i2c working with old hk

Dependencies:   mbed-rtos mbed

Fork of BAE_vr2_1_1 by green rosh

Revision:
13:1b37d98840d3
Parent:
0:8b0d43fe6c05
Child:
14:ef6be8ac6569
--- a/HK.cpp	Tue Dec 16 11:07:33 2014 +0000
+++ b/HK.cpp	Wed Dec 17 05:25:04 2014 +0000
@@ -1,79 +1,273 @@
 #include "HK.h"
  
-DigitalOut SelectLine3 (D4); // MSB of Select Lines
-DigitalOut SelectLine2 (D3);
-DigitalOut SelectLine1 (D2);
-DigitalOut SelectLine0 (D1); // LSB of Select Lines
+ MAX17048 master(A4,A5,100000);//object for battery gauge class--CHECK SDA,SCL LINES,FREQUENCY
+ void FUNC_BATTERYGAUGE_INIT();
  
-AnalogIn CurrentInput(A1); // Input from Current Multiplexer
-AnalogIn VoltageInput(A2); // Input from Voltage Multiplexer
-AnalogIn TemperatureInput(A3); // input from Temperature Multiplexer
+//GPIO pins used=> D2-D12, A0-A1
+
+DigitalOut SelectLinesA[]={D2,D3,D4,D5};//to mux1=>voltage mux
+DigitalOut SelectLinesB[]={PTB18,D7,PTB19};//to mux2=>current mux(differential mux)   Is this 3 or 4?
+DigitalOut SelectLinesC[]={PTC0,PTC4,PTC6,PTC7};//to mux3=>temp mux
+
+//--------------------------------------------MSB is SelectLines[0],LSB is SelectLines[3]-------------------------------- 
 
-SensorData Sensor; 
-int quantiz(float start,float step,float x)
+AnalogIn CurrentInput(A0); // Input from Current Mux
+AnalogIn VoltageInput(A1); // Input from Voltage Multiplexer
+AnalogIn TemperatureInput(A2); /*Input from Temperature Multiplexer,thermistor Multiplexer- same multiplexer for both(lines 1-4 for thermistor,line 0 for temperature sensor)*/
+ 
+
+
+ 
+int quantiz(float start,float step,float x)     // accepts min and measured values and step->quantises on a scale 0-15..(4 bit quantisation)
 {
     int y=(x-start)/step;
     if(y<=0)y=0;
     if(y>=15)y=15;
     return y;
 }
-ShortBeacy Shortbeacon; 
-void init_beacon(ShortBeacy x){
-   ;
-}
  
-
-void FUNC_HK_MAIN()
+void init_beacon(ShortBeacy* x,SensorDataQuantised y)  
 {
-    printf("\nEntered function  HK MAIN\n");
+    (*x).Voltage[0]=y.Vcell_soc>>4;//quantised value
+    (*x).Temp[0]=y.PanelTemperature[0];//quantised value
+    (*x).Temp[1]=y.PanelTemperature[1];//quantised value
+    (*x).AngularSpeed[0]=y.AngularSpeed[0];
+    (*x).AngularSpeed[1]=y.AngularSpeed[1];
     
-     Shortbeacon.Voltage[0]=1;
-   Shortbeacon.AngularSpeed[0]=2;
-    Shortbeacon.AngularSpeed[1]=3;
-    Shortbeacon.SubsystemStatus[0]=145;
-    Shortbeacon.Temp[0]=1;
-    Shortbeacon.Temp[1]=2;
-    Shortbeacon.Temp[2]=3;
-    Shortbeacon.ErrorFlag[0]=3;
+    (*x).SubsystemStatus[0]=145;//dummy values----------to be changed-------------------
+    (*x).ErrorFlag[0]=3;//dummy values----------to be changed-------------------
+}
+   SensorData SensorUQ; 
+    SensorDataQuantised SensorQuantised;
+    ShortBeacy Shortbeacon;
+
+void FUNC_HK_MAIN()             
+{
+    //define structure variables    
+ 
+    
+    
+    
+    //initialise all selectlines to zeroes->1st line of muxes selected
+    SelectLinesA[0]=SelectLinesA[1]=SelectLinesA[2]=SelectLinesA[3]=0;
+    SelectLinesB[0]=SelectLinesB[1]=SelectLinesB[2]=0;
+    SelectLinesC[0]=SelectLinesC[1]=SelectLinesC[2]=SelectLinesC[3]=0;
     
     int LoopIterator;
+    int SelectLineIterator;
+    
+    float resistance_thermistor,voltage_thermistor;//for thermistor
  
-    SelectLine0=0;
-    SelectLine1=0;
-    SelectLine2=0;
-    SelectLine3=0;
+  //measurement from voltage sensor=> 16 sensors in place
+ for(LoopIterator=0; LoopIterator<16; LoopIterator++) 
+{       
+        //following lines read the sensor values and stores them in 'SensorData' structure's variable 'Sensor'
+        SensorUQ.Voltage[LoopIterator]=(VoltageInput.read()*3.3*5.545454);//resistors in voltage divider=>15Mohm,3.3Mohm
+               
+        if(LoopIterator%2==0)
+            SensorQuantised.Voltage[LoopIterator/2]=quantiz(vstart,vstep,SensorUQ.Voltage[LoopIterator]);
+                           
+        else
+            SensorQuantised.Voltage[(LoopIterator)/2]=SensorQuantised.Voltage[(LoopIterator)/2]<<4+quantiz(vstart,vstep,SensorUQ.Voltage[LoopIterator]);
+            
+    
+    
+    // The following lines are used to iterate the select lines from 0 to 15
+    //following is an algorithm similar to counting binary numbers of 4 bit
+       for(SelectLineIterator=3;SelectLineIterator>=0;SelectLineIterator--)
+        {
+            if(SelectLinesA[SelectLineIterator]==0)
+            {
+                SelectLinesA[SelectLineIterator]=1;
+                break;
+            }
+            else SelectLinesA[SelectLineIterator]=0;
+    
+        }
+    
+    
+        wait_us(10.0); //  A delay of 10 microseconds between each sensor output. Can be changed.
  
-    for(LoopIterator=0; LoopIterator<16; LoopIterator++) {
+ }
+ 
+ 
+ 
+ 
+ 
+ //measurement from current sensor=>  8 sensors in place 
+
+    for(LoopIterator=0; LoopIterator<8; LoopIterator++) 
+{       
+        //following lines read the sensor values and stores them in 'SensorData' structure variable 'Sensor'
+        SensorUQ.Current[LoopIterator]=(CurrentInput.read()*3.3/(50*rsens));
+        if(LoopIterator%2==0)
+            SensorQuantised.Current[LoopIterator/2]=quantiz(cstart,cstep,SensorUQ.Current[LoopIterator]);
+        else
+            SensorQuantised.Current[(LoopIterator)/2]=SensorQuantised.Current[(LoopIterator)/2]<<4+quantiz(cstart,cstep,SensorUQ.Current[LoopIterator]);
+
         
-        if(LoopIterator%2==0) {
-            Sensor.Current[LoopIterator/2]=quantiz(cstart,cstep,((CurrentInput.read()*3.18)/(50*rsens)));
-            Sensor.Voltage[LoopIterator/2]=quantiz(vstart,vstep,(VoltageInput.read()*3.18*5.37));
-            Sensor.Temperature[LoopIterator/2]=quantiz(tstart,tstep,(-90.7*3.18*TemperatureInput.read()+190.1543));
-        } else {
-            Sensor.Current[(LoopIterator-1)/2]=(Sensor.Current[(LoopIterator-1)/2]<<4)+quantiz(cstart,cstep,((CurrentInput.read()*3.18)/(50*rsens)));
-            Sensor.Voltage[(LoopIterator-1)/2]=(Sensor.Voltage[(LoopIterator-1)/2]<<4)+quantiz(vstart,vstep,(VoltageInput.read()*3.18*5.37));
-            Sensor.Temperature[(LoopIterator-1)/2]=(Sensor.Temperature[(LoopIterator-1)/2]<<4)+quantiz(tstart,tstep,(-90.7*3.18*TemperatureInput.read()+190.1543));
+        // The following lines are used to iterate the select lines from 0 to 7
+        //following is an algorithm similar to counting binary numbers of 3 bits
+        for(SelectLineIterator=2;SelectLineIterator>=0;SelectLineIterator--)
+        {
+            if(SelectLinesB[SelectLineIterator]==0)
+            {
+                SelectLinesB[SelectLineIterator]=1;
+                break;
+            }
+            else SelectLinesB[SelectLineIterator]=0;
+    
         }
-// The following lines are used to iterate the select lines from 0 to 15
-        SelectLine0=!(SelectLine0);
- 
-        if(LoopIterator%2==1)
-            SelectLine1=!(SelectLine1);
- 
-        if(LoopIterator%4==3)
-            SelectLine2=!(SelectLine2);
- 
-        if(LoopIterator%8==7)
-            SelectLine3=!(SelectLine3);
-        
+    
+    
         wait_us(10.0); //  A delay of 10 microseconds between each sensor output. Can be changed.
  
+}
+    
+    
+//measurement of temperature
+//temperature measurement=> 4 thermistors, 1 temperature sensor
+//mux line 1=>temp sensor, mux lines 2 to 5 =>thermistors
+
+    for(LoopIterator=0; LoopIterator<5; LoopIterator++) 
+{       
+        //following lines read the sensor values and stores them in 'SensorData' structure variable 'Sensor'
+        SensorUQ.Temperature[LoopIterator]=(-90.7*3.3*TemperatureInput.read()+190.1543);
+        voltage_thermistor=TemperatureInput.read()*3.3;//voltage across thermistor
+        resistance_thermistor=24000*voltage_thermistor/(3.3-voltage_thermistor);//resistance of thermistor
+        //PanelTemperature will be updated depending on voltage_thermistor value later in the lines to follow
+        
+        if(LoopIterator%2==0)
+     {                
+            if(LoopIterator<1)                      //->corresponding to temperature sensor
+                SensorQuantised.Temperature[(LoopIterator)/2]=quantiz(tstart,tstep,SensorUQ.Temperature[LoopIterator]);
+         
+            else                                    //->corresponding to thermistor
+            {    
+                if(voltage_thermistor<1.378) //Temperature>12 degC
+                    SensorUQ.PanelTemperature[(LoopIterator-1)]=(3694/log(24.032242*resistance_thermistor));
+                    
+                else   
+                    SensorUQ.PanelTemperature[(LoopIterator-1)]=(3365.4792/log(7.60404*resistance_thermistor));
+                    
+                    
+                SensorQuantised.PanelTemperature[(LoopIterator-1)/2]=quantiz(tstart_thermistor,tstep_thermistor,SensorUQ.PanelTemperature[(LoopIterator-1)]);
+                    
+            }
+            
+     } 
+    
+    else
+     {           
+            if(LoopIterator<1)
+                SensorQuantised.Temperature[(LoopIterator)/2]=SensorQuantised.Temperature[(LoopIterator)/2]<<4+quantiz(tstart,tstep,SensorUQ.Temperature[LoopIterator]); 
+            
+            else
+             {  
+                if(voltage_thermistor<1.378) //Temperature>12 degC 
+                     SensorUQ.PanelTemperature[LoopIterator-1]=(3694/log(24.032242*resistance_thermistor));
+                                    
+                  
+                else
+                     SensorUQ.PanelTemperature[LoopIterator-1]=(3365.4792/log(7.60404*resistance_thermistor));
+                    
+                SensorQuantised.PanelTemperature[(LoopIterator-1)/2]=SensorQuantised.PanelTemperature[(LoopIterator-1)/2]<<4+quantiz(tstart_thermistor,tstep_thermistor,SensorUQ.PanelTemperature[LoopIterator-1]);
+                  
+            }
+            
+      }
+      
+
+    
+    
+// The following lines are used to iterate the select lines from 0 to 4
+    
+       //following is an algorithm similar to counting binary numbers of 4 bit
+       for(SelectLineIterator=3;SelectLineIterator>=0;SelectLineIterator--)
+        {
+            if(SelectLinesC[SelectLineIterator]==0)
+            {
+                SelectLinesC[SelectLineIterator]=1;
+                break;
+            }
+            else SelectLinesC[SelectLineIterator]=0;
+    
+        }
+    
+    
+        wait_us(10.0); //  A delay of 10 microseconds between each sensor output. Can be changed.
+        
+}
+
+
+
+    //update battery gauge parameters->
+    float batteryparameters[4];//to populate battery parameters of struct variable Sensor
+    FUNC_BATTERYGAUGE_MAIN(batteryparameters);//passing array to function 
+    
+    SensorUQ.Vcell=batteryparameters[0];
+    SensorUQ.soc=batteryparameters[1];
+    SensorUQ.crate=batteryparameters[2];
+    SensorUQ.alerts=batteryparameters[3];
+    
+    SensorQuantised.Vcell_soc=quantiz(Vcell_start,Vcell_step,SensorUQ.Vcell);
+    SensorQuantised.Vcell_soc=SensorQuantised.Vcell_soc<<4+quantiz(soc_start,soc_step,SensorUQ.soc);
+    SensorQuantised.alerts=SensorUQ.alerts;
+    SensorQuantised.crate=quantiz(crate_start,crate_step,SensorUQ.crate);   
+
+    
+    //update magnetometer data->
+    //populate values in structure variable 'Sensor' from data to be given by Green
+     SensorQuantised.AngularSpeed[0]=quantiz(AngularSpeed_start,AngularSpeed_step,SensorUQ.AngularSpeed[1]);
+     SensorQuantised.AngularSpeed[0]=SensorQuantised.AngularSpeed[0]<<4+quantiz(AngularSpeed_start,AngularSpeed_step,SensorUQ.AngularSpeed[0]);
+     SensorQuantised.AngularSpeed[1]=quantiz(AngularSpeed_start,AngularSpeed_step,SensorUQ.AngularSpeed[2]);
+     
+     //update gyro data->
+    //populate values in structure variable 'Sensor' from data to be given by Green
+     SensorQuantised.Bnewvalue[0]=quantiz(Bnewvalue_start,Bnewvalue_step,SensorUQ.Bnewvalue[1]);
+     SensorQuantised.Bnewvalue[0]=SensorQuantised.Bnewvalue[0]<<4+quantiz(Bnewvalue_start,Bnewvalue_step,SensorUQ.Bnewvalue[0]);
+     SensorQuantised.Bnewvalue[1]=quantiz(Bnewvalue_start,Bnewvalue_step,SensorUQ.Bnewvalue[2]);
+
+     
+     
+     
+      //update beacon structure
+    init_beacon(&Shortbeacon,SensorQuantised);//Shortbeacon is passed 
+    
+    
+}
+
+
+void FUNC_BATTERYGAUGE_MAIN(float array[])
+{
+    float vcell=master.vcell();
+    float soc=master.soc();
+    float crate=master.crate();
+    
+    printf("\nVcell=%f",vcell);
+    printf("\nSOC=%f",soc);
+    printf("\nC_rate=%f",crate);
+    
+    array[0]=vcell;
+    array[1]=soc;
+    array[2]=crate;
+    if (master.alerting()== true)       //alert is on
+    {   
+        array[3]=master.alertFlags();
+        master.clearAlert();//clear alert
+        master.clearAlertFlags();//clear all alert flags
     }
-   
-       printf("\nVoltage  is %u\n",Shortbeacon.Voltage[0]);
-       printf("\nCurrent  is %u\n",Shortbeacon.Temp[0]);
-       
+    
     
-        
- printf("\nExited function HK MAIN\n");
 }
+
+void FUNC_BATTERYGAUGE_INIT()
+{
+    master.disable_sleep();
+    master.disable_hibernate();
+    master.socChangeAlertEnabled(true);//enabling alert on soc changing by 1%
+    master.emptyAlertThreshold(1);//giving minimum value to disable it to disabling it----------------------
+    master.vAlertMinMaxThreshold();//set min, max value of Valrt register
+    master.vResetThresholdSet();//set threshold voltage for reset
+    master.vResetAlertEnabled(true);//enable alert on reset for V < Vreset
+}
\ No newline at end of file