Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Dependencies: FreescaleIAP SimpleDMA eeprom mbed-rtos mbed
Fork of CDMS_QM_03MAR2017_Flash_with_obsrs by
cdms_sd.h
- Committer:
- ee12b079
- Date:
- 2016-07-01
- Revision:
- 203:424308159a56
- Parent:
- 197:1369ef45b49e
- Child:
- 209:63e9c8f8b5d2
File content as of revision 203:424308159a56:
//SPI spi(PTE1, PTE3, PTE2); // MOSI,MISO, CLOCK microcontroller(in order)
//DigitalOut cs_sd(PTE22);
//Serial sd1(USBTX,USBRX);
#define SD_COMMAND_TIMEOUT 5000
#define SD_DBG 0
#define R1_IDLE_STATE (1 << 0)
#define R1_ERASE_RESET (1 << 1)
#define R1_ILLEGAL_COMMAND (1 << 2)
#define R1_COM_CRC_ERROR (1 << 3)
#define R1_ERASE_SEQUENCE_ERROR (1 << 4)
#define R1_ADDRESS_ERROR (1 << 5)
#define R1_PARAMETER_ERROR (1 << 6)
#define SD_MAX_CYCLES 10000
uint32_t SD_SCP_FIRST=1001;
uint32_t SD_SCP_LAST=2000;
uint32_t SD_SFF_AT_FIRST=2001;
uint32_t SD_SFF_AT_LAST = 3000;
uint32_t SD_SFF_BT_FIRST =3001;
uint32_t SD_SFF_BT_LAST=4000;
uint32_t SD_HK_ARCH_FIRST=4001;
uint32_t SD_HK_ARCH_LAST= 5000;
uint32_t LOG_FIRST =5001;
uint32_t LOG_LAST=6000;
uint32_t SD_MNG_SECT=7000;
extern uint8_t SD_INIT_FLAGS;
int initialise_card();
int initialise_card_v1();
int initialise_card_v2();
int disk_write(const uint8_t *, uint64_t);
int disk_read(uint8_t *, uint64_t);
int disk_erase(int,int);
uint32_t FCTN_SD_MNG(uint8_t);
int INCREMENT_SD_LIB(uint8_t);
int cmd(int, int);
int cmd58();
int cmdx(int, int);
int cmd8();
int read(uint8_t*, uint32_t );
int write(const uint8_t*, uint32_t );
static uint32_t ext_bits(unsigned char *, int , int );
int SD_WRITE(uint8_t*,uint32_t,uint8_t);
int FCTN_CDMS_SD_INIT();
uint8_t SD_READ(uint8_t*,uint32_t,uint8_t);
#define SDCARD_FAIL 0
#define SDCARD_V1 1
#define SDCARD_V2 2
#define SDCARD_V2HC 3
int cdv;
uint64_t sd_sectors();
uint64_t sectors;
int FCTN_CDMS_SD_INIT()
{
int i = initialise_card();
debug_if(SD_DBG, "init card = %d\n", i);
sectors = sd_sectors();
// Set block length to 512 (CMD16)
if (cmd(16, 512) != 0) {
debug("\rSet 512-byte block timed out\r\n");
return 1;
} else {
//printf("\rDisk initialization successfull\r\n");
}
spi.frequency(1000000); // Set to 1MHz for data transfer
return 0;
}
void FCTN_SD_MNGR(void)
{
uint32_t fsc;
uint32_t start_fsc;
uint8_t buffer[512];
int b=disk_read(buffer, SD_MNG_SECT);
fsc=(uint32_t)(buffer[0]<<24)+(uint32_t)(buffer[1]<<16)+(uint32_t)(buffer[2]<<8)+(uint32_t)buffer[3];
start_fsc=(uint32_t)(buffer[4]<<24)+(uint32_t)(buffer[5]<<16)+(uint32_t)(buffer[6]<<8)+(uint32_t)buffer[7];
FSC_CURRENT[1] = fsc;
FSC_LAST[1] = start_fsc;
fsc=(uint32_t)(buffer[8]<<24)+(uint32_t)(buffer[9]<<16)+(uint32_t)(buffer[10]<<8)+(uint32_t)buffer[11];
start_fsc=(uint32_t)(buffer[12]<<24)+(uint32_t)(buffer[13]<<16)+(uint32_t)(buffer[14]<<8)+(uint32_t)buffer[15];
FSC_CURRENT[2] = fsc;
FSC_LAST[2] = start_fsc;
fsc=(uint32_t)(buffer[16]<<24)+(uint32_t)(buffer[17]<<16)+(uint32_t)(buffer[18]<<8)+(uint32_t)buffer[19];
start_fsc=(uint32_t)(buffer[20]<<24)+(uint32_t)(buffer[21]<<16)+(uint32_t)(buffer[22]<<8)+(uint32_t)buffer[23];
FSC_CURRENT[3] = fsc;
FSC_LAST[3] = start_fsc;
fsc=(uint32_t)(buffer[24]<<24)+(uint32_t)(buffer[25]<<16)+(uint32_t)(buffer[26]<<8)+(uint32_t)buffer[27];
start_fsc=(uint32_t)(buffer[28]<<24)+(uint32_t)(buffer[29]<<16)+(uint32_t)(buffer[30]<<8)+(uint32_t)buffer[31];
FSC_CURRENT[4] = fsc;
FSC_LAST[4] = start_fsc;
fsc=(uint32_t)(buffer[32]<<24)+(uint32_t)(buffer[33]<<16)+(uint32_t)(buffer[34]<<8)+(uint32_t)buffer[35];
start_fsc=(uint32_t)(buffer[36]<<24)+(uint32_t)(buffer[37]<<16)+(uint32_t)(buffer[38]<<8)+(uint32_t)buffer[39];
FSC_CURRENT[5] = fsc;
FSC_LAST[5] = start_fsc;
}
int INCREMENT_SD_LIB(uint8_t sid)
{
uint32_t fsc;
uint32_t start_fsc;
uint8_t buffer[512];
int i;
disk_read(buffer,SD_MNG_SECT);
if(sid==0x01)
{
fsc=(uint32_t)(buffer[0]<<24)+(uint32_t)(buffer[1]<<16)+(uint32_t)(buffer[2]<<8)+(uint32_t)buffer[3];
start_fsc=(uint32_t)(buffer[4]<<24)+(uint32_t)(buffer[5]<<16)+(uint32_t)(buffer[6]<<8)+(uint32_t)buffer[7];
fsc++;
buffer[0]=(uint8_t) (fsc>>24 & 0xFF);
buffer[1]=(uint8_t) (fsc>>16 & 0xFF);
buffer[2]=(uint8_t) (fsc>>8 & 0xFF);
buffer[3]=(uint8_t) (fsc & 0xFF);
if(fsc > SD_SCP_LAST-SD_SCP_FIRST+1)
{
start_fsc = start_fsc+1;
buffer[4]=(uint8_t) (start_fsc>>24 & 0xFF);
buffer[5]=(uint8_t) (start_fsc>>16 & 0xFF);
buffer[6]=(uint8_t) (start_fsc>>8 & 0xFF);
buffer[7]=(uint8_t) (start_fsc & 0xFF);
}
i = disk_write(buffer,SD_MNG_SECT);
FCTN_SD_MNGR();
return i;
}
if(sid==0x02)
{
fsc=(uint32_t)(buffer[8]<<24)+(uint32_t)(buffer[9]<<16)+(uint32_t)(buffer[10]<<8)+(uint32_t)buffer[11];
start_fsc=(uint32_t)(buffer[12]<<24)+(uint32_t)(buffer[13]<<16)+(uint32_t)(buffer[14]<<8)+(uint32_t)buffer[15];
fsc++;
buffer[8]=(uint8_t) (fsc>>24 & 0xFF);
buffer[9]=(uint8_t) (fsc>>16 & 0xFF);
buffer[10]=(uint8_t) (fsc>>8 & 0xFF);
buffer[11]=(uint8_t) (fsc & 0xFF);
if(fsc > SD_SFF_AT_LAST-SD_SFF_AT_FIRST+1)
{
start_fsc = start_fsc+1;
buffer[12]=(uint8_t) (start_fsc>>24 & 0xFF);
buffer[13]=(uint8_t) (start_fsc>>16 & 0xFF);
buffer[14]=(uint8_t) (start_fsc>>8 & 0xFF);
buffer[15]=(uint8_t) (start_fsc & 0xFF);
}
i = disk_write(buffer,SD_MNG_SECT);
FCTN_SD_MNGR();
return i;
}
if(sid==0x03)
{
fsc=(uint32_t)(buffer[16]<<24)+(uint32_t)(buffer[17]<<16)+(uint32_t)(buffer[18]<<8)+(uint32_t)buffer[19];
start_fsc=(uint32_t)(buffer[20]<<24)+(uint32_t)(buffer[21]<<16)+(uint32_t)(buffer[22]<<8)+(uint32_t)buffer[23];
fsc++;
buffer[16]=(uint8_t) (fsc>>24 & 0xFF);
buffer[17]=(uint8_t) (fsc>>16 & 0xFF);
buffer[18]=(uint8_t) (fsc>>8 & 0xFF);
buffer[19]=(uint8_t) (fsc & 0xFF);
if(fsc > SD_SFF_BT_LAST-SD_SFF_BT_FIRST+1)
{
start_fsc = start_fsc+1;
buffer[20]=(uint8_t) (start_fsc>>24 & 0xFF);
buffer[21]=(uint8_t) (start_fsc>>16 & 0xFF);
buffer[22]=(uint8_t) (start_fsc>>8 & 0xFF);
buffer[23]=(uint8_t) (start_fsc & 0xFF);
}
i = disk_write(buffer,SD_MNG_SECT);
FCTN_SD_MNGR();
return i;
}
if(sid==0x04)
{
fsc=(uint32_t)(buffer[24]<<24)+(uint32_t)(buffer[25]<<16)+(uint32_t)(buffer[26]<<8)+(uint32_t)buffer[27];
start_fsc=(uint32_t)(buffer[28]<<24)+(uint32_t)(buffer[29]<<16)+(uint32_t)(buffer[30]<<8)+(uint32_t)buffer[31];
fsc++;
buffer[24]=(uint8_t) (fsc>>24 & 0xFF);
buffer[25]=(uint8_t) (fsc>>16 & 0xFF);
buffer[26]=(uint8_t) (fsc>>8 & 0xFF);
buffer[27]=(uint8_t) (fsc & 0xFF);
if(fsc > SD_HK_ARCH_LAST-SD_HK_ARCH_FIRST+1)
{
start_fsc = start_fsc+1;
buffer[28]=(uint8_t) (start_fsc>>24 & 0xFF);
buffer[29]=(uint8_t) (start_fsc>>16 & 0xFF);
buffer[30]=(uint8_t) (start_fsc>>8 & 0xFF);
buffer[31]=(uint8_t) (start_fsc & 0xFF);
}
i = disk_write(buffer,SD_MNG_SECT);
FCTN_SD_MNGR();
return i;
}
if(sid==0x05)
{
fsc=(uint32_t)(buffer[32]<<24)+(uint32_t)(buffer[33]<<16)+(uint32_t)(buffer[34]<<8)+(uint32_t)buffer[35];
start_fsc=(uint32_t)(buffer[36]<<24)+(uint32_t)(buffer[37]<<16)+(uint32_t)(buffer[38]<<8)+(uint32_t)buffer[39];
fsc++;
buffer[32]=(uint8_t) (fsc>>24 & 0xFF);
buffer[33]=(uint8_t) (fsc>>16 & 0xFF);
buffer[34]=(uint8_t) (fsc>>8 & 0xFF);
buffer[35]=(uint8_t) (fsc & 0xFF);
if(fsc > LOG_LAST-LOG_FIRST+1)
{
start_fsc = start_fsc+1;
buffer[36]=(uint8_t) (start_fsc>>24 & 0xFF);
buffer[37]=(uint8_t) (start_fsc>>16 & 0xFF);
buffer[38]=(uint8_t) (start_fsc>>8 & 0xFF);
buffer[39]=(uint8_t) (start_fsc & 0xFF);
}
i = disk_write(buffer,SD_MNG_SECT);
FCTN_SD_MNGR();
return i;
}
return -1;
}
int SD_WRITE(uint8_t* buffer,uint32_t fsc,uint8_t sid)
{
uint32_t block_number;
int result = 10;
if(sid==0x01)
{
//block_number=SD_SCP_FIRST+(fsc%(SD_SCP_LAST-SD_SCP_FIRST+1))-1;
block_number=SD_SCP_FIRST+fsc;
result= disk_write(buffer,block_number);
if(result == 0)
INCREMENT_SD_LIB(sid);
return result;
}
if(sid==0x02)
{
//block_number= SD_SFF_AT_FIRST+(fsc%(SD_SFF_AT_LAST - SD_SFF_AT_FIRST+1))-1;
block_number= SD_SFF_AT_FIRST+fsc;
result= disk_write(buffer,block_number);
if(result == 0)
INCREMENT_SD_LIB(sid);
return result;
}
if(sid==0x03)
{
//block_number= SD_SFF_BT_FIRST +(fsc%(SD_SFF_BT_LAST - SD_SFF_BT_FIRST +1))-1;
block_number= SD_SFF_BT_FIRST +fsc;
result= disk_write(buffer,block_number);
if(result == 0)
INCREMENT_SD_LIB(sid);
return result;
}
if(sid==0x04)
{
//block_number=SD_HK_ARCH_FIRST +(fsc%(SD_HK_ARCH_LAST - SD_HK_ARCH_FIRST +1))-1;
block_number=SD_HK_ARCH_FIRST +fsc;
result= disk_write(buffer,block_number);
if(result == 0)
INCREMENT_SD_LIB(sid);
return result;
}
if(sid==0x05)
{
//block_number= LOG_FIRST +(fsc%(LOG_FIRST - LOG_FIRST +1))-1;
block_number= LOG_FIRST +fsc;
result= disk_write(buffer,block_number);
if(result == 0)
INCREMENT_SD_LIB(sid);
return result;
}
return 1;
}
uint8_t SD_READ(uint8_t* buffer,uint32_t fsc,uint8_t sid)
{
FCTN_SD_MNGR();
if(SD_SW_EN_DS == 1)
return 0x89;
uint32_t block_number;
int result;
if(sid==0x01)
{
if(!(FSC_LAST[1]<=fsc && fsc<=FSC_CURRENT[1])){
return 0x86;
}
block_number=SD_SCP_FIRST + fsc;
result= disk_read(buffer,block_number);
}
else if(sid==0x02)
{
if(!(FSC_LAST[2]<=fsc && fsc<=FSC_CURRENT[2])){
return 0x86;
}
block_number=SD_SFF_AT_FIRST + fsc;
result= disk_read(buffer,block_number);
}
else if(sid==0x03)
{
if(!(FSC_LAST[3]<=fsc && fsc<=FSC_CURRENT[3])){
return 0x86;
}
block_number=SD_SFF_BT_FIRST + fsc;
result= disk_read(buffer,block_number);
}
else if(sid==0x04)
{
if(!(FSC_LAST[4]<=fsc && fsc<=FSC_CURRENT[4])){
return 0x86;
}
block_number=SD_HK_ARCH_FIRST + fsc;
result= disk_read(buffer,block_number);
}
else if(sid==0x05)
{
if(!(FSC_LAST[5]<=fsc && fsc<=FSC_CURRENT[5])){
return 0x86;
}
block_number=LOG_FIRST +fsc;
result= disk_read(buffer,block_number);
}
else
{
return 0x02;
}
if(result == 0)
return 0xA0;
else
return 0x88;
}
int initialise_card()
{
// Set to 100kHz for initialisation, and clock card with cs_sd = 1
spi.frequency(100000); // changed on 31 12 2015 to 1 MHz
cs_sd = 1;
for (int i = 0; i < 16; i++) {
spi.write(0xFF);
}
uint8_t R1_response = cmd(0,0);
gPC.printf("0x%02X",R1_response);
// send CMD0, should return with all zeros except IDLE STATE set (bit 0)
if (R1_response != R1_IDLE_STATE) {
debug("No disk, or could not put SD card in to spi idle state\r\n");
return SDCARD_FAIL;
}
else
gPC.puts("SD Card is in IDLE state\n\r");
// send CMD8 to determine whther it is ver 2.x
int r = cmd8();
if (r == R1_IDLE_STATE) {
gPC.puts("Entering V2\r");
int q = initialise_card_v2();
return q;
} else if (r == (R1_IDLE_STATE | R1_ILLEGAL_COMMAND)) {
gPC.puts("Entering V1");
return initialise_card_v1();
} else {
debug("\rNot in idle state after sending CMD8 (not an SD card?)\r\n");
return SDCARD_FAIL;
}
}
int initialise_card_v1()
{
for (int i = 0; i < SD_COMMAND_TIMEOUT; i++) {
cmd(55, 0);
if (cmd(41, 0) == 0) {
gPC.puts("\rv1 initialization successfull\r\n");
cdv = 512;
debug_if(SD_DBG, "\n\rInit: SEDCARD_V1\n\r");
return SDCARD_V1;
}
}
debug("\rTimeout waiting for v1.x card\r\n");
return SDCARD_FAIL;
}
int initialise_card_v2()
{
for (int i = 0; i < SD_COMMAND_TIMEOUT; i++) {
wait_ms(50);
cmd58();
cmd(55, 0);
if (cmd(41, 0x40000000) == 0) {
if (DEBUG)
gPC.puts("\rv2 initialization successfull\r\n");
cmd58();
debug_if(SD_DBG, "\n\rInit: SDCARD_V2\n\r");
cdv = 1;
return SDCARD_V2;
}
}
debug("\rTimeout waiting for v2.x card\r\n");
return SDCARD_FAIL;
}
int cmd(int cmd, int arg)
{
cs_sd = 0;
// send a command
spi.write(0x40 | cmd);
spi.write(arg >> 24);
spi.write(arg >> 16);
spi.write(arg >> 8);
spi.write(arg >> 0);
spi.write(0x95);
// wait for the repsonse (response[7] == 0)
for (int i = 0; i < SD_COMMAND_TIMEOUT; i++) {
int response = spi.write(0xFF);
if (!(response & 0x80)) {
cs_sd = 1;
spi.write(0xFF);
return response;
}
}
cs_sd = 1;
spi.write(0xFF);
return -1; // timeout
}
int cmd58()
{
cs_sd = 0;
int arg = 0;
// send a command
spi.write(0x40 | 58);
spi.write(arg >> 24);
spi.write(arg >> 16);
spi.write(arg >> 8);
spi.write(arg >> 0);
spi.write(0x95);
// wait for the repsonse (response[7] == 0)
for (int i = 0; i < SD_COMMAND_TIMEOUT; i++) {
int response = spi.write(0xFF);
if (!(response & 0x80)) {
int ocr = spi.write(0xFF) << 24;
ocr |= spi.write(0xFF) << 16;
ocr |= spi.write(0xFF) << 8;
ocr |= spi.write(0xFF) << 0;
cs_sd = 1;
spi.write(0xFF);
return response;
}
}
cs_sd = 1;
spi.write(0xFF);
return -1; // timeout
}
int cmd8()
{
cs_sd = 0;
// send a command
spi.write(0x40 | 8); // CMD8
spi.write(0x00); // reserved
spi.write(0x00); // reserved
spi.write(0x01); // 3.3v
spi.write(0xAA); // check pattern
spi.write(0x87); // crc
// wait for the repsonse (response[7] == 0)
for (int i = 0; i < SD_COMMAND_TIMEOUT * 1000; i++) {
char response[5];
response[0] = spi.write(0xFF);
if (!(response[0] & 0x80)) {
for (int j = 1; j < 5; j++) {
response[i] = spi.write(0xFF);
}
cs_sd = 1;
spi.write(0xFF);
return response[0];
}
}
cs_sd = 1;
spi.write(0xFF);
return -1; // timeout
}
uint64_t sd_sectors()
{
uint32_t c_size, c_size_mult, read_bl_len;
uint32_t block_len, mult, blocknr, capacity;
uint32_t hc_c_size;
uint64_t blocks;
// CMD9, Response R2 (R1 byte + 16-byte block read)
if (cmdx(9, 0) != 0) {
debug("\rDidn't get a response from the disk\n");
return 0;
}
uint8_t cs_sdd[16];
if (read(cs_sdd, 16) != 0) {
debug("\rCouldn't read cs_sdd response from disk\n");
return 0;
}
// cs_sdd_structure : cs_sdd[127:126]
// c_size : cs_sdd[73:62]
// c_size_mult : cs_sdd[49:47]
// read_bl_len : cs_sdd[83:80] - the *maximum* read block length
int cs_sdd_structure = ext_bits(cs_sdd, 127, 126);
switch (cs_sdd_structure) {
case 0:
cdv = 512;
c_size = ext_bits(cs_sdd, 73, 62);
c_size_mult = ext_bits(cs_sdd, 49, 47);
read_bl_len = ext_bits(cs_sdd, 83, 80);
block_len = 1 << read_bl_len;
mult = 1 << (c_size_mult + 2);
blocknr = (c_size + 1) * mult;
capacity = blocknr * block_len;
blocks = capacity / 512;
debug_if(SD_DBG, "\n\rSDCard\n\rc_size: %d \n\rcapacity: %ld \n\rsectors: %lld\n\r", c_size, capacity, blocks);
break;
case 1:
cdv = 1;
hc_c_size = ext_bits(cs_sdd, 63, 48);
blocks = (hc_c_size+1)*1024;
debug_if(SD_DBG, "\n\rSDHC Card \n\rhc_c_size: %d\n\rcapacity: %lld \n\rsectors: %lld\n\r", hc_c_size, blocks*512, blocks);
break;
default:
debug("cs_sdD struct unsupported\r\n");
return 0;
};
return blocks;
}
int cmdx(int cmd, int arg)
{
cs_sd = 0;
// send a command
spi.write(0x40 | cmd);
spi.write(arg >> 24);
spi.write(arg >> 16);
spi.write(arg >> 8);
spi.write(arg >> 0);
spi.write(0x95);
// wait for the repsonse (response[7] == 0)
for (int i = 0; i < SD_COMMAND_TIMEOUT; i++) {
int response = spi.write(0xFF);
if (!(response & 0x80)) {
return response;
}
}
cs_sd = 1;
spi.write(0xFF);
return 1; // timeout
}
static uint32_t ext_bits(unsigned char *data, int msb, int lsb)
{
uint32_t bits = 0;
uint32_t size = 1 + msb - lsb;
for (int i = 0; i < size; i++) {
uint32_t position = lsb + i;
uint32_t byte = 15 - (position >> 3);
uint32_t bit = position & 0x7;
uint32_t value = (data[byte] >> bit) & 1;
bits |= value << i;
}
return bits;
}
int disk_write(const uint8_t *buffer, uint64_t block_number)
{
// set write address for single block (CMD24)
if (cmd(24, block_number * cdv) != 0) {
return 1;
}
// send the data block
write(buffer, 512);
//gPC.printf("Written Successfully bro \n");
return 0;
}
int write(const uint8_t*buffer, uint32_t length)
{
cs_sd = 0;
// indicate start of block
spi.write(0xFE);
// write the data
for (int i = 0; i < length; i++) {
spi.write(buffer[i]);
}
// write the checksum
spi.write(0xFF);
spi.write(0xFF);
// check the response token
if ((spi.write(0xFF) & 0x1F) != 0x05) {
cs_sd = 1;
spi.write(0xFF);
return 1;
}
// wait for write to finish
while (spi.write(0xFF) == 0);
cs_sd = 1;
spi.write(0xFF);
return 0;
}
int disk_read(uint8_t *buffer, uint64_t block_number)
{
// set read address for single block (CMD17)
if (cmd(17, block_number * cdv) != 0) {
return 1;
}
// receive the data
read(buffer, 512);
return 0;
}
int read(uint8_t *buffer, uint32_t length)
{
cs_sd = 0;
// read until start byte (0xFF)
while (spi.write(0xFF) != 0xFE);
// read data
for (int i = 0; i < length; i++) {
buffer[i] = spi.write(0xFF);
}
spi.write(0xFF); // checksum
spi.write(0xFF);
cs_sd = 1;
spi.write(0xFF);
return 0;
}
int disk_erase(int startBlock, int totalBlocks)
{
if(cmd(32, startBlock * cdv) != 0) {
return 1;
}
if (cmd(33, (startBlock+totalBlocks-1) * cdv) != 0) {
return 1;
}
if (cmd(38,0) != 0) {
return 1;
}
return 0; //normal return
}
