CDMS_CODE_samp_23SEP_DMA_flag
Dependencies: FreescaleIAP SimpleDMA mbed-rtos mbed
Fork of CDMS_CODE_samp_23SEP_DMA by
cdms_sd.h
- Committer:
- chaithanyarss
- Date:
- 2016-07-03
- Revision:
- 215:570251b23c7b
- Parent:
- 209:63e9c8f8b5d2
- Child:
- 223:7c802e1ccd30
File content as of revision 215:570251b23c7b:
//SPI spi(PTE1, PTE3, PTE2); // MOSI,MISO, CLOCK microcontroller(in order) //DigitalOut cs_sd(PTE22); //Serial sd1(USBTX,USBRX); #define SD_COMMAND_TIMEOUT 5000 #define SD_DBG 0 #define R1_IDLE_STATE (1 << 0) #define R1_ERASE_RESET (1 << 1) #define R1_ILLEGAL_COMMAND (1 << 2) #define R1_COM_CRC_ERROR (1 << 3) #define R1_ERASE_SEQUENCE_ERROR (1 << 4) #define R1_ADDRESS_ERROR (1 << 5) #define R1_PARAMETER_ERROR (1 << 6) #define SD_MAX_CYCLES 10000 uint32_t SD_SCP_FIRST=1001; uint32_t SD_SCP_LAST=2000; uint32_t SD_SFF_AT_FIRST=2001; uint32_t SD_SFF_AT_LAST = 3000; uint32_t SD_SFF_BT_FIRST =3001; uint32_t SD_SFF_BT_LAST=4000; uint32_t SD_HK_ARCH_FIRST=4001; uint32_t SD_HK_ARCH_LAST= 5000; uint32_t LOG_FIRST =5001; uint32_t LOG_LAST=6000; uint32_t SD_MNG_SECT=7000; uint16_t SD_LIB_WRITES = 0; extern uint8_t SD_INIT_FLAGS; int initialise_card(); int initialise_card_v1(); int initialise_card_v2(); int disk_write(const uint8_t *, uint64_t); int disk_read(uint8_t *, uint64_t); int disk_erase(int,int); int disk_read_statusbits(uint8_t *); void FCTN_SD_MNG(); int INCREMENT_SD_LIB(uint8_t); int cmd(int, int); int cmd58(); int cmdx(int, int); int cmd8(); int read(uint8_t*, uint32_t ); int write(const uint8_t*, uint32_t ); static uint32_t ext_bits(unsigned char *, int , int ); int SD_WRITE(uint8_t*,uint32_t,uint8_t); int FCTN_CDMS_SD_INIT(); uint8_t SD_READ(uint8_t*,uint32_t,uint8_t); #define SDCARD_FAIL 0 #define SDCARD_V1 1 #define SDCARD_V2 2 #define SDCARD_V2HC 3 int cdv; uint64_t sd_sectors(); uint64_t sectors; int FCTN_CDMS_SD_INIT() { int i = initialise_card(); debug_if(SD_DBG, "init card = %d\n", i); sectors = sd_sectors(); // Set block length to 512 (CMD16) if (cmd(16, 512) != 0) { debug("\rSet 512-byte block timed out\r\n"); return 1; } else { //printf("\rDisk initialization successfull\r\n"); } spi.frequency(1000000); // Set to 1MHz for data transfer return 0; } void FCTN_SD_MNGR() { uint32_t fsc; uint32_t start_fsc; uint8_t buffer[512]; int b=disk_read(buffer, SD_MNG_SECT); fsc=(uint32_t)(buffer[0]<<24)+(uint32_t)(buffer[1]<<16)+(uint32_t)(buffer[2]<<8)+(uint32_t)buffer[3]; start_fsc=(uint32_t)(buffer[4]<<24)+(uint32_t)(buffer[5]<<16)+(uint32_t)(buffer[6]<<8)+(uint32_t)buffer[7]; FSC_CURRENT[1] = fsc; FSC_LAST[1] = start_fsc; fsc=(uint32_t)(buffer[8]<<24)+(uint32_t)(buffer[9]<<16)+(uint32_t)(buffer[10]<<8)+(uint32_t)buffer[11]; start_fsc=(uint32_t)(buffer[12]<<24)+(uint32_t)(buffer[13]<<16)+(uint32_t)(buffer[14]<<8)+(uint32_t)buffer[15]; FSC_CURRENT[2] = fsc; FSC_LAST[2] = start_fsc; fsc=(uint32_t)(buffer[16]<<24)+(uint32_t)(buffer[17]<<16)+(uint32_t)(buffer[18]<<8)+(uint32_t)buffer[19]; start_fsc=(uint32_t)(buffer[20]<<24)+(uint32_t)(buffer[21]<<16)+(uint32_t)(buffer[22]<<8)+(uint32_t)buffer[23]; FSC_CURRENT[3] = fsc; FSC_LAST[3] = start_fsc; fsc=(uint32_t)(buffer[24]<<24)+(uint32_t)(buffer[25]<<16)+(uint32_t)(buffer[26]<<8)+(uint32_t)buffer[27]; start_fsc=(uint32_t)(buffer[28]<<24)+(uint32_t)(buffer[29]<<16)+(uint32_t)(buffer[30]<<8)+(uint32_t)buffer[31]; FSC_CURRENT[4] = fsc; FSC_LAST[4] = start_fsc; fsc=(uint32_t)(buffer[32]<<24)+(uint32_t)(buffer[33]<<16)+(uint32_t)(buffer[34]<<8)+(uint32_t)buffer[35]; start_fsc=(uint32_t)(buffer[36]<<24)+(uint32_t)(buffer[37]<<16)+(uint32_t)(buffer[38]<<8)+(uint32_t)buffer[39]; FSC_CURRENT[5] = fsc; FSC_LAST[5] = start_fsc; } int INCREMENT_SD_LIB(uint8_t sid) { uint32_t fsc; uint32_t start_fsc; int i; uint8_t buffer[512]; SD_MNG_SECT += SD_LIB_WRITES/(int)0xFFFF; SD_LIB_WRITES = SD_LIB_WRITES%(int)0xFFFF; disk_read(buffer,SD_MNG_SECT); if(sid==0x01) { fsc=(uint32_t)(buffer[0]<<24)+(uint32_t)(buffer[1]<<16)+(uint32_t)(buffer[2]<<8)+(uint32_t)buffer[3]; start_fsc=(uint32_t)(buffer[4]<<24)+(uint32_t)(buffer[5]<<16)+(uint32_t)(buffer[6]<<8)+(uint32_t)buffer[7]; fsc++; buffer[0]=(uint8_t) (fsc>>24 & 0xFF); buffer[1]=(uint8_t) (fsc>>16 & 0xFF); buffer[2]=(uint8_t) (fsc>>8 & 0xFF); buffer[3]=(uint8_t) (fsc & 0xFF); if(fsc > SD_SCP_LAST-SD_SCP_FIRST+1) { start_fsc = start_fsc+1; buffer[4]=(uint8_t) (start_fsc>>24 & 0xFF); buffer[5]=(uint8_t) (start_fsc>>16 & 0xFF); buffer[6]=(uint8_t) (start_fsc>>8 & 0xFF); buffer[7]=(uint8_t) (start_fsc & 0xFF); } i = disk_write(buffer,SD_MNG_SECT); if(i == 0) { FSC_CURRENT[1] = fsc; FSC_LAST[1] = start_fsc; return i; } } if(sid==0x02) { fsc=(uint32_t)(buffer[8]<<24)+(uint32_t)(buffer[9]<<16)+(uint32_t)(buffer[10]<<8)+(uint32_t)buffer[11]; start_fsc=(uint32_t)(buffer[12]<<24)+(uint32_t)(buffer[13]<<16)+(uint32_t)(buffer[14]<<8)+(uint32_t)buffer[15]; fsc++; buffer[8]=(uint8_t) (fsc>>24 & 0xFF); buffer[9]=(uint8_t) (fsc>>16 & 0xFF); buffer[10]=(uint8_t) (fsc>>8 & 0xFF); buffer[11]=(uint8_t) (fsc & 0xFF); if(fsc > SD_SFF_AT_LAST-SD_SFF_AT_FIRST+1) { start_fsc = start_fsc+1; buffer[12]=(uint8_t) (start_fsc>>24 & 0xFF); buffer[13]=(uint8_t) (start_fsc>>16 & 0xFF); buffer[14]=(uint8_t) (start_fsc>>8 & 0xFF); buffer[15]=(uint8_t) (start_fsc & 0xFF); } i = disk_write(buffer,SD_MNG_SECT); if(i == 0) { FSC_CURRENT[2] = fsc; FSC_LAST[2] = start_fsc; return i; } } if(sid==0x03) { fsc=(uint32_t)(buffer[16]<<24)+(uint32_t)(buffer[17]<<16)+(uint32_t)(buffer[18]<<8)+(uint32_t)buffer[19]; start_fsc=(uint32_t)(buffer[20]<<24)+(uint32_t)(buffer[21]<<16)+(uint32_t)(buffer[22]<<8)+(uint32_t)buffer[23]; fsc++; buffer[16]=(uint8_t) (fsc>>24 & 0xFF); buffer[17]=(uint8_t) (fsc>>16 & 0xFF); buffer[18]=(uint8_t) (fsc>>8 & 0xFF); buffer[19]=(uint8_t) (fsc & 0xFF); if(fsc > SD_SFF_BT_LAST-SD_SFF_BT_FIRST+1) { start_fsc = start_fsc+1; buffer[20]=(uint8_t) (start_fsc>>24 & 0xFF); buffer[21]=(uint8_t) (start_fsc>>16 & 0xFF); buffer[22]=(uint8_t) (start_fsc>>8 & 0xFF); buffer[23]=(uint8_t) (start_fsc & 0xFF); } i = disk_write(buffer,SD_MNG_SECT); if(i == 0) { FSC_CURRENT[3] = fsc; FSC_LAST[3] = start_fsc; return i; } } if(sid==0x04) { fsc=(uint32_t)(buffer[24]<<24)+(uint32_t)(buffer[25]<<16)+(uint32_t)(buffer[26]<<8)+(uint32_t)buffer[27]; start_fsc=(uint32_t)(buffer[28]<<24)+(uint32_t)(buffer[29]<<16)+(uint32_t)(buffer[30]<<8)+(uint32_t)buffer[31]; fsc++; buffer[24]=(uint8_t) (fsc>>24 & 0xFF); buffer[25]=(uint8_t) (fsc>>16 & 0xFF); buffer[26]=(uint8_t) (fsc>>8 & 0xFF); buffer[27]=(uint8_t) (fsc & 0xFF); if(fsc > SD_HK_ARCH_LAST-SD_HK_ARCH_FIRST+1) { start_fsc = start_fsc+1; buffer[28]=(uint8_t) (start_fsc>>24 & 0xFF); buffer[29]=(uint8_t) (start_fsc>>16 & 0xFF); buffer[30]=(uint8_t) (start_fsc>>8 & 0xFF); buffer[31]=(uint8_t) (start_fsc & 0xFF); } i = disk_write(buffer,SD_MNG_SECT); if(i == 0) { FSC_CURRENT[4] = fsc; FSC_LAST[4] = start_fsc; return i; } } if(sid==0x05) { fsc=(uint32_t)(buffer[32]<<24)+(uint32_t)(buffer[33]<<16)+(uint32_t)(buffer[34]<<8)+(uint32_t)buffer[35]; start_fsc=(uint32_t)(buffer[36]<<24)+(uint32_t)(buffer[37]<<16)+(uint32_t)(buffer[38]<<8)+(uint32_t)buffer[39]; fsc++; buffer[32]=(uint8_t) (fsc>>24 & 0xFF); buffer[33]=(uint8_t) (fsc>>16 & 0xFF); buffer[34]=(uint8_t) (fsc>>8 & 0xFF); buffer[35]=(uint8_t) (fsc & 0xFF); if(fsc > LOG_LAST-LOG_FIRST+1) { start_fsc = start_fsc+1; buffer[36]=(uint8_t) (start_fsc>>24 & 0xFF); buffer[37]=(uint8_t) (start_fsc>>16 & 0xFF); buffer[38]=(uint8_t) (start_fsc>>8 & 0xFF); buffer[39]=(uint8_t) (start_fsc & 0xFF); } i = disk_write(buffer,SD_MNG_SECT); if(i == 0) { FSC_CURRENT[5] = fsc; FSC_LAST[5] = start_fsc; return i; } } return -1; } int SD_WRITE(uint8_t* buffer,uint32_t fsc,uint8_t sid) { uint32_t block_number; int result = 10; if(sid==0x01) { //block_number=SD_SCP_FIRST+(fsc%(SD_SCP_LAST-SD_SCP_FIRST+1))-1; block_number=SD_SCP_FIRST+fsc; result= disk_write(buffer,block_number); if(result == 0) { if(INCREMENT_SD_LIB(sid) == 0) SD_LIB_WRITES++; } return result; } if(sid==0x02) { //block_number= SD_SFF_AT_FIRST+(fsc%(SD_SFF_AT_LAST - SD_SFF_AT_FIRST+1))-1; block_number= SD_SFF_AT_FIRST+fsc; result= disk_write(buffer,block_number); if(result == 0) { if(INCREMENT_SD_LIB(sid) == 0) SD_LIB_WRITES++; } return result; } if(sid==0x03) { //block_number= SD_SFF_BT_FIRST +(fsc%(SD_SFF_BT_LAST - SD_SFF_BT_FIRST +1))-1; block_number= SD_SFF_BT_FIRST +fsc; result= disk_write(buffer,block_number); if(result == 0) { if(INCREMENT_SD_LIB(sid) == 0) SD_LIB_WRITES++; } return result; } if(sid==0x04) { //block_number=SD_HK_ARCH_FIRST +(fsc%(SD_HK_ARCH_LAST - SD_HK_ARCH_FIRST +1))-1; block_number=SD_HK_ARCH_FIRST +fsc; result= disk_write(buffer,block_number); if(result == 0) { if(INCREMENT_SD_LIB(sid) == 0) SD_LIB_WRITES++; } return result; } if(sid==0x05) { //block_number= LOG_FIRST +(fsc%(LOG_FIRST - LOG_FIRST +1))-1; block_number= LOG_FIRST +fsc; result= disk_write(buffer,block_number); if(result == 0) { if(INCREMENT_SD_LIB(sid) == 0) SD_LIB_WRITES++; } return result; } return 1; } uint8_t SD_READ(uint8_t* buffer,uint32_t fsc,uint8_t sid) { FCTN_SD_MNGR(); uint32_t block_number; int result; if(SD_SW_EN_DS == 1) return 0x89; if(sid==0x01) { if(!(FSC_LAST[1]<=fsc && fsc<=FSC_CURRENT[1])) { return 0x86; } block_number=SD_SCP_FIRST + fsc; result= disk_read(buffer,block_number); } else if(sid==0x02) { if(!(FSC_LAST[2]<=fsc && fsc<=FSC_CURRENT[2])) { return 0x86; } block_number=SD_SFF_AT_FIRST + fsc; result= disk_read(buffer,block_number); } else if(sid==0x03) { if(!(FSC_LAST[3]<=fsc && fsc<=FSC_CURRENT[3])) { return 0x86; } block_number=SD_SFF_BT_FIRST + fsc; result= disk_read(buffer,block_number); } else if(sid==0x04) { if(!(FSC_LAST[4]<=fsc && fsc<=FSC_CURRENT[4])) { return 0x86; } block_number=SD_HK_ARCH_FIRST + fsc; result= disk_read(buffer,block_number); } else if(sid==0x05) { if(!(FSC_LAST[5]<=fsc && fsc<=FSC_CURRENT[5])) { return 0x86; } block_number=LOG_FIRST +fsc; result= disk_read(buffer,block_number); } else { return 0x02; } if(result == 0) return 0xA0; else return 0x88; } int initialise_card() { // Set to 100kHz for initialisation, and clock card with cs_sd = 1 spi.frequency(100000); // changed on 31 12 2015 to 1 MHz cs_sd = 1; for (int i = 0; i < 16; i++) { spi.write(0xFF); } uint8_t R1_response = cmd(0,0); gPC.printf("0x%02X",R1_response); // send CMD0, should return with all zeros except IDLE STATE set (bit 0) if (R1_response != R1_IDLE_STATE) { debug("No disk, or could not put SD card in to spi idle state\r\n"); return SDCARD_FAIL; } else gPC.puts("SD Card is in IDLE state\n\r"); // send CMD8 to determine whther it is ver 2.x int r = cmd8(); if (r == R1_IDLE_STATE) { gPC.puts("Entering V2\r"); int q = initialise_card_v2(); return q; } else if (r == (R1_IDLE_STATE | R1_ILLEGAL_COMMAND)) { gPC.puts("Entering V1"); return initialise_card_v1(); } else { debug("\rNot in idle state after sending CMD8 (not an SD card?)\r\n"); return SDCARD_FAIL; } } int initialise_card_v1() { for (int i = 0; i < SD_COMMAND_TIMEOUT; i++) { cmd(55, 0); if (cmd(41, 0) == 0) { gPC.puts("\rv1 initialization successfull\r\n"); cdv = 512; debug_if(SD_DBG, "\n\rInit: SEDCARD_V1\n\r"); return SDCARD_V1; } } debug("\rTimeout waiting for v1.x card\r\n"); return SDCARD_FAIL; } int initialise_card_v2() { for (int i = 0; i < SD_COMMAND_TIMEOUT; i++) { wait_ms(50); cmd58(); cmd(55, 0); if (cmd(41, 0x40000000) == 0) { if (DEBUG) gPC.puts("\rv2 initialization successfull\r\n"); cmd58(); debug_if(SD_DBG, "\n\rInit: SDCARD_V2\n\r"); cdv = 1; return SDCARD_V2; } } debug("\rTimeout waiting for v2.x card\r\n"); return SDCARD_FAIL; } int cmd(int cmd, int arg) { cs_sd = 0; // send a command spi.write(0x40 | cmd); spi.write(arg >> 24); spi.write(arg >> 16); spi.write(arg >> 8); spi.write(arg >> 0); spi.write(0x95); // wait for the repsonse (response[7] == 0) for (int i = 0; i < SD_COMMAND_TIMEOUT; i++) { int response = spi.write(0xFF); if (!(response & 0x80)) { cs_sd = 1; spi.write(0xFF); return response; } } cs_sd = 1; spi.write(0xFF); return -1; // timeout } int cmd58() { cs_sd = 0; int arg = 0; // send a command spi.write(0x40 | 58); spi.write(arg >> 24); spi.write(arg >> 16); spi.write(arg >> 8); spi.write(arg >> 0); spi.write(0x95); // wait for the repsonse (response[7] == 0) for (int i = 0; i < SD_COMMAND_TIMEOUT; i++) { int response = spi.write(0xFF); if (!(response & 0x80)) { int ocr = spi.write(0xFF) << 24; ocr |= spi.write(0xFF) << 16; ocr |= spi.write(0xFF) << 8; ocr |= spi.write(0xFF) << 0; cs_sd = 1; spi.write(0xFF); return response; } } cs_sd = 1; spi.write(0xFF); return -1; // timeout } int cmd8() { cs_sd = 0; // send a command spi.write(0x40 | 8); // CMD8 spi.write(0x00); // reserved spi.write(0x00); // reserved spi.write(0x01); // 3.3v spi.write(0xAA); // check pattern spi.write(0x87); // crc // wait for the repsonse (response[7] == 0) for (int i = 0; i < SD_COMMAND_TIMEOUT * 1000; i++) { char response[5]; response[0] = spi.write(0xFF); if (!(response[0] & 0x80)) { for (int j = 1; j < 5; j++) { response[i] = spi.write(0xFF); } cs_sd = 1; spi.write(0xFF); return response[0]; } } cs_sd = 1; spi.write(0xFF); return -1; // timeout } uint64_t sd_sectors() { uint32_t c_size, c_size_mult, read_bl_len; uint32_t block_len, mult, blocknr, capacity; uint32_t hc_c_size; uint64_t blocks; // CMD9, Response R2 (R1 byte + 16-byte block read) if (cmdx(9, 0) != 0) { debug("\rDidn't get a response from the disk\n"); return 0; } uint8_t cs_sdd[16]; if (read(cs_sdd, 16) != 0) { debug("\rCouldn't read cs_sdd response from disk\n"); return 0; } // cs_sdd_structure : cs_sdd[127:126] // c_size : cs_sdd[73:62] // c_size_mult : cs_sdd[49:47] // read_bl_len : cs_sdd[83:80] - the *maximum* read block length int cs_sdd_structure = ext_bits(cs_sdd, 127, 126); switch (cs_sdd_structure) { case 0: cdv = 512; c_size = ext_bits(cs_sdd, 73, 62); c_size_mult = ext_bits(cs_sdd, 49, 47); read_bl_len = ext_bits(cs_sdd, 83, 80); block_len = 1 << read_bl_len; mult = 1 << (c_size_mult + 2); blocknr = (c_size + 1) * mult; capacity = blocknr * block_len; blocks = capacity / 512; debug_if(SD_DBG, "\n\rSDCard\n\rc_size: %d \n\rcapacity: %ld \n\rsectors: %lld\n\r", c_size, capacity, blocks); break; case 1: cdv = 1; hc_c_size = ext_bits(cs_sdd, 63, 48); blocks = (hc_c_size+1)*1024; debug_if(SD_DBG, "\n\rSDHC Card \n\rhc_c_size: %d\n\rcapacity: %lld \n\rsectors: %lld\n\r", hc_c_size, blocks*512, blocks); break; default: debug("cs_sdD struct unsupported\r\n"); return 0; }; return blocks; } int cmdx(int cmd, int arg) { cs_sd = 0; // send a command spi.write(0x40 | cmd); spi.write(arg >> 24); spi.write(arg >> 16); spi.write(arg >> 8); spi.write(arg >> 0); spi.write(0x95); // wait for the repsonse (response[7] == 0) for (int i = 0; i < SD_COMMAND_TIMEOUT; i++) { int response = spi.write(0xFF); if (!(response & 0x80)) { return response; } } cs_sd = 1; spi.write(0xFF); return 1; // timeout } static uint32_t ext_bits(unsigned char *data, int msb, int lsb) { uint32_t bits = 0; uint32_t size = 1 + msb - lsb; for (int i = 0; i < size; i++) { uint32_t position = lsb + i; uint32_t byte = 15 - (position >> 3); uint32_t bit = position & 0x7; uint32_t value = (data[byte] >> bit) & 1; bits |= value << i; } return bits; } int disk_write(const uint8_t *buffer, uint64_t block_number) { // set write address for single block (CMD24) if (cmd(24, block_number * cdv) != 0) { return 1; } int r = write(buffer, 512); if(r == 0 ) TIME_LATEST_SD_WR = FCTN_CDMS_RD_RTC() >> 7; return r; } int write(const uint8_t*buffer, uint32_t length) { cs_sd = 0; // indicate start of block spi.write(0xFE); // write the data for (int i = 0; i < length; i++) { spi.write(buffer[i]); } // write the checksum spi.write(0xFF); spi.write(0xFF); // check the response token if ((spi.write(0xFF) & 0x1F) != 0x05) { cs_sd = 1; spi.write(0xFF); return 1; } // wait for write to finish while (spi.write(0xFF) == 0); cs_sd = 1; spi.write(0xFF); return 0; } int disk_read(uint8_t *buffer, uint64_t block_number) { // set read address for single block (CMD17) if (cmd(17, block_number * cdv) != 0) { SD_RD_ERROR = 1; return 1; } // receive the data read(buffer, 512); TIME_LATEST_SD_RD = FCTN_CDMS_RD_RTC() >> 7; return 0; } int read(uint8_t *buffer, uint32_t length) { cs_sd = 0; // read until start byte (0xFF) while (spi.write(0xFF) != 0xFE); // read data for (int i = 0; i < length; i++) { buffer[i] = spi.write(0xFF); } spi.write(0xFF); // checksum spi.write(0xFF); cs_sd = 1; spi.write(0xFF); return 0; } int disk_erase(int startBlock, int totalBlocks) { if(cmd(32, startBlock * cdv) != 0) { return 1; } if (cmd(33, (startBlock+totalBlocks-1) * cdv) != 0) { return 1; } if (cmd(38,0) != 0) { return 1; } return 0; //normal return } int disk_read_statusbits(uint8_t *buffer) { if (cmd(17, 0) != 0) { SD_RD_ERROR = 1; return -1; } // receive the data return read(buffer,64); }