cdms i2c working - but not working after hk data is sent
Fork of pcb_test_vr1_1_2 by
main.cpp
- Committer:
- gkumar
- Date:
- 2015-05-14
- Revision:
- 4:65a2d0b97d01
- Parent:
- 3:0931a8800543
- Child:
- 5:bf1f3504cd9d
File content as of revision 4:65a2d0b97d01:
#include "mbed.h" #include "rtos.h" #include "HK.h" #include "slave.h" #include "beacon.h" #include "ACS.h" #include "fault.h" #include "slave.h" #include "mnm.h" Serial pc(USBTX, USBRX); InterruptIn interrupt(PIN97); //I2c interrupt from CDMS DigitalOut data_ready(PIN90); //Sends interrupt to CDMS //InterruptIn interrupt(D9); //I2c interrupt from CDMS //DigitalOut data_ready(D10); Timer t; //To know the time of execution each thread Timer t1; //To know the time of entering of each thread Timer t2; //To check the time sync in i2c communication Timer t3; //To know the time taken by i2c read/write function Timer i1; Timer i2; /*****************************************************************Threads USed***********************************************************************************/ Thread *ptr_t_hk_acq; //pointer:::::::::to read state of one thread from another Thread *ptr_t_acs; Thread *ptr_t_bea; Thread *ptr_t_i2c; Thread *ptr_t_wdt; /****************************************************************configuring I2c*********************************************************************************/ I2CSlave slave(PIN1,PIN2); //configuring pins p27, p28 as I2Cslave //I2CSlave slave (D14,D15); int i2c_status=0; //read or write mode for i2c 0: write2slave 1: write2master typedef struct //structure of i2c data { char data[25]; int length; }i2c_data; //Mail<i2c_data,16> i2c_data_receive; Mail<i2c_data,16> i2c_data_send; //-------------------------------------------------------------------------------------------------------------------------------------------------- //TASK 2 : HK //-------------------------------------------------------------------------------------------------------------------------------------------------- char hk_data[25]; extern SensorDataQuantised SensorQuantised; /// SensorDataQuantised: struct instance :SensorQuantised void T_HK_ACQ(void const *args) { while(1) { Thread::signal_wait(0x2); // 0x2 random should be same in master n slave SensorQuantised.power_mode='3'; //default power mode(dummy) printf("\n\rTHIS IS HK %f\n\r",t1.read()); t.start(); FUNC_HK_FAULTS(); // !Actual fault management is not implemented : polling FUNC_HK_POWER(SensorQuantised.power_mode); // !The power mode algorithm is yet to be obtained // status of power modde will decide actions FUNC_HK_MAIN(); //Collecting HK data for ADC n FUNC_I2C_IR2CDMS(); //sending HK data to CDMS t.stop(); printf("The time to execute hk_acq is %f seconds\n\r",t.read()); t.reset(); } } //--------------------------------------------------------------------------------------------------------------------------------------- //TASK 1 : ACS //--------------------------------------------------------------------------------------------------------------------------------------- int acs_pflag = 1; // power mode decision flag for ACS void T_ACS(void const *args) { float mag_field[3]; // rm3000 float omega[3]; //mpu3300 float *mnm_data; // float mag_field1[3]; float omega1[3]; float tauc1[3]; float moment[3]; while(1) { Thread::signal_wait(0x1); printf("\n\rEntered ACS %f\n",t1.read()); t.start(); FUNC_ACS_MAG_EXEC(mag_field); ///rm3000 //printf("\n\r check"); for(int i=0; i<3; i++) { printf("%f\t",mag_field[i]); } FUNC_ACS_EXEC_GYR(omega); // mpu3300 acs_pflag =1; //to be removed later omega[0] = 1.0; omega[1] = 1.0; omega[2] = 1.0; mnm_data=EXECUTE_PNI(); //the angular velocity is stored in the first 3 values and magnetic field values in next 3 printf("\n\rmnm gyro values\n"); //printing the angular velocity and magnetic field values for(int i=0; i<3; i++) { printf("%f\t",mnm_data[i]); } printf("\n\r mnm mag values\n"); for(int i=3; i<6; i++) { printf("%f\t",mnm_data[i]); } for(int i = 0 ; i<3;i++) { omega1[i] = mnm_data[i]; } for( int i = 3;i<6;i++) { mag_field1[i-3] = mnm_data[i]; } if(acs_pflag == 1) { FUNC_ACS_CNTRLALGO(mag_field,omega,tauc1); printf("\n\r control algo values "); for(int i=0; i<3; i++) { printf("%f\t",tauc1[i]); } moment_calc (tauc1, mag_field,moment); printf("\n\r moment values "); for(int i=0; i<3; i++) { printf("%f\t",moment[i]); } FUNC_ACS_GENPWM(moment); } t.reset(); } } //---------------------------------------------------BEACON-------------------------------------------------------------------------------------------- int beac_flag=0; //To receive telecommand from ground. Beacon stopped when telecomand recieved durring /*void T_BEA_TELECOMMAND(void const *args) { char c = pc.getc(); if(c=='a') { printf("Telecommand detected\n\r"); beac_flag=1; } } */ void T_BEA(void const *args) { while(1) { Thread::signal_wait(0x3); printf("\n\rTHIS IS BEACON %f\n\r",t1.read()); t.start(); FUNC_BEA(); if(beac_flag==1) // use scheduler instead { Thread::wait(600000); beac_flag = 0; } printf("The time to execute beacon thread is %f seconds\n\r",t.read()); t.reset(); } } extern SensorDataQuantised SensorQuantised; // ???????? /*------------------------------------------------------------------------------------------------------------------------------------------- -------------------------------------------------------WATCHDOG----------------------------------------------------------------------------*/ DigitalOut trigger(PIN63); // has to be changed void T_WDT(void const * args) { trigger = 1; // gpio to WD input while(true) { Thread::signal_wait(0x5); //signal set from scheduler or sthing. r RTOS timer nce the timing is finalized printf("\n\rEntered WD\n\r"); trigger = !trigger; /// falling edge triggered } } //--------------------------------------------------------------------------------------------------------------------------------------------------- //TASK 5 : i2c data //--------------------------------------------------------------------------------------------------------------------------------------------------- void FUNC_I2C_WRITE2CDMS(char *data, int length=1) /// BAE to CDMS read/write { int slave_status = 1; int inter_test = interrupt; int slr = slave.receive(); wait_ms(20); //printf("\n\r time is %d\n",t2.read_us()); //if(interrupt ==1) //{ //printf("\n\r slave status %d",slave.receive()); //t2.stop(); if(slave.receive() == 0) // 0 when not ack refer doc. t2.stop(); if( slave.receive()==1) // slave to master { t2.stop(); t3.start(); slave_status=slave.write(data,length); // ack to t3.stop(); } else if( slave.receive()==3 || slave.receive()==2) // master to slave { t2.stop(); t3.start(); slave_status=slave.read(data,length); t3.stop(); } //} // printf("\n\r time taken to receive intrpt 4m cdms %d",i1.read_us()); //i1.reset(); printf("\n\r slave status %d %d %d",slave.receive(),t2.read_us(),t3.read_us()); // printf("\n\r time taken from interrupt to reach i2c fn %d",t2.read_us()); t2.stop(); t2.reset(); //printf("\n\r time to execute i2c function %d",t3.read_us()); t3.reset(); } char data_send[25],data_receive; void T_I2C_BAE(void const * args) { while(1) { Thread::signal_wait(0x4); int something = interrupt; // printf("\n\r interrupt %d",interrupt); if(i2c_status == 0 ) // read from CDMS (master) { // wait_ms(23); FUNC_I2C_WRITE2CDMS(&data_receive,1); /*i2c_data * i2c_data_r = i2c_data_receive.alloc(); i2c_data_r->data = data_receive; i2c_data_r->length = 1; i2c_data_receive.put(i2c_data_r);*/ printf("\n\r Data received from CDMS is %c \n\r",data_receive); FUNC_I2C_TC_EXECUTE(data_receive); // telecommand // This has to be done from a differen thread } else if(i2c_status ==1) { osEvent evt = i2c_data_send.get(); // if (evt.status == osEventMail) // { i2c_data *i2c_data_s = (i2c_data*)evt.value.p; //syntax recieving address of data from queue and storing it in struct strcpy(data_send,i2c_data_s -> data); // -> data from pointer // wait_ms(13); FUNC_I2C_WRITE2CDMS(data_send,25); printf("\n\rData sent to CDMS is %s\n\r",data_send); i2c_data_send.free(i2c_data_s); // freeing the memory location from queue i2c_status = 0; } } } } void FUNC_I2C_INT() // ISR from CDMS to BAE { //i1.stop(); // t3.start(); ptr_t_i2c->signal_set(0x4); // printf dosen't work....why?????????????????? //printf("\n ceckh\n"); t2.start(); // printf("\n\r time taken from interrupt to reach i2c fn %d",t2.read_us()); } void FUNC_I2C_IR2CDMS() { // structure cannot sent via i2c so struct quantized to string n send to cdms n store in SD data_ready=0; //char data[25]; strcpy(hk_data,"hk_Data"); strcat(hk_data,SensorQuantised.Voltage); strcat(hk_data,SensorQuantised.Current); strcat(hk_data,SensorQuantised.Temperature); strcat(hk_data,SensorQuantised.PanelTemperature); strcat(hk_data,SensorQuantised.AngularSpeed); strcat(hk_data,SensorQuantised.Bnewvalue); char fdata[5] = {SensorQuantised.BatteryTemperature,SensorQuantised.faultpoll,SensorQuantised.faultir,SensorQuantised.power_mode}; /*strcat(hk_data,sfaultpoll); strcat(hk_data,sfaultir); strcat(hk_data,spower_mode);*/ strcat(hk_data,fdata); printf("\n\r hk data being sent %s ",hk_data); //for(int i=0;i<100000000000;i++) //; /*for(int d=0;d<23;d++) //was written just to check hk data { if(hk_data[d]>10) printf("\n\rhk data : %d\n\r",hk_data[d]); } */ //data = pcslave.getc(); i2c_status=1; i2c_data * i2c_data_s = i2c_data_send.alloc(); // writing to queue _____ dynamic memory allocation strcpy(i2c_data_s->data,hk_data); i2c_data_s->length = 25; i2c_data_send.put(i2c_data_s); data_ready=1; // i1.start(); //temp = i2c_status; } //------------------------------------------------------------------------------------------------------------------------------------------------ //TELECOMMAND //------------------------------------------------------------------------------------------------------------------------------------------------ void FUNC_I2C_TC_EXECUTE (char command) { switch(command) { case '0' : printf("command 0 executed"); break; case '1' : printf("command 1 executed"); break; case '2' : printf("command 2 executed"); break; case '3' : printf("command 3 executed"); } } //------------------------------------------------------------------------------------------------------------------------------------------------ //SCHEDULER RTOS timer can be called periodically //------------------------------------------------------------------------------------------------------------------------------------------------ int beacon_sc = 3; uint16_t schedcount=1; void T_SC(void const *args) { //DRDY=0; printf("The value of i in scheduler is %d\n\r",schedcount); if(schedcount == 65532) //to reset the counter // when it reaches here back to intial state { schedcount = 0; } if(schedcount%1==0) { //ptr_t_acs -> signal_set(0x1); //ptr_t_wdt -> signal_set(0x5); } if(schedcount%2==0) { // ptr_t_fault -> signal_set(0x2); ptr_t_hk_acq -> signal_set(0x2); } if(schedcount%beacon_sc==0) { if(beac_flag==0) { //ptr_t_bea -> signal_set(0x3); } } schedcount++; } //--------------------------------------------------------------------------------------------------------------------------------------------- int main() { t1.start(); printf("\n\rIITMSAT BAE Activated \n"); //INIT_PNI(); // Initializing mnm blue //FUNC_ACS_MAG_INIT(); // Initializing magnetometer //FUNC_ACS_INIT_GYR(); // Initializing Gyroscope slave.address(0x20); // setting slave address for BAE for I2C communication //init_beacon(); ptr_t_hk_acq = new Thread(T_HK_ACQ); ptr_t_acs = new Thread(T_ACS); ptr_t_bea = new Thread(T_BEA); ptr_t_i2c = new Thread(T_I2C_BAE); //ptr_t_sc = new Thread(T_SC); ptr_t_wdt = new Thread(T_WDT); interrupt_fault(); // Dummy function called when a fault interrupt is detected // intrrupt based fault ptr_t_acs->set_priority(osPriorityAboveNormal); ptr_t_i2c->set_priority(osPriorityHigh); ptr_t_hk_acq->set_priority(osPriorityAboveNormal); ptr_t_bea->set_priority(osPriorityAboveNormal); //ptr_t_sc->set_priority(osPriorityAboveNormal); ptr_t_wdt -> set_priority(osPriorityIdle); // ---------------------------------------------------------------------------------------------- printf("\n\r T_ACS priority is %d",ptr_t_acs->get_priority()); printf("\n\r T_HK_ACQ priority is %d",ptr_t_hk_acq->get_priority()); printf("\n\r T_BEA priority is %d",ptr_t_bea->get_priority()); RtosTimer t_sc_timer(T_SC,osTimerPeriodic); //values -3 tpo +3 t_sc_timer.start(10000); printf("\n\r%f\n\r",t1.read()); interrupt.rise(&FUNC_I2C_INT); //interrupt received from CDMS while(1) //required to prevent main from terminating { Thread::wait(5000); // main by default a thread of priority 0 } }