fsc;
}
int SD_WRITE(uint8_t* buffer,uint32_t fsc,uint8_t sid)
{
uint32_t SD_SCP_FIRST=1001;
uint32_t SD_SCP_LAST=2000;
uint32_t SD_SFF_AT_FIRST=2001;
uint32_t SD_SFF_AT_LAST = 3000;
uint32_t SD_SFF_BT_FIRST =3001;
uint32_t SD_SFF_BT_LAST=4000;
uint32_t SD_HK_ARCH_FIRST=4001;
uint32_t SD_HK_ARCH_LAST= 5000;
uint32_t LOG_FIRST =5001;
uint32_t LOG_LAST=6000;
uint32_t SD_MNG_SECT=7000;
uint32_t block_number;
int result;
if(sid==0x0)
{
block_number=SD_SCP_FIRST+fsc;
// printf("write_block_number=%d\r\n",block_number);
result= disk_write(buffer,block_number);
return result;
}
if(sid==0x1)
{
block_number=SD_SFF_AT_FIRST + fsc;
result= disk_write(buffer,block_number);
return result;
}
if(sid==0x2)
{
block_number=SD_SFF_BT_FIRST + fsc;
result= disk_write(buffer,block_number);
return result;
}
if(sid==0x3)
{
block_number=SD_HK_ARCH_FIRST+fsc;
// sd1.printf("Block number is %d \r\n",block_number);
result= disk_write(buffer,block_number);
return result;
}
if(sid==0x4)
{
block_number=LOG_FIRST +fsc;
result= disk_write(buffer,block_number);
return result;
}
return 1;
}
int SD_READ(uint8_t* buffer,uint32_t fsc,uint8_t sid)
{
uint32_t SD_SCP_FIRST=1001;
uint32_t SD_SCP_LAST=2000;
uint32_t SD_SFF_AT_FIRST=2001;
uint32_t SD_SFF_AT_LAST = 3000;
uint32_t SD_SFF_BT_FIRST =3001;
uint32_t SD_SFF_BT_LAST=4000;
uint32_t SD_HK_ARCH_FIRST=4001;
uint32_t SD_HK_ARCH_LAST= 5000;
uint32_t LOG_FIRST =5001;
uint32_t LOG_LAST=6000;
uint32_t SD_MNG_SECT=7000;
uint32_t block_number;
int result;
if(sid==0x0)
{
block_number=SD_SCP_FIRST + fsc;
// sd1.printf("read_block_number=%d\r\n",block_number);
result= disk_read(buffer,block_number);
}
else if(sid==0x1)
{
block_number=SD_SFF_AT_FIRST + fsc;
result= disk_read(buffer,block_number);
}
else if(sid==0x2)
{
block_number=SD_SFF_BT_FIRST + fsc;
result= disk_read(buffer,block_number);
}
else if(sid==0x3)
{
block_number=SD_HK_ARCH_FIRST + fsc;
result= disk_read(buffer,block_number);
}
else if(sid==0x4)
{
block_number=LOG_FIRST +fsc;
result= disk_read(buffer,block_number);
}
else
{
return 1;
}
return result;
}
int initialise_card()
{
// Set to 100kHz for initialisation, and clock card with cs_sd = 1
spi.frequency(100000); // changed on 31 12 2015 to 1 MHz
cs_sd = 1;
for (int i = 0; i < 16; i++) {
spi.write(0xFF);
}
// send CMD0, should return with all zeros except IDLE STATE set (bit 0)
if (cmd(0, 0) != R1_IDLE_STATE) {
debug("No disk, or could not put SD card in to spi idle state\r\n");
return SDCARD_FAIL;
}
// send CMD8 to determine whther it is ver 2.x
int r = cmd8();
if (r == R1_IDLE_STATE) {
// printf("\rEntering v2\r\n");
return initialise_card_v2();
} else if (r == (R1_IDLE_STATE | R1_ILLEGAL_COMMAND)) {
// printf("\rEntering v1\r\n");
return initialise_card_v1();
} else {
debug("\rNot in idle state after sending CMD8 (not an SD card?)\r\n");
return SDCARD_FAIL;
}
}
int initialise_card_v1()
{
for (int i = 0; i < SD_COMMAND_TIMEOUT; i++) {
cmd(55, 0);
if (cmd(41, 0) == 0) {
gPC.puts("\rv1 initialization successfull\r\n");
cdv = 512;
debug_if(SD_DBG, "\n\rInit: SEDCARD_V1\n\r");
return SDCARD_V1;
}
}
debug("\rTimeout waiting for v1.x card\r\n");
return SDCARD_FAIL;
}
int initialise_card_v2()
{
for (int i = 0; i < SD_COMMAND_TIMEOUT; i++) {
wait_ms(50);
cmd58();
cmd(55, 0);
if (cmd(41, 0x40000000) == 0) {
#if DEBUG
gPC.puts("\rv2 initialization successfull\r\n");
#endif
cmd58();
debug_if(SD_DBG, "\n\rInit: SDCARD_V2\n\r");
cdv = 1;
return SDCARD_V2;
}
}
debug("\rTimeout waiting for v2.x card\r\n");
return SDCARD_FAIL;
}
int cmd(int cmd, int arg)
{
cs_sd = 0;
// send a command
spi.write(0x40 | cmd);
spi.write(arg >> 24);
spi.write(arg >> 16);
spi.write(arg >> 8);
spi.write(arg >> 0);
spi.write(0x95);
// wait for the repsonse (response[7] == 0)
for (int i = 0; i < SD_COMMAND_TIMEOUT; i++) {
int response = spi.write(0xFF);
if (!(response & 0x80)) {
cs_sd = 1;
spi.write(0xFF);
return response;
}
}
cs_sd = 1;
spi.write(0xFF);
return -1; // timeout
}
int cmd58()
{
cs_sd = 0;
int arg = 0;
// send a command
spi.write(0x40 | 58);
spi.write(arg >> 24);
spi.write(arg >> 16);
spi.write(arg >> 8);
spi.write(arg >> 0);
spi.write(0x95);
// wait for the repsonse (response[7] == 0)
for (int i = 0; i < SD_COMMAND_TIMEOUT; i++) {
int response = spi.write(0xFF);
if (!(response & 0x80)) {
int ocr = spi.write(0xFF) << 24;
ocr |= spi.write(0xFF) << 16;
ocr |= spi.write(0xFF) << 8;
ocr |= spi.write(0xFF) << 0;
cs_sd = 1;
spi.write(0xFF);
return response;
}
}
cs_sd = 1;
spi.write(0xFF);
return -1; // timeout
}
int cmd8()
{
cs_sd = 0;
// send a command
spi.write(0x40 | 8); // CMD8
spi.write(0x00); // reserved
spi.write(0x00); // reserved
spi.write(0x01); // 3.3v
spi.write(0xAA); // check pattern
spi.write(0x87); // crc
// wait for the repsonse (response[7] == 0)
for (int i = 0; i < SD_COMMAND_TIMEOUT * 1000; i++) {
char response[5];
response[0] = spi.write(0xFF);
if (!(response[0] & 0x80)) {
for (int j = 1; j < 5; j++) {
response[i] = spi.write(0xFF);
}
cs_sd = 1;
spi.write(0xFF);
return response[0];
}
}
cs_sd = 1;
spi.write(0xFF);
return -1; // timeout
}
uint64_t sd_sectors()
{
uint32_t c_size, c_size_mult, read_bl_len;
uint32_t block_len, mult, blocknr, capacity;
uint32_t hc_c_size;
uint64_t blocks;
// CMD9, Response R2 (R1 byte + 16-byte block read)
if (cmdx(9, 0) != 0) {
debug("\rDidn't get a response from the disk\n");
return 0;
}
uint8_t cs_sdd[16];
if (read(cs_sdd, 16) != 0) {
debug("\rCouldn't read cs_sdd response from disk\n");
return 0;
}
// cs_sdd_structure : cs_sdd[127:126]
// c_size : cs_sdd[73:62]
// c_size_mult : cs_sdd[49:47]
// read_bl_len : cs_sdd[83:80] - the *maximum* read block length
int cs_sdd_structure = ext_bits(cs_sdd, 127, 126);
switch (cs_sdd_structure) {
case 0:
cdv = 512;
c_size = ext_bits(cs_sdd, 73, 62);
c_size_mult = ext_bits(cs_sdd, 49, 47);
read_bl_len = ext_bits(cs_sdd, 83, 80);
block_len = 1 << read_bl_len;
mult = 1 << (c_size_mult + 2);
blocknr = (c_size + 1) * mult;
capacity = blocknr * block_len;
blocks = capacity / 512;
debug_if(SD_DBG, "\n\rSDCard\n\rc_size: %d \n\rcapacity: %ld \n\rsectors: %lld\n\r", c_size, capacity, blocks);
break;
case 1:
cdv = 1;
hc_c_size = ext_bits(cs_sdd, 63, 48);
blocks = (hc_c_size+1)*1024;
debug_if(SD_DBG, "\n\rSDHC Card \n\rhc_c_size: %d\n\rcapacity: %lld \n\rsectors: %lld\n\r", hc_c_size, blocks*512, blocks);
break;
default:
debug("cs_sdD struct unsupported\r\n");
return 0;
};
return blocks;
}
int cmdx(int cmd, int arg)
{
cs_sd = 0;
// send a command
spi.write(0x40 | cmd);
spi.write(arg >> 24);
spi.write(arg >> 16);
spi.write(arg >> 8);
spi.write(arg >> 0);
spi.write(0x95);
// wait for the repsonse (response[7] == 0)
for (int i = 0; i < SD_COMMAND_TIMEOUT; i++) {
int response = spi.write(0xFF);
if (!(response & 0x80)) {
return response;
}
}
cs_sd = 1;
spi.write(0xFF);
return -1; // timeout
}
static uint32_t ext_bits(unsigned char *data, int msb, int lsb)
{
uint32_t bits = 0;
uint32_t size = 1 + msb - lsb;
for (int i = 0; i < size; i++) {
uint32_t position = lsb + i;
uint32_t byte = 15 - (position >> 3);
uint32_t bit = position & 0x7;
uint32_t value = (data[byte] >> bit) & 1;
bits |= value << i;
}
return bits;
}
int disk_initialize()
{
int i = initialise_card();
debug_if(SD_DBG, "init card = %d\n", i);
sectors = sd_sectors();
// Set block length to 512 (CMD16)
if (cmd(16, 512) != 0) {
debug("\rSet 512-byte block timed out\r\n");
return 1;
} else {
// printf("\rDisk initialization successfull\r\n");
}
spi.frequency(1000000); // Set to 1MHz for data transfer
return 0;
}
int disk_write(const uint8_t *buffer, uint64_t block_number)
{
// set write address for single block (CMD24)
if (cmd(24, block_number * cdv) != 0) {
return 1;
}
// send the data block
write(buffer, 512);
//printf("Written Successfully bro \n");
return 0;
}
int write(const uint8_t*buffer, uint32_t length)
{
cs_sd = 0;
// indicate start of block
spi.write(0xFE);
// write the data
for (int i = 0; i < length; i++) {
spi.write(buffer[i]);
}
// write the checksum
spi.write(0xFF);
spi.write(0xFF);
// check the response token
if ((spi.write(0xFF) & 0x1F) != 0x05) {
cs_sd = 1;
spi.write(0xFF);
return 1;
}
// wait for write to finish
while (spi.write(0xFF) == 0);
cs_sd = 1;
spi.write(0xFF);
return 0;
}
int disk_read(uint8_t *buffer, uint64_t block_number)
{
// set read address for single block (CMD17)
if (cmd(17, block_number * cdv) != 0) {
return 1;
}
// receive the data
read(buffer, 512);
return 0;
}
int read(uint8_t *buffer, uint32_t length)
{
cs_sd = 0;
// read until start byte (0xFF)
while (spi.write(0xFF) != 0xFE);
// read data
for (int i = 0; i < length; i++) {
buffer[i] = spi.write(0xFF);
}
spi.write(0xFF); // checksum
spi.write(0xFF);
cs_sd = 1;
spi.write(0xFF);
return 0;
}
int disk_erase(int startBlock, int totalBlocks)
{
if(cmd(32, startBlock * cdv) != 0) {
return 1;
}
if (cmd(33, (startBlock+totalBlocks-1) * cdv) != 0) {
return 1;
}
if (cmd(38,0) != 0) {
return 1;
}
return 0; //normal return
}
