FM
Dependencies: SimpleDMA eeprom mbed-rtos mbed FreescaleIAP
Fork of CDMS_CODE by
CDMS_HK.h
- Committer:
- chaithanyarss
- Date:
- 2016-07-03
- Revision:
- 215:570251b23c7b
- Parent:
- 210:f4acf895b598
- Child:
- 219:8e8396f15bc2
File content as of revision 215:570251b23c7b:
//CDMS HK #define COMRX_ALIVE 0x01 #define COMRX_DEAD 0x00 #define DEVICE_ENABLED 0x00 #define DEVICE_POWERED 0x01 #define DEVICE_OC_FAULT 0x02 #define DEVICE_DISABLED 0x03 void FCTN_CDMS_HK_MAIN(); void FCTN_CDMS_HK(); void VERIFY_COMRX(); void VERIFY_RTC(); void CDMS_HK_SD(); void HANDLE_HW_FAULTS(); void HANDLE_HW_FAULT_SD(); void HANDLE_HW_FAULT_BAE(); void HANDLE_HW_FAULT_PL(); void FUNC_CDMS_GPIO_STATUS(); void minMaxHkData(); void COLLECT_CDMS_RAM(); Serial hk_cdms(USBTX, USBRX); AnalogIn TempInput(PIN27); // Input from Current Multiplexer AnalogIn CDMS_temp_sensor(PIN53); AnalogIn COMRX_RSSI_volatge(PIN70); DigitalOut SelectLinec3 (PIN79); // MSB of Select Lines DigitalOut SelectLinec2 (PIN78); DigitalOut SelectLinec1 (PIN77); DigitalOut SelectLinec0 (PIN76); // LSB of Select Lines void FCTN_CDMS_HK_MAIN(void const *args) { unsigned char CDMS_HK_FRAME[134] = {0}; char BAE_HK[128] = {0}; uint8_t convoluted_CDMS_HK[270]; uint8_t interleave_CDMS_HK[288]; uint8_t CDMS_HEALTH_FINAL[512] = {0}; uint8_t convoluted_BAE_HK[270]; uint8_t interleave_BAE_HK[288]; uint8_t BAE_HEALTH_FINAL[512] = {0}; unsigned char BAE_HK_FRAME[134] = {0}; CDMS_HK_MAIN_STATUS = 0x01; CDMS_HK_MAIN_COUNTER++; FCTN_CDMS_HK(); RSSI_volatge = COMRX_RSSI_volatge.read() * 3.3; VERIFY_COMRX(); VERIFY_RTC(); HANDLE_HW_FAULTS(); FUNC_CDMS_GPIO_STATUS(); //yet to be done uint8_t CDMS_quant[19]; for(int i=0; i<16; i++) { CDMS_quant[i]= (uint8_t)quant_data.temp_quant[i]; } CDMS_quant[16]= (uint8_t)RSSI_volatge; CDMS_quant[17]= (uint8_t)quant_data.CDMS_temp_quant; minMaxHkData(); uint64_t time = FCTN_CDMS_RD_RTC(); //Reading Time from RTC time = time>>7; uint32_t HK_time = (uint32_t)time; for(int i = 0; i<4; i++) CDMS_HEALTH_DATA[i] = HK_time >> i; // Here: Have to FIT flash data. for(int i = 0; i<19; i++) //Collecting Data from Temp sensors CDMS_HEALTH_DATA[i+24] = CDMS_quant[i]; COLLECT_CDMS_RAM(); //Reading RAM parameters CDMS_HEALTH_DATA[126] = GPIO_STATUS; //Reading GPIO Pins CDMS_HEALTH_DATA[127] = GPIO_STATUS >> 8; FCTN_SD_MNGR(); //Adding FSC & TMID to TM frame CDMS_HK_FRAME[0] = 0x20; CDMS_HK_FRAME[1] = FSC_CURRENT[4]+1; CDMS_HK_FRAME[2] = (FSC_CURRENT[4]+1) >> 8; CDMS_HK_FRAME[3] = (FSC_CURRENT[4]+1) >> 16; for(int i = 0; i<128; i++) /*Adding actual CDMS Health data to TM frame*/ CDMS_HK_FRAME[4+i] = CDMS_HEALTH_DATA[i]; uint16_t crc = crc16_gen(CDMS_HK_FRAME,132); /*Adding CRC to TM frame*/ CDMS_HK_FRAME[133] = crc; CDMS_HK_FRAME[132] = crc >> 8; Convolution CDMS_HEALTH; Convolution BAE_HEALTH; CDMS_HEALTH.convolutionEncode(CDMS_HK_FRAME , convoluted_CDMS_HK); CDMS_HEALTH.convolutionEncode(CDMS_HK_FRAME + 67, convoluted_CDMS_HK + 135); interleave(convoluted_CDMS_HK , interleave_CDMS_HK); interleave(convoluted_CDMS_HK +135, interleave_CDMS_HK + 144); for(int i=0; i<288; i++) CDMS_HEALTH_FINAL[i] = interleave_CDMS_HK[i]; SD_WRITE(CDMS_HEALTH_FINAL,FSC_CURRENT[4]+1,4); hk_cdms.printf("CDMS hk succesfully completed\r\n"); /*---------------------------------- BAE HK --------------------------------------------*/ BAE_HK_I2C = FCTN_I2C_READ(BAE_HK,134); if(BAE_HK_I2C == 0) { TIME_LATEST_I2C_BAE = FCTN_CDMS_RD_RTC() >> 7; hk_cdms.printf("Bae hk data received"); } else { for(int i = 0; i<128; i++) BAE_HK[i] = 0; } for(int i = 0; i<4; i++) BAE_HK[i] = HK_time >> i; BAE_HK_FRAME[0] = 0x28; BAE_HK_FRAME[1] = FSC_CURRENT[5]+1; BAE_HK_FRAME[2] = (FSC_CURRENT[5]+1) >> 8; BAE_HK_FRAME[3] = (FSC_CURRENT[5]+1) >> 16; for(int i = 0; i<128; i++) /*Adding actual CDMS Health data to TM frame*/ BAE_HK_FRAME[4+i] = BAE_HK[i]; crc = crc16_gen(BAE_HK_FRAME,132); /*Adding CRC to TM frame*/ BAE_HK_FRAME[133] = crc; BAE_HK_FRAME[132] = crc >> 8; BAE_HEALTH.convolutionEncode(BAE_HK_FRAME , convoluted_BAE_HK); BAE_HEALTH.convolutionEncode(BAE_HK_FRAME + 67, convoluted_BAE_HK + 135); interleave(convoluted_BAE_HK , interleave_BAE_HK); interleave(convoluted_BAE_HK +135, interleave_BAE_HK + 144); for(int i=0; i<288; i++) BAE_HEALTH_FINAL[i] = interleave_BAE_HK[i]; SD_WRITE(BAE_HEALTH_FINAL,FSC_CURRENT[5]+1,5); hk_cdms.printf("BAE hk succesfully completed\r\n"); /*----------------------------------Beacon message--------------------------------------*/ unsigned char SC_HK_LBM_0[135]; SC_HK_LBM_0[0] = 0; // Sending long beacon msg as telecommand with Packet sequence count 0x00 // Add HK bits // Add SC bits crc = crc16_gen(SC_HK_LBM_0,133); SC_HK_LBM_0[132] = crc; SC_HK_LBM_0[133] = crc >> 8; FCTN_I2C_WRITE((char *)SC_HK_LBM_0,135); } int quantiz(float start,float step,float x) { int y=(x-start)/step; if(y<=0)y=0; if(y>=255)y=255; return y; } char saveMin(char x,char y) { return (y<x)?y:x; } char saveMax(char x,char y) { return (y>x)?y:x; } void minMaxHkData() { if(firstCount==true) { for (int i = 0; i < 16; ++i) { min_max_data.temp_min[i] = quant_data.temp_quant[i]; min_max_data.temp_max[i] = quant_data.temp_quant[i]; } min_max_data.CDMS_temp_min=quant_data.CDMS_temp_quant; min_max_data.CDMS_temp_max=quant_data.CDMS_temp_quant; } else { for (int i = 0; i < 16; ++i) { min_max_data.temp_min[i] = saveMin(min_max_data.temp_min[i],quant_data.temp_quant[i]); min_max_data.temp_max[i] = saveMax(min_max_data.temp_max[i],quant_data.temp_quant[i]); } min_max_data.CDMS_temp_min = saveMin(min_max_data.CDMS_temp_min,quant_data.CDMS_temp_quant); min_max_data.CDMS_temp_max = saveMax(min_max_data.CDMS_temp_max,quant_data.CDMS_temp_quant); } firstCount=false; } void FCTN_CDMS_HK() { int Iteration=0; SelectLinec0=0; SelectLinec1=0; SelectLinec2=0; SelectLinec3=0; for(Iteration=0; Iteration<16; Iteration++) { actual_data.temp_actual[Iteration]=TempInput.read(); SelectLinec0=!(SelectLinec0); if(Iteration%2==1) SelectLinec1=!(SelectLinec1); if(Iteration%4==3) SelectLinec2=!(SelectLinec2); if(Iteration%8==7) SelectLinec3=!(SelectLinec3); } actual_data.CDMS_temp_actual=(-90.7*3.3*CDMS_temp_sensor.read())+190.1543; for(Iteration=0; Iteration<16; Iteration++) { if(Iteration<14) { actual_data.temp_actual[Iteration]=actual_data.temp_actual[Iteration]*3.3; int resistance; resistance=24000*actual_data.temp_actual[Iteration]/(3.3-actual_data.temp_actual[Iteration]); if(actual_data.temp_actual[Iteration]>1.47) { actual_data.temp_actual[Iteration]=3694/log(24.032242*resistance); } else { actual_data.temp_actual[Iteration]=3365.4/log(7.60573*resistance); } } else actual_data.temp_actual[Iteration]=(-90.7*3.3*actual_data.temp_actual[Iteration])+190.1543; } for(Iteration=0; Iteration<16; Iteration++) { if(Iteration<14) { quant_data.temp_quant[Iteration]=quantiz(tstart_thermistor,tstep_thermistor,actual_data.temp_actual[Iteration]); } else quant_data.temp_quant[Iteration]=quantiz(tstart,tstep,actual_data.temp_actual[Iteration]); } quant_data.CDMS_temp_quant=quantiz(tstart,tstep,actual_data.CDMS_temp_actual); minMaxHkData(); } void FUNC_CDMS_GPIO_STATUS() //Polls the status of Input GPIO PINS { //V_A_PGOOD //TRZ EN GPIO_STATUS=(V_A_PGOOD)?(GPIO_STATUS)||((uint16_t)(0x1<<15)):(GPIO_STATUS)&(~((uint16_t)(0x1<<15))); //V_B_PGOOD_1 //3V3BPGOOD //$ GPIO_STATUS=(V_B_PGOOD_1)?(GPIO_STATUS)||((uint16_t)(0x1<<14)):(GPIO_STATUS)&(~((uint16_t)(0x1<<14))); //V_B_PGOOD_2 //3V3BEN //$ GPIO_STATUS=(V_B_PGOOD_2)?(GPIO_STATUS)||((uint16_t)(0x1<<13)):(GPIO_STATUS)&(~((uint16_t)(0x1<<13))); //V_C_PGOOD //3V3CPGOOD //$ GPIO_STATUS=(V_C_PGOOD)?(GPIO_STATUS)||((uint16_t)(0x1<<12)):(GPIO_STATUS)&(~((uint16_t)(0x1<<12))); //COMRX_OC_FAULT //$ GPIO_STATUS=(COMRX_OC_FAULT)?(GPIO_STATUS)||((uint16_t)(0x1<<11)):(GPIO_STATUS)&(~((uint16_t)(0x1<<11))); // COMTX_OC_FAULT //$ GPIO_STATUS=(COMTX_OC_FAULT)?(GPIO_STATUS)||((uint16_t)(0x1<<10)):(GPIO_STATUS)&(~((uint16_t)(0x1<<10))); //BAE_OC_FAULT //$ GPIO_STATUS=(BAE_OC_FAULT)?(GPIO_STATUS)||((uint16_t)(0x1<<9)):(GPIO_STATUS)&(~((uint16_t)(0x1<<9))); //PL_GPIO_1_STATUS //$ GPIO_STATUS=(PL_GPIO_1_STATUS)?(GPIO_STATUS)||((uint16_t)(0x1<<8)):(GPIO_STATUS)&(~((uint16_t)(0x1<<8))); //PL_GPIO_2_STATUS //$ GPIO_STATUS=(PL_GPIO_2_STATUS)?(GPIO_STATUS)||((uint16_t)(0x1<<7)):(GPIO_STATUS)&(~((uint16_t)(0x1<<7))); //PL_GPIO_3_STATUS //$ GPIO_STATUS=(PL_GPIO_3_STATUS)?(GPIO_STATUS)||((uint16_t)(0x1<<6)):(GPIO_STATUS)&(~((uint16_t)(0x1<<6))); //PL_BEE_SW_OC_FAULT //to be verified GPIO_STATUS=(PL_BEE_SW_OC_FAULT)?(GPIO_STATUS)||((uint16_t)(0x1<<5)):(GPIO_STATUS)&(~((uint16_t)(0x1<<5))); //PL_EPS_LATCH_SW_OC_FAULT // to be verified GPIO_STATUS=(PL_EPS_LATCH_SW_OC_FAULT)?(GPIO_STATUS)||((uint16_t)(0x1<<4)):(GPIO_STATUS)&(~((uint16_t)(0x1<<4))); } void VERIFY_COMRX() { //COMRX_OC_FAULT //$ if(PIN68==0 && RSSI_volatge > 0.4) { COMRX_STATUS = COMRX_ALIVE; } else { RESET_COMRX(); COMRX_RESET_COUNTER++; if(PIN68==0 && RSSI_volatge > 0.4) COMRX_STATUS = COMRX_ALIVE; else COMRX_STATUS = COMRX_DEAD; } } void VERIFY_RTC() { if(RTC_STATUS == 0x00) { SPI_mutex.lock(); gCS_RTC=1; gCS_RTC=0; spi.write(0x0F); if(spi.write(0x00) & 0x04 == 0x04) { RTC_STATUS = 0x00; RESET_RTC(); RTC_FAULTCOUNT++; } gCS_RTC=1; SPI_mutex.unlock(); } } void HANDLE_HW_FAULTS() { HANDLE_HW_FAULT_SD(); HANDLE_HW_FAULT_BAE(); HANDLE_HW_FAULT_PL(); } void HANDLE_HW_FAULT_SD() { if(SD_STATUS != DEVICE_DISABLED) { if(SD_STATUS == DEVICE_OC_FAULT) SD_SW_EN_DS = 0; //powering on SD if(SD_OC_FAULT == 0) { SD_SW_EN_DS = 1; //switching off SD card SD_FAULTCOUNT++; SD_STATUS = (SD_FAULTCOUNT == 3) ? DEVICE_DISABLED :DEVICE_OC_FAULT; } else { SD_STATUS = DEVICE_POWERED; SD_FAULTCOUNT = 0; } } } void HANDLE_HW_FAULT_BAE() { if(BAE_STATUS != DEVICE_DISABLED) { if(BAE_STATUS == DEVICE_OC_FAULT) BAE_SW_EN_DS = 0; //Power ON BAE if(BAE_OC_FAULT == 0) { // If OC Fault BAE_SW_EN_DS = 1; //Switch OFF BAE BAE_FAULTCOUNT++; BAE_STATUS = (BAE_FAULTCOUNT == 3)?DEVICE_DISABLED:DEVICE_OC_FAULT; } else { BAE_STATUS = DEVICE_POWERED; BAE_FAULTCOUNT = 0; } } } void HANDLE_HW_FAULT_PL() { if(PL_STATUS != DEVICE_DISABLED) { if(PL_STATUS == DEVICE_OC_FAULT) PL_SW_EN_DS = 0; //Power ON PL if(PL_BEE_SW_OC_FAULT == 0) { // if OC Fault PL_SW_EN_DS = 1; // switching OFF PL PL_FAULTCOUNT++; PL_STATUS = (PL_FAULTCOUNT == 3)?DEVICE_DISABLED:DEVICE_OC_FAULT; } else { if(PL_STATUS == DEVICE_OC_FAULT) PL_SW_EN_DS = 0; //Switching OFF PL PL_STATUS = DEVICE_ENABLED; PL_FAULTCOUNT = 0; } } } void COLLECT_CDMS_RAM() { /*--------------------Current FSC's---------------------*/ for(int i=0; i<4; i++) CDMS_HEALTH_DATA[i+43] = FSC_LAST[5] >> (i*8); for(int i=0; i<4; i++) CDMS_HEALTH_DATA[i+47] = FSC_CURRENT[5] >> (i*8); for(int i=0; i<4; i++) CDMS_HEALTH_DATA[i+51] = FSC_LAST[4] >> (i*8); for(int i=0; i<4; i++) CDMS_HEALTH_DATA[i+55] = FSC_CURRENT[4] >> (i*8); for(int i=0; i<4; i++) CDMS_HEALTH_DATA[i+59] = FSC_LAST[3] >> (i*8); for(int i=0; i<4; i++) CDMS_HEALTH_DATA[i+63] = FSC_CURRENT[3] >> (i*8); for(int i=0; i<4; i++) CDMS_HEALTH_DATA[i+67] = FSC_LAST[2] >> (i*8); for(int i=0; i<4; i++) CDMS_HEALTH_DATA[i+71] = FSC_CURRENT[2] >> (i*8); for(int i=0; i<4; i++) CDMS_HEALTH_DATA[i+75] = FSC_LAST[1] >> (i*8); for(int i=0; i<4; i++) CDMS_HEALTH_DATA[i+79] = FSC_CURRENT[1] >> (i*8); /*---------------------Latest Time----------------------*/ for(int i=0; i<4; i++) CDMS_HEALTH_DATA[i+83] = TIME_LATEST_SPI_SPEED >> (i*8); for(int i=0; i<4; i++) CDMS_HEALTH_DATA[i+87] = TIME_LATEST_SD_RD >> (i*8); for(int i=0; i<4; i++) CDMS_HEALTH_DATA[i+91] = TIME_LATEST_SD_WR >> (i*8); for(int i=0; i<4; i++) CDMS_HEALTH_DATA[i+95] = TIME_LATEST_I2C_SPEED >> (i*8); for(int i=0; i<4; i++) CDMS_HEALTH_DATA[i+99] = TIME_LATEST_I2C_BAE >> (i*8); for(int i=0; i<4; i++) CDMS_HEALTH_DATA[i+103] = TIME_LATEST_RTC >> (i*8); for(int i=0; i<2; i++) CDMS_HEALTH_DATA[i+107] = COMRX_RESET_COUNTER >> (i*8); for(int i=0; i<2; i++) CDMS_HEALTH_DATA[i+107] = PL_RCV_SC_DATA_COUNTER >> (i*8); for(int i=0; i<2; i++) CDMS_HEALTH_DATA[i+111] = PL_MAIN_COUNTER >> (i*8); for(int i=0; i<2; i++) CDMS_HEALTH_DATA[i+113] = CDMS_HK_MAIN_COUNTER >> (i*8); for(int i=0; i<2; i++) CDMS_HEALTH_DATA[i+115] = CDMS_I2C_ERR_BAE_COUNTER >> (i*8); for(int i=0; i<2; i++) CDMS_HEALTH_DATA[i+117] = CDMS_I2C_ERR_SPEED_COUNTER >> (i*8); CDMS_HEALTH_DATA[120] = CDMS_HEALTH_DATA[120] | CDMS_STANDBY_PL << 7; CDMS_HEALTH_DATA[120] = CDMS_HEALTH_DATA[120] | ((CDMS_INIT_STATUS << 6) & 0x40); CDMS_HEALTH_DATA[120] = CDMS_HEALTH_DATA[120] | ((CDMS_HK_MAIN_STATUS << 5) & 0x20); CDMS_HEALTH_DATA[120] = CDMS_HEALTH_DATA[120] | ((CDMS_HK_STATUS << 3) & 0x18); CDMS_HEALTH_DATA[120] = CDMS_HEALTH_DATA[120] | ((COMRX_STATUS << 2) & 0x04); CDMS_HEALTH_DATA[120] = CDMS_HEALTH_DATA[120] | ((CDMS_RTC_BL << 1) & 0x02); CDMS_HEALTH_DATA[120] = CDMS_HEALTH_DATA[120] & 0xFE; CDMS_HEALTH_DATA[121] = CDMS_HEALTH_DATA[121] | PL_RCV_SC_DATA_STATUS << 7; CDMS_HEALTH_DATA[121] = CDMS_HEALTH_DATA[121] | ((COM_SESSION << 6) & 0x40); CDMS_HEALTH_DATA[121] = CDMS_HEALTH_DATA[121] | ((COM_RX << 5) & 0x20); CDMS_HEALTH_DATA[121] = CDMS_HEALTH_DATA[121] | ((RF_SW_STATUS << 4) & 0x10); CDMS_HEALTH_DATA[121] = CDMS_HEALTH_DATA[121] | ((COM_TX << 3) & 0x08); CDMS_HEALTH_DATA[121] = CDMS_HEALTH_DATA[121] | ((COM_TX_STATUS << 2) & 0x04); CDMS_HEALTH_DATA[121] = CDMS_HEALTH_DATA[121] | ((COM_MNG_TMTC << 1) & 0x02); CDMS_HEALTH_DATA[121] = CDMS_HEALTH_DATA[121] | (CDMS_STANDBY_HK & 0x01); CDMS_HEALTH_DATA[122] = CDMS_HEALTH_DATA[122] | PL_INIT_STATUS << 7; CDMS_HEALTH_DATA[122] = CDMS_HEALTH_DATA[122] | ((PL_MAIN_STATUS << 6) & 0x40); CDMS_HEALTH_DATA[122] = CDMS_HEALTH_DATA[122] | ((PL_LOW_POWER << 5) & 0x20); CDMS_HEALTH_DATA[122] = CDMS_HEALTH_DATA[122] | ((PL_STATE << 3) & 0x18); CDMS_HEALTH_DATA[122] = CDMS_HEALTH_DATA[122] | (PL_STATUS & 0x07); }