Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
src/ssl.c
- Committer:
- sPymbed
- Date:
- 2019-11-20
- Revision:
- 17:ff9d1e86ad5f
- Parent:
- 15:117db924cf7c
File content as of revision 17:ff9d1e86ad5f:
/* ssl.c * * Copyright (C) 2006-2017 wolfSSL Inc. * * This file is part of wolfSSL. * * wolfSSL is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * wolfSSL is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335, USA */ #ifdef HAVE_CONFIG_H #include <config.h> #endif #include <wolfcrypt/settings.h> #ifndef WOLFCRYPT_ONLY #ifdef HAVE_ERRNO_H #include <errno.h> #endif #include <wolfssl/internal.h> #include <wolfssl/error-ssl.h> #include <wolfcrypt/coding.h> #ifdef NO_INLINE #include <wolfcrypt/misc.h> #else #define WOLFSSL_MISC_INCLUDED #include <wolfcrypt/src/misc.c> #endif #ifndef WOLFSSL_ALLOW_NO_SUITES #if defined(NO_DH) && !defined(HAVE_ECC) && !defined(WOLFSSL_STATIC_RSA) \ && !defined(WOLFSSL_STATIC_DH) && !defined(WOLFSSL_STATIC_PSK) \ && !defined(HAVE_ED25519) #error "No cipher suites defined because DH disabled, ECC disabled, and no static suites defined. Please see top of README" #endif #endif #if defined(OPENSSL_EXTRA) || defined(OPENSSL_EXTRA_X509_SMALL) || \ defined(HAVE_WEBSERVER) || defined(WOLFSSL_KEY_GEN) #include <wolfssl/openssl/evp.h> /* openssl headers end, wolfssl internal headers next */ #endif #include <wolfcrypt/wc_encrypt.h> #ifdef OPENSSL_EXTRA /* openssl headers begin */ #include <wolfssl/openssl/aes.h> #include <wolfssl/openssl/hmac.h> #include <wolfssl/openssl/crypto.h> #include <wolfssl/openssl/des.h> #include <wolfssl/openssl/bn.h> #include <wolfssl/openssl/buffer.h> #include <wolfssl/openssl/dh.h> #include <wolfssl/openssl/rsa.h> #include <wolfssl/openssl/pem.h> #include <wolfssl/openssl/ec.h> #include <wolfssl/openssl/ec25519.h> #include <wolfssl/openssl/ed25519.h> #include <wolfssl/openssl/ecdsa.h> #include <wolfssl/openssl/ecdh.h> #include <wolfssl/openssl/rc4.h> /* openssl headers end, wolfssl internal headers next */ #include <wolfcrypt/hmac.h> #include <wolfcrypt/random.h> #include <wolfcrypt/des3.h> #include <wolfcrypt/md4.h> #include <wolfcrypt/md5.h> #include <wolfcrypt/arc4.h> #include <wolfcrypt/idea.h> #include <wolfcrypt/curve25519.h> #include <wolfcrypt/ed25519.h> #if defined(OPENSSL_ALL) || defined(HAVE_STUNNEL) #include <wolfssl/openssl/ocsp.h> #endif /* WITH_STUNNEL */ #if defined(WOLFSSL_SHA512) || defined(WOLFSSL_SHA384) #include <wolfcrypt/sha512.h> #endif #if defined(WOLFCRYPT_HAVE_SRP) && !defined(NO_SHA256) \ && !defined(WC_NO_RNG) #include <wolfcrypt/srp.h> #include <wolfcrypt/random.h> #endif #endif #ifdef NO_ASN #include <wolfcrypt/dh.h> #endif #ifdef WOLFSSL_SESSION_EXPORT #ifdef WOLFSSL_DTLS int wolfSSL_dtls_import(WOLFSSL* ssl, unsigned char* buf, unsigned int sz) { WOLFSSL_ENTER("wolfSSL_session_import"); if (ssl == NULL || buf == NULL) { return BAD_FUNC_ARG; } /* sanity checks on buffer and protocol are done in internal function */ return wolfSSL_dtls_import_internal(ssl, buf, sz); } /* Sets the function to call for serializing the session. This function is * called right after the handshake is completed. */ int wolfSSL_CTX_dtls_set_export(WOLFSSL_CTX* ctx, wc_dtls_export func) { WOLFSSL_ENTER("wolfSSL_CTX_dtls_set_export"); /* purposefully allow func to be NULL */ if (ctx == NULL) { return BAD_FUNC_ARG; } ctx->dtls_export = func; return WOLFSSL_SUCCESS; } /* Sets the function in WOLFSSL struct to call for serializing the session. This * function is called right after the handshake is completed. */ int wolfSSL_dtls_set_export(WOLFSSL* ssl, wc_dtls_export func) { WOLFSSL_ENTER("wolfSSL_dtls_set_export"); /* purposefully allow func to be NULL */ if (ssl == NULL) { return BAD_FUNC_ARG; } ssl->dtls_export = func; return WOLFSSL_SUCCESS; } /* This function allows for directly serializing a session rather than using * callbacks. It has less overhead by removing a temporary buffer and gives * control over when the session gets serialized. When using callbacks the * session is always serialized immediatly after the handshake is finished. * * buf is the argument to contain the serialized session * sz is the size of the buffer passed in * ssl is the WOLFSSL struct to serialize * returns the size of serialized session on success, 0 on no action, and * negative value on error */ int wolfSSL_dtls_export(WOLFSSL* ssl, unsigned char* buf, unsigned int* sz) { WOLFSSL_ENTER("wolfSSL_dtls_export"); if (ssl == NULL || sz == NULL) { return BAD_FUNC_ARG; } if (buf == NULL) { *sz = MAX_EXPORT_BUFFER; return 0; } /* if not DTLS do nothing */ if (!ssl->options.dtls) { WOLFSSL_MSG("Currently only DTLS export is supported"); return 0; } /* copy over keys, options, and dtls state struct */ return wolfSSL_dtls_export_internal(ssl, buf, *sz); } /* returns 0 on success */ int wolfSSL_send_session(WOLFSSL* ssl) { int ret; byte* buf; word16 bufSz = MAX_EXPORT_BUFFER; WOLFSSL_ENTER("wolfSSL_send_session"); if (ssl == NULL) { return BAD_FUNC_ARG; } buf = (byte*)XMALLOC(bufSz, ssl->heap, DYNAMIC_TYPE_TMP_BUFFER); if (buf == NULL) { return MEMORY_E; } /* if not DTLS do nothing */ if (!ssl->options.dtls) { XFREE(buf, ssl->heap, DYNAMIC_TYPE_TMP_BUFFER); WOLFSSL_MSG("Currently only DTLS export is supported"); return 0; } /* copy over keys, options, and dtls state struct */ ret = wolfSSL_dtls_export_internal(ssl, buf, bufSz); if (ret < 0) { XFREE(buf, ssl->heap, DYNAMIC_TYPE_TMP_BUFFER); return ret; } /* if no error ret has size of buffer */ ret = ssl->dtls_export(ssl, buf, ret, NULL); if (ret != WOLFSSL_SUCCESS) { XFREE(buf, ssl->heap, DYNAMIC_TYPE_TMP_BUFFER); return ret; } XFREE(buf, ssl->heap, DYNAMIC_TYPE_TMP_BUFFER); return 0; } #endif /* WOLFSSL_DTLS */ #endif /* WOLFSSL_SESSION_EXPORT */ /* prevent multiple mutex initializations */ static volatile int initRefCount = 0; static wolfSSL_Mutex count_mutex; /* init ref count mutex */ /* Create a new WOLFSSL_CTX struct and return the pointer to created struct. WOLFSSL_METHOD pointer passed in is given to ctx to manage. This function frees the passed in WOLFSSL_METHOD struct on failure and on success is freed when ctx is freed. */ WOLFSSL_CTX* wolfSSL_CTX_new_ex(WOLFSSL_METHOD* method, void* heap) { WOLFSSL_CTX* ctx = NULL; WOLFSSL_ENTER("WOLFSSL_CTX_new_ex"); if (initRefCount == 0) { /* user no longer forced to call Init themselves */ int ret = wolfSSL_Init(); if (ret != WOLFSSL_SUCCESS) { WOLFSSL_MSG("wolfSSL_Init failed"); WOLFSSL_LEAVE("WOLFSSL_CTX_new", 0); if (method != NULL) { XFREE(method, heap, DYNAMIC_TYPE_METHOD); } return NULL; } } if (method == NULL) return ctx; ctx = (WOLFSSL_CTX*) XMALLOC(sizeof(WOLFSSL_CTX), heap, DYNAMIC_TYPE_CTX); if (ctx) { if (InitSSL_Ctx(ctx, method, heap) < 0) { WOLFSSL_MSG("Init CTX failed"); wolfSSL_CTX_free(ctx); ctx = NULL; } #if defined(OPENSSL_EXTRA) && defined(WOLFCRYPT_HAVE_SRP) \ && !defined(NO_SHA256) && !defined(WC_NO_RNG) else { ctx->srp = (Srp*) XMALLOC(sizeof(Srp), heap, DYNAMIC_TYPE_SRP); if (ctx->srp == NULL){ WOLFSSL_MSG("Init CTX failed"); wolfSSL_CTX_free(ctx); return NULL; } XMEMSET(ctx->srp, 0, sizeof(Srp)); } #endif } else { WOLFSSL_MSG("Alloc CTX failed, method freed"); XFREE(method, heap, DYNAMIC_TYPE_METHOD); } WOLFSSL_LEAVE("WOLFSSL_CTX_new", 0); return ctx; } WOLFSSL_CTX* wolfSSL_CTX_new(WOLFSSL_METHOD* method) { #ifdef WOLFSSL_HEAP_TEST /* if testing the heap hint then set top level CTX to have test value */ return wolfSSL_CTX_new_ex(method, (void*)WOLFSSL_HEAP_TEST); #else return wolfSSL_CTX_new_ex(method, NULL); #endif } void wolfSSL_CTX_free(WOLFSSL_CTX* ctx) { WOLFSSL_ENTER("SSL_CTX_free"); if (ctx) { #if defined(OPENSSL_EXTRA) && defined(WOLFCRYPT_HAVE_SRP) \ && !defined(NO_SHA256) && !defined(WC_NO_RNG) if (ctx->srp != NULL){ if (ctx->srp_password != NULL){ XFREE(ctx->srp_password, ctx->heap, DYNAMIC_TYPE_SRP); } wc_SrpTerm(ctx->srp); XFREE(ctx->srp, ctx->heap, DYNAMIC_TYPE_SRP); } #endif FreeSSL_Ctx(ctx); } WOLFSSL_LEAVE("SSL_CTX_free", 0); } #ifdef SINGLE_THREADED /* no locking in single threaded mode, allow a CTX level rng to be shared with * WOLFSSL objects, WOLFSSL_SUCCESS on ok */ int wolfSSL_CTX_new_rng(WOLFSSL_CTX* ctx) { WC_RNG* rng; int ret; if (ctx == NULL) { return BAD_FUNC_ARG; } rng = XMALLOC(sizeof(WC_RNG), ctx->heap, DYNAMIC_TYPE_RNG); if (rng == NULL) { return MEMORY_E; } #ifndef HAVE_FIPS ret = wc_InitRng_ex(rng, ctx->heap, ctx->devId); #else ret = wc_InitRng(rng); #endif if (ret != 0) { XFREE(rng, ctx->heap, DYNAMIC_TYPE_RNG); return ret; } ctx->rng = rng; return WOLFSSL_SUCCESS; } #endif WOLFSSL* wolfSSL_new(WOLFSSL_CTX* ctx) { WOLFSSL* ssl = NULL; int ret = 0; (void)ret; WOLFSSL_ENTER("SSL_new"); if (ctx == NULL) return ssl; ssl = (WOLFSSL*) XMALLOC(sizeof(WOLFSSL), ctx->heap, DYNAMIC_TYPE_SSL); if (ssl) if ( (ret = InitSSL(ssl, ctx, 0)) < 0) { FreeSSL(ssl, ctx->heap); ssl = 0; } WOLFSSL_LEAVE("SSL_new", ret); return ssl; } void wolfSSL_free(WOLFSSL* ssl) { WOLFSSL_ENTER("SSL_free"); if (ssl) FreeSSL(ssl, ssl->ctx->heap); WOLFSSL_LEAVE("SSL_free", 0); } int wolfSSL_is_server(WOLFSSL* ssl) { if (ssl == NULL) return BAD_FUNC_ARG; return ssl->options.side == WOLFSSL_SERVER_END; } #ifdef HAVE_WRITE_DUP /* * Release resources around WriteDup object * * ssl WOLFSSL object * * no return, destruction so make best attempt */ void FreeWriteDup(WOLFSSL* ssl) { int doFree = 0; WOLFSSL_ENTER("FreeWriteDup"); if (ssl->dupWrite) { if (wc_LockMutex(&ssl->dupWrite->dupMutex) == 0) { ssl->dupWrite->dupCount--; if (ssl->dupWrite->dupCount == 0) { doFree = 1; } else { WOLFSSL_MSG("WriteDup count not zero, no full free"); } wc_UnLockMutex(&ssl->dupWrite->dupMutex); } } if (doFree) { WOLFSSL_MSG("Doing WriteDup full free, count to zero"); wc_FreeMutex(&ssl->dupWrite->dupMutex); XFREE(ssl->dupWrite, ssl->heap, DYNAMIC_TYPE_WRITEDUP); } } /* * duplicate existing ssl members into dup needed for writing * * dup write only WOLFSSL * ssl exisiting WOLFSSL * * 0 on success */ static int DupSSL(WOLFSSL* dup, WOLFSSL* ssl) { /* shared dupWrite setup */ ssl->dupWrite = (WriteDup*)XMALLOC(sizeof(WriteDup), ssl->heap, DYNAMIC_TYPE_WRITEDUP); if (ssl->dupWrite == NULL) { return MEMORY_E; } XMEMSET(ssl->dupWrite, 0, sizeof(WriteDup)); if (wc_InitMutex(&ssl->dupWrite->dupMutex) != 0) { XFREE(ssl->dupWrite, ssl->heap, DYNAMIC_TYPE_WRITEDUP); ssl->dupWrite = NULL; return BAD_MUTEX_E; } ssl->dupWrite->dupCount = 2; /* both sides have a count to start */ dup->dupWrite = ssl->dupWrite; /* each side uses */ /* copy write parts over to dup writer */ XMEMCPY(&dup->specs, &ssl->specs, sizeof(CipherSpecs)); XMEMCPY(&dup->options, &ssl->options, sizeof(Options)); XMEMCPY(&dup->keys, &ssl->keys, sizeof(Keys)); XMEMCPY(&dup->encrypt, &ssl->encrypt, sizeof(Ciphers)); /* dup side now owns encrypt/write ciphers */ XMEMSET(&ssl->encrypt, 0, sizeof(Ciphers)); dup->IOCB_WriteCtx = ssl->IOCB_WriteCtx; dup->wfd = ssl->wfd; dup->wflags = ssl->wflags; dup->hmac = ssl->hmac; #ifdef HAVE_TRUNCATED_HMAC dup->truncated_hmac = ssl->truncated_hmac; #endif /* unique side dup setup */ dup->dupSide = WRITE_DUP_SIDE; ssl->dupSide = READ_DUP_SIDE; return 0; } /* * duplicate a WOLFSSL object post handshake for writing only * turn exisitng object into read only. Allows concurrent access from two * different threads. * * ssl exisiting WOLFSSL object * * return dup'd WOLFSSL object on success */ WOLFSSL* wolfSSL_write_dup(WOLFSSL* ssl) { WOLFSSL* dup = NULL; int ret = 0; (void)ret; WOLFSSL_ENTER("wolfSSL_write_dup"); if (ssl == NULL) { return ssl; } if (ssl->options.handShakeDone == 0) { WOLFSSL_MSG("wolfSSL_write_dup called before handshake complete"); return NULL; } if (ssl->dupWrite) { WOLFSSL_MSG("wolfSSL_write_dup already called once"); return NULL; } dup = (WOLFSSL*) XMALLOC(sizeof(WOLFSSL), ssl->ctx->heap, DYNAMIC_TYPE_SSL); if (dup) { if ( (ret = InitSSL(dup, ssl->ctx, 1)) < 0) { FreeSSL(dup, ssl->ctx->heap); dup = NULL; } else if ( (ret = DupSSL(dup, ssl) < 0)) { FreeSSL(dup, ssl->ctx->heap); dup = NULL; } } WOLFSSL_LEAVE("wolfSSL_write_dup", ret); return dup; } /* * Notify write dup side of fatal error or close notify * * ssl WOLFSSL object * err Notify err * * 0 on success */ int NotifyWriteSide(WOLFSSL* ssl, int err) { int ret; WOLFSSL_ENTER("NotifyWriteSide"); ret = wc_LockMutex(&ssl->dupWrite->dupMutex); if (ret == 0) { ssl->dupWrite->dupErr = err; ret = wc_UnLockMutex(&ssl->dupWrite->dupMutex); } return ret; } #endif /* HAVE_WRITE_DUP */ #ifdef HAVE_POLY1305 /* set if to use old poly 1 for yes 0 to use new poly */ int wolfSSL_use_old_poly(WOLFSSL* ssl, int value) { (void)ssl; (void)value; #ifndef WOLFSSL_NO_TLS12 WOLFSSL_ENTER("SSL_use_old_poly"); WOLFSSL_MSG("Warning SSL connection auto detects old/new and this function" "is depriciated"); ssl->options.oldPoly = (word16)value; WOLFSSL_LEAVE("SSL_use_old_poly", 0); #endif return 0; } #endif int wolfSSL_set_fd(WOLFSSL* ssl, int fd) { int ret; WOLFSSL_ENTER("SSL_set_fd"); if (ssl == NULL) { return BAD_FUNC_ARG; } ret = wolfSSL_set_read_fd(ssl, fd); if (ret == WOLFSSL_SUCCESS) { ret = wolfSSL_set_write_fd(ssl, fd); } return ret; } int wolfSSL_set_read_fd(WOLFSSL* ssl, int fd) { WOLFSSL_ENTER("SSL_set_read_fd"); if (ssl == NULL) { return BAD_FUNC_ARG; } ssl->rfd = fd; /* not used directly to allow IO callbacks */ ssl->IOCB_ReadCtx = &ssl->rfd; #ifdef WOLFSSL_DTLS if (ssl->options.dtls) { ssl->IOCB_ReadCtx = &ssl->buffers.dtlsCtx; ssl->buffers.dtlsCtx.rfd = fd; } #endif WOLFSSL_LEAVE("SSL_set_read_fd", WOLFSSL_SUCCESS); return WOLFSSL_SUCCESS; } int wolfSSL_set_write_fd(WOLFSSL* ssl, int fd) { WOLFSSL_ENTER("SSL_set_write_fd"); if (ssl == NULL) { return BAD_FUNC_ARG; } ssl->wfd = fd; /* not used directly to allow IO callbacks */ ssl->IOCB_WriteCtx = &ssl->wfd; #ifdef WOLFSSL_DTLS if (ssl->options.dtls) { ssl->IOCB_WriteCtx = &ssl->buffers.dtlsCtx; ssl->buffers.dtlsCtx.wfd = fd; } #endif WOLFSSL_LEAVE("SSL_set_write_fd", WOLFSSL_SUCCESS); return WOLFSSL_SUCCESS; } /** * Get the name of cipher at priority level passed in. */ char* wolfSSL_get_cipher_list(int priority) { const CipherSuiteInfo* ciphers = GetCipherNames(); if (priority >= GetCipherNamesSize() || priority < 0) { return 0; } return (char*)ciphers[priority].name; } /** * Get the name of cipher at priority level passed in. */ char* wolfSSL_get_cipher_list_ex(WOLFSSL* ssl, int priority) { if (ssl == NULL) { return NULL; } else { const char* cipher; if ((cipher = wolfSSL_get_cipher_name_internal(ssl)) != NULL) { if (priority == 0) { return (char*)cipher; } else { return NULL; } } else { return wolfSSL_get_cipher_list(priority); } } } int wolfSSL_get_ciphers(char* buf, int len) { const CipherSuiteInfo* ciphers = GetCipherNames(); int totalInc = 0; int step = 0; char delim = ':'; int size = GetCipherNamesSize(); int i; if (buf == NULL || len <= 0) return BAD_FUNC_ARG; /* Add each member to the buffer delimited by a : */ for (i = 0; i < size; i++) { step = (int)(XSTRLEN(ciphers[i].name) + 1); /* delimiter */ totalInc += step; /* Check to make sure buf is large enough and will not overflow */ if (totalInc < len) { size_t cipherLen = XSTRLEN(ciphers[i].name); XSTRNCPY(buf, ciphers[i].name, cipherLen); buf += cipherLen; if (i < size - 1) *buf++ = delim; else *buf++ = '\0'; } else return BUFFER_E; } return WOLFSSL_SUCCESS; } const char* wolfSSL_get_shared_ciphers(WOLFSSL* ssl, char* buf, int len) { const char* cipher; if (ssl == NULL) return NULL; cipher = wolfSSL_get_cipher_name_iana(ssl); len = min(len, (int)(XSTRLEN(cipher) + 1)); XMEMCPY(buf, cipher, len); return buf; } int wolfSSL_get_fd(const WOLFSSL* ssl) { WOLFSSL_ENTER("SSL_get_fd"); WOLFSSL_LEAVE("SSL_get_fd", ssl->rfd); return ssl->rfd; } int wolfSSL_dtls(WOLFSSL* ssl) { return ssl->options.dtls; } #ifndef WOLFSSL_LEANPSK int wolfSSL_dtls_set_peer(WOLFSSL* ssl, void* peer, unsigned int peerSz) { #ifdef WOLFSSL_DTLS void* sa = (void*)XMALLOC(peerSz, ssl->heap, DYNAMIC_TYPE_SOCKADDR); if (sa != NULL) { if (ssl->buffers.dtlsCtx.peer.sa != NULL) XFREE(ssl->buffers.dtlsCtx.peer.sa,ssl->heap,DYNAMIC_TYPE_SOCKADDR); XMEMCPY(sa, peer, peerSz); ssl->buffers.dtlsCtx.peer.sa = sa; ssl->buffers.dtlsCtx.peer.sz = peerSz; return WOLFSSL_SUCCESS; } return WOLFSSL_FAILURE; #else (void)ssl; (void)peer; (void)peerSz; return WOLFSSL_NOT_IMPLEMENTED; #endif } int wolfSSL_dtls_get_peer(WOLFSSL* ssl, void* peer, unsigned int* peerSz) { #ifdef WOLFSSL_DTLS if (ssl == NULL) { return WOLFSSL_FAILURE; } if (peer != NULL && peerSz != NULL && *peerSz >= ssl->buffers.dtlsCtx.peer.sz && ssl->buffers.dtlsCtx.peer.sa != NULL) { *peerSz = ssl->buffers.dtlsCtx.peer.sz; XMEMCPY(peer, ssl->buffers.dtlsCtx.peer.sa, *peerSz); return WOLFSSL_SUCCESS; } return WOLFSSL_FAILURE; #else (void)ssl; (void)peer; (void)peerSz; return WOLFSSL_NOT_IMPLEMENTED; #endif } #if defined(WOLFSSL_SCTP) && defined(WOLFSSL_DTLS) int wolfSSL_CTX_dtls_set_sctp(WOLFSSL_CTX* ctx) { WOLFSSL_ENTER("wolfSSL_CTX_dtls_set_sctp()"); if (ctx == NULL) return BAD_FUNC_ARG; ctx->dtlsSctp = 1; return WOLFSSL_SUCCESS; } int wolfSSL_dtls_set_sctp(WOLFSSL* ssl) { WOLFSSL_ENTER("wolfSSL_dtls_set_sctp()"); if (ssl == NULL) return BAD_FUNC_ARG; ssl->options.dtlsSctp = 1; return WOLFSSL_SUCCESS; } int wolfSSL_CTX_dtls_set_mtu(WOLFSSL_CTX* ctx, word16 newMtu) { if (ctx == NULL || newMtu > MAX_RECORD_SIZE) return BAD_FUNC_ARG; ctx->dtlsMtuSz = newMtu; return WOLFSSL_SUCCESS; } int wolfSSL_dtls_set_mtu(WOLFSSL* ssl, word16 newMtu) { if (ssl == NULL) return BAD_FUNC_ARG; if (newMtu > MAX_RECORD_SIZE) { ssl->error = BAD_FUNC_ARG; return WOLFSSL_FAILURE; } ssl->dtlsMtuSz = newMtu; return WOLFSSL_SUCCESS; } #endif /* WOLFSSL_DTLS && WOLFSSL_SCTP */ #ifdef WOLFSSL_DTLS_DROP_STATS int wolfSSL_dtls_get_drop_stats(WOLFSSL* ssl, word32* macDropCount, word32* replayDropCount) { int ret; WOLFSSL_ENTER("wolfSSL_dtls_get_drop_stats()"); if (ssl == NULL) ret = BAD_FUNC_ARG; else { ret = WOLFSSL_SUCCESS; if (macDropCount != NULL) *macDropCount = ssl->macDropCount; if (replayDropCount != NULL) *replayDropCount = ssl->replayDropCount; } WOLFSSL_LEAVE("wolfSSL_dtls_get_drop_stats()", ret); return ret; } #endif /* WOLFSSL_DTLS_DROP_STATS */ #if defined(WOLFSSL_MULTICAST) int wolfSSL_CTX_mcast_set_member_id(WOLFSSL_CTX* ctx, word16 id) { int ret = 0; WOLFSSL_ENTER("wolfSSL_CTX_mcast_set_member_id()"); if (ctx == NULL || id > 255) ret = BAD_FUNC_ARG; if (ret == 0) { ctx->haveEMS = 0; ctx->haveMcast = 1; ctx->mcastID = id; #ifndef WOLFSSL_USER_IO ctx->CBIORecv = EmbedReceiveFromMcast; #endif /* WOLFSSL_USER_IO */ } if (ret == 0) ret = WOLFSSL_SUCCESS; WOLFSSL_LEAVE("wolfSSL_CTX_mcast_set_member_id()", ret); return ret; } int wolfSSL_mcast_get_max_peers(void) { return WOLFSSL_MULTICAST_PEERS; } #ifdef WOLFSSL_DTLS static WC_INLINE word32 UpdateHighwaterMark(word32 cur, word32 first, word32 second, word32 max) { word32 newCur = 0; if (cur < first) newCur = first; else if (cur < second) newCur = second; else if (cur < max) newCur = max; return newCur; } #endif /* WOLFSSL_DTLS */ int wolfSSL_set_secret(WOLFSSL* ssl, word16 epoch, const byte* preMasterSecret, word32 preMasterSz, const byte* clientRandom, const byte* serverRandom, const byte* suite) { int ret = 0; WOLFSSL_ENTER("wolfSSL_set_secret()"); if (ssl == NULL || preMasterSecret == NULL || preMasterSz == 0 || preMasterSz > ENCRYPT_LEN || clientRandom == NULL || serverRandom == NULL || suite == NULL) { ret = BAD_FUNC_ARG; } if (ret == 0) { XMEMCPY(ssl->arrays->preMasterSecret, preMasterSecret, preMasterSz); ssl->arrays->preMasterSz = preMasterSz; XMEMCPY(ssl->arrays->clientRandom, clientRandom, RAN_LEN); XMEMCPY(ssl->arrays->serverRandom, serverRandom, RAN_LEN); ssl->options.cipherSuite0 = suite[0]; ssl->options.cipherSuite = suite[1]; ret = SetCipherSpecs(ssl); } if (ret == 0) ret = MakeTlsMasterSecret(ssl); if (ret == 0) { ssl->keys.encryptionOn = 1; ret = SetKeysSide(ssl, ENCRYPT_AND_DECRYPT_SIDE); } if (ret == 0) { if (ssl->options.dtls) { #ifdef WOLFSSL_DTLS WOLFSSL_DTLS_PEERSEQ* peerSeq; int i; ssl->keys.dtls_epoch = epoch; for (i = 0, peerSeq = ssl->keys.peerSeq; i < WOLFSSL_DTLS_PEERSEQ_SZ; i++, peerSeq++) { peerSeq->nextEpoch = epoch; peerSeq->prevSeq_lo = peerSeq->nextSeq_lo; peerSeq->prevSeq_hi = peerSeq->nextSeq_hi; peerSeq->nextSeq_lo = 0; peerSeq->nextSeq_hi = 0; XMEMCPY(peerSeq->prevWindow, peerSeq->window, DTLS_SEQ_SZ); XMEMSET(peerSeq->window, 0, DTLS_SEQ_SZ); peerSeq->highwaterMark = UpdateHighwaterMark(0, ssl->ctx->mcastFirstSeq, ssl->ctx->mcastSecondSeq, ssl->ctx->mcastMaxSeq); } #else (void)epoch; #endif } FreeHandshakeResources(ssl); ret = WOLFSSL_SUCCESS; } else { if (ssl) ssl->error = ret; ret = WOLFSSL_FATAL_ERROR; } WOLFSSL_LEAVE("wolfSSL_set_secret()", ret); return ret; } #ifdef WOLFSSL_DTLS int wolfSSL_mcast_peer_add(WOLFSSL* ssl, word16 peerId, int remove) { WOLFSSL_DTLS_PEERSEQ* p = NULL; int ret = WOLFSSL_SUCCESS; int i; WOLFSSL_ENTER("wolfSSL_mcast_peer_add()"); if (ssl == NULL || peerId > 255) return BAD_FUNC_ARG; if (!remove) { /* Make sure it isn't already present, while keeping the first * open spot. */ for (i = 0; i < WOLFSSL_DTLS_PEERSEQ_SZ; i++) { if (ssl->keys.peerSeq[i].peerId == INVALID_PEER_ID) p = &ssl->keys.peerSeq[i]; if (ssl->keys.peerSeq[i].peerId == peerId) { WOLFSSL_MSG("Peer ID already in multicast peer list."); p = NULL; } } if (p != NULL) { XMEMSET(p, 0, sizeof(WOLFSSL_DTLS_PEERSEQ)); p->peerId = peerId; p->highwaterMark = UpdateHighwaterMark(0, ssl->ctx->mcastFirstSeq, ssl->ctx->mcastSecondSeq, ssl->ctx->mcastMaxSeq); } else { WOLFSSL_MSG("No room in peer list."); ret = -1; } } else { for (i = 0; i < WOLFSSL_DTLS_PEERSEQ_SZ; i++) { if (ssl->keys.peerSeq[i].peerId == peerId) p = &ssl->keys.peerSeq[i]; } if (p != NULL) { p->peerId = INVALID_PEER_ID; } else { WOLFSSL_MSG("Peer not found in list."); } } WOLFSSL_LEAVE("wolfSSL_mcast_peer_add()", ret); return ret; } /* If peerId is in the list of peers and its last sequence number is non-zero, * return 1, otherwise return 0. */ int wolfSSL_mcast_peer_known(WOLFSSL* ssl, unsigned short peerId) { int known = 0; int i; WOLFSSL_ENTER("wolfSSL_mcast_peer_known()"); if (ssl == NULL || peerId > 255) { return BAD_FUNC_ARG; } for (i = 0; i < WOLFSSL_DTLS_PEERSEQ_SZ; i++) { if (ssl->keys.peerSeq[i].peerId == peerId) { if (ssl->keys.peerSeq[i].nextSeq_hi || ssl->keys.peerSeq[i].nextSeq_lo) { known = 1; } break; } } WOLFSSL_LEAVE("wolfSSL_mcast_peer_known()", known); return known; } int wolfSSL_CTX_mcast_set_highwater_cb(WOLFSSL_CTX* ctx, word32 maxSeq, word32 first, word32 second, CallbackMcastHighwater cb) { if (ctx == NULL || (second && first > second) || first > maxSeq || second > maxSeq || cb == NULL) { return BAD_FUNC_ARG; } ctx->mcastHwCb = cb; ctx->mcastFirstSeq = first; ctx->mcastSecondSeq = second; ctx->mcastMaxSeq = maxSeq; return WOLFSSL_SUCCESS; } int wolfSSL_mcast_set_highwater_ctx(WOLFSSL* ssl, void* ctx) { if (ssl == NULL || ctx == NULL) return BAD_FUNC_ARG; ssl->mcastHwCbCtx = ctx; return WOLFSSL_SUCCESS; } #endif /* WOLFSSL_DTLS */ #endif /* WOLFSSL_MULTICAST */ #endif /* WOLFSSL_LEANPSK */ /* return underlying connect or accept, WOLFSSL_SUCCESS on ok */ int wolfSSL_negotiate(WOLFSSL* ssl) { int err = WOLFSSL_FATAL_ERROR; WOLFSSL_ENTER("wolfSSL_negotiate"); #ifndef NO_WOLFSSL_SERVER if (ssl->options.side == WOLFSSL_SERVER_END) { #ifdef WOLFSSL_TLS13 if (IsAtLeastTLSv1_3(ssl->version)) err = wolfSSL_accept_TLSv13(ssl); else #endif err = wolfSSL_accept(ssl); } #endif #ifndef NO_WOLFSSL_CLIENT if (ssl->options.side == WOLFSSL_CLIENT_END) { #ifdef WOLFSSL_TLS13 if (IsAtLeastTLSv1_3(ssl->version)) err = wolfSSL_connect_TLSv13(ssl); else #endif err = wolfSSL_connect(ssl); } #endif (void)ssl; WOLFSSL_LEAVE("wolfSSL_negotiate", err); return err; } WC_RNG* wolfSSL_GetRNG(WOLFSSL* ssl) { if (ssl) { return ssl->rng; } return NULL; } #ifndef WOLFSSL_LEANPSK /* object size based on build */ int wolfSSL_GetObjectSize(void) { #ifdef SHOW_SIZES printf("sizeof suites = %lu\n", sizeof(Suites)); printf("sizeof ciphers(2) = %lu\n", sizeof(Ciphers)); #ifndef NO_RC4 printf("\tsizeof arc4 = %lu\n", sizeof(Arc4)); #endif printf("\tsizeof aes = %lu\n", sizeof(Aes)); #ifndef NO_DES3 printf("\tsizeof des3 = %lu\n", sizeof(Des3)); #endif #ifndef NO_RABBIT printf("\tsizeof rabbit = %lu\n", sizeof(Rabbit)); #endif #ifdef HAVE_CHACHA printf("\tsizeof chacha = %lu\n", sizeof(ChaCha)); #endif printf("sizeof cipher specs = %lu\n", sizeof(CipherSpecs)); printf("sizeof keys = %lu\n", sizeof(Keys)); printf("sizeof Hashes(2) = %lu\n", sizeof(Hashes)); #ifndef NO_MD5 printf("\tsizeof MD5 = %lu\n", sizeof(wc_Md5)); #endif #ifndef NO_SHA printf("\tsizeof SHA = %lu\n", sizeof(wc_Sha)); #endif #ifdef WOLFSSL_SHA224 printf("\tsizeof SHA224 = %lu\n", sizeof(wc_Sha224)); #endif #ifndef NO_SHA256 printf("\tsizeof SHA256 = %lu\n", sizeof(wc_Sha256)); #endif #ifdef WOLFSSL_SHA384 printf("\tsizeof SHA384 = %lu\n", sizeof(wc_Sha384)); #endif #ifdef WOLFSSL_SHA384 printf("\tsizeof SHA512 = %lu\n", sizeof(wc_Sha512)); #endif printf("sizeof Buffers = %lu\n", sizeof(Buffers)); printf("sizeof Options = %lu\n", sizeof(Options)); printf("sizeof Arrays = %lu\n", sizeof(Arrays)); #ifndef NO_RSA printf("sizeof RsaKey = %lu\n", sizeof(RsaKey)); #endif #ifdef HAVE_ECC printf("sizeof ecc_key = %lu\n", sizeof(ecc_key)); #endif printf("sizeof WOLFSSL_CIPHER = %lu\n", sizeof(WOLFSSL_CIPHER)); printf("sizeof WOLFSSL_SESSION = %lu\n", sizeof(WOLFSSL_SESSION)); printf("sizeof WOLFSSL = %lu\n", sizeof(WOLFSSL)); printf("sizeof WOLFSSL_CTX = %lu\n", sizeof(WOLFSSL_CTX)); #endif return sizeof(WOLFSSL); } int wolfSSL_CTX_GetObjectSize(void) { return sizeof(WOLFSSL_CTX); } int wolfSSL_METHOD_GetObjectSize(void) { return sizeof(WOLFSSL_METHOD); } #endif #ifdef WOLFSSL_STATIC_MEMORY int wolfSSL_CTX_load_static_memory(WOLFSSL_CTX** ctx, wolfSSL_method_func method, unsigned char* buf, unsigned int sz, int flag, int max) { WOLFSSL_HEAP* heap; WOLFSSL_HEAP_HINT* hint; word32 idx = 0; if (ctx == NULL || buf == NULL) { return BAD_FUNC_ARG; } if (*ctx == NULL && method == NULL) { return BAD_FUNC_ARG; } if (*ctx == NULL || (*ctx)->heap == NULL) { if (sizeof(WOLFSSL_HEAP) + sizeof(WOLFSSL_HEAP_HINT) > sz - idx) { return BUFFER_E; /* not enough memory for structures */ } heap = (WOLFSSL_HEAP*)buf; idx += sizeof(WOLFSSL_HEAP); if (wolfSSL_init_memory_heap(heap) != 0) { return WOLFSSL_FAILURE; } hint = (WOLFSSL_HEAP_HINT*)(buf + idx); idx += sizeof(WOLFSSL_HEAP_HINT); XMEMSET(hint, 0, sizeof(WOLFSSL_HEAP_HINT)); hint->memory = heap; if (*ctx && (*ctx)->heap == NULL) { (*ctx)->heap = (void*)hint; } } else { #ifdef WOLFSSL_HEAP_TEST /* do not load in memory if test has been set */ if ((*ctx)->heap == (void*)WOLFSSL_HEAP_TEST) { return WOLFSSL_SUCCESS; } #endif hint = (WOLFSSL_HEAP_HINT*)((*ctx)->heap); heap = hint->memory; } if (wolfSSL_load_static_memory(buf + idx, sz - idx, flag, heap) != 1) { WOLFSSL_MSG("Error partitioning memory"); return WOLFSSL_FAILURE; } /* create ctx if needed */ if (*ctx == NULL) { *ctx = wolfSSL_CTX_new_ex(method(hint), hint); if (*ctx == NULL) { WOLFSSL_MSG("Error creating ctx"); return WOLFSSL_FAILURE; } } /* determine what max applies too */ if (flag & WOLFMEM_IO_POOL || flag & WOLFMEM_IO_POOL_FIXED) { heap->maxIO = max; } else { /* general memory used in handshakes */ heap->maxHa = max; } heap->flag |= flag; (void)max; (void)method; return WOLFSSL_SUCCESS; } int wolfSSL_is_static_memory(WOLFSSL* ssl, WOLFSSL_MEM_CONN_STATS* mem_stats) { if (ssl == NULL) { return BAD_FUNC_ARG; } WOLFSSL_ENTER("wolfSSL_is_static_memory"); /* fill out statistics if wanted and WOLFMEM_TRACK_STATS flag */ if (mem_stats != NULL && ssl->heap != NULL) { WOLFSSL_HEAP_HINT* hint = ((WOLFSSL_HEAP_HINT*)(ssl->heap)); WOLFSSL_HEAP* heap = hint->memory; if (heap->flag & WOLFMEM_TRACK_STATS && hint->stats != NULL) { XMEMCPY(mem_stats, hint->stats, sizeof(WOLFSSL_MEM_CONN_STATS)); } } return (ssl->heap) ? 1 : 0; } int wolfSSL_CTX_is_static_memory(WOLFSSL_CTX* ctx, WOLFSSL_MEM_STATS* mem_stats) { if (ctx == NULL) { return BAD_FUNC_ARG; } WOLFSSL_ENTER("wolfSSL_CTX_is_static_memory"); /* fill out statistics if wanted */ if (mem_stats != NULL && ctx->heap != NULL) { WOLFSSL_HEAP* heap = ((WOLFSSL_HEAP_HINT*)(ctx->heap))->memory; if (wolfSSL_GetMemStats(heap, mem_stats) != 1) { return MEMORY_E; } } return (ctx->heap) ? 1 : 0; } #endif /* WOLFSSL_STATIC_MEMORY */ /* return max record layer size plaintext input size */ int wolfSSL_GetMaxOutputSize(WOLFSSL* ssl) { WOLFSSL_ENTER("wolfSSL_GetMaxOutputSize"); if (ssl == NULL) return BAD_FUNC_ARG; if (ssl->options.handShakeState != HANDSHAKE_DONE) { WOLFSSL_MSG("Handshake not complete yet"); return BAD_FUNC_ARG; } return wolfSSL_GetMaxRecordSize(ssl, OUTPUT_RECORD_SIZE); } /* return record layer size of plaintext input size */ int wolfSSL_GetOutputSize(WOLFSSL* ssl, int inSz) { int maxSize; WOLFSSL_ENTER("wolfSSL_GetOutputSize"); if (inSz < 0) return BAD_FUNC_ARG; maxSize = wolfSSL_GetMaxOutputSize(ssl); if (maxSize < 0) return maxSize; /* error */ if (inSz > maxSize) return INPUT_SIZE_E; return BuildMessage(ssl, NULL, 0, NULL, inSz, application_data, 0, 1, 0); } #ifdef HAVE_ECC int wolfSSL_CTX_SetMinEccKey_Sz(WOLFSSL_CTX* ctx, short keySz) { if (ctx == NULL || keySz < 0 || keySz % 8 != 0) { WOLFSSL_MSG("Key size must be divisable by 8 or ctx was null"); return BAD_FUNC_ARG; } ctx->minEccKeySz = keySz / 8; #ifndef NO_CERTS ctx->cm->minEccKeySz = keySz / 8; #endif return WOLFSSL_SUCCESS; } int wolfSSL_SetMinEccKey_Sz(WOLFSSL* ssl, short keySz) { if (ssl == NULL || keySz < 0 || keySz % 8 != 0) { WOLFSSL_MSG("Key size must be divisable by 8 or ssl was null"); return BAD_FUNC_ARG; } ssl->options.minEccKeySz = keySz / 8; return WOLFSSL_SUCCESS; } #endif /* !NO_RSA */ #ifndef NO_RSA int wolfSSL_CTX_SetMinRsaKey_Sz(WOLFSSL_CTX* ctx, short keySz) { if (ctx == NULL || keySz < 0 || keySz % 8 != 0) { WOLFSSL_MSG("Key size must be divisable by 8 or ctx was null"); return BAD_FUNC_ARG; } ctx->minRsaKeySz = keySz / 8; ctx->cm->minRsaKeySz = keySz / 8; return WOLFSSL_SUCCESS; } int wolfSSL_SetMinRsaKey_Sz(WOLFSSL* ssl, short keySz) { if (ssl == NULL || keySz < 0 || keySz % 8 != 0) { WOLFSSL_MSG("Key size must be divisable by 8 or ssl was null"); return BAD_FUNC_ARG; } ssl->options.minRsaKeySz = keySz / 8; return WOLFSSL_SUCCESS; } #endif /* !NO_RSA */ #ifndef NO_DH /* server Diffie-Hellman parameters, WOLFSSL_SUCCESS on ok */ int wolfSSL_SetTmpDH(WOLFSSL* ssl, const unsigned char* p, int pSz, const unsigned char* g, int gSz) { word16 havePSK = 0; word16 haveRSA = 1; int keySz = 0; WOLFSSL_ENTER("wolfSSL_SetTmpDH"); if (ssl == NULL || p == NULL || g == NULL) return BAD_FUNC_ARG; if (pSz < ssl->options.minDhKeySz) return DH_KEY_SIZE_E; if (pSz > ssl->options.maxDhKeySz) return DH_KEY_SIZE_E; if (ssl->options.side != WOLFSSL_SERVER_END) return SIDE_ERROR; if (ssl->buffers.serverDH_P.buffer && ssl->buffers.weOwnDH) { XFREE(ssl->buffers.serverDH_P.buffer, ssl->heap, DYNAMIC_TYPE_PUBLIC_KEY); ssl->buffers.serverDH_P.buffer = NULL; } if (ssl->buffers.serverDH_G.buffer && ssl->buffers.weOwnDH) { XFREE(ssl->buffers.serverDH_G.buffer, ssl->heap, DYNAMIC_TYPE_PUBLIC_KEY); ssl->buffers.serverDH_G.buffer = NULL; } ssl->buffers.weOwnDH = 1; /* SSL owns now */ ssl->buffers.serverDH_P.buffer = (byte*)XMALLOC(pSz, ssl->heap, DYNAMIC_TYPE_PUBLIC_KEY); if (ssl->buffers.serverDH_P.buffer == NULL) return MEMORY_E; ssl->buffers.serverDH_G.buffer = (byte*)XMALLOC(gSz, ssl->heap, DYNAMIC_TYPE_PUBLIC_KEY); if (ssl->buffers.serverDH_G.buffer == NULL) { XFREE(ssl->buffers.serverDH_P.buffer, ssl->heap, DYNAMIC_TYPE_PUBLIC_KEY); ssl->buffers.serverDH_P.buffer = NULL; return MEMORY_E; } ssl->buffers.serverDH_P.length = pSz; ssl->buffers.serverDH_G.length = gSz; XMEMCPY(ssl->buffers.serverDH_P.buffer, p, pSz); XMEMCPY(ssl->buffers.serverDH_G.buffer, g, gSz); ssl->options.haveDH = 1; #ifndef NO_PSK havePSK = ssl->options.havePSK; #endif #ifdef NO_RSA haveRSA = 0; #endif #ifndef NO_CERTS keySz = ssl->buffers.keySz; #endif InitSuites(ssl->suites, ssl->version, keySz, haveRSA, havePSK, ssl->options.haveDH, ssl->options.haveNTRU, ssl->options.haveECDSAsig, ssl->options.haveECC, ssl->options.haveStaticECC, ssl->options.side); WOLFSSL_LEAVE("wolfSSL_SetTmpDH", 0); return WOLFSSL_SUCCESS; } /* server ctx Diffie-Hellman parameters, WOLFSSL_SUCCESS on ok */ int wolfSSL_CTX_SetTmpDH(WOLFSSL_CTX* ctx, const unsigned char* p, int pSz, const unsigned char* g, int gSz) { WOLFSSL_ENTER("wolfSSL_CTX_SetTmpDH"); if (ctx == NULL || p == NULL || g == NULL) return BAD_FUNC_ARG; if (pSz < ctx->minDhKeySz) return DH_KEY_SIZE_E; if (pSz > ctx->maxDhKeySz) return DH_KEY_SIZE_E; XFREE(ctx->serverDH_P.buffer, ctx->heap, DYNAMIC_TYPE_PUBLIC_KEY); XFREE(ctx->serverDH_G.buffer, ctx->heap, DYNAMIC_TYPE_PUBLIC_KEY); ctx->serverDH_P.buffer = (byte*)XMALLOC(pSz, ctx->heap, DYNAMIC_TYPE_PUBLIC_KEY); if (ctx->serverDH_P.buffer == NULL) return MEMORY_E; ctx->serverDH_G.buffer = (byte*)XMALLOC(gSz, ctx->heap, DYNAMIC_TYPE_PUBLIC_KEY); if (ctx->serverDH_G.buffer == NULL) { XFREE(ctx->serverDH_P.buffer, ctx->heap, DYNAMIC_TYPE_PUBLIC_KEY); return MEMORY_E; } ctx->serverDH_P.length = pSz; ctx->serverDH_G.length = gSz; XMEMCPY(ctx->serverDH_P.buffer, p, pSz); XMEMCPY(ctx->serverDH_G.buffer, g, gSz); ctx->haveDH = 1; WOLFSSL_LEAVE("wolfSSL_CTX_SetTmpDH", 0); return WOLFSSL_SUCCESS; } int wolfSSL_CTX_SetMinDhKey_Sz(WOLFSSL_CTX* ctx, word16 keySz) { if (ctx == NULL || keySz > 16000 || keySz % 8 != 0) return BAD_FUNC_ARG; ctx->minDhKeySz = keySz / 8; return WOLFSSL_SUCCESS; } int wolfSSL_SetMinDhKey_Sz(WOLFSSL* ssl, word16 keySz) { if (ssl == NULL || keySz > 16000 || keySz % 8 != 0) return BAD_FUNC_ARG; ssl->options.minDhKeySz = keySz / 8; return WOLFSSL_SUCCESS; } int wolfSSL_CTX_SetMaxDhKey_Sz(WOLFSSL_CTX* ctx, word16 keySz) { if (ctx == NULL || keySz > 16000 || keySz % 8 != 0) return BAD_FUNC_ARG; ctx->maxDhKeySz = keySz / 8; return WOLFSSL_SUCCESS; } int wolfSSL_SetMaxDhKey_Sz(WOLFSSL* ssl, word16 keySz) { if (ssl == NULL || keySz > 16000 || keySz % 8 != 0) return BAD_FUNC_ARG; ssl->options.maxDhKeySz = keySz / 8; return WOLFSSL_SUCCESS; } int wolfSSL_GetDhKey_Sz(WOLFSSL* ssl) { if (ssl == NULL) return BAD_FUNC_ARG; return (ssl->options.dhKeySz * 8); } #endif /* !NO_DH */ int wolfSSL_write(WOLFSSL* ssl, const void* data, int sz) { int ret; WOLFSSL_ENTER("SSL_write()"); if (ssl == NULL || data == NULL || sz < 0) return BAD_FUNC_ARG; #ifdef WOLFSSL_EARLY_DATA if (ssl->earlyData != no_early_data && (ret = wolfSSL_negotiate(ssl)) < 0) { ssl->error = ret; return WOLFSSL_FATAL_ERROR; } ssl->earlyData = no_early_data; #endif #ifdef HAVE_WRITE_DUP { /* local variable scope */ int dupErr = 0; /* local copy */ ret = 0; if (ssl->dupWrite && ssl->dupSide == READ_DUP_SIDE) { WOLFSSL_MSG("Read dup side cannot write"); return WRITE_DUP_WRITE_E; } if (ssl->dupWrite) { if (wc_LockMutex(&ssl->dupWrite->dupMutex) != 0) { return BAD_MUTEX_E; } dupErr = ssl->dupWrite->dupErr; ret = wc_UnLockMutex(&ssl->dupWrite->dupMutex); } if (ret != 0) { ssl->error = ret; /* high priority fatal error */ return WOLFSSL_FATAL_ERROR; } if (dupErr != 0) { WOLFSSL_MSG("Write dup error from other side"); ssl->error = dupErr; return WOLFSSL_FATAL_ERROR; } } #endif #ifdef HAVE_ERRNO_H errno = 0; #endif #ifdef OPENSSL_EXTRA if (ssl->CBIS != NULL) { ssl->CBIS(ssl, SSL_CB_WRITE, SSL_SUCCESS); ssl->cbmode = SSL_CB_WRITE; } #endif ret = SendData(ssl, data, sz); WOLFSSL_LEAVE("SSL_write()", ret); if (ret < 0) return WOLFSSL_FATAL_ERROR; else return ret; } static int wolfSSL_read_internal(WOLFSSL* ssl, void* data, int sz, int peek) { int ret; WOLFSSL_ENTER("wolfSSL_read_internal()"); if (ssl == NULL || data == NULL || sz < 0) return BAD_FUNC_ARG; #ifdef HAVE_WRITE_DUP if (ssl->dupWrite && ssl->dupSide == WRITE_DUP_SIDE) { WOLFSSL_MSG("Write dup side cannot read"); return WRITE_DUP_READ_E; } #endif #ifdef HAVE_ERRNO_H errno = 0; #endif #ifdef WOLFSSL_DTLS if (ssl->options.dtls) { ssl->dtls_expected_rx = max(sz + 100, MAX_MTU); #ifdef WOLFSSL_SCTP if (ssl->options.dtlsSctp) ssl->dtls_expected_rx = max(ssl->dtls_expected_rx, ssl->dtlsMtuSz); #endif } #endif sz = wolfSSL_GetMaxRecordSize(ssl, sz); ret = ReceiveData(ssl, (byte*)data, sz, peek); #ifdef HAVE_WRITE_DUP if (ssl->dupWrite) { if (ssl->error != 0 && ssl->error != WANT_READ #ifdef WOLFSSL_ASYNC_CRYPT && ssl->error != WC_PENDING_E #endif ) { int notifyErr; WOLFSSL_MSG("Notifying write side of fatal read error"); notifyErr = NotifyWriteSide(ssl, ssl->error); if (notifyErr < 0) { ret = ssl->error = notifyErr; } } } #endif WOLFSSL_LEAVE("wolfSSL_read_internal()", ret); if (ret < 0) return WOLFSSL_FATAL_ERROR; else return ret; } int wolfSSL_peek(WOLFSSL* ssl, void* data, int sz) { WOLFSSL_ENTER("wolfSSL_peek()"); return wolfSSL_read_internal(ssl, data, sz, TRUE); } int wolfSSL_read(WOLFSSL* ssl, void* data, int sz) { WOLFSSL_ENTER("wolfSSL_read()"); #ifdef OPENSSL_EXTRA if (ssl->CBIS != NULL) { ssl->CBIS(ssl, SSL_CB_READ, SSL_SUCCESS); ssl->cbmode = SSL_CB_READ; } #endif return wolfSSL_read_internal(ssl, data, sz, FALSE); } #ifdef WOLFSSL_MULTICAST int wolfSSL_mcast_read(WOLFSSL* ssl, word16* id, void* data, int sz) { int ret = 0; WOLFSSL_ENTER("wolfSSL_mcast_read()"); if (ssl == NULL) return BAD_FUNC_ARG; ret = wolfSSL_read_internal(ssl, data, sz, FALSE); if (ssl->options.dtls && ssl->options.haveMcast && id != NULL) *id = ssl->keys.curPeerId; return ret; } #endif /* WOLFSSL_MULTICAST */ /* helpers to set the device id, WOLFSSL_SUCCESS on ok */ int wolfSSL_SetDevId(WOLFSSL* ssl, int devId) { if (ssl == NULL) return BAD_FUNC_ARG; ssl->devId = devId; return WOLFSSL_SUCCESS; } int wolfSSL_CTX_SetDevId(WOLFSSL_CTX* ctx, int devId) { if (ctx == NULL) return BAD_FUNC_ARG; ctx->devId = devId; return WOLFSSL_SUCCESS; } /* helpers to get device id and heap */ int wolfSSL_CTX_GetDevId(WOLFSSL_CTX* ctx, WOLFSSL* ssl) { int devId = INVALID_DEVID; if (ctx != NULL) devId = ctx->devId; else if (ssl != NULL) devId = ssl->devId; return devId; } void* wolfSSL_CTX_GetHeap(WOLFSSL_CTX* ctx, WOLFSSL* ssl) { void* heap = NULL; if (ctx != NULL) heap = ctx->heap; else if (ssl != NULL) heap = ssl->heap; return heap; } #ifdef HAVE_SNI int wolfSSL_UseSNI(WOLFSSL* ssl, byte type, const void* data, word16 size) { if (ssl == NULL) return BAD_FUNC_ARG; return TLSX_UseSNI(&ssl->extensions, type, data, size, ssl->heap); } int wolfSSL_CTX_UseSNI(WOLFSSL_CTX* ctx, byte type, const void* data, word16 size) { if (ctx == NULL) return BAD_FUNC_ARG; return TLSX_UseSNI(&ctx->extensions, type, data, size, ctx->heap); } #ifndef NO_WOLFSSL_SERVER void wolfSSL_SNI_SetOptions(WOLFSSL* ssl, byte type, byte options) { if (ssl && ssl->extensions) TLSX_SNI_SetOptions(ssl->extensions, type, options); } void wolfSSL_CTX_SNI_SetOptions(WOLFSSL_CTX* ctx, byte type, byte options) { if (ctx && ctx->extensions) TLSX_SNI_SetOptions(ctx->extensions, type, options); } byte wolfSSL_SNI_Status(WOLFSSL* ssl, byte type) { return TLSX_SNI_Status(ssl ? ssl->extensions : NULL, type); } word16 wolfSSL_SNI_GetRequest(WOLFSSL* ssl, byte type, void** data) { if (data) *data = NULL; if (ssl && ssl->extensions) return TLSX_SNI_GetRequest(ssl->extensions, type, data); return 0; } int wolfSSL_SNI_GetFromBuffer(const byte* clientHello, word32 helloSz, byte type, byte* sni, word32* inOutSz) { if (clientHello && helloSz > 0 && sni && inOutSz && *inOutSz > 0) return TLSX_SNI_GetFromBuffer(clientHello, helloSz, type, sni, inOutSz); return BAD_FUNC_ARG; } #endif /* NO_WOLFSSL_SERVER */ #endif /* HAVE_SNI */ #ifdef HAVE_MAX_FRAGMENT #ifndef NO_WOLFSSL_CLIENT int wolfSSL_UseMaxFragment(WOLFSSL* ssl, byte mfl) { if (ssl == NULL) return BAD_FUNC_ARG; return TLSX_UseMaxFragment(&ssl->extensions, mfl, ssl->heap); } int wolfSSL_CTX_UseMaxFragment(WOLFSSL_CTX* ctx, byte mfl) { if (ctx == NULL) return BAD_FUNC_ARG; return TLSX_UseMaxFragment(&ctx->extensions, mfl, ctx->heap); } #endif /* NO_WOLFSSL_CLIENT */ #endif /* HAVE_MAX_FRAGMENT */ #ifdef HAVE_TRUNCATED_HMAC #ifndef NO_WOLFSSL_CLIENT int wolfSSL_UseTruncatedHMAC(WOLFSSL* ssl) { if (ssl == NULL) return BAD_FUNC_ARG; return TLSX_UseTruncatedHMAC(&ssl->extensions, ssl->heap); } int wolfSSL_CTX_UseTruncatedHMAC(WOLFSSL_CTX* ctx) { if (ctx == NULL) return BAD_FUNC_ARG; return TLSX_UseTruncatedHMAC(&ctx->extensions, ctx->heap); } #endif /* NO_WOLFSSL_CLIENT */ #endif /* HAVE_TRUNCATED_HMAC */ #ifdef HAVE_CERTIFICATE_STATUS_REQUEST int wolfSSL_UseOCSPStapling(WOLFSSL* ssl, byte status_type, byte options) { if (ssl == NULL || ssl->options.side != WOLFSSL_CLIENT_END) return BAD_FUNC_ARG; return TLSX_UseCertificateStatusRequest(&ssl->extensions, status_type, options, NULL, ssl->heap, ssl->devId); } int wolfSSL_CTX_UseOCSPStapling(WOLFSSL_CTX* ctx, byte status_type, byte options) { if (ctx == NULL || ctx->method->side != WOLFSSL_CLIENT_END) return BAD_FUNC_ARG; return TLSX_UseCertificateStatusRequest(&ctx->extensions, status_type, options, NULL, ctx->heap, ctx->devId); } #endif /* HAVE_CERTIFICATE_STATUS_REQUEST */ #ifdef HAVE_CERTIFICATE_STATUS_REQUEST_V2 int wolfSSL_UseOCSPStaplingV2(WOLFSSL* ssl, byte status_type, byte options) { if (ssl == NULL || ssl->options.side != WOLFSSL_CLIENT_END) return BAD_FUNC_ARG; return TLSX_UseCertificateStatusRequestV2(&ssl->extensions, status_type, options, ssl->heap, ssl->devId); } int wolfSSL_CTX_UseOCSPStaplingV2(WOLFSSL_CTX* ctx, byte status_type, byte options) { if (ctx == NULL || ctx->method->side != WOLFSSL_CLIENT_END) return BAD_FUNC_ARG; return TLSX_UseCertificateStatusRequestV2(&ctx->extensions, status_type, options, ctx->heap, ctx->devId); } #endif /* HAVE_CERTIFICATE_STATUS_REQUEST_V2 */ /* Elliptic Curves */ #ifdef HAVE_SUPPORTED_CURVES #ifndef NO_WOLFSSL_CLIENT int wolfSSL_UseSupportedCurve(WOLFSSL* ssl, word16 name) { if (ssl == NULL) return BAD_FUNC_ARG; switch (name) { case WOLFSSL_ECC_SECP160K1: case WOLFSSL_ECC_SECP160R1: case WOLFSSL_ECC_SECP160R2: case WOLFSSL_ECC_SECP192K1: case WOLFSSL_ECC_SECP192R1: case WOLFSSL_ECC_SECP224K1: case WOLFSSL_ECC_SECP224R1: case WOLFSSL_ECC_SECP256K1: case WOLFSSL_ECC_SECP256R1: case WOLFSSL_ECC_SECP384R1: case WOLFSSL_ECC_SECP521R1: case WOLFSSL_ECC_BRAINPOOLP256R1: case WOLFSSL_ECC_BRAINPOOLP384R1: case WOLFSSL_ECC_BRAINPOOLP512R1: case WOLFSSL_ECC_X25519: break; #ifdef WOLFSSL_TLS13 case WOLFSSL_FFDHE_2048: case WOLFSSL_FFDHE_3072: case WOLFSSL_FFDHE_4096: case WOLFSSL_FFDHE_6144: case WOLFSSL_FFDHE_8192: if (!IsAtLeastTLSv1_3(ssl->version)) return WOLFSSL_SUCCESS; break; #endif default: return BAD_FUNC_ARG; } ssl->options.userCurves = 1; return TLSX_UseSupportedCurve(&ssl->extensions, name, ssl->heap); } int wolfSSL_CTX_UseSupportedCurve(WOLFSSL_CTX* ctx, word16 name) { if (ctx == NULL) return BAD_FUNC_ARG; switch (name) { case WOLFSSL_ECC_SECP160K1: case WOLFSSL_ECC_SECP160R1: case WOLFSSL_ECC_SECP160R2: case WOLFSSL_ECC_SECP192K1: case WOLFSSL_ECC_SECP192R1: case WOLFSSL_ECC_SECP224K1: case WOLFSSL_ECC_SECP224R1: case WOLFSSL_ECC_SECP256K1: case WOLFSSL_ECC_SECP256R1: case WOLFSSL_ECC_SECP384R1: case WOLFSSL_ECC_SECP521R1: case WOLFSSL_ECC_BRAINPOOLP256R1: case WOLFSSL_ECC_BRAINPOOLP384R1: case WOLFSSL_ECC_BRAINPOOLP512R1: case WOLFSSL_ECC_X25519: break; #ifdef WOLFSSL_TLS13 case WOLFSSL_FFDHE_2048: case WOLFSSL_FFDHE_3072: case WOLFSSL_FFDHE_4096: case WOLFSSL_FFDHE_6144: case WOLFSSL_FFDHE_8192: break; #endif default: return BAD_FUNC_ARG; } ctx->userCurves = 1; return TLSX_UseSupportedCurve(&ctx->extensions, name, ctx->heap); } #endif /* NO_WOLFSSL_CLIENT */ #endif /* HAVE_SUPPORTED_CURVES */ /* QSH quantum safe handshake */ #ifdef HAVE_QSH /* returns 1 if QSH has been used 0 otherwise */ int wolfSSL_isQSH(WOLFSSL* ssl) { /* if no ssl struct than QSH was not used */ if (ssl == NULL) return 0; return ssl->isQSH; } int wolfSSL_UseSupportedQSH(WOLFSSL* ssl, word16 name) { if (ssl == NULL) return BAD_FUNC_ARG; switch (name) { #ifdef HAVE_NTRU case WOLFSSL_NTRU_EESS439: case WOLFSSL_NTRU_EESS593: case WOLFSSL_NTRU_EESS743: break; #endif default: return BAD_FUNC_ARG; } ssl->user_set_QSHSchemes = 1; return TLSX_UseQSHScheme(&ssl->extensions, name, NULL, 0, ssl->heap); } #ifndef NO_WOLFSSL_CLIENT /* user control over sending client public key in hello when flag = 1 will send keys if flag is 0 or function is not called then will not send keys in the hello extension return 0 on success */ int wolfSSL_UseClientQSHKeys(WOLFSSL* ssl, unsigned char flag) { if (ssl == NULL) return BAD_FUNC_ARG; ssl->sendQSHKeys = flag; return 0; } #endif /* NO_WOLFSSL_CLIENT */ #endif /* HAVE_QSH */ /* Application-Layer Protocol Negotiation */ #ifdef HAVE_ALPN int wolfSSL_UseALPN(WOLFSSL* ssl, char *protocol_name_list, word32 protocol_name_listSz, byte options) { char *list, *ptr, *token[10]; word16 len; int idx = 0; int ret = WOLFSSL_FAILURE; WOLFSSL_ENTER("wolfSSL_UseALPN"); if (ssl == NULL || protocol_name_list == NULL) return BAD_FUNC_ARG; if (protocol_name_listSz > (WOLFSSL_MAX_ALPN_NUMBER * WOLFSSL_MAX_ALPN_PROTO_NAME_LEN + WOLFSSL_MAX_ALPN_NUMBER)) { WOLFSSL_MSG("Invalid arguments, protocol name list too long"); return BAD_FUNC_ARG; } if (!(options & WOLFSSL_ALPN_CONTINUE_ON_MISMATCH) && !(options & WOLFSSL_ALPN_FAILED_ON_MISMATCH)) { WOLFSSL_MSG("Invalid arguments, options not supported"); return BAD_FUNC_ARG; } list = (char *)XMALLOC(protocol_name_listSz+1, ssl->heap, DYNAMIC_TYPE_ALPN); if (list == NULL) { WOLFSSL_MSG("Memory failure"); return MEMORY_ERROR; } XSTRNCPY(list, protocol_name_list, protocol_name_listSz); list[protocol_name_listSz] = '\0'; /* read all protocol name from the list */ token[idx] = XSTRTOK(list, ",", &ptr); while (token[idx] != NULL) token[++idx] = XSTRTOK(NULL, ",", &ptr); /* add protocol name list in the TLS extension in reverse order */ while ((idx--) > 0) { len = (word16)XSTRLEN(token[idx]); ret = TLSX_UseALPN(&ssl->extensions, token[idx], len, options, ssl->heap); if (ret != WOLFSSL_SUCCESS) { WOLFSSL_MSG("TLSX_UseALPN failure"); break; } } XFREE(list, ssl->heap, DYNAMIC_TYPE_ALPN); return ret; } int wolfSSL_ALPN_GetProtocol(WOLFSSL* ssl, char **protocol_name, word16 *size) { return TLSX_ALPN_GetRequest(ssl ? ssl->extensions : NULL, (void **)protocol_name, size); } int wolfSSL_ALPN_GetPeerProtocol(WOLFSSL* ssl, char **list, word16 *listSz) { if (list == NULL || listSz == NULL) return BAD_FUNC_ARG; if (ssl->alpn_client_list == NULL) return BUFFER_ERROR; *listSz = (word16)XSTRLEN(ssl->alpn_client_list); if (*listSz == 0) return BUFFER_ERROR; *list = (char *)XMALLOC((*listSz)+1, ssl->heap, DYNAMIC_TYPE_TLSX); if (*list == NULL) return MEMORY_ERROR; XSTRNCPY(*list, ssl->alpn_client_list, (*listSz)+1); (*list)[*listSz] = 0; return WOLFSSL_SUCCESS; } /* used to free memory allocated by wolfSSL_ALPN_GetPeerProtocol */ int wolfSSL_ALPN_FreePeerProtocol(WOLFSSL* ssl, char **list) { if (ssl == NULL) { return BAD_FUNC_ARG; } XFREE(*list, ssl->heap, DYNAMIC_TYPE_TLSX); *list = NULL; return WOLFSSL_SUCCESS; } #endif /* HAVE_ALPN */ /* Secure Renegotiation */ #ifdef HAVE_SECURE_RENEGOTIATION /* user is forcing ability to use secure renegotiation, we discourage it */ int wolfSSL_UseSecureRenegotiation(WOLFSSL* ssl) { int ret = BAD_FUNC_ARG; if (ssl) ret = TLSX_UseSecureRenegotiation(&ssl->extensions, ssl->heap); if (ret == WOLFSSL_SUCCESS) { TLSX* extension = TLSX_Find(ssl->extensions, TLSX_RENEGOTIATION_INFO); if (extension) ssl->secure_renegotiation = (SecureRenegotiation*)extension->data; } return ret; } /* do a secure renegotiation handshake, user forced, we discourage */ int wolfSSL_Rehandshake(WOLFSSL* ssl) { int ret; if (ssl == NULL) return BAD_FUNC_ARG; if (ssl->secure_renegotiation == NULL) { WOLFSSL_MSG("Secure Renegotiation not forced on by user"); return SECURE_RENEGOTIATION_E; } if (ssl->secure_renegotiation->enabled == 0) { WOLFSSL_MSG("Secure Renegotiation not enabled at extension level"); return SECURE_RENEGOTIATION_E; } if (ssl->options.handShakeState != HANDSHAKE_DONE) { WOLFSSL_MSG("Can't renegotiate until previous handshake complete"); return SECURE_RENEGOTIATION_E; } #ifndef NO_FORCE_SCR_SAME_SUITE /* force same suite */ if (ssl->suites) { ssl->suites->suiteSz = SUITE_LEN; ssl->suites->suites[0] = ssl->options.cipherSuite0; ssl->suites->suites[1] = ssl->options.cipherSuite; } #endif /* reset handshake states */ ssl->options.serverState = NULL_STATE; ssl->options.clientState = NULL_STATE; ssl->options.connectState = CONNECT_BEGIN; ssl->options.acceptState = ACCEPT_BEGIN; ssl->options.handShakeState = NULL_STATE; ssl->options.processReply = 0; /* TODO, move states in internal.h */ XMEMSET(&ssl->msgsReceived, 0, sizeof(ssl->msgsReceived)); ssl->secure_renegotiation->cache_status = SCR_CACHE_NEEDED; ret = InitHandshakeHashes(ssl); if (ret !=0) return ret; ret = wolfSSL_negotiate(ssl); return ret; } #endif /* HAVE_SECURE_RENEGOTIATION */ /* Session Ticket */ #if !defined(NO_WOLFSSL_SERVER) && defined(HAVE_SESSION_TICKET) /* WOLFSSL_SUCCESS on ok */ int wolfSSL_CTX_set_TicketEncCb(WOLFSSL_CTX* ctx, SessionTicketEncCb cb) { if (ctx == NULL) return BAD_FUNC_ARG; ctx->ticketEncCb = cb; return WOLFSSL_SUCCESS; } /* set hint interval, WOLFSSL_SUCCESS on ok */ int wolfSSL_CTX_set_TicketHint(WOLFSSL_CTX* ctx, int hint) { if (ctx == NULL) return BAD_FUNC_ARG; ctx->ticketHint = hint; return WOLFSSL_SUCCESS; } /* set user context, WOLFSSL_SUCCESS on ok */ int wolfSSL_CTX_set_TicketEncCtx(WOLFSSL_CTX* ctx, void* userCtx) { if (ctx == NULL) return BAD_FUNC_ARG; ctx->ticketEncCtx = userCtx; return WOLFSSL_SUCCESS; } #endif /* !defined(NO_WOLFSSL_CLIENT) && defined(HAVE_SESSION_TICKET) */ /* Session Ticket */ #if !defined(NO_WOLFSSL_CLIENT) && defined(HAVE_SESSION_TICKET) int wolfSSL_UseSessionTicket(WOLFSSL* ssl) { if (ssl == NULL) return BAD_FUNC_ARG; return TLSX_UseSessionTicket(&ssl->extensions, NULL, ssl->heap); } int wolfSSL_CTX_UseSessionTicket(WOLFSSL_CTX* ctx) { if (ctx == NULL) return BAD_FUNC_ARG; return TLSX_UseSessionTicket(&ctx->extensions, NULL, ctx->heap); } WOLFSSL_API int wolfSSL_get_SessionTicket(WOLFSSL* ssl, byte* buf, word32* bufSz) { if (ssl == NULL || buf == NULL || bufSz == NULL || *bufSz == 0) return BAD_FUNC_ARG; if (ssl->session.ticketLen <= *bufSz) { XMEMCPY(buf, ssl->session.ticket, ssl->session.ticketLen); *bufSz = ssl->session.ticketLen; } else *bufSz = 0; return WOLFSSL_SUCCESS; } WOLFSSL_API int wolfSSL_set_SessionTicket(WOLFSSL* ssl, const byte* buf, word32 bufSz) { if (ssl == NULL || (buf == NULL && bufSz > 0)) return BAD_FUNC_ARG; if (bufSz > 0) { /* Ticket will fit into static ticket */ if(bufSz <= SESSION_TICKET_LEN) { if (ssl->session.isDynamic) { XFREE(ssl->session.ticket, ssl->heap, DYNAMIC_TYPE_SESSION_TICK); ssl->session.isDynamic = 0; ssl->session.ticket = ssl->session.staticTicket; } } else { /* Ticket requires dynamic ticket storage */ if (ssl->session.ticketLen < bufSz) { /* is dyn buffer big enough */ if(ssl->session.isDynamic) XFREE(ssl->session.ticket, ssl->heap, DYNAMIC_TYPE_SESSION_TICK); ssl->session.ticket = (byte*)XMALLOC(bufSz, ssl->heap, DYNAMIC_TYPE_SESSION_TICK); if(!ssl->session.ticket) { ssl->session.ticket = ssl->session.staticTicket; ssl->session.isDynamic = 0; return MEMORY_ERROR; } ssl->session.isDynamic = 1; } } XMEMCPY(ssl->session.ticket, buf, bufSz); } ssl->session.ticketLen = (word16)bufSz; return WOLFSSL_SUCCESS; } WOLFSSL_API int wolfSSL_set_SessionTicket_cb(WOLFSSL* ssl, CallbackSessionTicket cb, void* ctx) { if (ssl == NULL) return BAD_FUNC_ARG; ssl->session_ticket_cb = cb; ssl->session_ticket_ctx = ctx; return WOLFSSL_SUCCESS; } #endif #ifdef HAVE_EXTENDED_MASTER #ifndef NO_WOLFSSL_CLIENT int wolfSSL_CTX_DisableExtendedMasterSecret(WOLFSSL_CTX* ctx) { if (ctx == NULL) return BAD_FUNC_ARG; ctx->haveEMS = 0; return WOLFSSL_SUCCESS; } int wolfSSL_DisableExtendedMasterSecret(WOLFSSL* ssl) { if (ssl == NULL) return BAD_FUNC_ARG; ssl->options.haveEMS = 0; return WOLFSSL_SUCCESS; } #endif #endif #ifndef WOLFSSL_LEANPSK int wolfSSL_send(WOLFSSL* ssl, const void* data, int sz, int flags) { int ret; int oldFlags; WOLFSSL_ENTER("wolfSSL_send()"); if (ssl == NULL || data == NULL || sz < 0) return BAD_FUNC_ARG; oldFlags = ssl->wflags; ssl->wflags = flags; ret = wolfSSL_write(ssl, data, sz); ssl->wflags = oldFlags; WOLFSSL_LEAVE("wolfSSL_send()", ret); return ret; } int wolfSSL_recv(WOLFSSL* ssl, void* data, int sz, int flags) { int ret; int oldFlags; WOLFSSL_ENTER("wolfSSL_recv()"); if (ssl == NULL || data == NULL || sz < 0) return BAD_FUNC_ARG; oldFlags = ssl->rflags; ssl->rflags = flags; ret = wolfSSL_read(ssl, data, sz); ssl->rflags = oldFlags; WOLFSSL_LEAVE("wolfSSL_recv()", ret); return ret; } #endif /* WOLFSSL_SUCCESS on ok */ int wolfSSL_shutdown(WOLFSSL* ssl) { int ret = WOLFSSL_FATAL_ERROR; byte tmp; WOLFSSL_ENTER("SSL_shutdown()"); if (ssl == NULL) return WOLFSSL_FATAL_ERROR; if (ssl->options.quietShutdown) { WOLFSSL_MSG("quiet shutdown, no close notify sent"); ret = WOLFSSL_SUCCESS; } else { /* try to send close notify, not an error if can't */ if (!ssl->options.isClosed && !ssl->options.connReset && !ssl->options.sentNotify) { ssl->error = SendAlert(ssl, alert_warning, close_notify); if (ssl->error < 0) { WOLFSSL_ERROR(ssl->error); return WOLFSSL_FATAL_ERROR; } ssl->options.sentNotify = 1; /* don't send close_notify twice */ if (ssl->options.closeNotify) ret = WOLFSSL_SUCCESS; else { ret = WOLFSSL_SHUTDOWN_NOT_DONE; WOLFSSL_LEAVE("SSL_shutdown()", ret); return ret; } } /* call wolfSSL_shutdown again for bidirectional shutdown */ if (ssl->options.sentNotify && !ssl->options.closeNotify) { ret = wolfSSL_read(ssl, &tmp, 0); if (ret < 0) { WOLFSSL_ERROR(ssl->error); ret = WOLFSSL_FATAL_ERROR; } else if (ssl->options.closeNotify) { ssl->error = WOLFSSL_ERROR_SYSCALL; /* simulate OpenSSL behavior */ ret = WOLFSSL_SUCCESS; } } } #ifdef OPENSSL_EXTRA /* reset WOLFSSL structure state for possible re-use */ if (ret == WOLFSSL_SUCCESS) { if (wolfSSL_clear(ssl) != WOLFSSL_SUCCESS) { WOLFSSL_MSG("could not clear WOLFSSL"); ret = WOLFSSL_FATAL_ERROR; } } #endif WOLFSSL_LEAVE("SSL_shutdown()", ret); return ret; } /* get current error state value */ int wolfSSL_state(WOLFSSL* ssl) { if (ssl == NULL) { return BAD_FUNC_ARG; } return ssl->error; } int wolfSSL_get_error(WOLFSSL* ssl, int ret) { WOLFSSL_ENTER("SSL_get_error"); if (ret > 0) return WOLFSSL_ERROR_NONE; if (ssl == NULL) return BAD_FUNC_ARG; WOLFSSL_LEAVE("SSL_get_error", ssl->error); /* make sure converted types are handled in SetErrorString() too */ if (ssl->error == WANT_READ) return WOLFSSL_ERROR_WANT_READ; /* convert to OpenSSL type */ else if (ssl->error == WANT_WRITE) return WOLFSSL_ERROR_WANT_WRITE; /* convert to OpenSSL type */ else if (ssl->error == ZERO_RETURN) return WOLFSSL_ERROR_ZERO_RETURN; /* convert to OpenSSL type */ return ssl->error; } /* retrive alert history, WOLFSSL_SUCCESS on ok */ int wolfSSL_get_alert_history(WOLFSSL* ssl, WOLFSSL_ALERT_HISTORY *h) { if (ssl && h) { *h = ssl->alert_history; } return WOLFSSL_SUCCESS; } /* return TRUE if current error is want read */ int wolfSSL_want_read(WOLFSSL* ssl) { WOLFSSL_ENTER("SSL_want_read"); if (ssl->error == WANT_READ) return 1; return 0; } /* return TRUE if current error is want write */ int wolfSSL_want_write(WOLFSSL* ssl) { WOLFSSL_ENTER("SSL_want_write"); if (ssl->error == WANT_WRITE) return 1; return 0; } char* wolfSSL_ERR_error_string(unsigned long errNumber, char* data) { static const char* const msg = "Please supply a buffer for error string"; WOLFSSL_ENTER("ERR_error_string"); if (data) { SetErrorString((int)errNumber, data); return data; } return (char*)msg; } void wolfSSL_ERR_error_string_n(unsigned long e, char* buf, unsigned long len) { WOLFSSL_ENTER("wolfSSL_ERR_error_string_n"); if (len >= WOLFSSL_MAX_ERROR_SZ) wolfSSL_ERR_error_string(e, buf); else { char tmp[WOLFSSL_MAX_ERROR_SZ]; WOLFSSL_MSG("Error buffer too short, truncating"); if (len) { wolfSSL_ERR_error_string(e, tmp); XMEMCPY(buf, tmp, len-1); buf[len-1] = '\0'; } } } /* don't free temporary arrays at end of handshake */ void wolfSSL_KeepArrays(WOLFSSL* ssl) { if (ssl) ssl->options.saveArrays = 1; } /* user doesn't need temporary arrays anymore, Free */ void wolfSSL_FreeArrays(WOLFSSL* ssl) { if (ssl && ssl->options.handShakeState == HANDSHAKE_DONE) { ssl->options.saveArrays = 0; FreeArrays(ssl, 1); } } /* Set option to indicate that the resources are not to be freed after * handshake. * * ssl The SSL/TLS object. * returns BAD_FUNC_ARG when ssl is NULL and 0 on success. */ int wolfSSL_KeepHandshakeResources(WOLFSSL* ssl) { if (ssl == NULL) return BAD_FUNC_ARG; ssl->options.keepResources = 1; return 0; } /* Free the handshake resources after handshake. * * ssl The SSL/TLS object. * returns BAD_FUNC_ARG when ssl is NULL and 0 on success. */ int wolfSSL_FreeHandshakeResources(WOLFSSL* ssl) { if (ssl == NULL) return BAD_FUNC_ARG; FreeHandshakeResources(ssl); return 0; } /* Use the client's order of preference when matching cipher suites. * * ssl The SSL/TLS context object. * returns BAD_FUNC_ARG when ssl is NULL and 0 on success. */ int wolfSSL_CTX_UseClientSuites(WOLFSSL_CTX* ctx) { if (ctx == NULL) return BAD_FUNC_ARG; ctx->useClientOrder = 1; return 0; } /* Use the client's order of preference when matching cipher suites. * * ssl The SSL/TLS object. * returns BAD_FUNC_ARG when ssl is NULL and 0 on success. */ int wolfSSL_UseClientSuites(WOLFSSL* ssl) { if (ssl == NULL) return BAD_FUNC_ARG; ssl->options.useClientOrder = 1; return 0; } const byte* wolfSSL_GetMacSecret(WOLFSSL* ssl, int verify) { if (ssl == NULL) return NULL; if ( (ssl->options.side == WOLFSSL_CLIENT_END && !verify) || (ssl->options.side == WOLFSSL_SERVER_END && verify) ) return ssl->keys.client_write_MAC_secret; else return ssl->keys.server_write_MAC_secret; } #ifdef ATOMIC_USER void wolfSSL_CTX_SetMacEncryptCb(WOLFSSL_CTX* ctx, CallbackMacEncrypt cb) { if (ctx) ctx->MacEncryptCb = cb; } void wolfSSL_SetMacEncryptCtx(WOLFSSL* ssl, void *ctx) { if (ssl) ssl->MacEncryptCtx = ctx; } void* wolfSSL_GetMacEncryptCtx(WOLFSSL* ssl) { if (ssl) return ssl->MacEncryptCtx; return NULL; } void wolfSSL_CTX_SetDecryptVerifyCb(WOLFSSL_CTX* ctx, CallbackDecryptVerify cb) { if (ctx) ctx->DecryptVerifyCb = cb; } void wolfSSL_SetDecryptVerifyCtx(WOLFSSL* ssl, void *ctx) { if (ssl) ssl->DecryptVerifyCtx = ctx; } void* wolfSSL_GetDecryptVerifyCtx(WOLFSSL* ssl) { if (ssl) return ssl->DecryptVerifyCtx; return NULL; } const byte* wolfSSL_GetClientWriteKey(WOLFSSL* ssl) { if (ssl) return ssl->keys.client_write_key; return NULL; } const byte* wolfSSL_GetClientWriteIV(WOLFSSL* ssl) { if (ssl) return ssl->keys.client_write_IV; return NULL; } const byte* wolfSSL_GetServerWriteKey(WOLFSSL* ssl) { if (ssl) return ssl->keys.server_write_key; return NULL; } const byte* wolfSSL_GetServerWriteIV(WOLFSSL* ssl) { if (ssl) return ssl->keys.server_write_IV; return NULL; } int wolfSSL_GetKeySize(WOLFSSL* ssl) { if (ssl) return ssl->specs.key_size; return BAD_FUNC_ARG; } int wolfSSL_GetIVSize(WOLFSSL* ssl) { if (ssl) return ssl->specs.iv_size; return BAD_FUNC_ARG; } int wolfSSL_GetBulkCipher(WOLFSSL* ssl) { if (ssl) return ssl->specs.bulk_cipher_algorithm; return BAD_FUNC_ARG; } int wolfSSL_GetCipherType(WOLFSSL* ssl) { if (ssl == NULL) return BAD_FUNC_ARG; if (ssl->specs.cipher_type == block) return WOLFSSL_BLOCK_TYPE; if (ssl->specs.cipher_type == stream) return WOLFSSL_STREAM_TYPE; if (ssl->specs.cipher_type == aead) return WOLFSSL_AEAD_TYPE; return -1; } int wolfSSL_GetCipherBlockSize(WOLFSSL* ssl) { if (ssl == NULL) return BAD_FUNC_ARG; return ssl->specs.block_size; } int wolfSSL_GetAeadMacSize(WOLFSSL* ssl) { if (ssl == NULL) return BAD_FUNC_ARG; return ssl->specs.aead_mac_size; } int wolfSSL_IsTLSv1_1(WOLFSSL* ssl) { if (ssl == NULL) return BAD_FUNC_ARG; if (ssl->options.tls1_1) return 1; return 0; } int wolfSSL_GetSide(WOLFSSL* ssl) { if (ssl) return ssl->options.side; return BAD_FUNC_ARG; } int wolfSSL_GetHmacSize(WOLFSSL* ssl) { /* AEAD ciphers don't have HMAC keys */ if (ssl) return (ssl->specs.cipher_type != aead) ? ssl->specs.hash_size : 0; return BAD_FUNC_ARG; } #endif /* ATOMIC_USER */ #ifndef NO_CERTS WOLFSSL_CERT_MANAGER* wolfSSL_CTX_GetCertManager(WOLFSSL_CTX* ctx) { WOLFSSL_CERT_MANAGER* cm = NULL; if (ctx) cm = ctx->cm; return cm; } WOLFSSL_CERT_MANAGER* wolfSSL_CertManagerNew_ex(void* heap) { WOLFSSL_CERT_MANAGER* cm = NULL; WOLFSSL_ENTER("wolfSSL_CertManagerNew"); cm = (WOLFSSL_CERT_MANAGER*) XMALLOC(sizeof(WOLFSSL_CERT_MANAGER), heap, DYNAMIC_TYPE_CERT_MANAGER); if (cm) { XMEMSET(cm, 0, sizeof(WOLFSSL_CERT_MANAGER)); if (wc_InitMutex(&cm->caLock) != 0) { WOLFSSL_MSG("Bad mutex init"); wolfSSL_CertManagerFree(cm); return NULL; } #ifdef WOLFSSL_TRUST_PEER_CERT if (wc_InitMutex(&cm->tpLock) != 0) { WOLFSSL_MSG("Bad mutex init"); wolfSSL_CertManagerFree(cm); return NULL; } #endif /* set default minimum key size allowed */ #ifndef NO_RSA cm->minRsaKeySz = MIN_RSAKEY_SZ; #endif #ifdef HAVE_ECC cm->minEccKeySz = MIN_ECCKEY_SZ; #endif cm->heap = heap; } return cm; } WOLFSSL_CERT_MANAGER* wolfSSL_CertManagerNew(void) { return wolfSSL_CertManagerNew_ex(NULL); } void wolfSSL_CertManagerFree(WOLFSSL_CERT_MANAGER* cm) { WOLFSSL_ENTER("wolfSSL_CertManagerFree"); if (cm) { #ifdef HAVE_CRL if (cm->crl) FreeCRL(cm->crl, 1); #endif #ifdef HAVE_OCSP if (cm->ocsp) FreeOCSP(cm->ocsp, 1); XFREE(cm->ocspOverrideURL, cm->heap, DYNAMIC_TYPE_URL); #if defined(HAVE_CERTIFICATE_STATUS_REQUEST) \ || defined(HAVE_CERTIFICATE_STATUS_REQUEST_V2) if (cm->ocsp_stapling) FreeOCSP(cm->ocsp_stapling, 1); #endif #endif FreeSignerTable(cm->caTable, CA_TABLE_SIZE, cm->heap); wc_FreeMutex(&cm->caLock); #ifdef WOLFSSL_TRUST_PEER_CERT FreeTrustedPeerTable(cm->tpTable, TP_TABLE_SIZE, cm->heap); wc_FreeMutex(&cm->tpLock); #endif XFREE(cm, cm->heap, DYNAMIC_TYPE_CERT_MANAGER); } } /* Unload the CA signer list */ int wolfSSL_CertManagerUnloadCAs(WOLFSSL_CERT_MANAGER* cm) { WOLFSSL_ENTER("wolfSSL_CertManagerUnloadCAs"); if (cm == NULL) return BAD_FUNC_ARG; if (wc_LockMutex(&cm->caLock) != 0) return BAD_MUTEX_E; FreeSignerTable(cm->caTable, CA_TABLE_SIZE, NULL); wc_UnLockMutex(&cm->caLock); return WOLFSSL_SUCCESS; } #ifdef WOLFSSL_TRUST_PEER_CERT int wolfSSL_CertManagerUnload_trust_peers(WOLFSSL_CERT_MANAGER* cm) { WOLFSSL_ENTER("wolfSSL_CertManagerUnload_trust_peers"); if (cm == NULL) return BAD_FUNC_ARG; if (wc_LockMutex(&cm->tpLock) != 0) return BAD_MUTEX_E; FreeTrustedPeerTable(cm->tpTable, TP_TABLE_SIZE, NULL); wc_UnLockMutex(&cm->tpLock); return WOLFSSL_SUCCESS; } #endif /* WOLFSSL_TRUST_PEER_CERT */ #endif /* NO_CERTS */ #if defined(OPENSSL_EXTRA) || defined(OPENSSL_EXTRA_X509_SMALL) || \ defined(HAVE_WEBSERVER) static const struct cipher{ unsigned char type; const char *name; } cipher_tbl[] = { #ifndef NO_AES #ifdef WOLFSSL_AES_128 {AES_128_CBC_TYPE, "AES-128-CBC"}, #endif #ifdef WOLFSSL_AES_192 {AES_192_CBC_TYPE, "AES-192-CBC"}, #endif #ifdef WOLFSSL_AES_256 {AES_256_CBC_TYPE, "AES-256-CBC"}, #endif #if defined(OPENSSL_EXTRA) #ifdef WOLFSSL_AES_128 {AES_128_CTR_TYPE, "AES-128-CTR"}, #endif #ifdef WOLFSSL_AES_192 {AES_192_CTR_TYPE, "AES-192-CTR"}, #endif #ifdef WOLFSSL_AES_256 {AES_256_CTR_TYPE, "AES-256-CTR"}, #endif #ifdef WOLFSSL_AES_128 {AES_128_ECB_TYPE, "AES-128-ECB"}, #endif #ifdef WOLFSSL_AES_192 {AES_192_ECB_TYPE, "AES-192-ECB"}, #endif #ifdef WOLFSSL_AES_256 {AES_256_ECB_TYPE, "AES-256-ECB"}, #endif #endif #endif #ifndef NO_DES3 {DES_CBC_TYPE, "DES-CBC"}, {DES_ECB_TYPE, "DES-ECB"}, {DES_EDE3_CBC_TYPE, "DES-EDE3-CBC"}, {DES_EDE3_ECB_TYPE, "DES-EDE3-ECB"}, #endif #ifndef NO_RC4 {ARC4_TYPE, "ARC4"}, #endif #ifdef HAVE_IDEA {IDEA_CBC_TYPE, "IDEA-CBC"}, #endif { 0, NULL} }; const WOLFSSL_EVP_CIPHER *wolfSSL_EVP_get_cipherbyname(const char *name) { static const struct alias { const char *name; const char *alias; } alias_tbl[] = { #ifndef NO_DES3 {"DES-CBC", "DES"}, {"DES-CBC", "des"}, {"DES-ECB", "DES-ECB"}, {"DES-ECB", "des-ecb"}, {"DES-EDE3-CBC", "DES3"}, {"DES-EDE3-CBC", "des3"}, {"DES-EDE3-ECB", "DES-EDE3"}, {"DES-EDE3-ECB", "des-ede3"}, {"DES-EDE3-ECB", "des-ede3-ecb"}, #endif #ifdef HAVE_IDEA {"IDEA-CBC", "IDEA"}, {"IDEA-CBC", "idea"}, #endif #ifndef NO_AES #ifdef HAVE_AES_CBC #ifdef WOLFSSL_AES_128 {"AES-128-CBC", "AES128-CBC"}, {"AES-128-CBC", "aes128-cbc"}, #endif #ifdef WOLFSSL_AES_192 {"AES-192-CBC", "AES192-CBC"}, {"AES-192-CBC", "aes192-cbc"}, #endif #ifdef WOLFSSL_AES_256 {"AES-256-CBC", "AES256-CBC"}, {"AES-256-CBC", "aes256-cbc"}, #endif #endif #ifdef WOLFSSL_AES_128 {"AES-128-ECB", "AES128-ECB"}, {"AES-128-ECB", "aes128-ecb"}, #endif #ifdef WOLFSSL_AES_192 {"AES-192-ECB", "AES192-ECB"}, {"AES-192-ECB", "aes192-ecb"}, #endif #ifdef WOLFSSL_AES_256 {"AES-256-ECB", "AES256-ECB"}, {"AES-256-EBC", "aes256-ecb"}, #endif #endif #ifndef NO_RC4 {"ARC4", "RC4"}, #endif { NULL, NULL} }; const struct cipher *ent; const struct alias *al; WOLFSSL_ENTER("EVP_get_cipherbyname"); for( al = alias_tbl; al->name != NULL; al++) if(XSTRNCMP(name, al->alias, XSTRLEN(al->alias)+1) == 0) { name = al->name; break; } for( ent = cipher_tbl; ent->name != NULL; ent++) if(XSTRNCMP(name, ent->name, XSTRLEN(ent->name)+1) == 0) { return (WOLFSSL_EVP_CIPHER *)ent->name; } return NULL; } /* * return an EVP_CIPHER structure when cipher NID is passed. * * id cipher NID * * retrun WOLFSSL_EVP_CIPHER */ const WOLFSSL_EVP_CIPHER *wolfSSL_EVP_get_cipherbynid(int id) { WOLFSSL_ENTER("EVP_get_cipherbynid"); switch(id) { #if defined(OPENSSL_EXTRA) #ifndef NO_AES #ifdef HAVE_AES_CBC #ifdef WOLFSSL_AES_128 case NID_aes_128_cbc: return wolfSSL_EVP_aes_128_cbc(); #endif #ifdef WOLFSSL_AES_192 case NID_aes_192_cbc: return wolfSSL_EVP_aes_192_cbc(); #endif #ifdef WOLFSSL_AES_256 case NID_aes_256_cbc: return wolfSSL_EVP_aes_256_cbc(); #endif #endif #ifdef WOLFSSL_AES_COUNTER #ifdef WOLFSSL_AES_128 case NID_aes_128_ctr: return wolfSSL_EVP_aes_128_ctr(); #endif #ifdef WOLFSSL_AES_192 case NID_aes_192_ctr: return wolfSSL_EVP_aes_192_ctr(); #endif #ifdef WOLFSSL_AES_256 case NID_aes_256_ctr: return wolfSSL_EVP_aes_256_ctr(); #endif #endif /* WOLFSSL_AES_COUNTER */ #ifdef HAVE_AES_ECB #ifdef WOLFSSL_AES_128 case NID_aes_128_ecb: return wolfSSL_EVP_aes_128_ecb(); #endif #ifdef WOLFSSL_AES_192 case NID_aes_192_ecb: return wolfSSL_EVP_aes_192_ecb(); #endif #ifdef WOLFSSL_AES_256 case NID_aes_256_ecb: return wolfSSL_EVP_aes_256_ecb(); #endif #endif /* HAVE_AES_ECB */ #endif #ifndef NO_DES3 case NID_des_cbc: return wolfSSL_EVP_des_cbc(); #ifdef WOLFSSL_DES_ECB case NID_des_ecb: return wolfSSL_EVP_des_ecb(); #endif case NID_des_ede3_cbc: return wolfSSL_EVP_des_ede3_cbc(); #ifdef WOLFSSL_DES_ECB case NID_des_ede3_ecb: return wolfSSL_EVP_des_ede3_ecb(); #endif #endif /*NO_DES3*/ #ifdef HAVE_IDEA case NID_idea_cbc: return wolfSSL_EVP_idea_cbc(); #endif #endif /*OPENSSL_EXTRA*/ default: WOLFSSL_MSG("Bad cipher id value"); } return NULL; } #ifndef NO_AES #ifdef HAVE_AES_CBC #ifdef WOLFSSL_AES_128 static char *EVP_AES_128_CBC; #endif #ifdef WOLFSSL_AES_192 static char *EVP_AES_192_CBC; #endif #ifdef WOLFSSL_AES_256 static char *EVP_AES_256_CBC; #endif #endif /* HAVE_AES_CBC */ #if defined(OPENSSL_EXTRA) #ifdef WOLFSSL_AES_128 static char *EVP_AES_128_CTR; #endif #ifdef WOLFSSL_AES_192 static char *EVP_AES_192_CTR; #endif #ifdef WOLFSSL_AES_256 static char *EVP_AES_256_CTR; #endif #ifdef WOLFSSL_AES_128 static char *EVP_AES_128_ECB; #endif #ifdef WOLFSSL_AES_192 static char *EVP_AES_192_ECB; #endif #ifdef WOLFSSL_AES_256 static char *EVP_AES_256_ECB; #endif static const int EVP_AES_SIZE = 11; #endif #endif #ifndef NO_DES3 static char *EVP_DES_CBC; static char *EVP_DES_ECB; static char *EVP_DES_EDE3_CBC; static char *EVP_DES_EDE3_ECB; #ifdef OPENSSL_EXTRA static const int EVP_DES_SIZE = 7; static const int EVP_DES_EDE3_SIZE = 12; #endif #endif #ifdef HAVE_IDEA static char *EVP_IDEA_CBC; #if defined(OPENSSL_EXTRA) static const int EVP_IDEA_SIZE = 8; #endif #endif void wolfSSL_EVP_init(void) { #ifndef NO_AES #ifdef HAVE_AES_CBC #ifdef WOLFSSL_AES_128 EVP_AES_128_CBC = (char *)EVP_get_cipherbyname("AES-128-CBC"); #endif #ifdef WOLFSSL_AES_192 EVP_AES_192_CBC = (char *)EVP_get_cipherbyname("AES-192-CBC"); #endif #ifdef WOLFSSL_AES_256 EVP_AES_256_CBC = (char *)EVP_get_cipherbyname("AES-256-CBC"); #endif #endif /* HAVE_AES_CBC */ #if defined(OPENSSL_EXTRA) #ifdef WOLFSSL_AES_128 EVP_AES_128_CTR = (char *)EVP_get_cipherbyname("AES-128-CTR"); #endif #ifdef WOLFSSL_AES_192 EVP_AES_192_CTR = (char *)EVP_get_cipherbyname("AES-192-CTR"); #endif #ifdef WOLFSSL_AES_256 EVP_AES_256_CTR = (char *)EVP_get_cipherbyname("AES-256-CTR"); #endif #ifdef WOLFSSL_AES_128 EVP_AES_128_ECB = (char *)EVP_get_cipherbyname("AES-128-ECB"); #endif #ifdef WOLFSSL_AES_192 EVP_AES_192_ECB = (char *)EVP_get_cipherbyname("AES-192-ECB"); #endif #ifdef WOLFSSL_AES_256 EVP_AES_256_ECB = (char *)EVP_get_cipherbyname("AES-256-ECB"); #endif #endif #endif #ifndef NO_DES3 EVP_DES_CBC = (char *)EVP_get_cipherbyname("DES-CBC"); EVP_DES_ECB = (char *)EVP_get_cipherbyname("DES-ECB"); EVP_DES_EDE3_CBC = (char *)EVP_get_cipherbyname("DES-EDE3-CBC"); EVP_DES_EDE3_ECB = (char *)EVP_get_cipherbyname("DES-EDE3-ECB"); #endif #ifdef HAVE_IDEA EVP_IDEA_CBC = (char *)EVP_get_cipherbyname("IDEA-CBC"); #endif } #endif /* OPENSSL_EXTRA || OPENSSL_EXTRA_X509_SMALL || HAVE_WEBSERVER */ #if !defined(NO_FILESYSTEM) && !defined(NO_STDIO_FILESYSTEM) void wolfSSL_ERR_print_errors_fp(XFILE fp, int err) { char data[WOLFSSL_MAX_ERROR_SZ + 1]; WOLFSSL_ENTER("wolfSSL_ERR_print_errors_fp"); SetErrorString(err, data); fprintf(fp, "%s", data); } #if defined(OPENSSL_EXTRA) || defined(DEBUG_WOLFSSL_VERBOSE) void wolfSSL_ERR_dump_errors_fp(XFILE fp) { wc_ERR_print_errors_fp(fp); } #endif #endif int wolfSSL_pending(WOLFSSL* ssl) { WOLFSSL_ENTER("SSL_pending"); return ssl->buffers.clearOutputBuffer.length; } #ifndef WOLFSSL_LEANPSK /* turn on handshake group messages for context */ int wolfSSL_CTX_set_group_messages(WOLFSSL_CTX* ctx) { if (ctx == NULL) return BAD_FUNC_ARG; ctx->groupMessages = 1; return WOLFSSL_SUCCESS; } #endif #ifndef NO_WOLFSSL_CLIENT /* connect enough to get peer cert chain */ int wolfSSL_connect_cert(WOLFSSL* ssl) { int ret; if (ssl == NULL) return WOLFSSL_FAILURE; ssl->options.certOnly = 1; ret = wolfSSL_connect(ssl); ssl->options.certOnly = 0; return ret; } #endif #ifndef WOLFSSL_LEANPSK /* turn on handshake group messages for ssl object */ int wolfSSL_set_group_messages(WOLFSSL* ssl) { if (ssl == NULL) return BAD_FUNC_ARG; ssl->options.groupMessages = 1; return WOLFSSL_SUCCESS; } /* make minVersion the internal equivalent SSL version */ static int SetMinVersionHelper(byte* minVersion, int version) { #ifdef NO_TLS (void)minVersion; #endif switch (version) { #if defined(WOLFSSL_ALLOW_SSLV3) && !defined(NO_OLD_TLS) case WOLFSSL_SSLV3: *minVersion = SSLv3_MINOR; break; #endif #ifndef NO_TLS #ifndef NO_OLD_TLS case WOLFSSL_TLSV1: *minVersion = TLSv1_MINOR; break; case WOLFSSL_TLSV1_1: *minVersion = TLSv1_1_MINOR; break; #endif #ifndef WOLFSSL_NO_TLS12 case WOLFSSL_TLSV1_2: *minVersion = TLSv1_2_MINOR; break; #endif #endif #ifdef WOLFSSL_TLS13 case WOLFSSL_TLSV1_3: *minVersion = TLSv1_3_MINOR; break; #endif default: WOLFSSL_MSG("Bad function argument"); return BAD_FUNC_ARG; } return WOLFSSL_SUCCESS; } /* Set minimum downgrade version allowed, WOLFSSL_SUCCESS on ok */ int wolfSSL_CTX_SetMinVersion(WOLFSSL_CTX* ctx, int version) { WOLFSSL_ENTER("wolfSSL_CTX_SetMinVersion"); if (ctx == NULL) { WOLFSSL_MSG("Bad function argument"); return BAD_FUNC_ARG; } return SetMinVersionHelper(&ctx->minDowngrade, version); } /* Set minimum downgrade version allowed, WOLFSSL_SUCCESS on ok */ int wolfSSL_SetMinVersion(WOLFSSL* ssl, int version) { WOLFSSL_ENTER("wolfSSL_SetMinVersion"); if (ssl == NULL) { WOLFSSL_MSG("Bad function argument"); return BAD_FUNC_ARG; } return SetMinVersionHelper(&ssl->options.minDowngrade, version); } /* Function to get version as WOLFSSL_ enum value for wolfSSL_SetVersion */ int wolfSSL_GetVersion(WOLFSSL* ssl) { if (ssl == NULL) return BAD_FUNC_ARG; if (ssl->version.major == SSLv3_MAJOR) { switch (ssl->version.minor) { case SSLv3_MINOR : return WOLFSSL_SSLV3; case TLSv1_MINOR : return WOLFSSL_TLSV1; case TLSv1_1_MINOR : return WOLFSSL_TLSV1_1; case TLSv1_2_MINOR : return WOLFSSL_TLSV1_2; case TLSv1_3_MINOR : return WOLFSSL_TLSV1_3; default: break; } } return VERSION_ERROR; } int wolfSSL_SetVersion(WOLFSSL* ssl, int version) { word16 haveRSA = 1; word16 havePSK = 0; int keySz = 0; WOLFSSL_ENTER("wolfSSL_SetVersion"); if (ssl == NULL) { WOLFSSL_MSG("Bad function argument"); return BAD_FUNC_ARG; } switch (version) { #if defined(WOLFSSL_ALLOW_SSLV3) && !defined(NO_OLD_TLS) case WOLFSSL_SSLV3: ssl->version = MakeSSLv3(); break; #endif #ifndef NO_TLS #ifndef NO_OLD_TLS #ifdef WOLFSSL_ALLOW_TLSV10 case WOLFSSL_TLSV1: ssl->version = MakeTLSv1(); break; #endif case WOLFSSL_TLSV1_1: ssl->version = MakeTLSv1_1(); break; #endif #ifndef WOLFSSL_NO_TLS12 case WOLFSSL_TLSV1_2: ssl->version = MakeTLSv1_2(); break; #endif #endif #ifdef WOLFSSL_TLS13 case WOLFSSL_TLSV1_3: ssl->version = MakeTLSv1_3(); break; #endif default: WOLFSSL_MSG("Bad function argument"); return BAD_FUNC_ARG; } #ifdef NO_RSA haveRSA = 0; #endif #ifndef NO_PSK havePSK = ssl->options.havePSK; #endif #ifndef NO_CERTS keySz = ssl->buffers.keySz; #endif InitSuites(ssl->suites, ssl->version, keySz, haveRSA, havePSK, ssl->options.haveDH, ssl->options.haveNTRU, ssl->options.haveECDSAsig, ssl->options.haveECC, ssl->options.haveStaticECC, ssl->options.side); return WOLFSSL_SUCCESS; } #endif /* !leanpsk */ #if !defined(NO_CERTS) || !defined(NO_SESSION_CACHE) /* Make a work from the front of random hash */ static WC_INLINE word32 MakeWordFromHash(const byte* hashID) { return ((word32)hashID[0] << 24) | (hashID[1] << 16) | (hashID[2] << 8) | hashID[3]; } #endif /* !NO_CERTS || !NO_SESSION_CACHE */ #ifndef NO_CERTS /* hash is the SHA digest of name, just use first 32 bits as hash */ static WC_INLINE word32 HashSigner(const byte* hash) { return MakeWordFromHash(hash) % CA_TABLE_SIZE; } /* does CA already exist on signer list */ int AlreadySigner(WOLFSSL_CERT_MANAGER* cm, byte* hash) { Signer* signers; int ret = 0; word32 row; if (cm == NULL || hash == NULL) { return ret; } row = HashSigner(hash); if (wc_LockMutex(&cm->caLock) != 0) { return ret; } signers = cm->caTable[row]; while (signers) { byte* subjectHash; #ifndef NO_SKID subjectHash = signers->subjectKeyIdHash; #else subjectHash = signers->subjectNameHash; #endif if (XMEMCMP(hash, subjectHash, SIGNER_DIGEST_SIZE) == 0) { ret = 1; /* success */ break; } signers = signers->next; } wc_UnLockMutex(&cm->caLock); return ret; } #ifdef WOLFSSL_TRUST_PEER_CERT /* hash is the SHA digest of name, just use first 32 bits as hash */ static WC_INLINE word32 TrustedPeerHashSigner(const byte* hash) { return MakeWordFromHash(hash) % TP_TABLE_SIZE; } /* does trusted peer already exist on signer list */ int AlreadyTrustedPeer(WOLFSSL_CERT_MANAGER* cm, byte* hash) { TrustedPeerCert* tp; int ret = 0; word32 row = TrustedPeerHashSigner(hash); if (wc_LockMutex(&cm->tpLock) != 0) return ret; tp = cm->tpTable[row]; while (tp) { byte* subjectHash; #ifndef NO_SKID subjectHash = tp->subjectKeyIdHash; #else subjectHash = tp->subjectNameHash; #endif if (XMEMCMP(hash, subjectHash, SIGNER_DIGEST_SIZE) == 0) { ret = 1; break; } tp = tp->next; } wc_UnLockMutex(&cm->tpLock); return ret; } /* return Trusted Peer if found, otherwise NULL type is what to match on */ TrustedPeerCert* GetTrustedPeer(void* vp, byte* hash, int type) { WOLFSSL_CERT_MANAGER* cm = (WOLFSSL_CERT_MANAGER*)vp; TrustedPeerCert* ret = NULL; TrustedPeerCert* tp = NULL; word32 row; if (cm == NULL || hash == NULL) return NULL; row = TrustedPeerHashSigner(hash); if (wc_LockMutex(&cm->tpLock) != 0) return ret; tp = cm->tpTable[row]; while (tp) { byte* subjectHash; switch (type) { #ifndef NO_SKID case WC_MATCH_SKID: subjectHash = tp->subjectKeyIdHash; break; #endif case WC_MATCH_NAME: subjectHash = tp->subjectNameHash; break; default: WOLFSSL_MSG("Unknown search type"); wc_UnLockMutex(&cm->tpLock); return NULL; } if (XMEMCMP(hash, subjectHash, SIGNER_DIGEST_SIZE) == 0) { ret = tp; break; } tp = tp->next; } wc_UnLockMutex(&cm->tpLock); return ret; } int MatchTrustedPeer(TrustedPeerCert* tp, DecodedCert* cert) { if (tp == NULL || cert == NULL) return BAD_FUNC_ARG; /* subject key id or subject hash has been compared when searching tpTable for the cert from function GetTrustedPeer */ /* compare signatures */ if (tp->sigLen == cert->sigLength) { if (XMEMCMP(tp->sig, cert->signature, cert->sigLength)) { return WOLFSSL_FAILURE; } } else { return WOLFSSL_FAILURE; } return WOLFSSL_SUCCESS; } #endif /* WOLFSSL_TRUST_PEER_CERT */ /* return CA if found, otherwise NULL */ Signer* GetCA(void* vp, byte* hash) { WOLFSSL_CERT_MANAGER* cm = (WOLFSSL_CERT_MANAGER*)vp; Signer* ret = NULL; Signer* signers; word32 row = HashSigner(hash); if (cm == NULL) return NULL; if (wc_LockMutex(&cm->caLock) != 0) return ret; signers = cm->caTable[row]; while (signers) { byte* subjectHash; #ifndef NO_SKID subjectHash = signers->subjectKeyIdHash; #else subjectHash = signers->subjectNameHash; #endif if (XMEMCMP(hash, subjectHash, SIGNER_DIGEST_SIZE) == 0) { ret = signers; break; } signers = signers->next; } wc_UnLockMutex(&cm->caLock); return ret; } #ifndef NO_SKID /* return CA if found, otherwise NULL. Walk through hash table. */ Signer* GetCAByName(void* vp, byte* hash) { WOLFSSL_CERT_MANAGER* cm = (WOLFSSL_CERT_MANAGER*)vp; Signer* ret = NULL; Signer* signers; word32 row; if (cm == NULL) return NULL; if (wc_LockMutex(&cm->caLock) != 0) return ret; for (row = 0; row < CA_TABLE_SIZE && ret == NULL; row++) { signers = cm->caTable[row]; while (signers && ret == NULL) { if (XMEMCMP(hash, signers->subjectNameHash, SIGNER_DIGEST_SIZE) == 0) { ret = signers; } signers = signers->next; } } wc_UnLockMutex(&cm->caLock); return ret; } #endif #ifdef WOLFSSL_TRUST_PEER_CERT /* add a trusted peer cert to linked list */ int AddTrustedPeer(WOLFSSL_CERT_MANAGER* cm, DerBuffer** pDer, int verify) { int ret, row; TrustedPeerCert* peerCert; DecodedCert* cert = NULL; DerBuffer* der = *pDer; byte* subjectHash = NULL; WOLFSSL_MSG("Adding a Trusted Peer Cert"); cert = (DecodedCert*)XMALLOC(sizeof(DecodedCert), cm->heap, DYNAMIC_TYPE_DCERT); if (cert == NULL) return MEMORY_E; InitDecodedCert(cert, der->buffer, der->length, cm->heap); if ((ret = ParseCert(cert, TRUSTED_PEER_TYPE, verify, cm)) != 0) { XFREE(cert, NULL, DYNAMIC_TYPE_DCERT); return ret; } WOLFSSL_MSG("\tParsed new trusted peer cert"); peerCert = (TrustedPeerCert*)XMALLOC(sizeof(TrustedPeerCert), cm->heap, DYNAMIC_TYPE_CERT); if (peerCert == NULL) { FreeDecodedCert(cert); XFREE(cert, cm->heap, DYNAMIC_TYPE_DCERT); return MEMORY_E; } XMEMSET(peerCert, 0, sizeof(TrustedPeerCert)); #ifndef NO_SKID if (cert->extAuthKeyIdSet) { subjectHash = cert->extSubjKeyId; } else { subjectHash = cert->subjectHash; } #else subjectHash = cert->subjectHash; #endif #ifndef IGNORE_NAME_CONSTRAINTS if (peerCert->permittedNames) FreeNameSubtrees(peerCert->permittedNames, cm->heap); if (peerCert->excludedNames) FreeNameSubtrees(peerCert->excludedNames, cm->heap); #endif if (AlreadyTrustedPeer(cm, subjectHash)) { WOLFSSL_MSG("\tAlready have this CA, not adding again"); (void)ret; } else { /* add trusted peer signature */ peerCert->sigLen = cert->sigLength; peerCert->sig = XMALLOC(cert->sigLength, cm->heap, DYNAMIC_TYPE_SIGNATURE); if (peerCert->sig == NULL) { FreeDecodedCert(cert); XFREE(cert, cm->heap, DYNAMIC_TYPE_DCERT); FreeTrustedPeer(peerCert, cm->heap); return MEMORY_E; } XMEMCPY(peerCert->sig, cert->signature, cert->sigLength); /* add trusted peer name */ peerCert->nameLen = cert->subjectCNLen; peerCert->name = cert->subjectCN; #ifndef IGNORE_NAME_CONSTRAINTS peerCert->permittedNames = cert->permittedNames; peerCert->excludedNames = cert->excludedNames; #endif /* add SKID when available and hash of name */ #ifndef NO_SKID XMEMCPY(peerCert->subjectKeyIdHash, cert->extSubjKeyId, SIGNER_DIGEST_SIZE); #endif XMEMCPY(peerCert->subjectNameHash, cert->subjectHash, SIGNER_DIGEST_SIZE); peerCert->next = NULL; /* If Key Usage not set, all uses valid. */ cert->subjectCN = 0; #ifndef IGNORE_NAME_CONSTRAINTS cert->permittedNames = NULL; cert->excludedNames = NULL; #endif #ifndef NO_SKID if (cert->extAuthKeyIdSet) { row = TrustedPeerHashSigner(peerCert->subjectKeyIdHash); } else { row = TrustedPeerHashSigner(peerCert->subjectNameHash); } #else row = TrustedPeerHashSigner(peerCert->subjectNameHash); #endif if (wc_LockMutex(&cm->tpLock) == 0) { peerCert->next = cm->tpTable[row]; cm->tpTable[row] = peerCert; /* takes ownership */ wc_UnLockMutex(&cm->tpLock); } else { WOLFSSL_MSG("\tTrusted Peer Cert Mutex Lock failed"); FreeDecodedCert(cert); XFREE(cert, cm->heap, DYNAMIC_TYPE_DCERT); FreeTrustedPeer(peerCert, cm->heap); return BAD_MUTEX_E; } } WOLFSSL_MSG("\tFreeing parsed trusted peer cert"); FreeDecodedCert(cert); XFREE(cert, cm->heap, DYNAMIC_TYPE_DCERT); WOLFSSL_MSG("\tFreeing der trusted peer cert"); FreeDer(&der); WOLFSSL_MSG("\t\tOK Freeing der trusted peer cert"); WOLFSSL_LEAVE("AddTrustedPeer", ret); return WOLFSSL_SUCCESS; } #endif /* WOLFSSL_TRUST_PEER_CERT */ /* owns der, internal now uses too */ /* type flag ids from user or from chain received during verify don't allow chain ones to be added w/o isCA extension */ int AddCA(WOLFSSL_CERT_MANAGER* cm, DerBuffer** pDer, int type, int verify) { int ret; Signer* signer = NULL; word32 row; byte* subjectHash; #ifdef WOLFSSL_SMALL_STACK DecodedCert* cert = NULL; #else DecodedCert cert[1]; #endif DerBuffer* der = *pDer; WOLFSSL_MSG("Adding a CA"); #ifdef WOLFSSL_SMALL_STACK cert = (DecodedCert*)XMALLOC(sizeof(DecodedCert), NULL, DYNAMIC_TYPE_DCERT); if (cert == NULL) return MEMORY_E; #endif InitDecodedCert(cert, der->buffer, der->length, cm->heap); ret = ParseCert(cert, CA_TYPE, verify, cm); WOLFSSL_MSG("\tParsed new CA"); #ifndef NO_SKID subjectHash = cert->extSubjKeyId; #else subjectHash = cert->subjectHash; #endif /* check CA key size */ if (verify) { switch (cert->keyOID) { #ifndef NO_RSA case RSAk: if (cm->minRsaKeySz < 0 || cert->pubKeySize < (word16)cm->minRsaKeySz) { ret = RSA_KEY_SIZE_E; WOLFSSL_MSG("\tCA RSA key size error"); } break; #endif /* !NO_RSA */ #ifdef HAVE_ECC case ECDSAk: if (cm->minEccKeySz < 0 || cert->pubKeySize < (word16)cm->minEccKeySz) { ret = ECC_KEY_SIZE_E; WOLFSSL_MSG("\tCA ECC key size error"); } break; #endif /* HAVE_ECC */ #ifdef HAVE_ED25519 case ED25519k: if (cm->minEccKeySz < 0 || ED25519_KEY_SIZE < (word16)cm->minEccKeySz) { ret = ECC_KEY_SIZE_E; WOLFSSL_MSG("\tCA ECC key size error"); } break; #endif /* HAVE_ED25519 */ default: WOLFSSL_MSG("\tNo key size check done on CA"); break; /* no size check if key type is not in switch */ } } if (ret == 0 && cert->isCA == 0 && type != WOLFSSL_USER_CA) { WOLFSSL_MSG("\tCan't add as CA if not actually one"); ret = NOT_CA_ERROR; } #ifndef ALLOW_INVALID_CERTSIGN else if (ret == 0 && cert->isCA == 1 && type != WOLFSSL_USER_CA && (cert->extKeyUsage & KEYUSE_KEY_CERT_SIGN) == 0) { /* Intermediate CA certs are required to have the keyCertSign * extension set. User loaded root certs are not. */ WOLFSSL_MSG("\tDoesn't have key usage certificate signing"); ret = NOT_CA_ERROR; } #endif else if (ret == 0 && AlreadySigner(cm, subjectHash)) { WOLFSSL_MSG("\tAlready have this CA, not adding again"); (void)ret; } else if (ret == 0) { /* take over signer parts */ signer = MakeSigner(cm->heap); if (!signer) ret = MEMORY_ERROR; } if (ret == 0 && signer != NULL) { #ifdef WOLFSSL_SIGNER_DER_CERT ret = AllocDer(&signer->derCert, der->length, der->type, NULL); } if (ret == 0 && signer != NULL) { XMEMCPY(signer->derCert->buffer, der->buffer, der->length); #endif signer->keyOID = cert->keyOID; if (cert->pubKeyStored) { signer->publicKey = cert->publicKey; signer->pubKeySize = cert->pubKeySize; } if (cert->subjectCNStored) { signer->nameLen = cert->subjectCNLen; signer->name = cert->subjectCN; } signer->pathLength = cert->pathLength; signer->pathLengthSet = cert->pathLengthSet; #ifndef IGNORE_NAME_CONSTRAINTS signer->permittedNames = cert->permittedNames; signer->excludedNames = cert->excludedNames; #endif #ifndef NO_SKID XMEMCPY(signer->subjectKeyIdHash, cert->extSubjKeyId, SIGNER_DIGEST_SIZE); #endif XMEMCPY(signer->subjectNameHash, cert->subjectHash, SIGNER_DIGEST_SIZE); signer->keyUsage = cert->extKeyUsageSet ? cert->extKeyUsage : 0xFFFF; signer->next = NULL; /* If Key Usage not set, all uses valid. */ cert->publicKey = 0; /* in case lock fails don't free here. */ cert->subjectCN = 0; #ifndef IGNORE_NAME_CONSTRAINTS cert->permittedNames = NULL; cert->excludedNames = NULL; #endif #ifndef NO_SKID row = HashSigner(signer->subjectKeyIdHash); #else row = HashSigner(signer->subjectNameHash); #endif if (wc_LockMutex(&cm->caLock) == 0) { signer->next = cm->caTable[row]; cm->caTable[row] = signer; /* takes ownership */ wc_UnLockMutex(&cm->caLock); if (cm->caCacheCallback) cm->caCacheCallback(der->buffer, (int)der->length, type); } else { WOLFSSL_MSG("\tCA Mutex Lock failed"); ret = BAD_MUTEX_E; FreeSigner(signer, cm->heap); } } WOLFSSL_MSG("\tFreeing Parsed CA"); FreeDecodedCert(cert); #ifdef WOLFSSL_SMALL_STACK XFREE(cert, NULL, DYNAMIC_TYPE_DCERT); #endif WOLFSSL_MSG("\tFreeing der CA"); FreeDer(pDer); WOLFSSL_MSG("\t\tOK Freeing der CA"); WOLFSSL_LEAVE("AddCA", ret); return ret == 0 ? WOLFSSL_SUCCESS : ret; } #endif /* !NO_CERTS */ #ifndef NO_SESSION_CACHE /* basic config gives a cache with 33 sessions, adequate for clients and embedded servers MEDIUM_SESSION_CACHE allows 1055 sessions, adequate for servers that aren't under heavy load, basically allows 200 new sessions per minute BIG_SESSION_CACHE yields 20,027 sessions HUGE_SESSION_CACHE yields 65,791 sessions, for servers under heavy load, allows over 13,000 new sessions per minute or over 200 new sessions per second SMALL_SESSION_CACHE only stores 6 sessions, good for embedded clients or systems where the default of nearly 3kB is too much RAM, this define uses less than 500 bytes RAM default SESSION_CACHE stores 33 sessions (no XXX_SESSION_CACHE defined) */ #ifdef HUGE_SESSION_CACHE #define SESSIONS_PER_ROW 11 #define SESSION_ROWS 5981 #elif defined(BIG_SESSION_CACHE) #define SESSIONS_PER_ROW 7 #define SESSION_ROWS 2861 #elif defined(MEDIUM_SESSION_CACHE) #define SESSIONS_PER_ROW 5 #define SESSION_ROWS 211 #elif defined(SMALL_SESSION_CACHE) #define SESSIONS_PER_ROW 2 #define SESSION_ROWS 3 #else #define SESSIONS_PER_ROW 3 #define SESSION_ROWS 11 #endif typedef struct SessionRow { int nextIdx; /* where to place next one */ int totalCount; /* sessions ever on this row */ WOLFSSL_SESSION Sessions[SESSIONS_PER_ROW]; } SessionRow; static SessionRow SessionCache[SESSION_ROWS]; #if defined(WOLFSSL_SESSION_STATS) && defined(WOLFSSL_PEAK_SESSIONS) static word32 PeakSessions; #endif static wolfSSL_Mutex session_mutex; /* SessionCache mutex */ #ifndef NO_CLIENT_CACHE typedef struct ClientSession { word16 serverRow; /* SessionCache Row id */ word16 serverIdx; /* SessionCache Idx (column) */ } ClientSession; typedef struct ClientRow { int nextIdx; /* where to place next one */ int totalCount; /* sessions ever on this row */ ClientSession Clients[SESSIONS_PER_ROW]; } ClientRow; static ClientRow ClientCache[SESSION_ROWS]; /* Client Cache */ /* uses session mutex */ #endif /* NO_CLIENT_CACHE */ #endif /* NO_SESSION_CACHE */ int wolfSSL_Init(void) { WOLFSSL_ENTER("wolfSSL_Init"); if (initRefCount == 0) { /* Initialize crypto for use with TLS connection */ if (wolfCrypt_Init() != 0) { WOLFSSL_MSG("Bad wolfCrypt Init"); return WC_INIT_E; } #ifndef NO_SESSION_CACHE if (wc_InitMutex(&session_mutex) != 0) { WOLFSSL_MSG("Bad Init Mutex session"); return BAD_MUTEX_E; } #endif if (wc_InitMutex(&count_mutex) != 0) { WOLFSSL_MSG("Bad Init Mutex count"); return BAD_MUTEX_E; } } if (wc_LockMutex(&count_mutex) != 0) { WOLFSSL_MSG("Bad Lock Mutex count"); return BAD_MUTEX_E; } initRefCount++; wc_UnLockMutex(&count_mutex); return WOLFSSL_SUCCESS; } #ifndef NO_CERTS /* process user cert chain to pass during the handshake */ static int ProcessUserChain(WOLFSSL_CTX* ctx, const unsigned char* buff, long sz, int format, int type, WOLFSSL* ssl, long* used, EncryptedInfo* info) { int ret = 0; void* heap = wolfSSL_CTX_GetHeap(ctx, ssl); #ifdef WOLFSSL_TLS13 int cnt = 0; #endif /* we may have a user cert chain, try to consume */ if (type == CERT_TYPE && info->consumed < sz) { #ifdef WOLFSSL_SMALL_STACK byte staticBuffer[1]; /* force heap usage */ #else byte staticBuffer[FILE_BUFFER_SIZE]; /* tmp chain buffer */ #endif byte* chainBuffer = staticBuffer; int dynamicBuffer = 0; word32 bufferSz; long consumed = info->consumed; word32 idx = 0; int gotOne = 0; /* Calculate max possible size, including max headers */ bufferSz = (word32)(sz - consumed) + (CERT_HEADER_SZ * MAX_CHAIN_DEPTH); if (bufferSz > sizeof(staticBuffer)) { WOLFSSL_MSG("Growing Tmp Chain Buffer"); /* will shrink to actual size */ chainBuffer = (byte*)XMALLOC(bufferSz, heap, DYNAMIC_TYPE_FILE); if (chainBuffer == NULL) { return MEMORY_E; } dynamicBuffer = 1; } WOLFSSL_MSG("Processing Cert Chain"); while (consumed < sz) { DerBuffer* part = NULL; word32 remain = (word32)(sz - consumed); info->consumed = 0; if (format == WOLFSSL_FILETYPE_PEM) { #ifdef WOLFSSL_PEM_TO_DER ret = PemToDer(buff + consumed, remain, type, &part, heap, info, NULL); #else ret = NOT_COMPILED_IN; #endif } else { int length = remain; if (format == WOLFSSL_FILETYPE_ASN1) { /* get length of der (read sequence) */ word32 inOutIdx = 0; if (GetSequence(buff + consumed, &inOutIdx, &length, remain) < 0) { ret = ASN_NO_PEM_HEADER; } length += inOutIdx; /* include leading sequence */ } info->consumed = length; if (ret == 0) { ret = AllocDer(&part, length, type, heap); if (ret == 0) { XMEMCPY(part->buffer, buff + consumed, length); } } } if (ret == 0) { gotOne = 1; #ifdef WOLFSSL_TLS13 cnt++; #endif if ((idx + part->length + CERT_HEADER_SZ) > bufferSz) { WOLFSSL_MSG(" Cert Chain bigger than buffer"); ret = BUFFER_E; } else { c32to24(part->length, &chainBuffer[idx]); idx += CERT_HEADER_SZ; XMEMCPY(&chainBuffer[idx], part->buffer, part->length); idx += part->length; consumed += info->consumed; if (used) *used += info->consumed; } } FreeDer(&part); if (ret == ASN_NO_PEM_HEADER && gotOne) { WOLFSSL_MSG("We got one good cert, so stuff at end ok"); break; } if (ret < 0) { WOLFSSL_MSG(" Error in Cert in Chain"); if (dynamicBuffer) XFREE(chainBuffer, heap, DYNAMIC_TYPE_FILE); return ret; } WOLFSSL_MSG(" Consumed another Cert in Chain"); } WOLFSSL_MSG("Finished Processing Cert Chain"); /* only retain actual size used */ ret = 0; if (idx > 0) { if (ssl) { if (ssl->buffers.weOwnCertChain) { FreeDer(&ssl->buffers.certChain); } ret = AllocDer(&ssl->buffers.certChain, idx, type, heap); if (ret == 0) { XMEMCPY(ssl->buffers.certChain->buffer, chainBuffer, idx); ssl->buffers.weOwnCertChain = 1; } #ifdef WOLFSSL_TLS13 ssl->buffers.certChainCnt = cnt; #endif } else if (ctx) { FreeDer(&ctx->certChain); ret = AllocDer(&ctx->certChain, idx, type, heap); if (ret == 0) { XMEMCPY(ctx->certChain->buffer, chainBuffer, idx); } #ifdef WOLFSSL_TLS13 ctx->certChainCnt = cnt; #endif } } if (dynamicBuffer) XFREE(chainBuffer, heap, DYNAMIC_TYPE_FILE); } return ret; } /* process the buffer buff, length sz, into ctx of format and type used tracks bytes consumed, userChain specifies a user cert chain to pass during the handshake */ int ProcessBuffer(WOLFSSL_CTX* ctx, const unsigned char* buff, long sz, int format, int type, WOLFSSL* ssl, long* used, int userChain) { DerBuffer* der = NULL; /* holds DER or RAW (for NTRU) */ int ret = 0; int eccKey = 0; int ed25519Key = 0; int rsaKey = 0; int resetSuites = 0; void* heap = wolfSSL_CTX_GetHeap(ctx, ssl); int devId = wolfSSL_CTX_GetDevId(ctx, ssl); #ifdef WOLFSSL_SMALL_STACK EncryptedInfo* info = NULL; #else EncryptedInfo info[1]; #endif (void)rsaKey; (void)devId; if (used) *used = sz; /* used bytes default to sz, PEM chain may shorten*/ /* check args */ if (format != WOLFSSL_FILETYPE_ASN1 && format != WOLFSSL_FILETYPE_PEM && format != WOLFSSL_FILETYPE_RAW) return WOLFSSL_BAD_FILETYPE; if (ctx == NULL && ssl == NULL) return BAD_FUNC_ARG; #ifdef WOLFSSL_SMALL_STACK info = (EncryptedInfo*)XMALLOC(sizeof(EncryptedInfo), heap, DYNAMIC_TYPE_ENCRYPTEDINFO); if (info == NULL) return MEMORY_E; #endif XMEMSET(info, 0, sizeof(EncryptedInfo)); #ifdef WOLFSSL_ENCRYPTED_KEYS if (ctx) { info->passwd_cb = ctx->passwd_cb; info->passwd_userdata = ctx->passwd_userdata; } #endif if (format == WOLFSSL_FILETYPE_PEM) { #ifdef WOLFSSL_PEM_TO_DER ret = PemToDer(buff, sz, type, &der, heap, info, &eccKey); #else ret = NOT_COMPILED_IN; #endif } else { /* ASN1 (DER) or RAW (NTRU) */ int length = (int)sz; if (format == WOLFSSL_FILETYPE_ASN1) { /* get length of der (read sequence) */ word32 inOutIdx = 0; if (GetSequence(buff, &inOutIdx, &length, (word32)sz) < 0) { ret = ASN_PARSE_E; } length += inOutIdx; /* include leading sequence */ } info->consumed = length; if (ret == 0) { ret = AllocDer(&der, (word32)length, type, heap); if (ret == 0) { XMEMCPY(der->buffer, buff, length); } } } if (used) { *used = info->consumed; } /* process user chain */ if (ret >= 0) { /* First certificate in chain is loaded into ssl->buffers.certificate. * Remainder are loaded into ssl->buffers.certChain. * Chain should have server cert first, then intermediates, then root. */ if (userChain) { ret = ProcessUserChain(ctx, buff, sz, format, type, ssl, used, info); } } #ifdef WOLFSSL_ENCRYPTED_KEYS /* for WOLFSSL_FILETYPE_PEM, PemToDer manage the decryption if required */ if (ret >= 0 && info->set && format != WOLFSSL_FILETYPE_PEM) { /* decrypt */ int passwordSz = NAME_SZ; #ifdef WOLFSSL_SMALL_STACK char* password = NULL; #else char password[NAME_SZ]; #endif #ifdef WOLFSSL_SMALL_STACK password = (char*)XMALLOC(passwordSz, heap, DYNAMIC_TYPE_STRING); if (password == NULL) ret = MEMORY_E; else #endif if (info->passwd_cb == NULL) { WOLFSSL_MSG("No password callback set"); ret = NO_PASSWORD; } else { ret = info->passwd_cb(password, passwordSz, PEM_PASS_READ, info->passwd_userdata); if (ret >= 0) { passwordSz = ret; /* decrypt the key */ ret = wc_BufferKeyDecrypt(info, der->buffer, der->length, (byte*)password, passwordSz, WC_MD5); ForceZero(password, passwordSz); } } #ifdef WOLFSSL_SMALL_STACK XFREE(password, heap, DYNAMIC_TYPE_STRING); #endif } #endif /* WOLFSSL_ENCRYPTED_KEYS */ #ifdef WOLFSSL_SMALL_STACK XFREE(info, heap, DYNAMIC_TYPE_ENCRYPTEDINFO); #endif /* check for error */ if (ret < 0) { FreeDer(&der); return ret; } /* Handle DER owner */ if (type == CA_TYPE) { if (ctx == NULL) { WOLFSSL_MSG("Need context for CA load"); FreeDer(&der); return BAD_FUNC_ARG; } /* verify CA unless user set to no verify */ return AddCA(ctx->cm, &der, WOLFSSL_USER_CA, !ctx->verifyNone); } #ifdef WOLFSSL_TRUST_PEER_CERT else if (type == TRUSTED_PEER_TYPE) { if (ctx == NULL) { WOLFSSL_MSG("Need context for trusted peer cert load"); FreeDer(&der); return BAD_FUNC_ARG; } /* add trusted peer cert */ return AddTrustedPeer(ctx->cm, &der, !ctx->verifyNone); } #endif /* WOLFSSL_TRUST_PEER_CERT */ else if (type == CERT_TYPE) { if (ssl) { /* Make sure previous is free'd */ if (ssl->buffers.weOwnCert) { FreeDer(&ssl->buffers.certificate); #ifdef KEEP_OUR_CERT FreeX509(ssl->ourCert); if (ssl->ourCert) { XFREE(ssl->ourCert, ssl->heap, DYNAMIC_TYPE_X509); ssl->ourCert = NULL; } #endif } ssl->buffers.certificate = der; #ifdef KEEP_OUR_CERT ssl->keepCert = 1; /* hold cert for ssl lifetime */ #endif ssl->buffers.weOwnCert = 1; } else if (ctx) { FreeDer(&ctx->certificate); /* Make sure previous is free'd */ #ifdef KEEP_OUR_CERT if (ctx->ourCert) { if (ctx->ownOurCert) { FreeX509(ctx->ourCert); XFREE(ctx->ourCert, ctx->heap, DYNAMIC_TYPE_X509); } ctx->ourCert = NULL; } #endif ctx->certificate = der; } } else if (type == PRIVATEKEY_TYPE) { if (ssl) { /* Make sure previous is free'd */ if (ssl->buffers.weOwnKey) { FreeDer(&ssl->buffers.key); } ssl->buffers.key = der; ssl->buffers.weOwnKey = 1; } else if (ctx) { FreeDer(&ctx->privateKey); ctx->privateKey = der; } } else { FreeDer(&der); return WOLFSSL_BAD_CERTTYPE; } if (type == PRIVATEKEY_TYPE && format != WOLFSSL_FILETYPE_RAW) { #ifndef NO_RSA if (!eccKey && !ed25519Key) { /* make sure RSA key can be used */ word32 idx = 0; #ifdef WOLFSSL_SMALL_STACK RsaKey* key = NULL; #else RsaKey key[1]; #endif #ifdef WOLFSSL_SMALL_STACK key = (RsaKey*)XMALLOC(sizeof(RsaKey), heap, DYNAMIC_TYPE_RSA); if (key == NULL) return MEMORY_E; #endif ret = wc_InitRsaKey_ex(key, heap, devId); if (ret == 0) { if (wc_RsaPrivateKeyDecode(der->buffer, &idx, key, der->length) != 0) { #ifdef HAVE_ECC /* could have DER ECC (or pkcs8 ecc), no easy way to tell */ eccKey = 1; /* try it next */ #elif defined(HAVE_ED25519) ed25519Key = 1; /* try it next */ #else WOLFSSL_MSG("RSA decode failed and ECC not enabled to try"); ret = WOLFSSL_BAD_FILE; #endif } else { /* check that the size of the RSA key is enough */ int rsaSz = wc_RsaEncryptSize((RsaKey*)key); int minRsaSz; minRsaSz = ssl ? ssl->options.minRsaKeySz : ctx->minRsaKeySz; if (rsaSz < minRsaSz) { ret = RSA_KEY_SIZE_E; WOLFSSL_MSG("Private Key size too small"); } if (ssl) { ssl->buffers.keyType = rsa_sa_algo; ssl->buffers.keySz = rsaSz; } else if(ctx) { ctx->privateKeyType = rsa_sa_algo; ctx->privateKeySz = rsaSz; } rsaKey = 1; (void)rsaKey; /* for no ecc builds */ if (ssl && ssl->options.side == WOLFSSL_SERVER_END) { ssl->options.haveStaticECC = 0; resetSuites = 1; } } wc_FreeRsaKey(key); } #ifdef WOLFSSL_SMALL_STACK XFREE(key, heap, DYNAMIC_TYPE_RSA); #endif if (ret != 0) return ret; } #endif #ifdef HAVE_ECC if (!rsaKey && !ed25519Key) { /* make sure ECC key can be used */ word32 idx = 0; #ifdef WOLFSSL_SMALL_STACK ecc_key* key = NULL; #else ecc_key key[1]; #endif #ifdef WOLFSSL_SMALL_STACK key = (ecc_key*)XMALLOC(sizeof(ecc_key), heap, DYNAMIC_TYPE_ECC); if (key == NULL) return MEMORY_E; #endif if (wc_ecc_init_ex(key, heap, devId) == 0) { if (wc_EccPrivateKeyDecode(der->buffer, &idx, key, der->length) == 0) { int keySz = wc_ecc_size(key); int minKeySz; /* check for minimum ECC key size and then free */ minKeySz = ssl ? ssl->options.minEccKeySz : ctx->minEccKeySz; if (keySz < minKeySz) { wc_ecc_free(key); WOLFSSL_MSG("ECC private key too small"); return ECC_KEY_SIZE_E; } eccKey = 1; if (ssl) { ssl->options.haveStaticECC = 1; ssl->buffers.keyType = ecc_dsa_sa_algo; ssl->buffers.keySz = keySz; } else if (ctx) { ctx->haveStaticECC = 1; ctx->privateKeyType = ecc_dsa_sa_algo; ctx->privateKeySz = keySz; } if (ssl && ssl->options.side == WOLFSSL_SERVER_END) { resetSuites = 1; } } else eccKey = 0; wc_ecc_free(key); } #ifdef WOLFSSL_SMALL_STACK XFREE(key, heap, DYNAMIC_TYPE_ECC); #endif } #endif /* HAVE_ECC */ #ifdef HAVE_ED25519 if (!rsaKey && !eccKey) { /* make sure Ed25519 key can be used */ word32 idx = 0; #ifdef WOLFSSL_SMALL_STACK ed25519_key* key = NULL; #else ed25519_key key[1]; #endif #ifdef WOLFSSL_SMALL_STACK key = (ed25519_key*)XMALLOC(sizeof(ed25519_key), heap, DYNAMIC_TYPE_ED25519); if (key == NULL) return MEMORY_E; #endif ret = wc_ed25519_init(key); if (ret == 0) { if (wc_Ed25519PrivateKeyDecode(der->buffer, &idx, key, der->length) != 0) { ret = WOLFSSL_BAD_FILE; } if (ret == 0) { /* check for minimum key size and then free */ int minKeySz = ssl ? ssl->options.minEccKeySz : ctx->minEccKeySz; if (ED25519_KEY_SIZE < minKeySz) { WOLFSSL_MSG("ED25519 private key too small"); ret = ECC_KEY_SIZE_E; } } if (ret == 0) { if (ssl) { ssl->buffers.keyType = ed25519_sa_algo; ssl->buffers.keySz = ED25519_KEY_SIZE; } else if (ctx) { ctx->privateKeyType = ed25519_sa_algo; ctx->privateKeySz = ED25519_KEY_SIZE; } ed25519Key = 1; if (ssl && ssl->options.side == WOLFSSL_SERVER_END) { resetSuites = 1; } } wc_ed25519_free(key); } #ifdef WOLFSSL_SMALL_STACK XFREE(key, heap, DYNAMIC_TYPE_ED25519); #endif if (ret != 0) return ret; } #else if (!rsaKey && !eccKey && !ed25519Key) return WOLFSSL_BAD_FILE; #endif (void)ed25519Key; (void)devId; } else if (type == CERT_TYPE) { #ifdef WOLFSSL_SMALL_STACK DecodedCert* cert = NULL; #else DecodedCert cert[1]; #endif #ifdef HAVE_PK_CALLBACKS int keyType = 0, keySz = 0; #endif #ifdef WOLFSSL_SMALL_STACK cert = (DecodedCert*)XMALLOC(sizeof(DecodedCert), heap, DYNAMIC_TYPE_DCERT); if (cert == NULL) return MEMORY_E; #endif WOLFSSL_MSG("Checking cert signature type"); InitDecodedCert(cert, der->buffer, der->length, heap); if (DecodeToKey(cert, 0) < 0) { WOLFSSL_MSG("Decode to key failed"); FreeDecodedCert(cert); #ifdef WOLFSSL_SMALL_STACK XFREE(cert, heap, DYNAMIC_TYPE_DCERT); #endif return WOLFSSL_BAD_FILE; } if (ssl && ssl->options.side == WOLFSSL_SERVER_END) { resetSuites = 1; } if (ssl && ssl->ctx->haveECDSAsig) { WOLFSSL_MSG("SSL layer setting cert, CTX had ECDSA, turning off"); ssl->options.haveECDSAsig = 0; /* may turn back on next */ } switch (cert->signatureOID) { case CTC_SHAwECDSA: case CTC_SHA256wECDSA: case CTC_SHA384wECDSA: case CTC_SHA512wECDSA: WOLFSSL_MSG("ECDSA cert signature"); if (ssl) ssl->options.haveECDSAsig = 1; else if (ctx) ctx->haveECDSAsig = 1; break; case CTC_ED25519: WOLFSSL_MSG("ED25519 cert signature"); if (ssl) ssl->options.haveECDSAsig = 1; else if (ctx) ctx->haveECDSAsig = 1; break; default: WOLFSSL_MSG("Not ECDSA cert signature"); break; } #if defined(HAVE_ECC) || defined(HAVE_ED25519) if (ssl) { ssl->pkCurveOID = cert->pkCurveOID; #ifndef WC_STRICT_SIG if (cert->keyOID == ECDSAk) { ssl->options.haveECC = 1; } #ifdef HAVE_ED25519 else if (cert->keyOID == ED25519k) { ssl->options.haveECC = 1; } #endif #else ssl->options.haveECC = ssl->options.haveECDSAsig; #endif } else if (ctx) { ctx->pkCurveOID = cert->pkCurveOID; #ifndef WC_STRICT_SIG if (cert->keyOID == ECDSAk) { ctx->haveECC = 1; } #ifdef HAVE_ED25519 else if (cert->keyOID == ED25519k) { ctx->haveECC = 1; } #endif #else ctx->haveECC = ctx->haveECDSAsig; #endif } #endif /* check key size of cert unless specified not to */ switch (cert->keyOID) { #ifndef NO_RSA case RSAk: if (ssl && !ssl->options.verifyNone) { if (ssl->options.minRsaKeySz < 0 || cert->pubKeySize < (word16)ssl->options.minRsaKeySz) { ret = RSA_KEY_SIZE_E; WOLFSSL_MSG("Certificate RSA key size too small"); } } else if (ctx && !ctx->verifyNone) { if (ctx->minRsaKeySz < 0 || cert->pubKeySize < (word16)ctx->minRsaKeySz) { ret = RSA_KEY_SIZE_E; WOLFSSL_MSG("Certificate RSA key size too small"); } } #ifdef HAVE_PK_CALLBACKS keyType = rsa_sa_algo; /* pubKeySize is the encoded public key */ /* mask lsb 5-bits to round by 16 to get actual key size */ keySz = cert->pubKeySize & ~0x1FL; #endif break; #endif /* !NO_RSA */ #ifdef HAVE_ECC case ECDSAk: if (ssl && !ssl->options.verifyNone) { if (ssl->options.minEccKeySz < 0 || cert->pubKeySize < (word16)ssl->options.minEccKeySz) { ret = ECC_KEY_SIZE_E; WOLFSSL_MSG("Certificate ECC key size error"); } } else if (ctx && !ctx->verifyNone) { if (ctx->minEccKeySz < 0 || cert->pubKeySize < (word16)ctx->minEccKeySz) { ret = ECC_KEY_SIZE_E; WOLFSSL_MSG("Certificate ECC key size error"); } } #ifdef HAVE_PK_CALLBACKS keyType = ecc_dsa_sa_algo; /* pubKeySize is encByte + x + y */ keySz = (cert->pubKeySize - 1) / 2; #endif break; #endif /* HAVE_ECC */ #ifdef HAVE_ED25519 case ED25519k: if (ssl && !ssl->options.verifyNone) { if (ssl->options.minEccKeySz < 0 || ED25519_KEY_SIZE < (word16)ssl->options.minEccKeySz) { ret = ECC_KEY_SIZE_E; WOLFSSL_MSG("Certificate Ed key size error"); } } else if (ctx && !ctx->verifyNone) { if (ctx->minEccKeySz < 0 || ED25519_KEY_SIZE < (word16)ctx->minEccKeySz) { ret = ECC_KEY_SIZE_E; WOLFSSL_MSG("Certificate ECC key size error"); } } #ifdef HAVE_PK_CALLBACKS keyType = ed25519_sa_algo; keySz = ED25519_KEY_SIZE; #endif break; #endif /* HAVE_ED25519 */ default: WOLFSSL_MSG("No key size check done on certificate"); break; /* do no check if not a case for the key */ } #ifdef HAVE_PK_CALLBACKS if (ssl && ssl->buffers.keyType == 0) { ssl->buffers.keyType = keyType; ssl->buffers.keySz = keySz; } else if (ctx && ctx->privateKeyType == 0) { ctx->privateKeyType = keyType; ctx->privateKeySz = keySz; } #endif FreeDecodedCert(cert); #ifdef WOLFSSL_SMALL_STACK XFREE(cert, heap, DYNAMIC_TYPE_DCERT); #endif if (ret != 0) { return ret; } } if (ssl && resetSuites) { word16 havePSK = 0; word16 haveRSA = 0; int keySz = 0; #ifndef NO_PSK if (ssl->options.havePSK) { havePSK = 1; } #endif #ifndef NO_RSA haveRSA = 1; #endif #ifndef NO_CERTS keySz = ssl->buffers.keySz; #endif /* let's reset suites */ InitSuites(ssl->suites, ssl->version, keySz, haveRSA, havePSK, ssl->options.haveDH, ssl->options.haveNTRU, ssl->options.haveECDSAsig, ssl->options.haveECC, ssl->options.haveStaticECC, ssl->options.side); } return WOLFSSL_SUCCESS; } /* CA PEM file for verification, may have multiple/chain certs to process */ static int ProcessChainBuffer(WOLFSSL_CTX* ctx, const unsigned char* buff, long sz, int format, int type, WOLFSSL* ssl) { long used = 0; int ret = 0; int gotOne = 0; WOLFSSL_MSG("Processing CA PEM file"); while (used < sz) { long consumed = 0; ret = ProcessBuffer(ctx, buff + used, sz - used, format, type, ssl, &consumed, 0); #ifdef WOLFSSL_WPAS #ifdef HAVE_CRL if (ret < 0) { DerBuffer* der = NULL; EncryptedInfo info; WOLFSSL_MSG("Trying a CRL"); if (PemToDer(buff + used, sz - used, CRL_TYPE, &der, NULL, &info, NULL) == 0) { WOLFSSL_MSG(" Proccessed a CRL"); wolfSSL_CertManagerLoadCRLBuffer(ctx->cm, der->buffer, der->length, WOLFSSL_FILETYPE_ASN1); FreeDer(&der); used += info.consumed; continue; } } #endif #endif if (ret < 0) { if(consumed > 0) { /* Made progress in file */ WOLFSSL_ERROR(ret); WOLFSSL_MSG("CA Parse failed, with progress in file."); WOLFSSL_MSG("Search for other certs in file"); } else { WOLFSSL_MSG("CA Parse failed, no progress in file."); WOLFSSL_MSG("Do not continue search for other certs in file"); break; } } else { WOLFSSL_MSG(" Processed a CA"); gotOne = 1; } used += consumed; } if(gotOne) { WOLFSSL_MSG("Processed at least one valid CA. Other stuff OK"); return WOLFSSL_SUCCESS; } return ret; } static WC_INLINE WOLFSSL_METHOD* cm_pick_method(void) { #ifndef NO_WOLFSSL_CLIENT #if defined(WOLFSSL_ALLOW_SSLV3) && !defined(NO_OLD_TLS) return wolfSSLv3_client_method(); #elif !defined(WOLFSSL_NO_TLS12) return wolfTLSv1_2_client_method(); #elif defined(WOLFSSL_TLS13) return wolfTLSv1_3_client_method(); #endif #elif !defined(NO_WOLFSSL_SERVER) #if defined(WOLFSSL_ALLOW_SSLV3) && !defined(NO_OLD_TLS) return wolfSSLv3_server_method(); #elif !defined(WOLFSSL_NO_TLS12) return wolfTLSv1_2_server_method(); #elif defined(WOLFSSL_TLS13) return wolfTLSv1_3_server_method(); #endif #else return NULL; #endif } /* like load verify locations, 1 for success, < 0 for error */ int wolfSSL_CertManagerLoadCABuffer(WOLFSSL_CERT_MANAGER* cm, const unsigned char* in, long sz, int format) { int ret = WOLFSSL_FATAL_ERROR; WOLFSSL_CTX* tmp; WOLFSSL_ENTER("wolfSSL_CertManagerLoadCABuffer"); if (cm == NULL) { WOLFSSL_MSG("No CertManager error"); return ret; } tmp = wolfSSL_CTX_new(cm_pick_method()); if (tmp == NULL) { WOLFSSL_MSG("CTX new failed"); return ret; } /* for tmp use */ wolfSSL_CertManagerFree(tmp->cm); tmp->cm = cm; ret = wolfSSL_CTX_load_verify_buffer(tmp, in, sz, format); /* don't loose our good one */ tmp->cm = NULL; wolfSSL_CTX_free(tmp); return ret; } #ifdef HAVE_CRL int wolfSSL_CertManagerLoadCRLBuffer(WOLFSSL_CERT_MANAGER* cm, const unsigned char* buff, long sz, int type) { WOLFSSL_ENTER("wolfSSL_CertManagerLoadCRLBuffer"); if (cm == NULL) return BAD_FUNC_ARG; if (cm->crl == NULL) { if (wolfSSL_CertManagerEnableCRL(cm, 0) != WOLFSSL_SUCCESS) { WOLFSSL_MSG("Enable CRL failed"); return WOLFSSL_FATAL_ERROR; } } return BufferLoadCRL(cm->crl, buff, sz, type, 0); } int wolfSSL_CTX_LoadCRLBuffer(WOLFSSL_CTX* ctx, const unsigned char* buff, long sz, int type) { WOLFSSL_ENTER("wolfSSL_CTX_LoadCRLBuffer"); if (ctx == NULL) return BAD_FUNC_ARG; return wolfSSL_CertManagerLoadCRLBuffer(ctx->cm, buff, sz, type); } int wolfSSL_LoadCRLBuffer(WOLFSSL* ssl, const unsigned char* buff, long sz, int type) { WOLFSSL_ENTER("wolfSSL_LoadCRLBuffer"); if (ssl == NULL || ssl->ctx == NULL) return BAD_FUNC_ARG; return wolfSSL_CertManagerLoadCRLBuffer(ssl->ctx->cm, buff, sz, type); } #endif /* HAVE_CRL */ /* turn on CRL if off and compiled in, set options */ int wolfSSL_CertManagerEnableCRL(WOLFSSL_CERT_MANAGER* cm, int options) { int ret = WOLFSSL_SUCCESS; (void)options; WOLFSSL_ENTER("wolfSSL_CertManagerEnableCRL"); if (cm == NULL) return BAD_FUNC_ARG; #ifdef HAVE_CRL if (cm->crl == NULL) { cm->crl = (WOLFSSL_CRL*)XMALLOC(sizeof(WOLFSSL_CRL), cm->heap, DYNAMIC_TYPE_CRL); if (cm->crl == NULL) return MEMORY_E; if (InitCRL(cm->crl, cm) != 0) { WOLFSSL_MSG("Init CRL failed"); FreeCRL(cm->crl, 1); cm->crl = NULL; return WOLFSSL_FAILURE; } #ifdef HAVE_CRL_IO cm->crl->crlIOCb = EmbedCrlLookup; #endif } cm->crlEnabled = 1; if (options & WOLFSSL_CRL_CHECKALL) cm->crlCheckAll = 1; #else ret = NOT_COMPILED_IN; #endif return ret; } int wolfSSL_CertManagerDisableCRL(WOLFSSL_CERT_MANAGER* cm) { WOLFSSL_ENTER("wolfSSL_CertManagerDisableCRL"); if (cm == NULL) return BAD_FUNC_ARG; cm->crlEnabled = 0; return WOLFSSL_SUCCESS; } /* Verify the certificate, WOLFSSL_SUCCESS for ok, < 0 for error */ int wolfSSL_CertManagerVerifyBuffer(WOLFSSL_CERT_MANAGER* cm, const byte* buff, long sz, int format) { int ret = 0; DerBuffer* der = NULL; #ifdef WOLFSSL_SMALL_STACK DecodedCert* cert = NULL; #else DecodedCert cert[1]; #endif WOLFSSL_ENTER("wolfSSL_CertManagerVerifyBuffer"); #ifdef WOLFSSL_SMALL_STACK cert = (DecodedCert*)XMALLOC(sizeof(DecodedCert), cm->heap, DYNAMIC_TYPE_DCERT); if (cert == NULL) return MEMORY_E; #endif if (format == WOLFSSL_FILETYPE_PEM) { #ifdef WOLFSSL_PEM_TO_DER ret = PemToDer(buff, sz, CERT_TYPE, &der, cm->heap, NULL, NULL); if (ret != 0) { FreeDer(&der); #ifdef WOLFSSL_SMALL_STACK XFREE(cert, cm->heap, DYNAMIC_TYPE_DCERT); #endif return ret; } InitDecodedCert(cert, der->buffer, der->length, cm->heap); #else ret = NOT_COMPILED_IN; #endif } else { InitDecodedCert(cert, (byte*)buff, (word32)sz, cm->heap); } if (ret == 0) ret = ParseCertRelative(cert, CERT_TYPE, 1, cm); #ifdef HAVE_CRL if (ret == 0 && cm->crlEnabled) ret = CheckCertCRL(cm->crl, cert); #endif FreeDecodedCert(cert); FreeDer(&der); #ifdef WOLFSSL_SMALL_STACK XFREE(cert, cm->heap, DYNAMIC_TYPE_DCERT); #endif return ret == 0 ? WOLFSSL_SUCCESS : ret; } /* turn on OCSP if off and compiled in, set options */ int wolfSSL_CertManagerEnableOCSP(WOLFSSL_CERT_MANAGER* cm, int options) { int ret = WOLFSSL_SUCCESS; (void)options; WOLFSSL_ENTER("wolfSSL_CertManagerEnableOCSP"); if (cm == NULL) return BAD_FUNC_ARG; #ifdef HAVE_OCSP if (cm->ocsp == NULL) { cm->ocsp = (WOLFSSL_OCSP*)XMALLOC(sizeof(WOLFSSL_OCSP), cm->heap, DYNAMIC_TYPE_OCSP); if (cm->ocsp == NULL) return MEMORY_E; if (InitOCSP(cm->ocsp, cm) != 0) { WOLFSSL_MSG("Init OCSP failed"); FreeOCSP(cm->ocsp, 1); cm->ocsp = NULL; return WOLFSSL_FAILURE; } } cm->ocspEnabled = 1; if (options & WOLFSSL_OCSP_URL_OVERRIDE) cm->ocspUseOverrideURL = 1; if (options & WOLFSSL_OCSP_NO_NONCE) cm->ocspSendNonce = 0; else cm->ocspSendNonce = 1; if (options & WOLFSSL_OCSP_CHECKALL) cm->ocspCheckAll = 1; #ifndef WOLFSSL_USER_IO cm->ocspIOCb = EmbedOcspLookup; cm->ocspRespFreeCb = EmbedOcspRespFree; cm->ocspIOCtx = cm->heap; #endif /* WOLFSSL_USER_IO */ #else ret = NOT_COMPILED_IN; #endif return ret; } int wolfSSL_CertManagerDisableOCSP(WOLFSSL_CERT_MANAGER* cm) { WOLFSSL_ENTER("wolfSSL_CertManagerDisableOCSP"); if (cm == NULL) return BAD_FUNC_ARG; cm->ocspEnabled = 0; return WOLFSSL_SUCCESS; } /* turn on OCSP Stapling if off and compiled in, set options */ int wolfSSL_CertManagerEnableOCSPStapling(WOLFSSL_CERT_MANAGER* cm) { int ret = WOLFSSL_SUCCESS; WOLFSSL_ENTER("wolfSSL_CertManagerEnableOCSPStapling"); if (cm == NULL) return BAD_FUNC_ARG; #if defined(HAVE_CERTIFICATE_STATUS_REQUEST) \ || defined(HAVE_CERTIFICATE_STATUS_REQUEST_V2) if (cm->ocsp_stapling == NULL) { cm->ocsp_stapling = (WOLFSSL_OCSP*)XMALLOC(sizeof(WOLFSSL_OCSP), cm->heap, DYNAMIC_TYPE_OCSP); if (cm->ocsp_stapling == NULL) return MEMORY_E; if (InitOCSP(cm->ocsp_stapling, cm) != 0) { WOLFSSL_MSG("Init OCSP failed"); FreeOCSP(cm->ocsp_stapling, 1); cm->ocsp_stapling = NULL; return WOLFSSL_FAILURE; } } cm->ocspStaplingEnabled = 1; #ifndef WOLFSSL_USER_IO cm->ocspIOCb = EmbedOcspLookup; cm->ocspRespFreeCb = EmbedOcspRespFree; cm->ocspIOCtx = cm->heap; #endif /* WOLFSSL_USER_IO */ #else ret = NOT_COMPILED_IN; #endif return ret; } int wolfSSL_CertManagerDisableOCSPStapling(WOLFSSL_CERT_MANAGER* cm) { int ret = WOLFSSL_SUCCESS; WOLFSSL_ENTER("wolfSSL_CertManagerDisableOCSPStapling"); if (cm == NULL) return BAD_FUNC_ARG; #if defined(HAVE_CERTIFICATE_STATUS_REQUEST) \ || defined(HAVE_CERTIFICATE_STATUS_REQUEST_V2) cm->ocspStaplingEnabled = 0; #else ret = NOT_COMPILED_IN; #endif return ret; } #if defined(SESSION_CERTS) WOLF_STACK_OF(WOLFSSL_X509)* wolfSSL_get_peer_cert_chain(const WOLFSSL* ssl) { WOLFSSL_ENTER("wolfSSL_get_peer_cert_chain"); if ((ssl == NULL) || (ssl->session.chain.count == 0)) return NULL; else return (WOLF_STACK_OF(WOLFSSL_X509)* )&ssl->session.chain; } #endif #ifdef HAVE_OCSP /* check CRL if enabled, WOLFSSL_SUCCESS */ int wolfSSL_CertManagerCheckOCSP(WOLFSSL_CERT_MANAGER* cm, byte* der, int sz) { int ret; #ifdef WOLFSSL_SMALL_STACK DecodedCert* cert = NULL; #else DecodedCert cert[1]; #endif WOLFSSL_ENTER("wolfSSL_CertManagerCheckOCSP"); if (cm == NULL) return BAD_FUNC_ARG; if (cm->ocspEnabled == 0) return WOLFSSL_SUCCESS; #ifdef WOLFSSL_SMALL_STACK cert = (DecodedCert*)XMALLOC(sizeof(DecodedCert), NULL, DYNAMIC_TYPE_DCERT); if (cert == NULL) return MEMORY_E; #endif InitDecodedCert(cert, der, sz, NULL); if ((ret = ParseCertRelative(cert, CERT_TYPE, VERIFY_OCSP, cm)) != 0) { WOLFSSL_MSG("ParseCert failed"); } else if ((ret = CheckCertOCSP(cm->ocsp, cert, NULL)) != 0) { WOLFSSL_MSG("CheckCertOCSP failed"); } FreeDecodedCert(cert); #ifdef WOLFSSL_SMALL_STACK XFREE(cert, NULL, DYNAMIC_TYPE_DCERT); #endif return ret == 0 ? WOLFSSL_SUCCESS : ret; } int wolfSSL_CertManagerSetOCSPOverrideURL(WOLFSSL_CERT_MANAGER* cm, const char* url) { WOLFSSL_ENTER("wolfSSL_CertManagerSetOCSPOverrideURL"); if (cm == NULL) return BAD_FUNC_ARG; XFREE(cm->ocspOverrideURL, cm->heap, DYNAMIC_TYPE_URL); if (url != NULL) { int urlSz = (int)XSTRLEN(url) + 1; cm->ocspOverrideURL = (char*)XMALLOC(urlSz, cm->heap, DYNAMIC_TYPE_URL); if (cm->ocspOverrideURL != NULL) { XMEMCPY(cm->ocspOverrideURL, url, urlSz); } else return MEMORY_E; } else cm->ocspOverrideURL = NULL; return WOLFSSL_SUCCESS; } int wolfSSL_CertManagerSetOCSP_Cb(WOLFSSL_CERT_MANAGER* cm, CbOCSPIO ioCb, CbOCSPRespFree respFreeCb, void* ioCbCtx) { WOLFSSL_ENTER("wolfSSL_CertManagerSetOCSP_Cb"); if (cm == NULL) return BAD_FUNC_ARG; cm->ocspIOCb = ioCb; cm->ocspRespFreeCb = respFreeCb; cm->ocspIOCtx = ioCbCtx; return WOLFSSL_SUCCESS; } int wolfSSL_EnableOCSP(WOLFSSL* ssl, int options) { WOLFSSL_ENTER("wolfSSL_EnableOCSP"); if (ssl) return wolfSSL_CertManagerEnableOCSP(ssl->ctx->cm, options); else return BAD_FUNC_ARG; } int wolfSSL_DisableOCSP(WOLFSSL* ssl) { WOLFSSL_ENTER("wolfSSL_DisableOCSP"); if (ssl) return wolfSSL_CertManagerDisableOCSP(ssl->ctx->cm); else return BAD_FUNC_ARG; } int wolfSSL_EnableOCSPStapling(WOLFSSL* ssl) { WOLFSSL_ENTER("wolfSSL_EnableOCSPStapling"); if (ssl) return wolfSSL_CertManagerEnableOCSPStapling(ssl->ctx->cm); else return BAD_FUNC_ARG; } int wolfSSL_DisableOCSPStapling(WOLFSSL* ssl) { WOLFSSL_ENTER("wolfSSL_DisableOCSPStapling"); if (ssl) return wolfSSL_CertManagerDisableOCSPStapling(ssl->ctx->cm); else return BAD_FUNC_ARG; } int wolfSSL_SetOCSP_OverrideURL(WOLFSSL* ssl, const char* url) { WOLFSSL_ENTER("wolfSSL_SetOCSP_OverrideURL"); if (ssl) return wolfSSL_CertManagerSetOCSPOverrideURL(ssl->ctx->cm, url); else return BAD_FUNC_ARG; } int wolfSSL_SetOCSP_Cb(WOLFSSL* ssl, CbOCSPIO ioCb, CbOCSPRespFree respFreeCb, void* ioCbCtx) { WOLFSSL_ENTER("wolfSSL_SetOCSP_Cb"); if (ssl) { ssl->ocspIOCtx = ioCbCtx; /* use SSL specific ioCbCtx */ return wolfSSL_CertManagerSetOCSP_Cb(ssl->ctx->cm, ioCb, respFreeCb, NULL); } else return BAD_FUNC_ARG; } int wolfSSL_CTX_EnableOCSP(WOLFSSL_CTX* ctx, int options) { WOLFSSL_ENTER("wolfSSL_CTX_EnableOCSP"); if (ctx) return wolfSSL_CertManagerEnableOCSP(ctx->cm, options); else return BAD_FUNC_ARG; } int wolfSSL_CTX_DisableOCSP(WOLFSSL_CTX* ctx) { WOLFSSL_ENTER("wolfSSL_CTX_DisableOCSP"); if (ctx) return wolfSSL_CertManagerDisableOCSP(ctx->cm); else return BAD_FUNC_ARG; } int wolfSSL_CTX_SetOCSP_OverrideURL(WOLFSSL_CTX* ctx, const char* url) { WOLFSSL_ENTER("wolfSSL_SetOCSP_OverrideURL"); if (ctx) return wolfSSL_CertManagerSetOCSPOverrideURL(ctx->cm, url); else return BAD_FUNC_ARG; } int wolfSSL_CTX_SetOCSP_Cb(WOLFSSL_CTX* ctx, CbOCSPIO ioCb, CbOCSPRespFree respFreeCb, void* ioCbCtx) { WOLFSSL_ENTER("wolfSSL_CTX_SetOCSP_Cb"); if (ctx) return wolfSSL_CertManagerSetOCSP_Cb(ctx->cm, ioCb, respFreeCb, ioCbCtx); else return BAD_FUNC_ARG; } #if defined(HAVE_CERTIFICATE_STATUS_REQUEST) \ || defined(HAVE_CERTIFICATE_STATUS_REQUEST_V2) int wolfSSL_CTX_EnableOCSPStapling(WOLFSSL_CTX* ctx) { WOLFSSL_ENTER("wolfSSL_CTX_EnableOCSPStapling"); if (ctx) return wolfSSL_CertManagerEnableOCSPStapling(ctx->cm); else return BAD_FUNC_ARG; } int wolfSSL_CTX_DisableOCSPStapling(WOLFSSL_CTX* ctx) { WOLFSSL_ENTER("wolfSSL_CTX_DisableOCSPStapling"); if (ctx) return wolfSSL_CertManagerDisableOCSPStapling(ctx->cm); else return BAD_FUNC_ARG; } #endif /* HAVE_CERTIFICATE_STATUS_REQUEST || HAVE_CERTIFICATE_STATUS_REQUEST_V2 */ #endif /* HAVE_OCSP */ #ifndef NO_FILESYSTEM /* process a file with name fname into ctx of format and type userChain specifies a user certificate chain to pass during handshake */ int ProcessFile(WOLFSSL_CTX* ctx, const char* fname, int format, int type, WOLFSSL* ssl, int userChain, WOLFSSL_CRL* crl) { #ifdef WOLFSSL_SMALL_STACK byte staticBuffer[1]; /* force heap usage */ #else byte staticBuffer[FILE_BUFFER_SIZE]; #endif byte* myBuffer = staticBuffer; int dynamic = 0; int ret; long sz = 0; XFILE file; void* heapHint = wolfSSL_CTX_GetHeap(ctx, ssl); (void)crl; (void)heapHint; if (fname == NULL) return WOLFSSL_BAD_FILE; file = XFOPEN(fname, "rb"); if (file == XBADFILE) return WOLFSSL_BAD_FILE; XFSEEK(file, 0, XSEEK_END); sz = XFTELL(file); XREWIND(file); if (sz > (long)sizeof(staticBuffer)) { WOLFSSL_MSG("Getting dynamic buffer"); myBuffer = (byte*)XMALLOC(sz, heapHint, DYNAMIC_TYPE_FILE); if (myBuffer == NULL) { XFCLOSE(file); return WOLFSSL_BAD_FILE; } dynamic = 1; } else if (sz <= 0) { XFCLOSE(file); return WOLFSSL_BAD_FILE; } if ( (ret = (int)XFREAD(myBuffer, 1, sz, file)) != sz) ret = WOLFSSL_BAD_FILE; else { if ((type == CA_TYPE || type == TRUSTED_PEER_TYPE) && format == WOLFSSL_FILETYPE_PEM) ret = ProcessChainBuffer(ctx, myBuffer, sz, format, type, ssl); #ifdef HAVE_CRL else if (type == CRL_TYPE) ret = BufferLoadCRL(crl, myBuffer, sz, format, 0); #endif else ret = ProcessBuffer(ctx, myBuffer, sz, format, type, ssl, NULL, userChain); } XFCLOSE(file); if (dynamic) XFREE(myBuffer, heapHint, DYNAMIC_TYPE_FILE); return ret; } /* loads file then loads each file in path, no c_rehash */ int wolfSSL_CTX_load_verify_locations(WOLFSSL_CTX* ctx, const char* file, const char* path) { int ret = WOLFSSL_SUCCESS; #ifndef NO_WOLFSSL_DIR int fileRet; #endif WOLFSSL_ENTER("wolfSSL_CTX_load_verify_locations"); if (ctx == NULL || (file == NULL && path == NULL) ) return WOLFSSL_FAILURE; if (file) ret = ProcessFile(ctx, file, WOLFSSL_FILETYPE_PEM, CA_TYPE, NULL, 0, NULL); if (ret == WOLFSSL_SUCCESS && path) { #ifndef NO_WOLFSSL_DIR char* name = NULL; #ifdef WOLFSSL_SMALL_STACK ReadDirCtx* readCtx = NULL; readCtx = (ReadDirCtx*)XMALLOC(sizeof(ReadDirCtx), ctx->heap, DYNAMIC_TYPE_DIRCTX); if (readCtx == NULL) return MEMORY_E; #else ReadDirCtx readCtx[1]; #endif /* try to load each regular file in path */ fileRet = wc_ReadDirFirst(readCtx, path, &name); while (fileRet == 0 && name) { ret = ProcessFile(ctx, name, WOLFSSL_FILETYPE_PEM, CA_TYPE, NULL, 0, NULL); if (ret != WOLFSSL_SUCCESS) break; fileRet = wc_ReadDirNext(readCtx, path, &name); } wc_ReadDirClose(readCtx); /* pass directory read failure to response code */ if (ret == WOLFSSL_SUCCESS && fileRet != -1) { ret = fileRet; } #ifdef WOLFSSL_SMALL_STACK XFREE(readCtx, ctx->heap, DYNAMIC_TYPE_DIRCTX); #endif #else ret = NOT_COMPILED_IN; #endif } return ret; } #ifdef WOLFSSL_TRUST_PEER_CERT /* Used to specify a peer cert to match when connecting ctx : the ctx structure to load in peer cert file: the string name of cert file type: type of format such as PEM/DER */ int wolfSSL_CTX_trust_peer_cert(WOLFSSL_CTX* ctx, const char* file, int type) { WOLFSSL_ENTER("wolfSSL_CTX_trust_peer_cert"); if (ctx == NULL || file == NULL) { return WOLFSSL_FAILURE; } return ProcessFile(ctx, file, type, TRUSTED_PEER_TYPE, NULL, 0, NULL); } #endif /* WOLFSSL_TRUST_PEER_CERT */ /* Verify the certificate, WOLFSSL_SUCCESS for ok, < 0 for error */ int wolfSSL_CertManagerVerify(WOLFSSL_CERT_MANAGER* cm, const char* fname, int format) { int ret = WOLFSSL_FATAL_ERROR; #ifdef WOLFSSL_SMALL_STACK byte staticBuffer[1]; /* force heap usage */ #else byte staticBuffer[FILE_BUFFER_SIZE]; #endif byte* myBuffer = staticBuffer; int dynamic = 0; long sz = 0; XFILE file = XFOPEN(fname, "rb"); WOLFSSL_ENTER("wolfSSL_CertManagerVerify"); if (file == XBADFILE) return WOLFSSL_BAD_FILE; XFSEEK(file, 0, XSEEK_END); sz = XFTELL(file); XREWIND(file); if (sz > MAX_WOLFSSL_FILE_SIZE || sz <= 0) { WOLFSSL_MSG("CertManagerVerify file bad size"); XFCLOSE(file); return WOLFSSL_BAD_FILE; } if (sz > (long)sizeof(staticBuffer)) { WOLFSSL_MSG("Getting dynamic buffer"); myBuffer = (byte*) XMALLOC(sz, cm->heap, DYNAMIC_TYPE_FILE); if (myBuffer == NULL) { XFCLOSE(file); return WOLFSSL_BAD_FILE; } dynamic = 1; } if ( (ret = (int)XFREAD(myBuffer, 1, sz, file)) != sz) ret = WOLFSSL_BAD_FILE; else ret = wolfSSL_CertManagerVerifyBuffer(cm, myBuffer, sz, format); XFCLOSE(file); if (dynamic) XFREE(myBuffer, cm->heap, DYNAMIC_TYPE_FILE); return ret; } /* like load verify locations, 1 for success, < 0 for error */ int wolfSSL_CertManagerLoadCA(WOLFSSL_CERT_MANAGER* cm, const char* file, const char* path) { int ret = WOLFSSL_FATAL_ERROR; WOLFSSL_CTX* tmp; WOLFSSL_ENTER("wolfSSL_CertManagerLoadCA"); if (cm == NULL) { WOLFSSL_MSG("No CertManager error"); return ret; } tmp = wolfSSL_CTX_new(cm_pick_method()); if (tmp == NULL) { WOLFSSL_MSG("CTX new failed"); return ret; } /* for tmp use */ wolfSSL_CertManagerFree(tmp->cm); tmp->cm = cm; ret = wolfSSL_CTX_load_verify_locations(tmp, file, path); /* don't loose our good one */ tmp->cm = NULL; wolfSSL_CTX_free(tmp); return ret; } /* Check private against public in certificate for match * * ctx WOLFSSL_CTX structure to check private key in * * Returns SSL_SUCCESS on good private key and SSL_FAILURE if miss matched. */ int wolfSSL_CTX_check_private_key(const WOLFSSL_CTX* ctx) { #ifdef WOLFSSL_SMALL_STACK DecodedCert* der = NULL; #else DecodedCert der[1]; #endif word32 size; byte* buff; int ret; WOLFSSL_ENTER("wolfSSL_CTX_check_private_key"); if (ctx == NULL) { return WOLFSSL_FAILURE; } #ifndef NO_CERTS #ifdef WOLFSSL_SMALL_STACK der = (DecodedCert*)XMALLOC(sizeof(DecodedCert), NULL, DYNAMIC_TYPE_DCERT); if (der == NULL) return MEMORY_E; #endif size = ctx->certificate->length; buff = ctx->certificate->buffer; InitDecodedCert(der, buff, size, ctx->heap); if (ParseCertRelative(der, CERT_TYPE, NO_VERIFY, NULL) != 0) { FreeDecodedCert(der); #ifdef WOLFSSL_SMALL_STACK XFREE(der, NULL, DYNAMIC_TYPE_DCERT); #endif return WOLFSSL_FAILURE; } size = ctx->privateKey->length; buff = ctx->privateKey->buffer; ret = wc_CheckPrivateKey(buff, size, der); FreeDecodedCert(der); #ifdef WOLFSSL_SMALL_STACK XFREE(der, NULL, DYNAMIC_TYPE_DCERT); #endif if (ret == 1) { return WOLFSSL_SUCCESS; } else { return WOLFSSL_FAILURE; } #else WOLFSSL_MSG("NO_CERTS is defined, can not check private key"); return WOLFSSL_FAILURE; #endif } #ifdef HAVE_CRL /* check CRL if enabled, WOLFSSL_SUCCESS */ int wolfSSL_CertManagerCheckCRL(WOLFSSL_CERT_MANAGER* cm, byte* der, int sz) { int ret = 0; #ifdef WOLFSSL_SMALL_STACK DecodedCert* cert = NULL; #else DecodedCert cert[1]; #endif WOLFSSL_ENTER("wolfSSL_CertManagerCheckCRL"); if (cm == NULL) return BAD_FUNC_ARG; if (cm->crlEnabled == 0) return WOLFSSL_SUCCESS; #ifdef WOLFSSL_SMALL_STACK cert = (DecodedCert*)XMALLOC(sizeof(DecodedCert), NULL, DYNAMIC_TYPE_DCERT); if (cert == NULL) return MEMORY_E; #endif InitDecodedCert(cert, der, sz, NULL); if ((ret = ParseCertRelative(cert, CERT_TYPE, VERIFY_CRL, cm)) != 0) { WOLFSSL_MSG("ParseCert failed"); } else if ((ret = CheckCertCRL(cm->crl, cert)) != 0) { WOLFSSL_MSG("CheckCertCRL failed"); } FreeDecodedCert(cert); #ifdef WOLFSSL_SMALL_STACK XFREE(cert, NULL, DYNAMIC_TYPE_DCERT); #endif return ret == 0 ? WOLFSSL_SUCCESS : ret; } int wolfSSL_CertManagerSetCRL_Cb(WOLFSSL_CERT_MANAGER* cm, CbMissingCRL cb) { WOLFSSL_ENTER("wolfSSL_CertManagerSetCRL_Cb"); if (cm == NULL) return BAD_FUNC_ARG; cm->cbMissingCRL = cb; return WOLFSSL_SUCCESS; } #ifdef HAVE_CRL_IO int wolfSSL_CertManagerSetCRL_IOCb(WOLFSSL_CERT_MANAGER* cm, CbCrlIO cb) { if (cm == NULL) return BAD_FUNC_ARG; cm->crl->crlIOCb = cb; return WOLFSSL_SUCCESS; } #endif int wolfSSL_CertManagerLoadCRL(WOLFSSL_CERT_MANAGER* cm, const char* path, int type, int monitor) { WOLFSSL_ENTER("wolfSSL_CertManagerLoadCRL"); if (cm == NULL) return BAD_FUNC_ARG; if (cm->crl == NULL) { if (wolfSSL_CertManagerEnableCRL(cm, 0) != WOLFSSL_SUCCESS) { WOLFSSL_MSG("Enable CRL failed"); return WOLFSSL_FATAL_ERROR; } } return LoadCRL(cm->crl, path, type, monitor); } int wolfSSL_EnableCRL(WOLFSSL* ssl, int options) { WOLFSSL_ENTER("wolfSSL_EnableCRL"); if (ssl) return wolfSSL_CertManagerEnableCRL(ssl->ctx->cm, options); else return BAD_FUNC_ARG; } int wolfSSL_DisableCRL(WOLFSSL* ssl) { WOLFSSL_ENTER("wolfSSL_DisableCRL"); if (ssl) return wolfSSL_CertManagerDisableCRL(ssl->ctx->cm); else return BAD_FUNC_ARG; } int wolfSSL_LoadCRL(WOLFSSL* ssl, const char* path, int type, int monitor) { WOLFSSL_ENTER("wolfSSL_LoadCRL"); if (ssl) return wolfSSL_CertManagerLoadCRL(ssl->ctx->cm, path, type, monitor); else return BAD_FUNC_ARG; } int wolfSSL_SetCRL_Cb(WOLFSSL* ssl, CbMissingCRL cb) { WOLFSSL_ENTER("wolfSSL_SetCRL_Cb"); if (ssl) return wolfSSL_CertManagerSetCRL_Cb(ssl->ctx->cm, cb); else return BAD_FUNC_ARG; } #ifdef HAVE_CRL_IO int wolfSSL_SetCRL_IOCb(WOLFSSL* ssl, CbCrlIO cb) { WOLFSSL_ENTER("wolfSSL_SetCRL_Cb"); if (ssl) return wolfSSL_CertManagerSetCRL_IOCb(ssl->ctx->cm, cb); else return BAD_FUNC_ARG; } #endif int wolfSSL_CTX_EnableCRL(WOLFSSL_CTX* ctx, int options) { WOLFSSL_ENTER("wolfSSL_CTX_EnableCRL"); if (ctx) return wolfSSL_CertManagerEnableCRL(ctx->cm, options); else return BAD_FUNC_ARG; } int wolfSSL_CTX_DisableCRL(WOLFSSL_CTX* ctx) { WOLFSSL_ENTER("wolfSSL_CTX_DisableCRL"); if (ctx) return wolfSSL_CertManagerDisableCRL(ctx->cm); else return BAD_FUNC_ARG; } int wolfSSL_CTX_LoadCRL(WOLFSSL_CTX* ctx, const char* path, int type, int monitor) { WOLFSSL_ENTER("wolfSSL_CTX_LoadCRL"); if (ctx) return wolfSSL_CertManagerLoadCRL(ctx->cm, path, type, monitor); else return BAD_FUNC_ARG; } int wolfSSL_CTX_SetCRL_Cb(WOLFSSL_CTX* ctx, CbMissingCRL cb) { WOLFSSL_ENTER("wolfSSL_CTX_SetCRL_Cb"); if (ctx) return wolfSSL_CertManagerSetCRL_Cb(ctx->cm, cb); else return BAD_FUNC_ARG; } #ifdef HAVE_CRL_IO int wolfSSL_CTX_SetCRL_IOCb(WOLFSSL_CTX* ctx, CbCrlIO cb) { WOLFSSL_ENTER("wolfSSL_CTX_SetCRL_IOCb"); if (ctx) return wolfSSL_CertManagerSetCRL_IOCb(ctx->cm, cb); else return BAD_FUNC_ARG; } #endif #endif /* HAVE_CRL */ #ifdef WOLFSSL_DER_LOAD /* Add format parameter to allow DER load of CA files */ int wolfSSL_CTX_der_load_verify_locations(WOLFSSL_CTX* ctx, const char* file, int format) { WOLFSSL_ENTER("wolfSSL_CTX_der_load_verify_locations"); if (ctx == NULL || file == NULL) return WOLFSSL_FAILURE; if (ProcessFile(ctx, file, format, CA_TYPE, NULL, 0, NULL) == WOLFSSL_SUCCESS) return WOLFSSL_SUCCESS; return WOLFSSL_FAILURE; } #endif /* WOLFSSL_DER_LOAD */ int wolfSSL_CTX_use_certificate_file(WOLFSSL_CTX* ctx, const char* file, int format) { WOLFSSL_ENTER("wolfSSL_CTX_use_certificate_file"); if (ProcessFile(ctx, file, format, CERT_TYPE, NULL, 0, NULL) == WOLFSSL_SUCCESS) return WOLFSSL_SUCCESS; return WOLFSSL_FAILURE; } int wolfSSL_CTX_use_PrivateKey_file(WOLFSSL_CTX* ctx, const char* file, int format) { WOLFSSL_ENTER("wolfSSL_CTX_use_PrivateKey_file"); if (ProcessFile(ctx, file, format, PRIVATEKEY_TYPE, NULL, 0, NULL) == WOLFSSL_SUCCESS) return WOLFSSL_SUCCESS; return WOLFSSL_FAILURE; } /* Sets the max chain depth when verifying a certificate chain. Default depth * is set to MAX_CHAIN_DEPTH. * * ctx WOLFSSL_CTX structure to set depth in * depth max depth */ void wolfSSL_CTX_set_verify_depth(WOLFSSL_CTX *ctx, int depth) { WOLFSSL_ENTER("wolfSSL_CTX_set_verify_depth"); if (ctx == NULL || depth < 0 || depth > MAX_CHAIN_DEPTH) { WOLFSSL_MSG("Bad depth argument, too large or less than 0"); return; } ctx->verifyDepth = (byte)depth; } /* get cert chaining depth using ssl struct */ long wolfSSL_get_verify_depth(WOLFSSL* ssl) { if(ssl == NULL) { return BAD_FUNC_ARG; } #ifndef OPENSSL_EXTRA return MAX_CHAIN_DEPTH; #else return ssl->options.verifyDepth; #endif } /* get cert chaining depth using ctx struct */ long wolfSSL_CTX_get_verify_depth(WOLFSSL_CTX* ctx) { if(ctx == NULL) { return BAD_FUNC_ARG; } #ifndef OPENSSL_EXTRA return MAX_CHAIN_DEPTH; #else return ctx->verifyDepth; #endif } int wolfSSL_CTX_use_certificate_chain_file(WOLFSSL_CTX* ctx, const char* file) { /* process up to MAX_CHAIN_DEPTH plus subject cert */ WOLFSSL_ENTER("wolfSSL_CTX_use_certificate_chain_file"); if (ProcessFile(ctx, file, WOLFSSL_FILETYPE_PEM,CERT_TYPE,NULL,1, NULL) == WOLFSSL_SUCCESS) return WOLFSSL_SUCCESS; return WOLFSSL_FAILURE; } int wolfSSL_CTX_use_certificate_chain_file_format(WOLFSSL_CTX* ctx, const char* file, int format) { /* process up to MAX_CHAIN_DEPTH plus subject cert */ WOLFSSL_ENTER("wolfSSL_CTX_use_certificate_chain_file_format"); if (ProcessFile(ctx, file, format, CERT_TYPE, NULL, 1, NULL) == WOLFSSL_SUCCESS) return WOLFSSL_SUCCESS; return WOLFSSL_FAILURE; } #ifndef NO_DH /* server Diffie-Hellman parameters */ static int wolfSSL_SetTmpDH_file_wrapper(WOLFSSL_CTX* ctx, WOLFSSL* ssl, const char* fname, int format) { #ifdef WOLFSSL_SMALL_STACK byte staticBuffer[1]; /* force heap usage */ #else byte staticBuffer[FILE_BUFFER_SIZE]; #endif byte* myBuffer = staticBuffer; int dynamic = 0; int ret; long sz = 0; XFILE file; if (ctx == NULL || fname == NULL) return BAD_FUNC_ARG; file = XFOPEN(fname, "rb"); if (file == XBADFILE) return WOLFSSL_BAD_FILE; XFSEEK(file, 0, XSEEK_END); sz = XFTELL(file); XREWIND(file); if (sz > (long)sizeof(staticBuffer)) { WOLFSSL_MSG("Getting dynamic buffer"); myBuffer = (byte*) XMALLOC(sz, ctx->heap, DYNAMIC_TYPE_FILE); if (myBuffer == NULL) { XFCLOSE(file); return WOLFSSL_BAD_FILE; } dynamic = 1; } else if (sz <= 0) { XFCLOSE(file); return WOLFSSL_BAD_FILE; } if ( (ret = (int)XFREAD(myBuffer, 1, sz, file)) != sz) ret = WOLFSSL_BAD_FILE; else { if (ssl) ret = wolfSSL_SetTmpDH_buffer(ssl, myBuffer, sz, format); else ret = wolfSSL_CTX_SetTmpDH_buffer(ctx, myBuffer, sz, format); } XFCLOSE(file); if (dynamic) XFREE(myBuffer, ctx->heap, DYNAMIC_TYPE_FILE); return ret; } /* server Diffie-Hellman parameters */ int wolfSSL_SetTmpDH_file(WOLFSSL* ssl, const char* fname, int format) { if (ssl == NULL) return BAD_FUNC_ARG; return wolfSSL_SetTmpDH_file_wrapper(ssl->ctx, ssl, fname, format); } /* server Diffie-Hellman parameters */ int wolfSSL_CTX_SetTmpDH_file(WOLFSSL_CTX* ctx, const char* fname, int format) { return wolfSSL_SetTmpDH_file_wrapper(ctx, NULL, fname, format); } #endif /* NO_DH */ #endif /* NO_FILESYSTEM */ #if defined(OPENSSL_EXTRA) || !defined(NO_PWDBASED) && \ (defined(OPENSSL_EXTRA_X509_SMALL) || defined(HAVE_WEBSERVER)) static int wolfSSL_EVP_get_hashinfo(const WOLFSSL_EVP_MD* evp, int* pHash, int* pHashSz) { enum wc_HashType hash = WC_HASH_TYPE_NONE; int hashSz; if (XSTRLEN(evp) < 3) { /* do not try comparing strings if size is too small */ return WOLFSSL_FAILURE; } if (XSTRNCMP("SHA", evp, 3) == 0) { if (XSTRLEN(evp) > 3) { #ifndef NO_SHA256 if (XSTRNCMP("SHA256", evp, 6) == 0) { hash = WC_HASH_TYPE_SHA256; } else #endif #ifdef WOLFSSL_SHA384 if (XSTRNCMP("SHA384", evp, 6) == 0) { hash = WC_HASH_TYPE_SHA384; } else #endif #ifdef WOLFSSL_SHA512 if (XSTRNCMP("SHA512", evp, 6) == 0) { hash = WC_HASH_TYPE_SHA512; } else #endif { WOLFSSL_MSG("Unknown SHA hash"); } } else { hash = WC_HASH_TYPE_SHA; } } #ifdef WOLFSSL_MD2 else if (XSTRNCMP("MD2", evp, 3) == 0) { hash = WC_HASH_TYPE_MD2; } #endif #ifndef NO_MD4 else if (XSTRNCMP("MD4", evp, 3) == 0) { hash = WC_HASH_TYPE_MD4; } #endif #ifndef NO_MD5 else if (XSTRNCMP("MD5", evp, 3) == 0) { hash = WC_HASH_TYPE_MD5; } #endif if (pHash) *pHash = hash; hashSz = wc_HashGetDigestSize(hash); if (pHashSz) *pHashSz = hashSz; if (hashSz < 0) { return WOLFSSL_FAILURE; } return WOLFSSL_SUCCESS; } #endif #ifdef OPENSSL_EXTRA /* put SSL type in extra for now, not very common */ /* Converts a DER format key read from "bio" to a PKCS8 structure. * * bio input bio to read DER from * pkey If not NULL then this pointer will be overwritten with a new PKCS8 * structure. * * returns a WOLFSSL_PKCS8_PRIV_KEY_INFO pointer on success and NULL in fail * case. */ WOLFSSL_PKCS8_PRIV_KEY_INFO* wolfSSL_d2i_PKCS8_PKEY_bio(WOLFSSL_BIO* bio, WOLFSSL_PKCS8_PRIV_KEY_INFO** pkey) { WOLFSSL_PKCS8_PRIV_KEY_INFO* pkcs8 = NULL; #ifdef WOLFSSL_PEM_TO_DER unsigned char* mem; int memSz; int keySz; WOLFSSL_MSG("wolfSSL_d2i_PKCS8_PKEY_bio()"); if (bio == NULL) { return NULL; } if ((memSz = wolfSSL_BIO_get_mem_data(bio, &mem)) < 0) { return NULL; } if ((keySz = wc_KeyPemToDer(mem, memSz, mem, memSz, NULL)) < 0) { WOLFSSL_MSG("Not PEM format"); keySz = memSz; if ((keySz = ToTraditional((byte*)mem, (word32)keySz)) < 0) { return NULL; } } pkcs8 = wolfSSL_PKEY_new(); if (pkcs8 == NULL) { return NULL; } pkcs8->pkey.ptr = (char*)XMALLOC(keySz, NULL, DYNAMIC_TYPE_PUBLIC_KEY); if (pkcs8->pkey.ptr == NULL) { wolfSSL_EVP_PKEY_free(pkcs8); return NULL; } XMEMCPY(pkcs8->pkey.ptr, mem, keySz); pkcs8->pkey_sz = keySz; if (pkey != NULL) { *pkey = pkcs8; } #else (void)bio; (void)pkey; #endif /* WOLFSSL_PEM_TO_DER */ return pkcs8; } /* expecting DER format public key * * bio input bio to read DER from * out If not NULL then this pointer will be overwritten with a new * WOLFSSL_EVP_PKEY pointer * * returns a WOLFSSL_EVP_PKEY pointer on success and NULL in fail case. */ WOLFSSL_EVP_PKEY* wolfSSL_d2i_PUBKEY_bio(WOLFSSL_BIO* bio, WOLFSSL_EVP_PKEY** out) { unsigned char* mem; long memSz; WOLFSSL_EVP_PKEY* pkey = NULL; WOLFSSL_ENTER("wolfSSL_d2i_PUBKEY_bio()"); if (bio == NULL) { return NULL; } (void)out; memSz = wolfSSL_BIO_pending(bio); if (memSz <= 0) { return NULL; } mem = (unsigned char*)XMALLOC(memSz, bio->heap, DYNAMIC_TYPE_TMP_BUFFER); if (mem == NULL) { return NULL; } if (wolfSSL_BIO_read(bio, mem, (int)memSz) == memSz) { pkey = wolfSSL_d2i_PUBKEY(NULL, &mem, memSz); if (out != NULL && pkey != NULL) { *out = pkey; } } XFREE(mem, bio->heap, DYNAMIC_TYPE_TMP_BUFFER); return pkey; } /* Converts a DER encoded public key to a WOLFSSL_EVP_PKEY structure. * * out pointer to new WOLFSSL_EVP_PKEY structure. Can be NULL * in DER buffer to convert * inSz size of in buffer * * returns a pointer to a new WOLFSSL_EVP_PKEY structure on success and NULL * on fail */ WOLFSSL_EVP_PKEY* wolfSSL_d2i_PUBKEY(WOLFSSL_EVP_PKEY** out, unsigned char** in, long inSz) { WOLFSSL_EVP_PKEY* pkey = NULL; const unsigned char* mem; long memSz = inSz; WOLFSSL_ENTER("wolfSSL_d2i_PUBKEY"); if (in == NULL || inSz < 0) { WOLFSSL_MSG("Bad argument"); return NULL; } mem = *in; #if !defined(NO_RSA) { RsaKey rsa; word32 keyIdx = 0; /* test if RSA key */ if (wc_InitRsaKey(&rsa, NULL) == 0 && wc_RsaPublicKeyDecode(mem, &keyIdx, &rsa, (word32)memSz) == 0) { wc_FreeRsaKey(&rsa); pkey = wolfSSL_PKEY_new(); if (pkey != NULL) { pkey->pkey_sz = keyIdx; pkey->pkey.ptr = (char*)XMALLOC(memSz, NULL, DYNAMIC_TYPE_PUBLIC_KEY); if (pkey->pkey.ptr == NULL) { wolfSSL_EVP_PKEY_free(pkey); return NULL; } XMEMCPY(pkey->pkey.ptr, mem, keyIdx); pkey->type = EVP_PKEY_RSA; if (out != NULL) { *out = pkey; } pkey->ownRsa = 1; pkey->rsa = wolfSSL_RSA_new(); if (pkey->rsa == NULL) { wolfSSL_EVP_PKEY_free(pkey); return NULL; } if (wolfSSL_RSA_LoadDer_ex(pkey->rsa, (const unsigned char*)pkey->pkey.ptr, pkey->pkey_sz, WOLFSSL_RSA_LOAD_PUBLIC) != 1) { wolfSSL_EVP_PKEY_free(pkey); return NULL; } return pkey; } } wc_FreeRsaKey(&rsa); } #endif /* NO_RSA */ #ifdef HAVE_ECC { word32 keyIdx = 0; ecc_key ecc; if (wc_ecc_init(&ecc) == 0 && wc_EccPublicKeyDecode(mem, &keyIdx, &ecc, (word32)memSz) == 0) { wc_ecc_free(&ecc); pkey = wolfSSL_PKEY_new(); if (pkey != NULL) { pkey->pkey_sz = keyIdx; pkey->pkey.ptr = (char*)XMALLOC(keyIdx, NULL, DYNAMIC_TYPE_PUBLIC_KEY); if (pkey->pkey.ptr == NULL) { wolfSSL_EVP_PKEY_free(pkey); return NULL; } XMEMCPY(pkey->pkey.ptr, mem, keyIdx); pkey->type = EVP_PKEY_EC; if (out != NULL) { *out = pkey; } return pkey; } } wc_ecc_free(&ecc); } #endif /* HAVE_ECC */ return pkey; } /* Reads in a DER format key. If PKCS8 headers are found they are stripped off. * * type type of key * out newly created WOLFSSL_EVP_PKEY structure * in pointer to input key DER * inSz size of in buffer * * On success a non null pointer is returned and the pointer in is advanced the * same number of bytes read. */ WOLFSSL_EVP_PKEY* wolfSSL_d2i_PrivateKey(int type, WOLFSSL_EVP_PKEY** out, const unsigned char **in, long inSz) { WOLFSSL_EVP_PKEY* local; word32 idx = 0; int ret; WOLFSSL_ENTER("wolfSSL_d2i_PrivateKey"); if (in == NULL || inSz < 0) { WOLFSSL_MSG("Bad argument"); return NULL; } /* Check if input buffer has PKCS8 header. In the case that it does not * have a PKCS8 header then do not error out. */ if ((ret = ToTraditionalInline((const byte*)(*in), &idx, (word32)inSz)) > 0) { WOLFSSL_MSG("Found and removed PKCS8 header"); } else { if (ret != ASN_PARSE_E) { WOLFSSL_MSG("Unexpected error with trying to remove PKCS8 header"); return NULL; } } if (out != NULL && *out != NULL) { wolfSSL_EVP_PKEY_free(*out); } local = wolfSSL_PKEY_new(); if (local == NULL) { return NULL; } /* sanity check on idx before use */ if ((int)idx > inSz) { WOLFSSL_MSG("Issue with index pointer"); wolfSSL_EVP_PKEY_free(local); local = NULL; return NULL; } local->type = type; local->pkey_sz = (int)inSz - idx; local->pkey.ptr = (char*)XMALLOC(inSz - idx, NULL, DYNAMIC_TYPE_PUBLIC_KEY); if (local->pkey.ptr == NULL) { wolfSSL_EVP_PKEY_free(local); local = NULL; return NULL; } else { XMEMCPY(local->pkey.ptr, *in + idx, inSz - idx); } switch (type) { #ifndef NO_RSA case EVP_PKEY_RSA: local->ownRsa = 1; local->rsa = wolfSSL_RSA_new(); if (local->rsa == NULL) { wolfSSL_EVP_PKEY_free(local); return NULL; } if (wolfSSL_RSA_LoadDer_ex(local->rsa, (const unsigned char*)local->pkey.ptr, local->pkey_sz, WOLFSSL_RSA_LOAD_PRIVATE) != SSL_SUCCESS) { wolfSSL_EVP_PKEY_free(local); return NULL; } break; #endif /* NO_RSA */ #ifdef HAVE_ECC case EVP_PKEY_EC: local->ownEcc = 1; local->ecc = wolfSSL_EC_KEY_new(); if (local->ecc == NULL) { wolfSSL_EVP_PKEY_free(local); return NULL; } if (wolfSSL_EC_KEY_LoadDer(local->ecc, (const unsigned char*)local->pkey.ptr, local->pkey_sz) != SSL_SUCCESS) { wolfSSL_EVP_PKEY_free(local); return NULL; } break; #endif /* HAVE_ECC */ default: WOLFSSL_MSG("Unsupported key type"); wolfSSL_EVP_PKEY_free(local); return NULL; } /* advance pointer with success */ if (local != NULL) { if ((idx + local->pkey_sz) <= (word32)inSz) { *in = *in + idx + local->pkey_sz; } if (out != NULL) { *out = local; } } return local; } #ifndef NO_WOLFSSL_STUB long wolfSSL_ctrl(WOLFSSL* ssl, int cmd, long opt, void* pt) { WOLFSSL_STUB("SSL_ctrl"); (void)ssl; (void)cmd; (void)opt; (void)pt; return WOLFSSL_FAILURE; } #endif #ifndef NO_WOLFSSL_STUB long wolfSSL_CTX_ctrl(WOLFSSL_CTX* ctx, int cmd, long opt, void* pt) { WOLFSSL_STUB("SSL_CTX_ctrl"); (void)ctx; (void)cmd; (void)opt; (void)pt; return WOLFSSL_FAILURE; } #endif #ifndef NO_CERTS int wolfSSL_check_private_key(const WOLFSSL* ssl) { DecodedCert der; word32 size; byte* buff; int ret; if (ssl == NULL) { return WOLFSSL_FAILURE; } size = ssl->buffers.certificate->length; buff = ssl->buffers.certificate->buffer; InitDecodedCert(&der, buff, size, ssl->heap); #ifdef HAVE_PK_CALLBACKS ret = InitSigPkCb((WOLFSSL*)ssl, &der.sigCtx); if (ret != 0) { FreeDecodedCert(&der); return ret; } #endif if (ParseCertRelative(&der, CERT_TYPE, NO_VERIFY, NULL) != 0) { FreeDecodedCert(&der); return WOLFSSL_FAILURE; } size = ssl->buffers.key->length; buff = ssl->buffers.key->buffer; ret = wc_CheckPrivateKey(buff, size, &der); FreeDecodedCert(&der); return ret; } /* Looks for the extension matching the passed in nid * * c : if not null then is set to status value -2 if multiple occurances * of the extension are found, -1 if not found, 0 if found and not * critical, and 1 if found and critical. * nid : Extension OID to be found. * idx : if NULL return first extension found match, otherwise start search at * idx location and set idx to the location of extension returned. * returns NULL or a pointer to an WOLFSSL_STACK holding extension structure * * NOTE code for decoding extensions is in asn.c DecodeCertExtensions -- * use already decoded extension in this function to avoid decoding twice. * Currently we do not make use of idx since getting pre decoded extensions. */ void* wolfSSL_X509_get_ext_d2i(const WOLFSSL_X509* x509, int nid, int* c, int* idx) { WOLFSSL_STACK* sk = NULL; WOLFSSL_ASN1_OBJECT* obj = NULL; WOLFSSL_ENTER("wolfSSL_X509_get_ext_d2i"); if (x509 == NULL) { return NULL; } if (c != NULL) { *c = -1; /* default to not found */ } sk = (WOLF_STACK_OF(WOLFSSL_ASN1_OBJECT)*)XMALLOC( sizeof(WOLF_STACK_OF(WOLFSSL_ASN1_OBJECT)), NULL, DYNAMIC_TYPE_ASN1); if (sk == NULL) { return NULL; } XMEMSET(sk, 0, sizeof(WOLF_STACK_OF(WOLFSSL_ASN1_OBJECT))); switch (nid) { case BASIC_CA_OID: if (x509->basicConstSet) { obj = wolfSSL_ASN1_OBJECT_new(); if (obj == NULL) { WOLFSSL_MSG("Issue creating WOLFSSL_ASN1_OBJECT struct"); wolfSSL_sk_ASN1_OBJECT_free(sk); return NULL; } if (c != NULL) { *c = x509->basicConstCrit; } obj->type = BASIC_CA_OID; obj->grp = oidCertExtType; } else { WOLFSSL_MSG("No Basic Constraint set"); } break; case ALT_NAMES_OID: { DNS_entry* dns = NULL; if (x509->subjAltNameSet && x509->altNames != NULL) { /* alt names are DNS_entry structs */ if (c != NULL) { if (x509->altNames->next != NULL) { *c = -2; /* more then one found */ } else { *c = x509->subjAltNameCrit; } } dns = x509->altNames; while (dns != NULL) { obj = wolfSSL_ASN1_OBJECT_new(); if (obj == NULL) { WOLFSSL_MSG("Issue creating WOLFSSL_ASN1_OBJECT struct"); wolfSSL_sk_ASN1_OBJECT_free(sk); return NULL; } obj->type = dns->type; obj->grp = oidCertExtType; obj->obj = (byte*)dns->name; /* set app derefrenced pointers */ obj->d.ia5_internal.data = dns->name; obj->d.ia5_internal.length = (int)XSTRLEN(dns->name); dns = dns->next; /* last dns in list add at end of function */ if (dns != NULL) { if (wolfSSL_sk_ASN1_OBJECT_push(sk, obj) != WOLFSSL_SUCCESS) { WOLFSSL_MSG("Error pushing ASN1 object onto stack"); wolfSSL_ASN1_OBJECT_free(obj); wolfSSL_sk_ASN1_OBJECT_free(sk); sk = NULL; } } } } else { WOLFSSL_MSG("No Alt Names set"); } } break; case CRL_DIST_OID: if (x509->CRLdistSet && x509->CRLInfo != NULL) { if (c != NULL) { *c = x509->CRLdistCrit; } obj = wolfSSL_ASN1_OBJECT_new(); if (obj == NULL) { WOLFSSL_MSG("Issue creating WOLFSSL_ASN1_OBJECT struct"); wolfSSL_sk_ASN1_OBJECT_free(sk); return NULL; } obj->type = CRL_DIST_OID; obj->grp = oidCertExtType; obj->obj = x509->CRLInfo; obj->objSz = x509->CRLInfoSz; } else { WOLFSSL_MSG("No CRL dist set"); } break; case AUTH_INFO_OID: if (x509->authInfoSet && x509->authInfo != NULL) { if (c != NULL) { *c = x509->authInfoCrit; } obj = wolfSSL_ASN1_OBJECT_new(); if (obj == NULL) { WOLFSSL_MSG("Issue creating WOLFSSL_ASN1_OBJECT struct"); wolfSSL_sk_ASN1_OBJECT_free(sk); return NULL; } obj->type = AUTH_INFO_OID; obj->grp = oidCertExtType; obj->obj = x509->authInfo; obj->objSz = x509->authInfoSz; } else { WOLFSSL_MSG("No Auth Info set"); } break; case AUTH_KEY_OID: if (x509->authKeyIdSet) { if (c != NULL) { *c = x509->authKeyIdCrit; } obj = wolfSSL_ASN1_OBJECT_new(); if (obj == NULL) { WOLFSSL_MSG("Issue creating WOLFSSL_ASN1_OBJECT struct"); wolfSSL_sk_ASN1_OBJECT_free(sk); return NULL; } obj->type = AUTH_KEY_OID; obj->grp = oidCertExtType; obj->obj = x509->authKeyId; obj->objSz = x509->authKeyIdSz; } else { WOLFSSL_MSG("No Auth Key set"); } break; case SUBJ_KEY_OID: if (x509->subjKeyIdSet) { if (c != NULL) { *c = x509->subjKeyIdCrit; } obj = wolfSSL_ASN1_OBJECT_new(); if (obj == NULL) { WOLFSSL_MSG("Issue creating WOLFSSL_ASN1_OBJECT struct"); wolfSSL_sk_ASN1_OBJECT_free(sk); return NULL; } obj->type = SUBJ_KEY_OID; obj->grp = oidCertExtType; obj->obj = x509->subjKeyId; obj->objSz = x509->subjKeyIdSz; } else { WOLFSSL_MSG("No Subject Key set"); } break; case CERT_POLICY_OID: #ifdef WOLFSSL_CERT_EXT { int i; if (x509->certPoliciesNb > 0) { if (c != NULL) { if (x509->certPoliciesNb > 1) { *c = -2; } else { *c = 0; } } for (i = 0; i < x509->certPoliciesNb - 1; i++) { obj = wolfSSL_ASN1_OBJECT_new(); if (obj == NULL) { WOLFSSL_MSG("Issue creating WOLFSSL_ASN1_OBJECT struct"); wolfSSL_sk_ASN1_OBJECT_free(sk); return NULL; } obj->type = CERT_POLICY_OID; obj->grp = oidCertExtType; obj->obj = (byte*)(x509->certPolicies[i]); obj->objSz = MAX_CERTPOL_SZ; if (wolfSSL_sk_ASN1_OBJECT_push(sk, obj) != WOLFSSL_SUCCESS) { WOLFSSL_MSG("Error pushing ASN1 object onto stack"); wolfSSL_ASN1_OBJECT_free(obj); wolfSSL_sk_ASN1_OBJECT_free(sk); sk = NULL; } } obj = wolfSSL_ASN1_OBJECT_new(); if (obj == NULL) { WOLFSSL_MSG("Issue creating WOLFSSL_ASN1_OBJECT struct"); wolfSSL_sk_ASN1_OBJECT_free(sk); return NULL; } obj->type = CERT_POLICY_OID; obj->grp = oidCertExtType; obj->obj = (byte*)(x509->certPolicies[i]); obj->objSz = MAX_CERTPOL_SZ; } else { WOLFSSL_MSG("No Cert Policy set"); } } #else #ifdef WOLFSSL_SEP if (x509->certPolicySet) { if (c != NULL) { *c = x509->certPolicyCrit; } obj = wolfSSL_ASN1_OBJECT_new(); if (obj == NULL) { WOLFSSL_MSG("Issue creating WOLFSSL_ASN1_OBJECT struct"); wolfSSL_sk_ASN1_OBJECT_free(sk); return NULL; } obj->type = CERT_POLICY_OID; obj->grp = oidCertExtType; } else { WOLFSSL_MSG("No Cert Policy set"); } #else WOLFSSL_MSG("wolfSSL not built with WOLFSSL_SEP or WOLFSSL_CERT_EXT"); #endif /* WOLFSSL_SEP */ #endif /* WOLFSSL_CERT_EXT */ break; case KEY_USAGE_OID: if (x509->keyUsageSet) { if (c != NULL) { *c = x509->keyUsageCrit; } obj = wolfSSL_ASN1_OBJECT_new(); if (obj == NULL) { WOLFSSL_MSG("Issue creating WOLFSSL_ASN1_OBJECT struct"); wolfSSL_sk_ASN1_OBJECT_free(sk); return NULL; } obj->type = KEY_USAGE_OID; obj->grp = oidCertExtType; obj->obj = (byte*)&(x509->keyUsage); obj->objSz = sizeof(word16); } else { WOLFSSL_MSG("No Key Usage set"); } break; case INHIBIT_ANY_OID: WOLFSSL_MSG("INHIBIT ANY extension not supported"); break; case EXT_KEY_USAGE_OID: if (x509->extKeyUsageSrc != NULL) { if (c != NULL) { if (x509->extKeyUsageCount > 1) { *c = -2; } else { *c = x509->extKeyUsageCrit; } } obj = wolfSSL_ASN1_OBJECT_new(); if (obj == NULL) { WOLFSSL_MSG("Issue creating WOLFSSL_ASN1_OBJECT struct"); wolfSSL_sk_ASN1_OBJECT_free(sk); return NULL; } obj->type = EXT_KEY_USAGE_OID; obj->grp = oidCertExtType; obj->obj = x509->extKeyUsageSrc; obj->objSz = x509->extKeyUsageSz; } else { WOLFSSL_MSG("No Extended Key Usage set"); } break; case NAME_CONS_OID: WOLFSSL_MSG("Name Constraint OID extension not supported"); break; case PRIV_KEY_USAGE_PERIOD_OID: WOLFSSL_MSG("Private Key Usage Period extension not supported"); break; case SUBJECT_INFO_ACCESS: WOLFSSL_MSG("Subject Info Access extension not supported"); break; case POLICY_MAP_OID: WOLFSSL_MSG("Policy Map extension not supported"); break; case POLICY_CONST_OID: WOLFSSL_MSG("Policy Constraint extension not supported"); break; case ISSUE_ALT_NAMES_OID: WOLFSSL_MSG("Issue Alt Names extension not supported"); break; case TLS_FEATURE_OID: WOLFSSL_MSG("TLS Feature extension not supported"); break; default: WOLFSSL_MSG("Unsupported/Unknown extension OID"); } if (obj != NULL) { if (wolfSSL_sk_ASN1_OBJECT_push(sk, obj) != WOLFSSL_SUCCESS) { WOLFSSL_MSG("Error pushing ASN1 object onto stack"); wolfSSL_ASN1_OBJECT_free(obj); wolfSSL_sk_ASN1_OBJECT_free(sk); sk = NULL; } } else { /* no ASN1 object found for extension, free stack */ wolfSSL_sk_ASN1_OBJECT_free(sk); sk = NULL; } (void)idx; return sk; } /* this function makes the assumption that out buffer is big enough for digest*/ static int wolfSSL_EVP_Digest(unsigned char* in, int inSz, unsigned char* out, unsigned int* outSz, const WOLFSSL_EVP_MD* evp, WOLFSSL_ENGINE* eng) { int err; int hashType = WC_HASH_TYPE_NONE; int hashSz; (void)eng; err = wolfSSL_EVP_get_hashinfo(evp, &hashType, &hashSz); if (err != WOLFSSL_SUCCESS) return err; *outSz = hashSz; if (wc_Hash((enum wc_HashType)hashType, in, inSz, out, *outSz) != 0) { return WOLFSSL_FAILURE; } return WOLFSSL_SUCCESS; } int wolfSSL_X509_digest(const WOLFSSL_X509* x509, const WOLFSSL_EVP_MD* digest, unsigned char* buf, unsigned int* len) { WOLFSSL_ENTER("wolfSSL_X509_digest"); if (x509 == NULL || digest == NULL) { return WOLFSSL_FAILURE; } return wolfSSL_EVP_Digest(x509->derCert->buffer, x509->derCert->length, buf, len, digest, NULL); } int wolfSSL_use_PrivateKey(WOLFSSL* ssl, WOLFSSL_EVP_PKEY* pkey) { WOLFSSL_ENTER("wolfSSL_use_PrivateKey"); if (ssl == NULL || pkey == NULL ) { return WOLFSSL_FAILURE; } return wolfSSL_use_PrivateKey_buffer(ssl, (unsigned char*)pkey->pkey.ptr, pkey->pkey_sz, WOLFSSL_FILETYPE_ASN1); } int wolfSSL_use_PrivateKey_ASN1(int pri, WOLFSSL* ssl, unsigned char* der, long derSz) { WOLFSSL_ENTER("wolfSSL_use_PrivateKey_ASN1"); if (ssl == NULL || der == NULL ) { return WOLFSSL_FAILURE; } (void)pri; /* type of private key */ return wolfSSL_use_PrivateKey_buffer(ssl, der, derSz, WOLFSSL_FILETYPE_ASN1); } #ifndef NO_RSA int wolfSSL_use_RSAPrivateKey_ASN1(WOLFSSL* ssl, unsigned char* der, long derSz) { WOLFSSL_ENTER("wolfSSL_use_RSAPrivateKey_ASN1"); if (ssl == NULL || der == NULL ) { return WOLFSSL_FAILURE; } return wolfSSL_use_PrivateKey_buffer(ssl, der, derSz, WOLFSSL_FILETYPE_ASN1); } #endif int wolfSSL_use_certificate_ASN1(WOLFSSL* ssl, unsigned char* der, int derSz) { long idx; WOLFSSL_ENTER("wolfSSL_use_certificate_ASN1"); if (der != NULL && ssl != NULL) { if (ProcessBuffer(NULL, der, derSz, WOLFSSL_FILETYPE_ASN1, CERT_TYPE, ssl, &idx, 0) == WOLFSSL_SUCCESS) return WOLFSSL_SUCCESS; } (void)idx; return WOLFSSL_FAILURE; } int wolfSSL_use_certificate(WOLFSSL* ssl, WOLFSSL_X509* x509) { long idx; WOLFSSL_ENTER("wolfSSL_use_certificate"); if (x509 != NULL && ssl != NULL && x509->derCert != NULL) { if (ProcessBuffer(NULL, x509->derCert->buffer, x509->derCert->length, WOLFSSL_FILETYPE_ASN1, CERT_TYPE, ssl, &idx, 0) == WOLFSSL_SUCCESS) return WOLFSSL_SUCCESS; } (void)idx; return WOLFSSL_FAILURE; } #endif /* NO_CERTS */ #ifndef NO_FILESYSTEM int wolfSSL_use_certificate_file(WOLFSSL* ssl, const char* file, int format) { WOLFSSL_ENTER("wolfSSL_use_certificate_file"); if (ProcessFile(ssl->ctx, file, format, CERT_TYPE, ssl, 0, NULL) == WOLFSSL_SUCCESS) return WOLFSSL_SUCCESS; return WOLFSSL_FAILURE; } int wolfSSL_use_PrivateKey_file(WOLFSSL* ssl, const char* file, int format) { WOLFSSL_ENTER("wolfSSL_use_PrivateKey_file"); if (ProcessFile(ssl->ctx, file, format, PRIVATEKEY_TYPE, ssl, 0, NULL) == WOLFSSL_SUCCESS) return WOLFSSL_SUCCESS; return WOLFSSL_FAILURE; } int wolfSSL_use_certificate_chain_file(WOLFSSL* ssl, const char* file) { /* process up to MAX_CHAIN_DEPTH plus subject cert */ WOLFSSL_ENTER("wolfSSL_use_certificate_chain_file"); if (ProcessFile(ssl->ctx, file, WOLFSSL_FILETYPE_PEM, CERT_TYPE, ssl, 1, NULL) == WOLFSSL_SUCCESS) return WOLFSSL_SUCCESS; return WOLFSSL_FAILURE; } int wolfSSL_use_certificate_chain_file_format(WOLFSSL* ssl, const char* file, int format) { /* process up to MAX_CHAIN_DEPTH plus subject cert */ WOLFSSL_ENTER("wolfSSL_use_certificate_chain_file_format"); if (ProcessFile(ssl->ctx, file, format, CERT_TYPE, ssl, 1, NULL) == WOLFSSL_SUCCESS) return WOLFSSL_SUCCESS; return WOLFSSL_FAILURE; } #ifdef HAVE_ECC /* Set Temp CTX EC-DHE size in octets, should be 20 - 66 for 160 - 521 bit */ int wolfSSL_CTX_SetTmpEC_DHE_Sz(WOLFSSL_CTX* ctx, word16 sz) { if (ctx == NULL || sz < ECC_MINSIZE || sz > ECC_MAXSIZE) return BAD_FUNC_ARG; ctx->eccTempKeySz = sz; return WOLFSSL_SUCCESS; } /* Set Temp SSL EC-DHE size in octets, should be 20 - 66 for 160 - 521 bit */ int wolfSSL_SetTmpEC_DHE_Sz(WOLFSSL* ssl, word16 sz) { if (ssl == NULL || sz < ECC_MINSIZE || sz > ECC_MAXSIZE) return BAD_FUNC_ARG; ssl->eccTempKeySz = sz; return WOLFSSL_SUCCESS; } #endif /* HAVE_ECC */ int wolfSSL_CTX_use_RSAPrivateKey_file(WOLFSSL_CTX* ctx,const char* file, int format) { WOLFSSL_ENTER("SSL_CTX_use_RSAPrivateKey_file"); return wolfSSL_CTX_use_PrivateKey_file(ctx, file, format); } int wolfSSL_use_RSAPrivateKey_file(WOLFSSL* ssl, const char* file, int format) { WOLFSSL_ENTER("wolfSSL_use_RSAPrivateKey_file"); return wolfSSL_use_PrivateKey_file(ssl, file, format); } #endif /* NO_FILESYSTEM */ /* Copies the master secret over to out buffer. If outSz is 0 returns the size * of master secret. * * ses : a session from completed TLS/SSL handshake * out : buffer to hold copy of master secret * outSz : size of out buffer * returns : number of bytes copied into out buffer on success * less then or equal to 0 is considered a failure case */ int wolfSSL_SESSION_get_master_key(const WOLFSSL_SESSION* ses, unsigned char* out, int outSz) { int size; if (outSz == 0) { return SECRET_LEN; } if (ses == NULL || out == NULL || outSz < 0) { return 0; } if (outSz > SECRET_LEN) { size = SECRET_LEN; } else { size = outSz; } XMEMCPY(out, ses->masterSecret, size); return size; } int wolfSSL_SESSION_get_master_key_length(const WOLFSSL_SESSION* ses) { (void)ses; return SECRET_LEN; } #endif /* OPENSSL_EXTRA */ #ifndef NO_FILESYSTEM #ifdef HAVE_NTRU int wolfSSL_CTX_use_NTRUPrivateKey_file(WOLFSSL_CTX* ctx, const char* file) { WOLFSSL_ENTER("wolfSSL_CTX_use_NTRUPrivateKey_file"); if (ctx == NULL) return WOLFSSL_FAILURE; if (ProcessFile(ctx, file, WOLFSSL_FILETYPE_RAW, PRIVATEKEY_TYPE, NULL, 0, NULL) == WOLFSSL_SUCCESS) { ctx->haveNTRU = 1; return WOLFSSL_SUCCESS; } return WOLFSSL_FAILURE; } #endif /* HAVE_NTRU */ #endif /* NO_FILESYSTEM */ void wolfSSL_CTX_set_verify(WOLFSSL_CTX* ctx, int mode, VerifyCallback vc) { WOLFSSL_ENTER("wolfSSL_CTX_set_verify"); if (mode & WOLFSSL_VERIFY_PEER) { ctx->verifyPeer = 1; ctx->verifyNone = 0; /* in case previously set */ } if (mode == WOLFSSL_VERIFY_NONE) { ctx->verifyNone = 1; ctx->verifyPeer = 0; /* in case previously set */ } if (mode & WOLFSSL_VERIFY_FAIL_IF_NO_PEER_CERT) ctx->failNoCert = 1; if (mode & WOLFSSL_VERIFY_FAIL_EXCEPT_PSK) { ctx->failNoCert = 0; /* fail on all is set to fail on PSK */ ctx->failNoCertxPSK = 1; } ctx->verifyCallback = vc; } void wolfSSL_set_verify(WOLFSSL* ssl, int mode, VerifyCallback vc) { WOLFSSL_ENTER("wolfSSL_set_verify"); if (mode & WOLFSSL_VERIFY_PEER) { ssl->options.verifyPeer = 1; ssl->options.verifyNone = 0; /* in case previously set */ } if (mode == WOLFSSL_VERIFY_NONE) { ssl->options.verifyNone = 1; ssl->options.verifyPeer = 0; /* in case previously set */ } if (mode & WOLFSSL_VERIFY_FAIL_IF_NO_PEER_CERT) ssl->options.failNoCert = 1; if (mode & WOLFSSL_VERIFY_FAIL_EXCEPT_PSK) { ssl->options.failNoCert = 0; /* fail on all is set to fail on PSK */ ssl->options.failNoCertxPSK = 1; } ssl->verifyCallback = vc; } /* store user ctx for verify callback */ void wolfSSL_SetCertCbCtx(WOLFSSL* ssl, void* ctx) { WOLFSSL_ENTER("wolfSSL_SetCertCbCtx"); if (ssl) ssl->verifyCbCtx = ctx; } /* store context CA Cache addition callback */ void wolfSSL_CTX_SetCACb(WOLFSSL_CTX* ctx, CallbackCACache cb) { if (ctx && ctx->cm) ctx->cm->caCacheCallback = cb; } #if defined(PERSIST_CERT_CACHE) #if !defined(NO_FILESYSTEM) /* Persist cert cache to file */ int wolfSSL_CTX_save_cert_cache(WOLFSSL_CTX* ctx, const char* fname) { WOLFSSL_ENTER("wolfSSL_CTX_save_cert_cache"); if (ctx == NULL || fname == NULL) return BAD_FUNC_ARG; return CM_SaveCertCache(ctx->cm, fname); } /* Persist cert cache from file */ int wolfSSL_CTX_restore_cert_cache(WOLFSSL_CTX* ctx, const char* fname) { WOLFSSL_ENTER("wolfSSL_CTX_restore_cert_cache"); if (ctx == NULL || fname == NULL) return BAD_FUNC_ARG; return CM_RestoreCertCache(ctx->cm, fname); } #endif /* NO_FILESYSTEM */ /* Persist cert cache to memory */ int wolfSSL_CTX_memsave_cert_cache(WOLFSSL_CTX* ctx, void* mem, int sz, int* used) { WOLFSSL_ENTER("wolfSSL_CTX_memsave_cert_cache"); if (ctx == NULL || mem == NULL || used == NULL || sz <= 0) return BAD_FUNC_ARG; return CM_MemSaveCertCache(ctx->cm, mem, sz, used); } /* Restore cert cache from memory */ int wolfSSL_CTX_memrestore_cert_cache(WOLFSSL_CTX* ctx, const void* mem, int sz) { WOLFSSL_ENTER("wolfSSL_CTX_memrestore_cert_cache"); if (ctx == NULL || mem == NULL || sz <= 0) return BAD_FUNC_ARG; return CM_MemRestoreCertCache(ctx->cm, mem, sz); } /* get how big the the cert cache save buffer needs to be */ int wolfSSL_CTX_get_cert_cache_memsize(WOLFSSL_CTX* ctx) { WOLFSSL_ENTER("wolfSSL_CTX_get_cert_cache_memsize"); if (ctx == NULL) return BAD_FUNC_ARG; return CM_GetCertCacheMemSize(ctx->cm); } #endif /* PERSIST_CERT_CACHE */ #endif /* !NO_CERTS */ #ifndef NO_SESSION_CACHE WOLFSSL_SESSION* wolfSSL_get_session(WOLFSSL* ssl) { WOLFSSL_ENTER("SSL_get_session"); if (ssl) return GetSession(ssl, 0, 0); return NULL; } int wolfSSL_set_session(WOLFSSL* ssl, WOLFSSL_SESSION* session) { WOLFSSL_ENTER("SSL_set_session"); if (session) return SetSession(ssl, session); return WOLFSSL_FAILURE; } #ifndef NO_CLIENT_CACHE /* Associate client session with serverID, find existing or store for saving if newSession flag on, don't reuse existing session WOLFSSL_SUCCESS on ok */ int wolfSSL_SetServerID(WOLFSSL* ssl, const byte* id, int len, int newSession) { WOLFSSL_SESSION* session = NULL; WOLFSSL_ENTER("wolfSSL_SetServerID"); if (ssl == NULL || id == NULL || len <= 0) return BAD_FUNC_ARG; if (newSession == 0) { session = GetSessionClient(ssl, id, len); if (session) { if (SetSession(ssl, session) != WOLFSSL_SUCCESS) { #ifdef HAVE_EXT_CACHE wolfSSL_SESSION_free(session); #endif WOLFSSL_MSG("SetSession failed"); session = NULL; } } } if (session == NULL) { WOLFSSL_MSG("Valid ServerID not cached already"); ssl->session.idLen = (word16)min(SERVER_ID_LEN, (word32)len); XMEMCPY(ssl->session.serverID, id, ssl->session.idLen); } #ifdef HAVE_EXT_CACHE else wolfSSL_SESSION_free(session); #endif return WOLFSSL_SUCCESS; } #endif /* NO_CLIENT_CACHE */ #if defined(PERSIST_SESSION_CACHE) /* for persistence, if changes to layout need to increment and modify save_session_cache() and restore_session_cache and memory versions too */ #define WOLFSSL_CACHE_VERSION 2 /* Session Cache Header information */ typedef struct { int version; /* cache layout version id */ int rows; /* session rows */ int columns; /* session columns */ int sessionSz; /* sizeof WOLFSSL_SESSION */ } cache_header_t; /* current persistence layout is: 1) cache_header_t 2) SessionCache 3) ClientCache update WOLFSSL_CACHE_VERSION if change layout for the following PERSISTENT_SESSION_CACHE functions */ /* get how big the the session cache save buffer needs to be */ int wolfSSL_get_session_cache_memsize(void) { int sz = (int)(sizeof(SessionCache) + sizeof(cache_header_t)); #ifndef NO_CLIENT_CACHE sz += (int)(sizeof(ClientCache)); #endif return sz; } /* Persist session cache to memory */ int wolfSSL_memsave_session_cache(void* mem, int sz) { int i; cache_header_t cache_header; SessionRow* row = (SessionRow*)((byte*)mem + sizeof(cache_header)); #ifndef NO_CLIENT_CACHE ClientRow* clRow; #endif WOLFSSL_ENTER("wolfSSL_memsave_session_cache"); if (sz < wolfSSL_get_session_cache_memsize()) { WOLFSSL_MSG("Memory buffer too small"); return BUFFER_E; } cache_header.version = WOLFSSL_CACHE_VERSION; cache_header.rows = SESSION_ROWS; cache_header.columns = SESSIONS_PER_ROW; cache_header.sessionSz = (int)sizeof(WOLFSSL_SESSION); XMEMCPY(mem, &cache_header, sizeof(cache_header)); if (wc_LockMutex(&session_mutex) != 0) { WOLFSSL_MSG("Session cache mutex lock failed"); return BAD_MUTEX_E; } for (i = 0; i < cache_header.rows; ++i) XMEMCPY(row++, SessionCache + i, sizeof(SessionRow)); #ifndef NO_CLIENT_CACHE clRow = (ClientRow*)row; for (i = 0; i < cache_header.rows; ++i) XMEMCPY(clRow++, ClientCache + i, sizeof(ClientRow)); #endif wc_UnLockMutex(&session_mutex); WOLFSSL_LEAVE("wolfSSL_memsave_session_cache", WOLFSSL_SUCCESS); return WOLFSSL_SUCCESS; } /* Restore the persistent session cache from memory */ int wolfSSL_memrestore_session_cache(const void* mem, int sz) { int i; cache_header_t cache_header; SessionRow* row = (SessionRow*)((byte*)mem + sizeof(cache_header)); #ifndef NO_CLIENT_CACHE ClientRow* clRow; #endif WOLFSSL_ENTER("wolfSSL_memrestore_session_cache"); if (sz < wolfSSL_get_session_cache_memsize()) { WOLFSSL_MSG("Memory buffer too small"); return BUFFER_E; } XMEMCPY(&cache_header, mem, sizeof(cache_header)); if (cache_header.version != WOLFSSL_CACHE_VERSION || cache_header.rows != SESSION_ROWS || cache_header.columns != SESSIONS_PER_ROW || cache_header.sessionSz != (int)sizeof(WOLFSSL_SESSION)) { WOLFSSL_MSG("Session cache header match failed"); return CACHE_MATCH_ERROR; } if (wc_LockMutex(&session_mutex) != 0) { WOLFSSL_MSG("Session cache mutex lock failed"); return BAD_MUTEX_E; } for (i = 0; i < cache_header.rows; ++i) XMEMCPY(SessionCache + i, row++, sizeof(SessionRow)); #ifndef NO_CLIENT_CACHE clRow = (ClientRow*)row; for (i = 0; i < cache_header.rows; ++i) XMEMCPY(ClientCache + i, clRow++, sizeof(ClientRow)); #endif wc_UnLockMutex(&session_mutex); WOLFSSL_LEAVE("wolfSSL_memrestore_session_cache", WOLFSSL_SUCCESS); return WOLFSSL_SUCCESS; } #if !defined(NO_FILESYSTEM) /* Persist session cache to file */ /* doesn't use memsave because of additional memory use */ int wolfSSL_save_session_cache(const char *fname) { XFILE file; int ret; int rc = WOLFSSL_SUCCESS; int i; cache_header_t cache_header; WOLFSSL_ENTER("wolfSSL_save_session_cache"); file = XFOPEN(fname, "w+b"); if (file == XBADFILE) { WOLFSSL_MSG("Couldn't open session cache save file"); return WOLFSSL_BAD_FILE; } cache_header.version = WOLFSSL_CACHE_VERSION; cache_header.rows = SESSION_ROWS; cache_header.columns = SESSIONS_PER_ROW; cache_header.sessionSz = (int)sizeof(WOLFSSL_SESSION); /* cache header */ ret = (int)XFWRITE(&cache_header, sizeof cache_header, 1, file); if (ret != 1) { WOLFSSL_MSG("Session cache header file write failed"); XFCLOSE(file); return FWRITE_ERROR; } if (wc_LockMutex(&session_mutex) != 0) { WOLFSSL_MSG("Session cache mutex lock failed"); XFCLOSE(file); return BAD_MUTEX_E; } /* session cache */ for (i = 0; i < cache_header.rows; ++i) { ret = (int)XFWRITE(SessionCache + i, sizeof(SessionRow), 1, file); if (ret != 1) { WOLFSSL_MSG("Session cache member file write failed"); rc = FWRITE_ERROR; break; } } #ifndef NO_CLIENT_CACHE /* client cache */ for (i = 0; i < cache_header.rows; ++i) { ret = (int)XFWRITE(ClientCache + i, sizeof(ClientRow), 1, file); if (ret != 1) { WOLFSSL_MSG("Client cache member file write failed"); rc = FWRITE_ERROR; break; } } #endif /* NO_CLIENT_CACHE */ wc_UnLockMutex(&session_mutex); XFCLOSE(file); WOLFSSL_LEAVE("wolfSSL_save_session_cache", rc); return rc; } /* Restore the persistent session cache from file */ /* doesn't use memstore because of additional memory use */ int wolfSSL_restore_session_cache(const char *fname) { XFILE file; int rc = WOLFSSL_SUCCESS; int ret; int i; cache_header_t cache_header; WOLFSSL_ENTER("wolfSSL_restore_session_cache"); file = XFOPEN(fname, "rb"); if (file == XBADFILE) { WOLFSSL_MSG("Couldn't open session cache save file"); return WOLFSSL_BAD_FILE; } /* cache header */ ret = (int)XFREAD(&cache_header, sizeof cache_header, 1, file); if (ret != 1) { WOLFSSL_MSG("Session cache header file read failed"); XFCLOSE(file); return FREAD_ERROR; } if (cache_header.version != WOLFSSL_CACHE_VERSION || cache_header.rows != SESSION_ROWS || cache_header.columns != SESSIONS_PER_ROW || cache_header.sessionSz != (int)sizeof(WOLFSSL_SESSION)) { WOLFSSL_MSG("Session cache header match failed"); XFCLOSE(file); return CACHE_MATCH_ERROR; } if (wc_LockMutex(&session_mutex) != 0) { WOLFSSL_MSG("Session cache mutex lock failed"); XFCLOSE(file); return BAD_MUTEX_E; } /* session cache */ for (i = 0; i < cache_header.rows; ++i) { ret = (int)XFREAD(SessionCache + i, sizeof(SessionRow), 1, file); if (ret != 1) { WOLFSSL_MSG("Session cache member file read failed"); XMEMSET(SessionCache, 0, sizeof SessionCache); rc = FREAD_ERROR; break; } } #ifndef NO_CLIENT_CACHE /* client cache */ for (i = 0; i < cache_header.rows; ++i) { ret = (int)XFREAD(ClientCache + i, sizeof(ClientRow), 1, file); if (ret != 1) { WOLFSSL_MSG("Client cache member file read failed"); XMEMSET(ClientCache, 0, sizeof ClientCache); rc = FREAD_ERROR; break; } } #endif /* NO_CLIENT_CACHE */ wc_UnLockMutex(&session_mutex); XFCLOSE(file); WOLFSSL_LEAVE("wolfSSL_restore_session_cache", rc); return rc; } #endif /* !NO_FILESYSTEM */ #endif /* PERSIST_SESSION_CACHE */ #endif /* NO_SESSION_CACHE */ void wolfSSL_load_error_strings(void) /* compatibility only */ {} int wolfSSL_library_init(void) { WOLFSSL_ENTER("SSL_library_init"); if (wolfSSL_Init() == WOLFSSL_SUCCESS) return WOLFSSL_SUCCESS; else return WOLFSSL_FATAL_ERROR; } #ifdef HAVE_SECRET_CALLBACK int wolfSSL_set_session_secret_cb(WOLFSSL* ssl, SessionSecretCb cb, void* ctx) { WOLFSSL_ENTER("wolfSSL_set_session_secret_cb"); if (ssl == NULL) return WOLFSSL_FATAL_ERROR; ssl->sessionSecretCb = cb; ssl->sessionSecretCtx = ctx; /* If using a pre-set key, assume session resumption. */ ssl->session.sessionIDSz = 0; ssl->options.resuming = 1; return WOLFSSL_SUCCESS; } #endif #ifndef NO_SESSION_CACHE /* on by default if built in but allow user to turn off */ long wolfSSL_CTX_set_session_cache_mode(WOLFSSL_CTX* ctx, long mode) { WOLFSSL_ENTER("SSL_CTX_set_session_cache_mode"); if (mode == WOLFSSL_SESS_CACHE_OFF) ctx->sessionCacheOff = 1; if ((mode & WOLFSSL_SESS_CACHE_NO_AUTO_CLEAR) != 0) ctx->sessionCacheFlushOff = 1; #ifdef HAVE_EXT_CACHE if ((mode & WOLFSSL_SESS_CACHE_NO_INTERNAL_STORE) != 0) ctx->internalCacheOff = 1; #endif return WOLFSSL_SUCCESS; } #endif /* NO_SESSION_CACHE */ #if !defined(NO_CERTS) #if defined(PERSIST_CERT_CACHE) #define WOLFSSL_CACHE_CERT_VERSION 1 typedef struct { int version; /* cache cert layout version id */ int rows; /* hash table rows, CA_TABLE_SIZE */ int columns[CA_TABLE_SIZE]; /* columns per row on list */ int signerSz; /* sizeof Signer object */ } CertCacheHeader; /* current cert persistence layout is: 1) CertCacheHeader 2) caTable update WOLFSSL_CERT_CACHE_VERSION if change layout for the following PERSIST_CERT_CACHE functions */ /* Return memory needed to persist this signer, have lock */ static WC_INLINE int GetSignerMemory(Signer* signer) { int sz = sizeof(signer->pubKeySize) + sizeof(signer->keyOID) + sizeof(signer->nameLen) + sizeof(signer->subjectNameHash); #if !defined(NO_SKID) sz += (int)sizeof(signer->subjectKeyIdHash); #endif /* add dynamic bytes needed */ sz += signer->pubKeySize; sz += signer->nameLen; return sz; } /* Return memory needed to persist this row, have lock */ static WC_INLINE int GetCertCacheRowMemory(Signer* row) { int sz = 0; while (row) { sz += GetSignerMemory(row); row = row->next; } return sz; } /* get the size of persist cert cache, have lock */ static WC_INLINE int GetCertCacheMemSize(WOLFSSL_CERT_MANAGER* cm) { int sz; int i; sz = sizeof(CertCacheHeader); for (i = 0; i < CA_TABLE_SIZE; i++) sz += GetCertCacheRowMemory(cm->caTable[i]); return sz; } /* Store cert cache header columns with number of items per list, have lock */ static WC_INLINE void SetCertHeaderColumns(WOLFSSL_CERT_MANAGER* cm, int* columns) { int i; Signer* row; for (i = 0; i < CA_TABLE_SIZE; i++) { int count = 0; row = cm->caTable[i]; while (row) { ++count; row = row->next; } columns[i] = count; } } /* Restore whole cert row from memory, have lock, return bytes consumed, < 0 on error, have lock */ static WC_INLINE int RestoreCertRow(WOLFSSL_CERT_MANAGER* cm, byte* current, int row, int listSz, const byte* end) { int idx = 0; if (listSz < 0) { WOLFSSL_MSG("Row header corrupted, negative value"); return PARSE_ERROR; } while (listSz) { Signer* signer; byte* start = current + idx; /* for end checks on this signer */ int minSz = sizeof(signer->pubKeySize) + sizeof(signer->keyOID) + sizeof(signer->nameLen) + sizeof(signer->subjectNameHash); #ifndef NO_SKID minSz += (int)sizeof(signer->subjectKeyIdHash); #endif if (start + minSz > end) { WOLFSSL_MSG("Would overread restore buffer"); return BUFFER_E; } signer = MakeSigner(cm->heap); if (signer == NULL) return MEMORY_E; /* pubKeySize */ XMEMCPY(&signer->pubKeySize, current + idx, sizeof(signer->pubKeySize)); idx += (int)sizeof(signer->pubKeySize); /* keyOID */ XMEMCPY(&signer->keyOID, current + idx, sizeof(signer->keyOID)); idx += (int)sizeof(signer->keyOID); /* pulicKey */ if (start + minSz + signer->pubKeySize > end) { WOLFSSL_MSG("Would overread restore buffer"); FreeSigner(signer, cm->heap); return BUFFER_E; } signer->publicKey = (byte*)XMALLOC(signer->pubKeySize, cm->heap, DYNAMIC_TYPE_KEY); if (signer->publicKey == NULL) { FreeSigner(signer, cm->heap); return MEMORY_E; } XMEMCPY(signer->publicKey, current + idx, signer->pubKeySize); idx += signer->pubKeySize; /* nameLen */ XMEMCPY(&signer->nameLen, current + idx, sizeof(signer->nameLen)); idx += (int)sizeof(signer->nameLen); /* name */ if (start + minSz + signer->pubKeySize + signer->nameLen > end) { WOLFSSL_MSG("Would overread restore buffer"); FreeSigner(signer, cm->heap); return BUFFER_E; } signer->name = (char*)XMALLOC(signer->nameLen, cm->heap, DYNAMIC_TYPE_SUBJECT_CN); if (signer->name == NULL) { FreeSigner(signer, cm->heap); return MEMORY_E; } XMEMCPY(signer->name, current + idx, signer->nameLen); idx += signer->nameLen; /* subjectNameHash */ XMEMCPY(signer->subjectNameHash, current + idx, SIGNER_DIGEST_SIZE); idx += SIGNER_DIGEST_SIZE; #ifndef NO_SKID /* subjectKeyIdHash */ XMEMCPY(signer->subjectKeyIdHash, current + idx,SIGNER_DIGEST_SIZE); idx += SIGNER_DIGEST_SIZE; #endif signer->next = cm->caTable[row]; cm->caTable[row] = signer; --listSz; } return idx; } /* Store whole cert row into memory, have lock, return bytes added */ static WC_INLINE int StoreCertRow(WOLFSSL_CERT_MANAGER* cm, byte* current, int row) { int added = 0; Signer* list = cm->caTable[row]; while (list) { XMEMCPY(current + added, &list->pubKeySize, sizeof(list->pubKeySize)); added += (int)sizeof(list->pubKeySize); XMEMCPY(current + added, &list->keyOID, sizeof(list->keyOID)); added += (int)sizeof(list->keyOID); XMEMCPY(current + added, list->publicKey, list->pubKeySize); added += list->pubKeySize; XMEMCPY(current + added, &list->nameLen, sizeof(list->nameLen)); added += (int)sizeof(list->nameLen); XMEMCPY(current + added, list->name, list->nameLen); added += list->nameLen; XMEMCPY(current + added, list->subjectNameHash, SIGNER_DIGEST_SIZE); added += SIGNER_DIGEST_SIZE; #ifndef NO_SKID XMEMCPY(current + added, list->subjectKeyIdHash,SIGNER_DIGEST_SIZE); added += SIGNER_DIGEST_SIZE; #endif list = list->next; } return added; } /* Persist cert cache to memory, have lock */ static WC_INLINE int DoMemSaveCertCache(WOLFSSL_CERT_MANAGER* cm, void* mem, int sz) { int realSz; int ret = WOLFSSL_SUCCESS; int i; WOLFSSL_ENTER("DoMemSaveCertCache"); realSz = GetCertCacheMemSize(cm); if (realSz > sz) { WOLFSSL_MSG("Mem output buffer too small"); ret = BUFFER_E; } else { byte* current; CertCacheHeader hdr; hdr.version = WOLFSSL_CACHE_CERT_VERSION; hdr.rows = CA_TABLE_SIZE; SetCertHeaderColumns(cm, hdr.columns); hdr.signerSz = (int)sizeof(Signer); XMEMCPY(mem, &hdr, sizeof(CertCacheHeader)); current = (byte*)mem + sizeof(CertCacheHeader); for (i = 0; i < CA_TABLE_SIZE; ++i) current += StoreCertRow(cm, current, i); } return ret; } #if !defined(NO_FILESYSTEM) /* Persist cert cache to file */ int CM_SaveCertCache(WOLFSSL_CERT_MANAGER* cm, const char* fname) { XFILE file; int rc = WOLFSSL_SUCCESS; int memSz; byte* mem; WOLFSSL_ENTER("CM_SaveCertCache"); file = XFOPEN(fname, "w+b"); if (file == XBADFILE) { WOLFSSL_MSG("Couldn't open cert cache save file"); return WOLFSSL_BAD_FILE; } if (wc_LockMutex(&cm->caLock) != 0) { WOLFSSL_MSG("wc_LockMutex on caLock failed"); XFCLOSE(file); return BAD_MUTEX_E; } memSz = GetCertCacheMemSize(cm); mem = (byte*)XMALLOC(memSz, cm->heap, DYNAMIC_TYPE_TMP_BUFFER); if (mem == NULL) { WOLFSSL_MSG("Alloc for tmp buffer failed"); rc = MEMORY_E; } else { rc = DoMemSaveCertCache(cm, mem, memSz); if (rc == WOLFSSL_SUCCESS) { int ret = (int)XFWRITE(mem, memSz, 1, file); if (ret != 1) { WOLFSSL_MSG("Cert cache file write failed"); rc = FWRITE_ERROR; } } XFREE(mem, cm->heap, DYNAMIC_TYPE_TMP_BUFFER); } wc_UnLockMutex(&cm->caLock); XFCLOSE(file); return rc; } /* Restore cert cache from file */ int CM_RestoreCertCache(WOLFSSL_CERT_MANAGER* cm, const char* fname) { XFILE file; int rc = WOLFSSL_SUCCESS; int ret; int memSz; byte* mem; WOLFSSL_ENTER("CM_RestoreCertCache"); file = XFOPEN(fname, "rb"); if (file == XBADFILE) { WOLFSSL_MSG("Couldn't open cert cache save file"); return WOLFSSL_BAD_FILE; } XFSEEK(file, 0, XSEEK_END); memSz = (int)XFTELL(file); XREWIND(file); if (memSz <= 0) { WOLFSSL_MSG("Bad file size"); XFCLOSE(file); return WOLFSSL_BAD_FILE; } mem = (byte*)XMALLOC(memSz, cm->heap, DYNAMIC_TYPE_TMP_BUFFER); if (mem == NULL) { WOLFSSL_MSG("Alloc for tmp buffer failed"); XFCLOSE(file); return MEMORY_E; } ret = (int)XFREAD(mem, memSz, 1, file); if (ret != 1) { WOLFSSL_MSG("Cert file read error"); rc = FREAD_ERROR; } else { rc = CM_MemRestoreCertCache(cm, mem, memSz); if (rc != WOLFSSL_SUCCESS) { WOLFSSL_MSG("Mem restore cert cache failed"); } } XFREE(mem, cm->heap, DYNAMIC_TYPE_TMP_BUFFER); XFCLOSE(file); return rc; } #endif /* NO_FILESYSTEM */ /* Persist cert cache to memory */ int CM_MemSaveCertCache(WOLFSSL_CERT_MANAGER* cm, void* mem, int sz, int* used) { int ret = WOLFSSL_SUCCESS; WOLFSSL_ENTER("CM_MemSaveCertCache"); if (wc_LockMutex(&cm->caLock) != 0) { WOLFSSL_MSG("wc_LockMutex on caLock failed"); return BAD_MUTEX_E; } ret = DoMemSaveCertCache(cm, mem, sz); if (ret == WOLFSSL_SUCCESS) *used = GetCertCacheMemSize(cm); wc_UnLockMutex(&cm->caLock); return ret; } /* Restore cert cache from memory */ int CM_MemRestoreCertCache(WOLFSSL_CERT_MANAGER* cm, const void* mem, int sz) { int ret = WOLFSSL_SUCCESS; int i; CertCacheHeader* hdr = (CertCacheHeader*)mem; byte* current = (byte*)mem + sizeof(CertCacheHeader); byte* end = (byte*)mem + sz; /* don't go over */ WOLFSSL_ENTER("CM_MemRestoreCertCache"); if (current > end) { WOLFSSL_MSG("Cert Cache Memory buffer too small"); return BUFFER_E; } if (hdr->version != WOLFSSL_CACHE_CERT_VERSION || hdr->rows != CA_TABLE_SIZE || hdr->signerSz != (int)sizeof(Signer)) { WOLFSSL_MSG("Cert Cache Memory header mismatch"); return CACHE_MATCH_ERROR; } if (wc_LockMutex(&cm->caLock) != 0) { WOLFSSL_MSG("wc_LockMutex on caLock failed"); return BAD_MUTEX_E; } FreeSignerTable(cm->caTable, CA_TABLE_SIZE, cm->heap); for (i = 0; i < CA_TABLE_SIZE; ++i) { int added = RestoreCertRow(cm, current, i, hdr->columns[i], end); if (added < 0) { WOLFSSL_MSG("RestoreCertRow error"); ret = added; break; } current += added; } wc_UnLockMutex(&cm->caLock); return ret; } /* get how big the the cert cache save buffer needs to be */ int CM_GetCertCacheMemSize(WOLFSSL_CERT_MANAGER* cm) { int sz; WOLFSSL_ENTER("CM_GetCertCacheMemSize"); if (wc_LockMutex(&cm->caLock) != 0) { WOLFSSL_MSG("wc_LockMutex on caLock failed"); return BAD_MUTEX_E; } sz = GetCertCacheMemSize(cm); wc_UnLockMutex(&cm->caLock); return sz; } #endif /* PERSIST_CERT_CACHE */ #endif /* NO_CERTS */ int wolfSSL_CTX_set_cipher_list(WOLFSSL_CTX* ctx, const char* list) { WOLFSSL_ENTER("wolfSSL_CTX_set_cipher_list"); /* alloc/init on demand only */ if (ctx->suites == NULL) { ctx->suites = (Suites*)XMALLOC(sizeof(Suites), ctx->heap, DYNAMIC_TYPE_SUITES); if (ctx->suites == NULL) { WOLFSSL_MSG("Memory alloc for Suites failed"); return WOLFSSL_FAILURE; } XMEMSET(ctx->suites, 0, sizeof(Suites)); } return (SetCipherList(ctx, ctx->suites, list)) ? WOLFSSL_SUCCESS : WOLFSSL_FAILURE; } int wolfSSL_set_cipher_list(WOLFSSL* ssl, const char* list) { WOLFSSL_ENTER("wolfSSL_set_cipher_list"); return (SetCipherList(ssl->ctx, ssl->suites, list)) ? WOLFSSL_SUCCESS : WOLFSSL_FAILURE; } int wolfSSL_dtls_get_using_nonblock(WOLFSSL* ssl) { int useNb = 0; WOLFSSL_ENTER("wolfSSL_dtls_get_using_nonblock"); if (ssl->options.dtls) { #ifdef WOLFSSL_DTLS useNb = ssl->options.dtlsUseNonblock; #endif } else { WOLFSSL_MSG("wolfSSL_dtls_get_using_nonblock() is " "DEPRECATED for non-DTLS use."); } return useNb; } #ifndef WOLFSSL_LEANPSK void wolfSSL_dtls_set_using_nonblock(WOLFSSL* ssl, int nonblock) { (void)nonblock; WOLFSSL_ENTER("wolfSSL_dtls_set_using_nonblock"); if (ssl->options.dtls) { #ifdef WOLFSSL_DTLS ssl->options.dtlsUseNonblock = (nonblock != 0); #endif } else { WOLFSSL_MSG("wolfSSL_dtls_set_using_nonblock() is " "DEPRECATED for non-DTLS use."); } } #ifdef WOLFSSL_DTLS int wolfSSL_dtls_get_current_timeout(WOLFSSL* ssl) { return ssl->dtls_timeout; } /* user may need to alter init dtls recv timeout, WOLFSSL_SUCCESS on ok */ int wolfSSL_dtls_set_timeout_init(WOLFSSL* ssl, int timeout) { if (ssl == NULL || timeout < 0) return BAD_FUNC_ARG; if (timeout > ssl->dtls_timeout_max) { WOLFSSL_MSG("Can't set dtls timeout init greater than dtls timeout max"); return BAD_FUNC_ARG; } ssl->dtls_timeout_init = timeout; ssl->dtls_timeout = timeout; return WOLFSSL_SUCCESS; } /* user may need to alter max dtls recv timeout, WOLFSSL_SUCCESS on ok */ int wolfSSL_dtls_set_timeout_max(WOLFSSL* ssl, int timeout) { if (ssl == NULL || timeout < 0) return BAD_FUNC_ARG; if (timeout < ssl->dtls_timeout_init) { WOLFSSL_MSG("Can't set dtls timeout max less than dtls timeout init"); return BAD_FUNC_ARG; } ssl->dtls_timeout_max = timeout; return WOLFSSL_SUCCESS; } int wolfSSL_dtls_got_timeout(WOLFSSL* ssl) { int result = WOLFSSL_SUCCESS; if (!ssl->options.handShakeDone && (DtlsMsgPoolTimeout(ssl) < 0 || DtlsMsgPoolSend(ssl, 0) < 0)) { result = WOLFSSL_FATAL_ERROR; } return result; } #endif /* DTLS */ #endif /* LEANPSK */ #if defined(WOLFSSL_DTLS) && !defined(NO_WOLFSSL_SERVER) /* Not an SSL function, return 0 for success, error code otherwise */ /* Prereq: ssl's RNG needs to be initialized. */ int wolfSSL_DTLS_SetCookieSecret(WOLFSSL* ssl, const byte* secret, word32 secretSz) { int ret = 0; WOLFSSL_ENTER("wolfSSL_DTLS_SetCookieSecret"); if (ssl == NULL) { WOLFSSL_MSG("need a SSL object"); return BAD_FUNC_ARG; } if (secret != NULL && secretSz == 0) { WOLFSSL_MSG("can't have a new secret without a size"); return BAD_FUNC_ARG; } /* If secretSz is 0, use the default size. */ if (secretSz == 0) secretSz = COOKIE_SECRET_SZ; if (secretSz != ssl->buffers.dtlsCookieSecret.length) { byte* newSecret; if (ssl->buffers.dtlsCookieSecret.buffer != NULL) { ForceZero(ssl->buffers.dtlsCookieSecret.buffer, ssl->buffers.dtlsCookieSecret.length); XFREE(ssl->buffers.dtlsCookieSecret.buffer, ssl->heap, DYNAMIC_TYPE_NONE); } newSecret = (byte*)XMALLOC(secretSz, ssl->heap,DYNAMIC_TYPE_COOKIE_PWD); if (newSecret == NULL) { ssl->buffers.dtlsCookieSecret.buffer = NULL; ssl->buffers.dtlsCookieSecret.length = 0; WOLFSSL_MSG("couldn't allocate new cookie secret"); return MEMORY_ERROR; } ssl->buffers.dtlsCookieSecret.buffer = newSecret; ssl->buffers.dtlsCookieSecret.length = secretSz; } /* If the supplied secret is NULL, randomly generate a new secret. */ if (secret == NULL) { ret = wc_RNG_GenerateBlock(ssl->rng, ssl->buffers.dtlsCookieSecret.buffer, secretSz); } else XMEMCPY(ssl->buffers.dtlsCookieSecret.buffer, secret, secretSz); WOLFSSL_LEAVE("wolfSSL_DTLS_SetCookieSecret", 0); return ret; } #endif /* WOLFSSL_DTLS && !NO_WOLFSSL_SERVER */ #ifdef OPENSSL_EXTRA WOLFSSL_METHOD* wolfSSLv23_method(void) { WOLFSSL_METHOD* m = NULL; WOLFSSL_ENTER("wolfSSLv23_method"); #if !defined(NO_WOLFSSL_CLIENT) m = wolfSSLv23_client_method(); #elif !defined(NO_WOLFSSL_SERVER) m = wolfSSLv23_server_method(); #endif if (m != NULL) { m->side = WOLFSSL_NEITHER_END; } return m; } #endif /* OPENSSL_EXTRA */ /* client only parts */ #ifndef NO_WOLFSSL_CLIENT #if defined(WOLFSSL_ALLOW_SSLV3) && !defined(NO_OLD_TLS) WOLFSSL_METHOD* wolfSSLv3_client_method(void) { WOLFSSL_ENTER("SSLv3_client_method"); return wolfSSLv3_client_method_ex(NULL); } #endif #ifdef WOLFSSL_DTLS #ifndef NO_OLD_TLS WOLFSSL_METHOD* wolfDTLSv1_client_method(void) { WOLFSSL_ENTER("DTLSv1_client_method"); return wolfDTLSv1_client_method_ex(NULL); } #endif /* NO_OLD_TLS */ WOLFSSL_METHOD* wolfDTLSv1_2_client_method(void) { WOLFSSL_ENTER("DTLSv1_2_client_method"); return wolfDTLSv1_2_client_method_ex(NULL); } #endif #if defined(WOLFSSL_ALLOW_SSLV3) && !defined(NO_OLD_TLS) WOLFSSL_METHOD* wolfSSLv3_client_method_ex(void* heap) { WOLFSSL_METHOD* method = (WOLFSSL_METHOD*) XMALLOC(sizeof(WOLFSSL_METHOD), heap, DYNAMIC_TYPE_METHOD); WOLFSSL_ENTER("SSLv3_client_method_ex"); if (method) InitSSL_Method(method, MakeSSLv3()); return method; } #endif #ifdef WOLFSSL_DTLS #ifndef NO_OLD_TLS WOLFSSL_METHOD* wolfDTLSv1_client_method_ex(void* heap) { WOLFSSL_METHOD* method = (WOLFSSL_METHOD*) XMALLOC(sizeof(WOLFSSL_METHOD), heap, DYNAMIC_TYPE_METHOD); WOLFSSL_ENTER("DTLSv1_client_method_ex"); if (method) InitSSL_Method(method, MakeDTLSv1()); return method; } #endif /* NO_OLD_TLS */ WOLFSSL_METHOD* wolfDTLSv1_2_client_method_ex(void* heap) { WOLFSSL_METHOD* method = (WOLFSSL_METHOD*) XMALLOC(sizeof(WOLFSSL_METHOD), heap, DYNAMIC_TYPE_METHOD); WOLFSSL_ENTER("DTLSv1_2_client_method_ex"); if (method) InitSSL_Method(method, MakeDTLSv1_2()); (void)heap; return method; } #endif /* If SCTP is not enabled returns the state of the dtls option. * If SCTP is enabled returns dtls && !sctp. */ static WC_INLINE int IsDtlsNotSctpMode(WOLFSSL* ssl) { int result = ssl->options.dtls; if (result) { #ifdef WOLFSSL_SCTP result = !ssl->options.dtlsSctp; #endif } return result; } /* please see note at top of README if you get an error from connect */ int wolfSSL_connect(WOLFSSL* ssl) { #ifndef WOLFSSL_NO_TLS12 int neededState; #endif WOLFSSL_ENTER("SSL_connect()"); #ifdef HAVE_ERRNO_H errno = 0; #endif if (ssl == NULL) return BAD_FUNC_ARG; #ifdef OPENSSL_EXTRA if (ssl->CBIS != NULL) { ssl->CBIS(ssl, SSL_ST_CONNECT, SSL_SUCCESS); ssl->cbmode = SSL_CB_WRITE; } #endif if (ssl->options.side != WOLFSSL_CLIENT_END) { WOLFSSL_ERROR(ssl->error = SIDE_ERROR); return WOLFSSL_FATAL_ERROR; } #ifdef WOLFSSL_NO_TLS12 return wolfSSL_connect_TLSv13(ssl); #else #ifdef WOLFSSL_TLS13 if (ssl->options.tls1_3) return wolfSSL_connect_TLSv13(ssl); #endif #ifdef WOLFSSL_DTLS if (ssl->version.major == DTLS_MAJOR) { ssl->options.dtls = 1; ssl->options.tls = 1; ssl->options.tls1_1 = 1; } #endif if (ssl->buffers.outputBuffer.length > 0) { if ( (ssl->error = SendBuffered(ssl)) == 0) { /* fragOffset is non-zero when sending fragments. On the last * fragment, fragOffset is zero again, and the state can be * advanced. */ if (ssl->fragOffset == 0) { ssl->options.connectState++; WOLFSSL_MSG("connect state: " "Advanced from last buffered fragment send"); } else { WOLFSSL_MSG("connect state: " "Not advanced, more fragments to send"); } } else { WOLFSSL_ERROR(ssl->error); return WOLFSSL_FATAL_ERROR; } } #ifdef WOLFSSL_TLS13 if (ssl->options.tls1_3) return wolfSSL_connect_TLSv13(ssl); #endif switch (ssl->options.connectState) { case CONNECT_BEGIN : /* always send client hello first */ if ( (ssl->error = SendClientHello(ssl)) != 0) { WOLFSSL_ERROR(ssl->error); return WOLFSSL_FATAL_ERROR; } ssl->options.connectState = CLIENT_HELLO_SENT; WOLFSSL_MSG("connect state: CLIENT_HELLO_SENT"); FALL_THROUGH; case CLIENT_HELLO_SENT : neededState = ssl->options.resuming ? SERVER_FINISHED_COMPLETE : SERVER_HELLODONE_COMPLETE; #ifdef WOLFSSL_DTLS /* In DTLS, when resuming, we can go straight to FINISHED, * or do a cookie exchange and then skip to FINISHED, assume * we need the cookie exchange first. */ if (IsDtlsNotSctpMode(ssl)) neededState = SERVER_HELLOVERIFYREQUEST_COMPLETE; #endif /* get response */ while (ssl->options.serverState < neededState) { #ifdef WOLFSSL_TLS13 if (ssl->options.tls1_3) return wolfSSL_connect_TLSv13(ssl); #endif if ( (ssl->error = ProcessReply(ssl)) < 0) { WOLFSSL_ERROR(ssl->error); return WOLFSSL_FATAL_ERROR; } /* if resumption failed, reset needed state */ else if (neededState == SERVER_FINISHED_COMPLETE) if (!ssl->options.resuming) { if (!IsDtlsNotSctpMode(ssl)) neededState = SERVER_HELLODONE_COMPLETE; else neededState = SERVER_HELLOVERIFYREQUEST_COMPLETE; } } ssl->options.connectState = HELLO_AGAIN; WOLFSSL_MSG("connect state: HELLO_AGAIN"); FALL_THROUGH; case HELLO_AGAIN : if (ssl->options.certOnly) return WOLFSSL_SUCCESS; #ifdef WOLFSSL_TLS13 if (ssl->options.tls1_3) return wolfSSL_connect_TLSv13(ssl); #endif #ifdef WOLFSSL_DTLS if (IsDtlsNotSctpMode(ssl)) { /* re-init hashes, exclude first hello and verify request */ if ((ssl->error = InitHandshakeHashes(ssl)) != 0) { WOLFSSL_ERROR(ssl->error); return WOLFSSL_FATAL_ERROR; } if ( (ssl->error = SendClientHello(ssl)) != 0) { WOLFSSL_ERROR(ssl->error); return WOLFSSL_FATAL_ERROR; } } #endif ssl->options.connectState = HELLO_AGAIN_REPLY; WOLFSSL_MSG("connect state: HELLO_AGAIN_REPLY"); FALL_THROUGH; case HELLO_AGAIN_REPLY : #ifdef WOLFSSL_DTLS if (IsDtlsNotSctpMode(ssl)) { neededState = ssl->options.resuming ? SERVER_FINISHED_COMPLETE : SERVER_HELLODONE_COMPLETE; /* get response */ while (ssl->options.serverState < neededState) { if ( (ssl->error = ProcessReply(ssl)) < 0) { WOLFSSL_ERROR(ssl->error); return WOLFSSL_FATAL_ERROR; } /* if resumption failed, reset needed state */ if (neededState == SERVER_FINISHED_COMPLETE) { if (!ssl->options.resuming) neededState = SERVER_HELLODONE_COMPLETE; } } } #endif ssl->options.connectState = FIRST_REPLY_DONE; WOLFSSL_MSG("connect state: FIRST_REPLY_DONE"); FALL_THROUGH; case FIRST_REPLY_DONE : #if !defined(NO_CERTS) && !defined(WOLFSSL_NO_CLIENT_AUTH) #ifdef WOLFSSL_TLS13 if (ssl->options.tls1_3) return wolfSSL_connect_TLSv13(ssl); #endif if (ssl->options.sendVerify) { if ( (ssl->error = SendCertificate(ssl)) != 0) { WOLFSSL_ERROR(ssl->error); return WOLFSSL_FATAL_ERROR; } WOLFSSL_MSG("sent: certificate"); } #endif ssl->options.connectState = FIRST_REPLY_FIRST; WOLFSSL_MSG("connect state: FIRST_REPLY_FIRST"); FALL_THROUGH; case FIRST_REPLY_FIRST : #ifdef WOLFSSL_TLS13 if (ssl->options.tls1_3) return wolfSSL_connect_TLSv13(ssl); #endif if (!ssl->options.resuming) { if ( (ssl->error = SendClientKeyExchange(ssl)) != 0) { WOLFSSL_ERROR(ssl->error); return WOLFSSL_FATAL_ERROR; } WOLFSSL_MSG("sent: client key exchange"); } ssl->options.connectState = FIRST_REPLY_SECOND; WOLFSSL_MSG("connect state: FIRST_REPLY_SECOND"); FALL_THROUGH; case FIRST_REPLY_SECOND : #if !defined(NO_CERTS) && !defined(WOLFSSL_NO_CLIENT_AUTH) if (ssl->options.sendVerify) { if ( (ssl->error = SendCertificateVerify(ssl)) != 0) { WOLFSSL_ERROR(ssl->error); return WOLFSSL_FATAL_ERROR; } WOLFSSL_MSG("sent: certificate verify"); } #endif /* !NO_CERTS && !WOLFSSL_NO_CLIENT_AUTH */ ssl->options.connectState = FIRST_REPLY_THIRD; WOLFSSL_MSG("connect state: FIRST_REPLY_THIRD"); FALL_THROUGH; case FIRST_REPLY_THIRD : if ( (ssl->error = SendChangeCipher(ssl)) != 0) { WOLFSSL_ERROR(ssl->error); return WOLFSSL_FATAL_ERROR; } WOLFSSL_MSG("sent: change cipher spec"); ssl->options.connectState = FIRST_REPLY_FOURTH; WOLFSSL_MSG("connect state: FIRST_REPLY_FOURTH"); FALL_THROUGH; case FIRST_REPLY_FOURTH : if ( (ssl->error = SendFinished(ssl)) != 0) { WOLFSSL_ERROR(ssl->error); return WOLFSSL_FATAL_ERROR; } WOLFSSL_MSG("sent: finished"); ssl->options.connectState = FINISHED_DONE; WOLFSSL_MSG("connect state: FINISHED_DONE"); FALL_THROUGH; case FINISHED_DONE : /* get response */ while (ssl->options.serverState < SERVER_FINISHED_COMPLETE) if ( (ssl->error = ProcessReply(ssl)) < 0) { WOLFSSL_ERROR(ssl->error); return WOLFSSL_FATAL_ERROR; } ssl->options.connectState = SECOND_REPLY_DONE; WOLFSSL_MSG("connect state: SECOND_REPLY_DONE"); FALL_THROUGH; case SECOND_REPLY_DONE: #ifndef NO_HANDSHAKE_DONE_CB if (ssl->hsDoneCb) { int cbret = ssl->hsDoneCb(ssl, ssl->hsDoneCtx); if (cbret < 0) { ssl->error = cbret; WOLFSSL_MSG("HandShake Done Cb don't continue error"); return WOLFSSL_FATAL_ERROR; } } #endif /* NO_HANDSHAKE_DONE_CB */ if (!ssl->options.dtls) { if (!ssl->options.keepResources) { FreeHandshakeResources(ssl); } } #ifdef WOLFSSL_DTLS else { ssl->options.dtlsHsRetain = 1; } #endif /* WOLFSSL_DTLS */ WOLFSSL_LEAVE("SSL_connect()", WOLFSSL_SUCCESS); return WOLFSSL_SUCCESS; default: WOLFSSL_MSG("Unknown connect state ERROR"); return WOLFSSL_FATAL_ERROR; /* unknown connect state */ } #endif /* !WOLFSSL_NO_TLS12 */ } #endif /* NO_WOLFSSL_CLIENT */ /* server only parts */ #ifndef NO_WOLFSSL_SERVER #if defined(WOLFSSL_ALLOW_SSLV3) && !defined(NO_OLD_TLS) WOLFSSL_METHOD* wolfSSLv3_server_method(void) { WOLFSSL_ENTER("SSLv3_server_method"); return wolfSSLv3_server_method_ex(NULL); } #endif #ifdef WOLFSSL_DTLS #ifndef NO_OLD_TLS WOLFSSL_METHOD* wolfDTLSv1_server_method(void) { WOLFSSL_ENTER("DTLSv1_server_method"); return wolfDTLSv1_server_method_ex(NULL); } #endif /* NO_OLD_TLS */ WOLFSSL_METHOD* wolfDTLSv1_2_server_method(void) { WOLFSSL_ENTER("DTLSv1_2_server_method"); return wolfDTLSv1_2_server_method_ex(NULL); } #endif #if defined(WOLFSSL_ALLOW_SSLV3) && !defined(NO_OLD_TLS) WOLFSSL_METHOD* wolfSSLv3_server_method_ex(void* heap) { WOLFSSL_METHOD* method = (WOLFSSL_METHOD*) XMALLOC(sizeof(WOLFSSL_METHOD), heap, DYNAMIC_TYPE_METHOD); WOLFSSL_ENTER("SSLv3_server_method_ex"); if (method) { InitSSL_Method(method, MakeSSLv3()); method->side = WOLFSSL_SERVER_END; } return method; } #endif #ifdef WOLFSSL_DTLS #ifndef NO_OLD_TLS WOLFSSL_METHOD* wolfDTLSv1_server_method_ex(void* heap) { WOLFSSL_METHOD* method = (WOLFSSL_METHOD*) XMALLOC(sizeof(WOLFSSL_METHOD), heap, DYNAMIC_TYPE_METHOD); WOLFSSL_ENTER("DTLSv1_server_method_ex"); if (method) { InitSSL_Method(method, MakeDTLSv1()); method->side = WOLFSSL_SERVER_END; } return method; } #endif /* NO_OLD_TLS */ WOLFSSL_METHOD* wolfDTLSv1_2_server_method_ex(void* heap) { WOLFSSL_METHOD* method = (WOLFSSL_METHOD*) XMALLOC(sizeof(WOLFSSL_METHOD), heap, DYNAMIC_TYPE_METHOD); WOLFSSL_ENTER("DTLSv1_2_server_method_ex"); if (method) { InitSSL_Method(method, MakeDTLSv1_2()); method->side = WOLFSSL_SERVER_END; } (void)heap; return method; } #endif int wolfSSL_accept(WOLFSSL* ssl) { #ifndef WOLFSSL_NO_TLS12 word16 havePSK = 0; word16 haveAnon = 0; word16 haveMcast = 0; #endif #ifdef WOLFSSL_NO_TLS12 return wolfSSL_accept_TLSv13(ssl); #else #ifdef WOLFSSL_TLS13 if (ssl->options.tls1_3) return wolfSSL_accept_TLSv13(ssl); #endif WOLFSSL_ENTER("SSL_accept()"); #ifdef HAVE_ERRNO_H errno = 0; #endif #ifndef NO_PSK havePSK = ssl->options.havePSK; #endif (void)havePSK; #ifdef HAVE_ANON haveAnon = ssl->options.haveAnon; #endif (void)haveAnon; #ifdef WOLFSSL_MULTICAST haveMcast = ssl->options.haveMcast; #endif (void)haveMcast; if (ssl->options.side != WOLFSSL_SERVER_END) { WOLFSSL_ERROR(ssl->error = SIDE_ERROR); return WOLFSSL_FATAL_ERROR; } #ifndef NO_CERTS /* in case used set_accept_state after init */ /* allow no private key if using PK callbacks and CB is set */ if (!havePSK && !haveAnon && !haveMcast) { if (!ssl->buffers.certificate || !ssl->buffers.certificate->buffer) { WOLFSSL_MSG("accept error: server cert required"); WOLFSSL_ERROR(ssl->error = NO_PRIVATE_KEY); return WOLFSSL_FATAL_ERROR; } #ifdef HAVE_PK_CALLBACKS if (wolfSSL_CTX_IsPrivatePkSet(ssl->ctx)) { WOLFSSL_MSG("Using PK for server private key"); } else #endif if (!ssl->buffers.key || !ssl->buffers.key->buffer) { WOLFSSL_MSG("accept error: server key required"); WOLFSSL_ERROR(ssl->error = NO_PRIVATE_KEY); return WOLFSSL_FATAL_ERROR; } } #endif #ifdef WOLFSSL_DTLS if (ssl->version.major == DTLS_MAJOR) { ssl->options.dtls = 1; ssl->options.tls = 1; ssl->options.tls1_1 = 1; } #endif if (ssl->buffers.outputBuffer.length > 0) { if ( (ssl->error = SendBuffered(ssl)) == 0) { /* fragOffset is non-zero when sending fragments. On the last * fragment, fragOffset is zero again, and the state can be * advanced. */ if (ssl->fragOffset == 0) { ssl->options.acceptState++; WOLFSSL_MSG("accept state: " "Advanced from last buffered fragment send"); } else { WOLFSSL_MSG("accept state: " "Not advanced, more fragments to send"); } } else { WOLFSSL_ERROR(ssl->error); return WOLFSSL_FATAL_ERROR; } } switch (ssl->options.acceptState) { case ACCEPT_BEGIN : /* get response */ while (ssl->options.clientState < CLIENT_HELLO_COMPLETE) if ( (ssl->error = ProcessReply(ssl)) < 0) { WOLFSSL_ERROR(ssl->error); return WOLFSSL_FATAL_ERROR; } #ifdef WOLFSSL_TLS13 ssl->options.acceptState = ACCEPT_CLIENT_HELLO_DONE; WOLFSSL_MSG("accept state ACCEPT_CLIENT_HELLO_DONE"); FALL_THROUGH; case ACCEPT_CLIENT_HELLO_DONE : if (ssl->options.tls1_3) { return wolfSSL_accept_TLSv13(ssl); } #endif ssl->options.acceptState = ACCEPT_FIRST_REPLY_DONE; WOLFSSL_MSG("accept state ACCEPT_FIRST_REPLY_DONE"); FALL_THROUGH; case ACCEPT_FIRST_REPLY_DONE : if ( (ssl->error = SendServerHello(ssl)) != 0) { WOLFSSL_ERROR(ssl->error); return WOLFSSL_FATAL_ERROR; } ssl->options.acceptState = SERVER_HELLO_SENT; WOLFSSL_MSG("accept state SERVER_HELLO_SENT"); FALL_THROUGH; case SERVER_HELLO_SENT : #ifdef WOLFSSL_TLS13 if (ssl->options.tls1_3) { return wolfSSL_accept_TLSv13(ssl); } #endif #ifndef NO_CERTS if (!ssl->options.resuming) if ( (ssl->error = SendCertificate(ssl)) != 0) { WOLFSSL_ERROR(ssl->error); return WOLFSSL_FATAL_ERROR; } #endif ssl->options.acceptState = CERT_SENT; WOLFSSL_MSG("accept state CERT_SENT"); FALL_THROUGH; case CERT_SENT : #ifndef NO_CERTS if (!ssl->options.resuming) if ( (ssl->error = SendCertificateStatus(ssl)) != 0) { WOLFSSL_ERROR(ssl->error); return WOLFSSL_FATAL_ERROR; } #endif ssl->options.acceptState = CERT_STATUS_SENT; WOLFSSL_MSG("accept state CERT_STATUS_SENT"); FALL_THROUGH; case CERT_STATUS_SENT : #ifdef WOLFSSL_TLS13 if (ssl->options.tls1_3) { return wolfSSL_accept_TLSv13(ssl); } #endif if (!ssl->options.resuming) if ( (ssl->error = SendServerKeyExchange(ssl)) != 0) { WOLFSSL_ERROR(ssl->error); return WOLFSSL_FATAL_ERROR; } ssl->options.acceptState = KEY_EXCHANGE_SENT; WOLFSSL_MSG("accept state KEY_EXCHANGE_SENT"); FALL_THROUGH; case KEY_EXCHANGE_SENT : #ifndef NO_CERTS if (!ssl->options.resuming) { if (ssl->options.verifyPeer) { if ( (ssl->error = SendCertificateRequest(ssl)) != 0) { WOLFSSL_ERROR(ssl->error); return WOLFSSL_FATAL_ERROR; } } } #endif ssl->options.acceptState = CERT_REQ_SENT; WOLFSSL_MSG("accept state CERT_REQ_SENT"); FALL_THROUGH; case CERT_REQ_SENT : if (!ssl->options.resuming) if ( (ssl->error = SendServerHelloDone(ssl)) != 0) { WOLFSSL_ERROR(ssl->error); return WOLFSSL_FATAL_ERROR; } ssl->options.acceptState = SERVER_HELLO_DONE; WOLFSSL_MSG("accept state SERVER_HELLO_DONE"); FALL_THROUGH; case SERVER_HELLO_DONE : if (!ssl->options.resuming) { while (ssl->options.clientState < CLIENT_FINISHED_COMPLETE) if ( (ssl->error = ProcessReply(ssl)) < 0) { WOLFSSL_ERROR(ssl->error); return WOLFSSL_FATAL_ERROR; } } ssl->options.acceptState = ACCEPT_SECOND_REPLY_DONE; WOLFSSL_MSG("accept state ACCEPT_SECOND_REPLY_DONE"); FALL_THROUGH; case ACCEPT_SECOND_REPLY_DONE : #ifdef HAVE_SESSION_TICKET if (ssl->options.createTicket) { if ( (ssl->error = SendTicket(ssl)) != 0) { WOLFSSL_ERROR(ssl->error); return WOLFSSL_FATAL_ERROR; } } #endif /* HAVE_SESSION_TICKET */ ssl->options.acceptState = TICKET_SENT; WOLFSSL_MSG("accept state TICKET_SENT"); FALL_THROUGH; case TICKET_SENT: if ( (ssl->error = SendChangeCipher(ssl)) != 0) { WOLFSSL_ERROR(ssl->error); return WOLFSSL_FATAL_ERROR; } ssl->options.acceptState = CHANGE_CIPHER_SENT; WOLFSSL_MSG("accept state CHANGE_CIPHER_SENT"); FALL_THROUGH; case CHANGE_CIPHER_SENT : if ( (ssl->error = SendFinished(ssl)) != 0) { WOLFSSL_ERROR(ssl->error); return WOLFSSL_FATAL_ERROR; } ssl->options.acceptState = ACCEPT_FINISHED_DONE; WOLFSSL_MSG("accept state ACCEPT_FINISHED_DONE"); FALL_THROUGH; case ACCEPT_FINISHED_DONE : if (ssl->options.resuming) while (ssl->options.clientState < CLIENT_FINISHED_COMPLETE) if ( (ssl->error = ProcessReply(ssl)) < 0) { WOLFSSL_ERROR(ssl->error); return WOLFSSL_FATAL_ERROR; } ssl->options.acceptState = ACCEPT_THIRD_REPLY_DONE; WOLFSSL_MSG("accept state ACCEPT_THIRD_REPLY_DONE"); FALL_THROUGH; case ACCEPT_THIRD_REPLY_DONE : #ifndef NO_HANDSHAKE_DONE_CB if (ssl->hsDoneCb) { int cbret = ssl->hsDoneCb(ssl, ssl->hsDoneCtx); if (cbret < 0) { ssl->error = cbret; WOLFSSL_MSG("HandShake Done Cb don't continue error"); return WOLFSSL_FATAL_ERROR; } } #endif /* NO_HANDSHAKE_DONE_CB */ if (!ssl->options.dtls) { if (!ssl->options.keepResources) { FreeHandshakeResources(ssl); } } #ifdef WOLFSSL_DTLS else { ssl->options.dtlsHsRetain = 1; } #endif /* WOLFSSL_DTLS */ #ifdef WOLFSSL_SESSION_EXPORT if (ssl->dtls_export) { if ((ssl->error = wolfSSL_send_session(ssl)) != 0) { WOLFSSL_MSG("Export DTLS session error"); WOLFSSL_ERROR(ssl->error); return WOLFSSL_FATAL_ERROR; } } #endif WOLFSSL_LEAVE("SSL_accept()", WOLFSSL_SUCCESS); return WOLFSSL_SUCCESS; default : WOLFSSL_MSG("Unknown accept state ERROR"); return WOLFSSL_FATAL_ERROR; } #endif /* !WOLFSSL_NO_TLS12 */ } #endif /* NO_WOLFSSL_SERVER */ #ifndef NO_HANDSHAKE_DONE_CB int wolfSSL_SetHsDoneCb(WOLFSSL* ssl, HandShakeDoneCb cb, void* user_ctx) { WOLFSSL_ENTER("wolfSSL_SetHsDoneCb"); if (ssl == NULL) return BAD_FUNC_ARG; ssl->hsDoneCb = cb; ssl->hsDoneCtx = user_ctx; return WOLFSSL_SUCCESS; } #endif /* NO_HANDSHAKE_DONE_CB */ int wolfSSL_Cleanup(void) { int ret = WOLFSSL_SUCCESS; int release = 0; WOLFSSL_ENTER("wolfSSL_Cleanup"); if (initRefCount == 0) return ret; /* possibly no init yet, but not failure either way */ if (wc_LockMutex(&count_mutex) != 0) { WOLFSSL_MSG("Bad Lock Mutex count"); return BAD_MUTEX_E; } release = initRefCount-- == 1; if (initRefCount < 0) initRefCount = 0; wc_UnLockMutex(&count_mutex); if (!release) return ret; #ifndef NO_SESSION_CACHE if (wc_FreeMutex(&session_mutex) != 0) ret = BAD_MUTEX_E; #endif if (wc_FreeMutex(&count_mutex) != 0) ret = BAD_MUTEX_E; if (wolfCrypt_Cleanup() != 0) { WOLFSSL_MSG("Error with wolfCrypt_Cleanup call"); ret = WC_CLEANUP_E; } return ret; } #ifndef NO_SESSION_CACHE /* some session IDs aren't random after all, let's make them random */ static WC_INLINE word32 HashSession(const byte* sessionID, word32 len, int* error) { byte digest[WC_MAX_DIGEST_SIZE]; #ifndef NO_MD5 *error = wc_Md5Hash(sessionID, len, digest); #elif !defined(NO_SHA) *error = wc_ShaHash(sessionID, len, digest); #elif !defined(NO_SHA256) *error = wc_Sha256Hash(sessionID, len, digest); #else #error "We need a digest to hash the session IDs" #endif return *error == 0 ? MakeWordFromHash(digest) : 0; /* 0 on failure */ } void wolfSSL_flush_sessions(WOLFSSL_CTX* ctx, long tm) { /* static table now, no flushing needed */ (void)ctx; (void)tm; } /* set ssl session timeout in seconds */ int wolfSSL_set_timeout(WOLFSSL* ssl, unsigned int to) { if (ssl == NULL) return BAD_FUNC_ARG; if (to == 0) to = WOLFSSL_SESSION_TIMEOUT; ssl->timeout = to; return WOLFSSL_SUCCESS; } /* set ctx session timeout in seconds */ int wolfSSL_CTX_set_timeout(WOLFSSL_CTX* ctx, unsigned int to) { if (ctx == NULL) return BAD_FUNC_ARG; if (to == 0) to = WOLFSSL_SESSION_TIMEOUT; ctx->timeout = to; return WOLFSSL_SUCCESS; } #ifndef NO_CLIENT_CACHE /* Get Session from Client cache based on id/len, return NULL on failure */ WOLFSSL_SESSION* GetSessionClient(WOLFSSL* ssl, const byte* id, int len) { WOLFSSL_SESSION* ret = NULL; word32 row; int idx; int count; int error = 0; WOLFSSL_ENTER("GetSessionClient"); if (ssl->ctx->sessionCacheOff) return NULL; if (ssl->options.side == WOLFSSL_SERVER_END) return NULL; len = min(SERVER_ID_LEN, (word32)len); #ifdef HAVE_EXT_CACHE if (ssl->ctx->get_sess_cb != NULL) { int copy = 0; ret = ssl->ctx->get_sess_cb(ssl, (byte*)id, len, ©); if (ret != NULL) return ret; } if (ssl->ctx->internalCacheOff) return NULL; #endif row = HashSession(id, len, &error) % SESSION_ROWS; if (error != 0) { WOLFSSL_MSG("Hash session failed"); return NULL; } if (wc_LockMutex(&session_mutex) != 0) { WOLFSSL_MSG("Lock session mutex failed"); return NULL; } /* start from most recently used */ count = min((word32)ClientCache[row].totalCount, SESSIONS_PER_ROW); idx = ClientCache[row].nextIdx - 1; if (idx < 0) idx = SESSIONS_PER_ROW - 1; /* if back to front, the previous was end */ for (; count > 0; --count, idx = idx ? idx - 1 : SESSIONS_PER_ROW - 1) { WOLFSSL_SESSION* current; ClientSession clSess; if (idx >= SESSIONS_PER_ROW || idx < 0) { /* sanity check */ WOLFSSL_MSG("Bad idx"); break; } clSess = ClientCache[row].Clients[idx]; current = &SessionCache[clSess.serverRow].Sessions[clSess.serverIdx]; if (XMEMCMP(current->serverID, id, len) == 0) { WOLFSSL_MSG("Found a serverid match for client"); if (LowResTimer() < (current->bornOn + current->timeout)) { WOLFSSL_MSG("Session valid"); ret = current; break; } else { WOLFSSL_MSG("Session timed out"); /* could have more for id */ } } else { WOLFSSL_MSG("ServerID not a match from client table"); } } wc_UnLockMutex(&session_mutex); return ret; } #endif /* NO_CLIENT_CACHE */ /* Restore the master secret and session information for certificates. * * ssl The SSL/TLS object. * session The cached session to restore. * masterSecret The master secret from the cached session. * restoreSessionCerts Restoring session certificates is required. */ static WC_INLINE void RestoreSession(WOLFSSL* ssl, WOLFSSL_SESSION* session, byte* masterSecret, byte restoreSessionCerts) { (void)ssl; (void)restoreSessionCerts; if (masterSecret) XMEMCPY(masterSecret, session->masterSecret, SECRET_LEN); #ifdef SESSION_CERTS /* If set, we should copy the session certs into the ssl object * from the session we are returning so we can resume */ if (restoreSessionCerts) { ssl->session.chain = session->chain; ssl->session.version = session->version; ssl->session.cipherSuite0 = session->cipherSuite0; ssl->session.cipherSuite = session->cipherSuite; } #endif /* SESSION_CERTS */ } WOLFSSL_SESSION* GetSession(WOLFSSL* ssl, byte* masterSecret, byte restoreSessionCerts) { WOLFSSL_SESSION* ret = 0; const byte* id = NULL; word32 row; int idx; int count; int error = 0; (void) restoreSessionCerts; if (ssl->options.sessionCacheOff) return NULL; if (ssl->options.haveSessionId == 0) return NULL; #ifdef HAVE_SESSION_TICKET if (ssl->options.side == WOLFSSL_SERVER_END && ssl->options.useTicket == 1) return NULL; #endif if (ssl->arrays) id = ssl->arrays->sessionID; else id = ssl->session.sessionID; #ifdef HAVE_EXT_CACHE if (ssl->ctx->get_sess_cb != NULL) { int copy = 0; /* Attempt to retrieve the session from the external cache. */ ret = ssl->ctx->get_sess_cb(ssl, (byte*)id, ID_LEN, ©); if (ret != NULL) { RestoreSession(ssl, ret, masterSecret, restoreSessionCerts); return ret; } } if (ssl->ctx->internalCacheOff) return NULL; #endif row = HashSession(id, ID_LEN, &error) % SESSION_ROWS; if (error != 0) { WOLFSSL_MSG("Hash session failed"); return NULL; } if (wc_LockMutex(&session_mutex) != 0) return 0; /* start from most recently used */ count = min((word32)SessionCache[row].totalCount, SESSIONS_PER_ROW); idx = SessionCache[row].nextIdx - 1; if (idx < 0) idx = SESSIONS_PER_ROW - 1; /* if back to front, the previous was end */ for (; count > 0; --count, idx = idx ? idx - 1 : SESSIONS_PER_ROW - 1) { WOLFSSL_SESSION* current; if (idx >= SESSIONS_PER_ROW || idx < 0) { /* sanity check */ WOLFSSL_MSG("Bad idx"); break; } current = &SessionCache[row].Sessions[idx]; if (XMEMCMP(current->sessionID, id, ID_LEN) == 0) { WOLFSSL_MSG("Found a session match"); if (LowResTimer() < (current->bornOn + current->timeout)) { WOLFSSL_MSG("Session valid"); ret = current; RestoreSession(ssl, ret, masterSecret, restoreSessionCerts); } else { WOLFSSL_MSG("Session timed out"); } break; /* no more sessionIDs whether valid or not that match */ } else { WOLFSSL_MSG("SessionID not a match at this idx"); } } wc_UnLockMutex(&session_mutex); return ret; } static int GetDeepCopySession(WOLFSSL* ssl, WOLFSSL_SESSION* copyFrom) { WOLFSSL_SESSION* copyInto = &ssl->session; void* tmpBuff = NULL; int ticketLen = 0; int doDynamicCopy = 0; int ret = WOLFSSL_SUCCESS; (void)ticketLen; (void)doDynamicCopy; (void)tmpBuff; if (!ssl || !copyFrom) return BAD_FUNC_ARG; #ifdef HAVE_SESSION_TICKET /* Free old dynamic ticket if we had one to avoid leak */ if (copyInto->isDynamic) { XFREE(copyInto->ticket, ssl->heap, DYNAMIC_TYPE_SESSION_TICK); copyInto->ticket = copyInto->staticTicket; copyInto->isDynamic = 0; } #endif if (wc_LockMutex(&session_mutex) != 0) return BAD_MUTEX_E; #ifdef HAVE_SESSION_TICKET /* Size of ticket to alloc if needed; Use later for alloc outside lock */ doDynamicCopy = copyFrom->isDynamic; ticketLen = copyFrom->ticketLen; #endif *copyInto = *copyFrom; /* Default ticket to non dynamic. This will avoid crash if we fail below */ #ifdef HAVE_SESSION_TICKET copyInto->ticket = copyInto->staticTicket; copyInto->isDynamic = 0; #endif if (wc_UnLockMutex(&session_mutex) != 0) { return BAD_MUTEX_E; } #ifdef HAVE_SESSION_TICKET #ifdef WOLFSSL_TLS13 if (wc_LockMutex(&session_mutex) != 0) { XFREE(tmpBuff, ssl->heap, DYNAMIC_TYPE_SESSION_TICK); return BAD_MUTEX_E; } copyInto->cipherSuite0 = copyFrom->cipherSuite0; copyInto->cipherSuite = copyFrom->cipherSuite; copyInto->namedGroup = copyFrom->namedGroup; copyInto->ticketSeen = copyFrom->ticketSeen; copyInto->ticketAdd = copyFrom->ticketAdd; #ifndef WOLFSSL_TLS13_DRAFT_18 XMEMCPY(©Into->ticketNonce, ©From->ticketNonce, sizeof(TicketNonce)); #endif #ifdef WOLFSSL_EARLY_DATA copyInto->maxEarlyDataSz = copyFrom->maxEarlyDataSz; #endif XMEMCPY(copyInto->masterSecret, copyFrom->masterSecret, SECRET_LEN); if (wc_UnLockMutex(&session_mutex) != 0) { if (ret == WOLFSSL_SUCCESS) ret = BAD_MUTEX_E; } #endif /* If doing dynamic copy, need to alloc outside lock, then inside a lock * confirm the size still matches and memcpy */ if (doDynamicCopy) { tmpBuff = (byte*)XMALLOC(ticketLen, ssl->heap, DYNAMIC_TYPE_SESSION_TICK); if (!tmpBuff) return MEMORY_ERROR; if (wc_LockMutex(&session_mutex) != 0) { XFREE(tmpBuff, ssl->heap, DYNAMIC_TYPE_SESSION_TICK); return BAD_MUTEX_E; } if (ticketLen != copyFrom->ticketLen) { /* Another thread modified the ssl-> session ticket during alloc. * Treat as error, since ticket different than when copy requested */ ret = VAR_STATE_CHANGE_E; } if (ret == WOLFSSL_SUCCESS) { copyInto->ticket = (byte*)tmpBuff; copyInto->isDynamic = 1; XMEMCPY(copyInto->ticket, copyFrom->ticket, ticketLen); } } else { /* Need to ensure ticket pointer gets updated to own buffer * and is not pointing to buff of session copied from */ copyInto->ticket = copyInto->staticTicket; } if (doDynamicCopy) { if (wc_UnLockMutex(&session_mutex) != 0) { if (ret == WOLFSSL_SUCCESS) ret = BAD_MUTEX_E; } } if (ret != WOLFSSL_SUCCESS) { /* cleanup */ if (tmpBuff) XFREE(tmpBuff, ssl->heap, DYNAMIC_TYPE_SESSION_TICK); copyInto->ticket = copyInto->staticTicket; copyInto->isDynamic = 0; } #endif /* HAVE_SESSION_TICKET */ return ret; } int SetSession(WOLFSSL* ssl, WOLFSSL_SESSION* session) { if (ssl->options.sessionCacheOff) return WOLFSSL_FAILURE; #ifdef OPENSSL_EXTRA /* check for application context id */ if (ssl->sessionCtxSz > 0) { if (XMEMCMP(ssl->sessionCtx, session->sessionCtx, ssl->sessionCtxSz)) { /* context id did not match! */ WOLFSSL_MSG("Session context did not match"); return SSL_FAILURE; } } #endif /* OPENSSL_EXTRA */ if (LowResTimer() < (session->bornOn + session->timeout)) { int ret = GetDeepCopySession(ssl, session); if (ret == WOLFSSL_SUCCESS) { ssl->options.resuming = 1; #if defined(SESSION_CERTS) || (defined(WOLFSSL_TLS13) && \ defined(HAVE_SESSION_TICKET)) ssl->version = session->version; ssl->options.cipherSuite0 = session->cipherSuite0; ssl->options.cipherSuite = session->cipherSuite; #endif } return ret; } return WOLFSSL_FAILURE; /* session timed out */ } #ifdef WOLFSSL_SESSION_STATS static int get_locked_session_stats(word32* active, word32* total, word32* peak); #endif int AddSession(WOLFSSL* ssl) { word32 row = 0; word32 idx = 0; int error = 0; #ifdef HAVE_SESSION_TICKET byte* tmpBuff = NULL; int ticLen = 0; #endif WOLFSSL_SESSION* session; if (ssl->options.sessionCacheOff) return 0; if (ssl->options.haveSessionId == 0) return 0; #ifdef HAVE_SESSION_TICKET if (ssl->options.side == WOLFSSL_SERVER_END && ssl->options.useTicket == 1) return 0; #endif #ifdef HAVE_SESSION_TICKET ticLen = ssl->session.ticketLen; /* Alloc Memory here so if Malloc fails can exit outside of lock */ if(ticLen > SESSION_TICKET_LEN) { tmpBuff = (byte*)XMALLOC(ticLen, ssl->heap, DYNAMIC_TYPE_SESSION_TICK); if(!tmpBuff) return MEMORY_E; } #endif #ifdef HAVE_EXT_CACHE if (ssl->options.internalCacheOff) { /* Create a new session object to be stored. */ session = (WOLFSSL_SESSION*)XMALLOC(sizeof(WOLFSSL_SESSION), NULL, DYNAMIC_TYPE_OPENSSL); if (session == NULL) { #ifdef HAVE_SESSION_TICKET XFREE(tmpBuff, ssl->heap, DYNAMIC_TYPE_SESSION_TICK); #endif return MEMORY_E; } XMEMSET(session, 0, sizeof(WOLFSSL_SESSION)); session->isAlloced = 1; } else #endif { /* Use the session object in the cache for external cache if required. */ row = HashSession(ssl->arrays->sessionID, ID_LEN, &error) % SESSION_ROWS; if (error != 0) { WOLFSSL_MSG("Hash session failed"); #ifdef HAVE_SESSION_TICKET XFREE(tmpBuff, ssl->heap, DYNAMIC_TYPE_SESSION_TICK); #endif return error; } if (wc_LockMutex(&session_mutex) != 0) { #ifdef HAVE_SESSION_TICKET XFREE(tmpBuff, ssl->heap, DYNAMIC_TYPE_SESSION_TICK); #endif return BAD_MUTEX_E; } idx = SessionCache[row].nextIdx++; #ifdef SESSION_INDEX ssl->sessionIndex = (row << SESSIDX_ROW_SHIFT) | idx; #endif session = &SessionCache[row].Sessions[idx]; } if (!ssl->options.tls1_3) XMEMCPY(session->masterSecret, ssl->arrays->masterSecret, SECRET_LEN); else XMEMCPY(session->masterSecret, ssl->session.masterSecret, SECRET_LEN); session->haveEMS = ssl->options.haveEMS; XMEMCPY(session->sessionID, ssl->arrays->sessionID, ID_LEN); session->sessionIDSz = ssl->arrays->sessionIDSz; #ifdef OPENSSL_EXTRA /* If using compatibilty layer then check for and copy over session context * id. */ if (ssl->sessionCtxSz > 0 && ssl->sessionCtxSz < ID_LEN) { XMEMCPY(session->sessionCtx, ssl->sessionCtx, ssl->sessionCtxSz); } #endif session->timeout = ssl->timeout; session->bornOn = LowResTimer(); #ifdef HAVE_SESSION_TICKET /* Check if another thread modified ticket since alloc */ if (ticLen != ssl->session.ticketLen) { error = VAR_STATE_CHANGE_E; } if (error == 0) { /* Cleanup cache row's old Dynamic buff if exists */ if(session->isDynamic) { XFREE(session->ticket, ssl->heap, DYNAMIC_TYPE_SESSION_TICK); session->ticket = NULL; } /* If too large to store in static buffer, use dyn buffer */ if (ticLen > SESSION_TICKET_LEN) { session->ticket = tmpBuff; session->isDynamic = 1; } else { session->ticket = session->staticTicket; session->isDynamic = 0; } } if (error == 0) { session->ticketLen = (word16)ticLen; XMEMCPY(session->ticket, ssl->session.ticket, ticLen); } else { /* cleanup, reset state */ session->ticket = session->staticTicket; session->isDynamic = 0; session->ticketLen = 0; if (tmpBuff) { XFREE(tmpBuff, ssl->heap, DYNAMIC_TYPE_SESSION_TICK); tmpBuff = NULL; } } #endif #ifdef SESSION_CERTS if (error == 0) { session->chain.count = ssl->session.chain.count; XMEMCPY(session->chain.certs, ssl->session.chain.certs, sizeof(x509_buffer) * MAX_CHAIN_DEPTH); } #endif /* SESSION_CERTS */ #if defined(SESSION_CERTS) || (defined(WOLFSSL_TLS13) && \ defined(HAVE_SESSION_TICKET)) if (error == 0) { session->version = ssl->version; session->cipherSuite0 = ssl->options.cipherSuite0; session->cipherSuite = ssl->options.cipherSuite; } #endif /* SESSION_CERTS || (WOLFSSL_TLS13 & HAVE_SESSION_TICKET) */ #if defined(WOLFSSL_TLS13) if (error == 0) { session->namedGroup = ssl->session.namedGroup; } #endif #if defined(WOLFSSL_TLS13) && defined(HAVE_SESSION_TICKET) if (error == 0) { session->ticketSeen = ssl->session.ticketSeen; session->ticketAdd = ssl->session.ticketAdd; #ifndef WOLFSSL_TLS13_DRAFT_18 XMEMCPY(&session->ticketNonce, &ssl->session.ticketNonce, sizeof(TicketNonce)); #endif #ifdef WOLFSSL_EARLY_DATA session->maxEarlyDataSz = ssl->session.maxEarlyDataSz; #endif } #endif /* WOLFSSL_TLS13 && HAVE_SESSION_TICKET */ #ifdef HAVE_EXT_CACHE if (!ssl->options.internalCacheOff) #endif { if (error == 0) { SessionCache[row].totalCount++; if (SessionCache[row].nextIdx == SESSIONS_PER_ROW) SessionCache[row].nextIdx = 0; } } #ifndef NO_CLIENT_CACHE if (error == 0) { if (ssl->options.side == WOLFSSL_CLIENT_END && ssl->session.idLen) { word32 clientRow, clientIdx; WOLFSSL_MSG("Adding client cache entry"); session->idLen = ssl->session.idLen; XMEMCPY(session->serverID, ssl->session.serverID, ssl->session.idLen); #ifdef HAVE_EXT_CACHE if (!ssl->options.internalCacheOff) #endif { clientRow = HashSession(ssl->session.serverID, ssl->session.idLen, &error) % SESSION_ROWS; if (error != 0) { WOLFSSL_MSG("Hash session failed"); } else { clientIdx = ClientCache[clientRow].nextIdx++; ClientCache[clientRow].Clients[clientIdx].serverRow = (word16)row; ClientCache[clientRow].Clients[clientIdx].serverIdx = (word16)idx; ClientCache[clientRow].totalCount++; if (ClientCache[clientRow].nextIdx == SESSIONS_PER_ROW) ClientCache[clientRow].nextIdx = 0; } } } else session->idLen = 0; } #endif /* NO_CLIENT_CACHE */ #if defined(WOLFSSL_SESSION_STATS) && defined(WOLFSSL_PEAK_SESSIONS) #ifdef HAVE_EXT_CACHE if (!ssl->options.internalCacheOff) #endif { if (error == 0) { word32 active = 0; error = get_locked_session_stats(&active, NULL, NULL); if (error == WOLFSSL_SUCCESS) { error = 0; /* back to this function ok */ if (active > PeakSessions) PeakSessions = active; } } } #endif /* defined(WOLFSSL_SESSION_STATS) && defined(WOLFSSL_PEAK_SESSIONS) */ #ifdef HAVE_EXT_CACHE if (!ssl->options.internalCacheOff) #endif { if (wc_UnLockMutex(&session_mutex) != 0) return BAD_MUTEX_E; } #ifdef HAVE_EXT_CACHE if (error == 0 && ssl->ctx->new_sess_cb != NULL) ssl->ctx->new_sess_cb(ssl, session); if (ssl->options.internalCacheOff) wolfSSL_SESSION_free(session); #endif return error; } #ifdef SESSION_INDEX int wolfSSL_GetSessionIndex(WOLFSSL* ssl) { WOLFSSL_ENTER("wolfSSL_GetSessionIndex"); WOLFSSL_LEAVE("wolfSSL_GetSessionIndex", ssl->sessionIndex); return ssl->sessionIndex; } int wolfSSL_GetSessionAtIndex(int idx, WOLFSSL_SESSION* session) { int row, col, result = WOLFSSL_FAILURE; WOLFSSL_ENTER("wolfSSL_GetSessionAtIndex"); row = idx >> SESSIDX_ROW_SHIFT; col = idx & SESSIDX_IDX_MASK; if (wc_LockMutex(&session_mutex) != 0) { return BAD_MUTEX_E; } if (row < SESSION_ROWS && col < (int)min(SessionCache[row].totalCount, SESSIONS_PER_ROW)) { XMEMCPY(session, &SessionCache[row].Sessions[col], sizeof(WOLFSSL_SESSION)); result = WOLFSSL_SUCCESS; } if (wc_UnLockMutex(&session_mutex) != 0) result = BAD_MUTEX_E; WOLFSSL_LEAVE("wolfSSL_GetSessionAtIndex", result); return result; } #endif /* SESSION_INDEX */ #if defined(SESSION_INDEX) && defined(SESSION_CERTS) WOLFSSL_X509_CHAIN* wolfSSL_SESSION_get_peer_chain(WOLFSSL_SESSION* session) { WOLFSSL_X509_CHAIN* chain = NULL; WOLFSSL_ENTER("wolfSSL_SESSION_get_peer_chain"); if (session) chain = &session->chain; WOLFSSL_LEAVE("wolfSSL_SESSION_get_peer_chain", chain ? 1 : 0); return chain; } #endif /* SESSION_INDEX && SESSION_CERTS */ #ifdef WOLFSSL_SESSION_STATS /* requires session_mutex lock held, WOLFSSL_SUCCESS on ok */ static int get_locked_session_stats(word32* active, word32* total, word32* peak) { int result = WOLFSSL_SUCCESS; int i; int count; int idx; word32 now = 0; word32 seen = 0; word32 ticks = LowResTimer(); (void)peak; WOLFSSL_ENTER("get_locked_session_stats"); for (i = 0; i < SESSION_ROWS; i++) { seen += SessionCache[i].totalCount; if (active == NULL) continue; /* no need to calculate what we can't set */ count = min((word32)SessionCache[i].totalCount, SESSIONS_PER_ROW); idx = SessionCache[i].nextIdx - 1; if (idx < 0) idx = SESSIONS_PER_ROW - 1; /* if back to front previous was end */ for (; count > 0; --count, idx = idx ? idx - 1 : SESSIONS_PER_ROW - 1) { if (idx >= SESSIONS_PER_ROW || idx < 0) { /* sanity check */ WOLFSSL_MSG("Bad idx"); break; } /* if not expried then good */ if (ticks < (SessionCache[i].Sessions[idx].bornOn + SessionCache[i].Sessions[idx].timeout) ) { now++; } } } if (active) *active = now; if (total) *total = seen; #ifdef WOLFSSL_PEAK_SESSIONS if (peak) *peak = PeakSessions; #endif WOLFSSL_LEAVE("get_locked_session_stats", result); return result; } /* return WOLFSSL_SUCCESS on ok */ int wolfSSL_get_session_stats(word32* active, word32* total, word32* peak, word32* maxSessions) { int result = WOLFSSL_SUCCESS; WOLFSSL_ENTER("wolfSSL_get_session_stats"); if (maxSessions) { *maxSessions = SESSIONS_PER_ROW * SESSION_ROWS; if (active == NULL && total == NULL && peak == NULL) return result; /* we're done */ } /* user must provide at least one query value */ if (active == NULL && total == NULL && peak == NULL) return BAD_FUNC_ARG; if (wc_LockMutex(&session_mutex) != 0) { return BAD_MUTEX_E; } result = get_locked_session_stats(active, total, peak); if (wc_UnLockMutex(&session_mutex) != 0) result = BAD_MUTEX_E; WOLFSSL_LEAVE("wolfSSL_get_session_stats", result); return result; } #endif /* WOLFSSL_SESSION_STATS */ #ifdef PRINT_SESSION_STATS /* WOLFSSL_SUCCESS on ok */ int wolfSSL_PrintSessionStats(void) { word32 totalSessionsSeen = 0; word32 totalSessionsNow = 0; word32 peak = 0; word32 maxSessions = 0; int i; int ret; double E; /* expected freq */ double chiSquare = 0; ret = wolfSSL_get_session_stats(&totalSessionsNow, &totalSessionsSeen, &peak, &maxSessions); if (ret != WOLFSSL_SUCCESS) return ret; printf("Total Sessions Seen = %d\n", totalSessionsSeen); printf("Total Sessions Now = %d\n", totalSessionsNow); #ifdef WOLFSSL_PEAK_SESSIONS printf("Peak Sessions = %d\n", peak); #endif printf("Max Sessions = %d\n", maxSessions); E = (double)totalSessionsSeen / SESSION_ROWS; for (i = 0; i < SESSION_ROWS; i++) { double diff = SessionCache[i].totalCount - E; diff *= diff; /* square */ diff /= E; /* normalize */ chiSquare += diff; } printf(" chi-square = %5.1f, d.f. = %d\n", chiSquare, SESSION_ROWS - 1); #if (SESSION_ROWS == 11) printf(" .05 p value = 18.3, chi-square should be less\n"); #elif (SESSION_ROWS == 211) printf(".05 p value = 244.8, chi-square should be less\n"); #elif (SESSION_ROWS == 5981) printf(".05 p value = 6161.0, chi-square should be less\n"); #elif (SESSION_ROWS == 3) printf(".05 p value = 6.0, chi-square should be less\n"); #elif (SESSION_ROWS == 2861) printf(".05 p value = 2985.5, chi-square should be less\n"); #endif printf("\n"); return ret; } #endif /* SESSION_STATS */ #else /* NO_SESSION_CACHE */ /* No session cache version */ WOLFSSL_SESSION* GetSession(WOLFSSL* ssl, byte* masterSecret, byte restoreSessionCerts) { (void)ssl; (void)masterSecret; (void)restoreSessionCerts; return NULL; } #endif /* NO_SESSION_CACHE */ /* call before SSL_connect, if verifying will add name check to date check and signature check */ int wolfSSL_check_domain_name(WOLFSSL* ssl, const char* dn) { WOLFSSL_ENTER("wolfSSL_check_domain_name"); if (ssl == NULL || dn == NULL) { WOLFSSL_MSG("Bad function argument: NULL"); return WOLFSSL_FAILURE; } if (ssl->buffers.domainName.buffer) XFREE(ssl->buffers.domainName.buffer, ssl->heap, DYNAMIC_TYPE_DOMAIN); ssl->buffers.domainName.length = (word32)XSTRLEN(dn); ssl->buffers.domainName.buffer = (byte*)XMALLOC( ssl->buffers.domainName.length + 1, ssl->heap, DYNAMIC_TYPE_DOMAIN); if (ssl->buffers.domainName.buffer) { char* domainName = (char*)ssl->buffers.domainName.buffer; XSTRNCPY(domainName, dn, ssl->buffers.domainName.length); domainName[ssl->buffers.domainName.length] = '\0'; return WOLFSSL_SUCCESS; } else { ssl->error = MEMORY_ERROR; return WOLFSSL_FAILURE; } } /* turn on wolfSSL zlib compression returns WOLFSSL_SUCCESS for success, else error (not built in) */ int wolfSSL_set_compression(WOLFSSL* ssl) { WOLFSSL_ENTER("wolfSSL_set_compression"); (void)ssl; #ifdef HAVE_LIBZ ssl->options.usingCompression = 1; return WOLFSSL_SUCCESS; #else return NOT_COMPILED_IN; #endif } #ifndef USE_WINDOWS_API #ifndef NO_WRITEV /* simulate writev semantics, doesn't actually do block at a time though because of SSL_write behavior and because front adds may be small */ int wolfSSL_writev(WOLFSSL* ssl, const struct iovec* iov, int iovcnt) { #ifdef WOLFSSL_SMALL_STACK byte staticBuffer[1]; /* force heap usage */ #else byte staticBuffer[FILE_BUFFER_SIZE]; #endif byte* myBuffer = staticBuffer; int dynamic = 0; int sending = 0; int idx = 0; int i; int ret; WOLFSSL_ENTER("wolfSSL_writev"); for (i = 0; i < iovcnt; i++) sending += (int)iov[i].iov_len; if (sending > (int)sizeof(staticBuffer)) { myBuffer = (byte*)XMALLOC(sending, ssl->heap, DYNAMIC_TYPE_WRITEV); if (!myBuffer) return MEMORY_ERROR; dynamic = 1; } for (i = 0; i < iovcnt; i++) { XMEMCPY(&myBuffer[idx], iov[i].iov_base, iov[i].iov_len); idx += (int)iov[i].iov_len; } ret = wolfSSL_write(ssl, myBuffer, sending); if (dynamic) XFREE(myBuffer, ssl->heap, DYNAMIC_TYPE_WRITEV); return ret; } #endif #endif #ifdef WOLFSSL_CALLBACKS typedef struct itimerval Itimerval; /* don't keep calling simple functions while setting up timer and signals if no inlining these are the next best */ #define AddTimes(a, b, c) \ do { \ c.tv_sec = a.tv_sec + b.tv_sec; \ c.tv_usec = a.tv_usec + b.tv_usec; \ if (c.tv_usec >= 1000000) { \ c.tv_sec++; \ c.tv_usec -= 1000000; \ } \ } while (0) #define SubtractTimes(a, b, c) \ do { \ c.tv_sec = a.tv_sec - b.tv_sec; \ c.tv_usec = a.tv_usec - b.tv_usec; \ if (c.tv_usec < 0) { \ c.tv_sec--; \ c.tv_usec += 1000000; \ } \ } while (0) #define CmpTimes(a, b, cmp) \ ((a.tv_sec == b.tv_sec) ? \ (a.tv_usec cmp b.tv_usec) : \ (a.tv_sec cmp b.tv_sec)) \ /* do nothing handler */ static void myHandler(int signo) { (void)signo; return; } static int wolfSSL_ex_wrapper(WOLFSSL* ssl, HandShakeCallBack hsCb, TimeoutCallBack toCb, Timeval timeout) { int ret = WOLFSSL_FATAL_ERROR; int oldTimerOn = 0; /* was timer already on */ Timeval startTime; Timeval endTime; Timeval totalTime; Itimerval myTimeout; Itimerval oldTimeout; /* if old timer adjust from total time to reset */ struct sigaction act, oact; #define ERR_OUT(x) { ssl->hsInfoOn = 0; ssl->toInfoOn = 0; return x; } if (hsCb) { ssl->hsInfoOn = 1; InitHandShakeInfo(&ssl->handShakeInfo, ssl); } if (toCb) { ssl->toInfoOn = 1; InitTimeoutInfo(&ssl->timeoutInfo); if (gettimeofday(&startTime, 0) < 0) ERR_OUT(GETTIME_ERROR); /* use setitimer to simulate getitimer, init 0 myTimeout */ myTimeout.it_interval.tv_sec = 0; myTimeout.it_interval.tv_usec = 0; myTimeout.it_value.tv_sec = 0; myTimeout.it_value.tv_usec = 0; if (setitimer(ITIMER_REAL, &myTimeout, &oldTimeout) < 0) ERR_OUT(SETITIMER_ERROR); if (oldTimeout.it_value.tv_sec || oldTimeout.it_value.tv_usec) { oldTimerOn = 1; /* is old timer going to expire before ours */ if (CmpTimes(oldTimeout.it_value, timeout, <)) { timeout.tv_sec = oldTimeout.it_value.tv_sec; timeout.tv_usec = oldTimeout.it_value.tv_usec; } } myTimeout.it_value.tv_sec = timeout.tv_sec; myTimeout.it_value.tv_usec = timeout.tv_usec; /* set up signal handler, don't restart socket send/recv */ act.sa_handler = myHandler; sigemptyset(&act.sa_mask); act.sa_flags = 0; #ifdef SA_INTERRUPT act.sa_flags |= SA_INTERRUPT; #endif if (sigaction(SIGALRM, &act, &oact) < 0) ERR_OUT(SIGACT_ERROR); if (setitimer(ITIMER_REAL, &myTimeout, 0) < 0) ERR_OUT(SETITIMER_ERROR); } /* do main work */ #ifndef NO_WOLFSSL_CLIENT if (ssl->options.side == WOLFSSL_CLIENT_END) ret = wolfSSL_connect(ssl); #endif #ifndef NO_WOLFSSL_SERVER if (ssl->options.side == WOLFSSL_SERVER_END) ret = wolfSSL_accept(ssl); #endif /* do callbacks */ if (toCb) { if (oldTimerOn) { gettimeofday(&endTime, 0); SubtractTimes(endTime, startTime, totalTime); /* adjust old timer for elapsed time */ if (CmpTimes(totalTime, oldTimeout.it_value, <)) SubtractTimes(oldTimeout.it_value, totalTime, oldTimeout.it_value); else { /* reset value to interval, may be off */ oldTimeout.it_value.tv_sec = oldTimeout.it_interval.tv_sec; oldTimeout.it_value.tv_usec =oldTimeout.it_interval.tv_usec; } /* keep iter the same whether there or not */ } /* restore old handler */ if (sigaction(SIGALRM, &oact, 0) < 0) ret = SIGACT_ERROR; /* more pressing error, stomp */ else /* use old settings which may turn off (expired or not there) */ if (setitimer(ITIMER_REAL, &oldTimeout, 0) < 0) ret = SETITIMER_ERROR; /* if we had a timeout call callback */ if (ssl->timeoutInfo.timeoutName[0]) { ssl->timeoutInfo.timeoutValue.tv_sec = timeout.tv_sec; ssl->timeoutInfo.timeoutValue.tv_usec = timeout.tv_usec; (toCb)(&ssl->timeoutInfo); } /* clean up */ FreeTimeoutInfo(&ssl->timeoutInfo, ssl->heap); ssl->toInfoOn = 0; } if (hsCb) { FinishHandShakeInfo(&ssl->handShakeInfo); (hsCb)(&ssl->handShakeInfo); ssl->hsInfoOn = 0; } return ret; } #ifndef NO_WOLFSSL_CLIENT int wolfSSL_connect_ex(WOLFSSL* ssl, HandShakeCallBack hsCb, TimeoutCallBack toCb, Timeval timeout) { WOLFSSL_ENTER("wolfSSL_connect_ex"); return wolfSSL_ex_wrapper(ssl, hsCb, toCb, timeout); } #endif #ifndef NO_WOLFSSL_SERVER int wolfSSL_accept_ex(WOLFSSL* ssl, HandShakeCallBack hsCb, TimeoutCallBack toCb,Timeval timeout) { WOLFSSL_ENTER("wolfSSL_accept_ex"); return wolfSSL_ex_wrapper(ssl, hsCb, toCb, timeout); } #endif #endif /* WOLFSSL_CALLBACKS */ #ifndef NO_PSK void wolfSSL_CTX_set_psk_client_callback(WOLFSSL_CTX* ctx, wc_psk_client_callback cb) { WOLFSSL_ENTER("SSL_CTX_set_psk_client_callback"); ctx->havePSK = 1; ctx->client_psk_cb = cb; } void wolfSSL_set_psk_client_callback(WOLFSSL* ssl,wc_psk_client_callback cb) { byte haveRSA = 1; int keySz = 0; WOLFSSL_ENTER("SSL_set_psk_client_callback"); ssl->options.havePSK = 1; ssl->options.client_psk_cb = cb; #ifdef NO_RSA haveRSA = 0; #endif #ifndef NO_CERTS keySz = ssl->buffers.keySz; #endif InitSuites(ssl->suites, ssl->version, keySz, haveRSA, TRUE, ssl->options.haveDH, ssl->options.haveNTRU, ssl->options.haveECDSAsig, ssl->options.haveECC, ssl->options.haveStaticECC, ssl->options.side); } void wolfSSL_CTX_set_psk_server_callback(WOLFSSL_CTX* ctx, wc_psk_server_callback cb) { WOLFSSL_ENTER("SSL_CTX_set_psk_server_callback"); ctx->havePSK = 1; ctx->server_psk_cb = cb; } void wolfSSL_set_psk_server_callback(WOLFSSL* ssl,wc_psk_server_callback cb) { byte haveRSA = 1; int keySz = 0; WOLFSSL_ENTER("SSL_set_psk_server_callback"); ssl->options.havePSK = 1; ssl->options.server_psk_cb = cb; #ifdef NO_RSA haveRSA = 0; #endif #ifndef NO_CERTS keySz = ssl->buffers.keySz; #endif InitSuites(ssl->suites, ssl->version, keySz, haveRSA, TRUE, ssl->options.haveDH, ssl->options.haveNTRU, ssl->options.haveECDSAsig, ssl->options.haveECC, ssl->options.haveStaticECC, ssl->options.side); } const char* wolfSSL_get_psk_identity_hint(const WOLFSSL* ssl) { WOLFSSL_ENTER("SSL_get_psk_identity_hint"); if (ssl == NULL || ssl->arrays == NULL) return NULL; return ssl->arrays->server_hint; } const char* wolfSSL_get_psk_identity(const WOLFSSL* ssl) { WOLFSSL_ENTER("SSL_get_psk_identity"); if (ssl == NULL || ssl->arrays == NULL) return NULL; return ssl->arrays->client_identity; } int wolfSSL_CTX_use_psk_identity_hint(WOLFSSL_CTX* ctx, const char* hint) { WOLFSSL_ENTER("SSL_CTX_use_psk_identity_hint"); if (hint == 0) ctx->server_hint[0] = '\0'; else { XSTRNCPY(ctx->server_hint, hint, sizeof(ctx->server_hint)); ctx->server_hint[MAX_PSK_ID_LEN] = '\0'; /* null term */ } return WOLFSSL_SUCCESS; } int wolfSSL_use_psk_identity_hint(WOLFSSL* ssl, const char* hint) { WOLFSSL_ENTER("SSL_use_psk_identity_hint"); if (ssl == NULL || ssl->arrays == NULL) return WOLFSSL_FAILURE; if (hint == 0) ssl->arrays->server_hint[0] = 0; else { XSTRNCPY(ssl->arrays->server_hint, hint, sizeof(ssl->arrays->server_hint)); ssl->arrays->server_hint[MAX_PSK_ID_LEN] = '\0'; /* null term */ } return WOLFSSL_SUCCESS; } #endif /* NO_PSK */ #ifdef HAVE_ANON int wolfSSL_CTX_allow_anon_cipher(WOLFSSL_CTX* ctx) { WOLFSSL_ENTER("wolfSSL_CTX_allow_anon_cipher"); if (ctx == NULL) return WOLFSSL_FAILURE; ctx->haveAnon = 1; return WOLFSSL_SUCCESS; } #endif /* HAVE_ANON */ #ifndef NO_CERTS /* used to be defined on NO_FILESYSTEM only, but are generally useful */ /* wolfSSL extension allows DER files to be loaded from buffers as well */ int wolfSSL_CTX_load_verify_buffer(WOLFSSL_CTX* ctx, const unsigned char* in, long sz, int format) { WOLFSSL_ENTER("wolfSSL_CTX_load_verify_buffer"); if (format == WOLFSSL_FILETYPE_PEM) return ProcessChainBuffer(ctx, in, sz, format, CA_TYPE, NULL); else return ProcessBuffer(ctx, in, sz, format, CA_TYPE, NULL,NULL,0); } #ifdef WOLFSSL_TRUST_PEER_CERT int wolfSSL_CTX_trust_peer_buffer(WOLFSSL_CTX* ctx, const unsigned char* in, long sz, int format) { WOLFSSL_ENTER("wolfSSL_CTX_trust_peer_buffer"); /* sanity check on arguments */ if (sz < 0 || in == NULL || ctx == NULL) { return BAD_FUNC_ARG; } if (format == WOLFSSL_FILETYPE_PEM) return ProcessChainBuffer(ctx, in, sz, format, TRUSTED_PEER_TYPE, NULL); else return ProcessBuffer(ctx, in, sz, format, TRUSTED_PEER_TYPE, NULL,NULL,0); } #endif /* WOLFSSL_TRUST_PEER_CERT */ int wolfSSL_CTX_use_certificate_buffer(WOLFSSL_CTX* ctx, const unsigned char* in, long sz, int format) { WOLFSSL_ENTER("wolfSSL_CTX_use_certificate_buffer"); return ProcessBuffer(ctx, in, sz, format, CERT_TYPE, NULL, NULL, 0); } int wolfSSL_CTX_use_PrivateKey_buffer(WOLFSSL_CTX* ctx, const unsigned char* in, long sz, int format) { WOLFSSL_ENTER("wolfSSL_CTX_use_PrivateKey_buffer"); return ProcessBuffer(ctx, in, sz, format, PRIVATEKEY_TYPE, NULL,NULL,0); } int wolfSSL_CTX_use_certificate_chain_buffer_format(WOLFSSL_CTX* ctx, const unsigned char* in, long sz, int format) { WOLFSSL_ENTER("wolfSSL_CTX_use_certificate_chain_buffer_format"); return ProcessBuffer(ctx, in, sz, format, CERT_TYPE, NULL, NULL, 1); } int wolfSSL_CTX_use_certificate_chain_buffer(WOLFSSL_CTX* ctx, const unsigned char* in, long sz) { return wolfSSL_CTX_use_certificate_chain_buffer_format(ctx, in, sz, WOLFSSL_FILETYPE_PEM); } #ifndef NO_DH /* server wrapper for ctx or ssl Diffie-Hellman parameters */ static int wolfSSL_SetTmpDH_buffer_wrapper(WOLFSSL_CTX* ctx, WOLFSSL* ssl, const unsigned char* buf, long sz, int format) { DerBuffer* der = NULL; int ret = 0; word32 pSz = MAX_DH_SIZE; word32 gSz = MAX_DH_SIZE; #ifdef WOLFSSL_SMALL_STACK byte* p = NULL; byte* g = NULL; #else byte p[MAX_DH_SIZE]; byte g[MAX_DH_SIZE]; #endif if (ctx == NULL || buf == NULL) return BAD_FUNC_ARG; ret = AllocDer(&der, 0, DH_PARAM_TYPE, ctx->heap); if (ret != 0) { return ret; } der->buffer = (byte*)buf; der->length = (word32)sz; #ifdef WOLFSSL_SMALL_STACK p = (byte*)XMALLOC(pSz, NULL, DYNAMIC_TYPE_PUBLIC_KEY); g = (byte*)XMALLOC(gSz, NULL, DYNAMIC_TYPE_PUBLIC_KEY); if (p == NULL || g == NULL) { XFREE(p, NULL, DYNAMIC_TYPE_PUBLIC_KEY); XFREE(g, NULL, DYNAMIC_TYPE_PUBLIC_KEY); return MEMORY_E; } #endif if (format != WOLFSSL_FILETYPE_ASN1 && format != WOLFSSL_FILETYPE_PEM) ret = WOLFSSL_BAD_FILETYPE; else { if (format == WOLFSSL_FILETYPE_PEM) { #ifdef WOLFSSL_PEM_TO_DER FreeDer(&der); ret = PemToDer(buf, sz, DH_PARAM_TYPE, &der, ctx->heap, NULL, NULL); #ifdef WOLFSSL_WPAS #ifndef NO_DSA if (ret < 0) { ret = PemToDer(buf, sz, DSA_PARAM_TYPE, &der, ctx->heap, NULL, NULL); } #endif #endif /* WOLFSSL_WPAS */ #else ret = NOT_COMPILED_IN; #endif /* WOLFSSL_PEM_TO_DER */ } if (ret == 0) { if (wc_DhParamsLoad(der->buffer, der->length, p, &pSz, g, &gSz) < 0) ret = WOLFSSL_BAD_FILETYPE; else if (ssl) ret = wolfSSL_SetTmpDH(ssl, p, pSz, g, gSz); else ret = wolfSSL_CTX_SetTmpDH(ctx, p, pSz, g, gSz); } } FreeDer(&der); #ifdef WOLFSSL_SMALL_STACK XFREE(p, NULL, DYNAMIC_TYPE_PUBLIC_KEY); XFREE(g, NULL, DYNAMIC_TYPE_PUBLIC_KEY); #endif return ret; } /* server Diffie-Hellman parameters, WOLFSSL_SUCCESS on ok */ int wolfSSL_SetTmpDH_buffer(WOLFSSL* ssl, const unsigned char* buf, long sz, int format) { if (ssl == NULL) return BAD_FUNC_ARG; return wolfSSL_SetTmpDH_buffer_wrapper(ssl->ctx, ssl, buf, sz, format); } /* server ctx Diffie-Hellman parameters, WOLFSSL_SUCCESS on ok */ int wolfSSL_CTX_SetTmpDH_buffer(WOLFSSL_CTX* ctx, const unsigned char* buf, long sz, int format) { return wolfSSL_SetTmpDH_buffer_wrapper(ctx, NULL, buf, sz, format); } #endif /* NO_DH */ int wolfSSL_use_certificate_buffer(WOLFSSL* ssl, const unsigned char* in, long sz, int format) { WOLFSSL_ENTER("wolfSSL_use_certificate_buffer"); return ProcessBuffer(ssl->ctx, in, sz, format,CERT_TYPE,ssl,NULL,0); } int wolfSSL_use_PrivateKey_buffer(WOLFSSL* ssl, const unsigned char* in, long sz, int format) { WOLFSSL_ENTER("wolfSSL_use_PrivateKey_buffer"); return ProcessBuffer(ssl->ctx, in, sz, format, PRIVATEKEY_TYPE, ssl, NULL, 0); } int wolfSSL_use_certificate_chain_buffer_format(WOLFSSL* ssl, const unsigned char* in, long sz, int format) { WOLFSSL_ENTER("wolfSSL_use_certificate_chain_buffer_format"); return ProcessBuffer(ssl->ctx, in, sz, format, CERT_TYPE, ssl, NULL, 1); } int wolfSSL_use_certificate_chain_buffer(WOLFSSL* ssl, const unsigned char* in, long sz) { return wolfSSL_use_certificate_chain_buffer_format(ssl, in, sz, WOLFSSL_FILETYPE_PEM); } /* unload any certs or keys that SSL owns, leave CTX as is WOLFSSL_SUCCESS on ok */ int wolfSSL_UnloadCertsKeys(WOLFSSL* ssl) { if (ssl == NULL) { WOLFSSL_MSG("Null function arg"); return BAD_FUNC_ARG; } if (ssl->buffers.weOwnCert && !ssl->keepCert) { WOLFSSL_MSG("Unloading cert"); FreeDer(&ssl->buffers.certificate); #ifdef KEEP_OUR_CERT FreeX509(ssl->ourCert); if (ssl->ourCert) { XFREE(ssl->ourCert, ssl->heap, DYNAMIC_TYPE_X509); ssl->ourCert = NULL; } #endif ssl->buffers.weOwnCert = 0; } if (ssl->buffers.weOwnCertChain) { WOLFSSL_MSG("Unloading cert chain"); FreeDer(&ssl->buffers.certChain); ssl->buffers.weOwnCertChain = 0; } if (ssl->buffers.weOwnKey) { WOLFSSL_MSG("Unloading key"); FreeDer(&ssl->buffers.key); ssl->buffers.weOwnKey = 0; } return WOLFSSL_SUCCESS; } int wolfSSL_CTX_UnloadCAs(WOLFSSL_CTX* ctx) { WOLFSSL_ENTER("wolfSSL_CTX_UnloadCAs"); if (ctx == NULL) return BAD_FUNC_ARG; return wolfSSL_CertManagerUnloadCAs(ctx->cm); } #ifdef WOLFSSL_TRUST_PEER_CERT int wolfSSL_CTX_Unload_trust_peers(WOLFSSL_CTX* ctx) { WOLFSSL_ENTER("wolfSSL_CTX_Unload_trust_peers"); if (ctx == NULL) return BAD_FUNC_ARG; return wolfSSL_CertManagerUnload_trust_peers(ctx->cm); } #endif /* WOLFSSL_TRUST_PEER_CERT */ /* old NO_FILESYSTEM end */ #endif /* !NO_CERTS */ #ifdef OPENSSL_EXTRA int wolfSSL_add_all_algorithms(void) { WOLFSSL_ENTER("wolfSSL_add_all_algorithms"); if (wolfSSL_Init() == WOLFSSL_SUCCESS) return WOLFSSL_SUCCESS; else return WOLFSSL_FATAL_ERROR; } int wolfSSL_OPENSSL_add_all_algorithms_noconf(void) { WOLFSSL_ENTER("wolfSSL_OPENSSL_add_all_algorithms_noconf"); if (wolfSSL_add_all_algorithms() == WOLFSSL_FATAL_ERROR) return WOLFSSL_FATAL_ERROR; return WOLFSSL_SUCCESS; } /* returns previous set cache size which stays constant */ long wolfSSL_CTX_sess_set_cache_size(WOLFSSL_CTX* ctx, long sz) { /* cache size fixed at compile time in wolfSSL */ (void)ctx; (void)sz; WOLFSSL_MSG("session cache is set at compile time"); #ifndef NO_SESSION_CACHE return SESSIONS_PER_ROW * SESSION_ROWS; #else return 0; #endif } #endif #if defined(OPENSSL_EXTRA) || defined(WOLFSSL_EXTRA) void wolfSSL_CTX_set_quiet_shutdown(WOLFSSL_CTX* ctx, int mode) { WOLFSSL_ENTER("wolfSSL_CTX_set_quiet_shutdown"); if (mode) ctx->quietShutdown = 1; } void wolfSSL_set_quiet_shutdown(WOLFSSL* ssl, int mode) { WOLFSSL_ENTER("wolfSSL_CTX_set_quiet_shutdown"); if (mode) ssl->options.quietShutdown = 1; } #endif #ifdef OPENSSL_EXTRA void wolfSSL_set_bio(WOLFSSL* ssl, WOLFSSL_BIO* rd, WOLFSSL_BIO* wr) { WOLFSSL_ENTER("wolfSSL_set_bio"); if (ssl == NULL) { WOLFSSL_MSG("Bad argument, ssl was NULL"); return; } /* if WOLFSSL_BIO is socket type then set WOLFSSL socket to use */ if (rd != NULL && rd->type == WOLFSSL_BIO_SOCKET) { wolfSSL_set_rfd(ssl, rd->fd); } if (wr != NULL && wr->type == WOLFSSL_BIO_SOCKET) { wolfSSL_set_wfd(ssl, wr->fd); } /* free any existing WOLFSSL_BIOs in use */ if (ssl->biord != NULL) { if (ssl->biord != ssl->biowr) { if (ssl->biowr != NULL) { wolfSSL_BIO_free(ssl->biowr); ssl->biowr = NULL; } } wolfSSL_BIO_free(ssl->biord); ssl->biord = NULL; } ssl->biord = rd; ssl->biowr = wr; /* set SSL to use BIO callbacks instead */ if (((ssl->cbioFlag & WOLFSSL_CBIO_RECV) == 0) && (rd != NULL && rd->type != WOLFSSL_BIO_SOCKET)) { ssl->CBIORecv = BioReceive; } if (((ssl->cbioFlag & WOLFSSL_CBIO_SEND) == 0) && (wr != NULL && wr->type != WOLFSSL_BIO_SOCKET)) { ssl->CBIOSend = BioSend; } } #endif #if defined(OPENSSL_EXTRA) || defined(WOLFSSL_EXTRA) void wolfSSL_CTX_set_client_CA_list(WOLFSSL_CTX* ctx, WOLF_STACK_OF(WOLFSSL_X509_NAME)* names) { WOLFSSL_ENTER("wolfSSL_SSL_CTX_set_client_CA_list"); if (ctx != NULL) ctx->ca_names = names; } WOLF_STACK_OF(WOLFSSL_X509_NAME)* wolfSSL_SSL_CTX_get_client_CA_list( const WOLFSSL_CTX *s) { WOLFSSL_ENTER("wolfSSL_SSL_CTX_get_client_CA_list"); if (s == NULL) return NULL; return s->ca_names; } #endif #ifdef OPENSSL_EXTRA #if !defined(NO_RSA) && !defined(NO_CERTS) WOLF_STACK_OF(WOLFSSL_X509_NAME)* wolfSSL_load_client_CA_file(const char* fname) { WOLFSSL_STACK *list = NULL; WOLFSSL_STACK *node; WOLFSSL_BIO* bio; WOLFSSL_X509 *cert = NULL; WOLFSSL_X509_NAME *subjectName = NULL; WOLFSSL_ENTER("wolfSSL_load_client_CA_file"); bio = wolfSSL_BIO_new_file(fname, "r"); if (bio == NULL) return NULL; /* Read each certificate in the chain out of the file. */ while (wolfSSL_PEM_read_bio_X509(bio, &cert, NULL, NULL) != NULL) { subjectName = wolfSSL_X509_get_subject_name(cert); if (subjectName == NULL) break; node = (WOLFSSL_STACK*)XMALLOC(sizeof(WOLFSSL_STACK), NULL, DYNAMIC_TYPE_OPENSSL); if (node == NULL) break; /* Need a persistent copy of the subject name. */ node->data.name = (WOLFSSL_X509_NAME*)XMALLOC( sizeof(WOLFSSL_X509_NAME), NULL, DYNAMIC_TYPE_OPENSSL); if (node->data.name == NULL) { XFREE(node, NULL, DYNAMIC_TYPE_OPENSSL); break; } XMEMCPY(node->data.name, subjectName, sizeof(WOLFSSL_X509_NAME)); /* Clear pointers so freeing certificate doesn't free memory. */ XMEMSET(subjectName, 0, sizeof(WOLFSSL_X509_NAME)); /* Put node on the front of the list. */ node->num = (list == NULL) ? 1 : list->num + 1; node->next = list; list = node; wolfSSL_X509_free(cert); cert = NULL; } wolfSSL_X509_free(cert); wolfSSL_BIO_free(bio); return list; } int wolfSSL_CTX_add_client_CA(WOLFSSL_CTX* ctx, WOLFSSL_X509* x509) { WOLFSSL_STACK *node = NULL; WOLFSSL_X509_NAME *subjectName = NULL; WOLFSSL_ENTER("wolfSSL_CTX_add_client_CA"); if (ctx == NULL || x509 == NULL){ WOLFSSL_MSG("Bad argument"); return SSL_FAILURE; } subjectName = wolfSSL_X509_get_subject_name(x509); if (subjectName == NULL){ WOLFSSL_MSG("invalid x509 data"); return SSL_FAILURE; } /* Alloc stack struct */ node = (WOLF_STACK_OF(WOLFSSL_X509_NAME)*)XMALLOC( sizeof(WOLF_STACK_OF(WOLFSSL_X509_NAME)), NULL, DYNAMIC_TYPE_OPENSSL); if (node == NULL){ WOLFSSL_MSG("memory allocation error"); return SSL_FAILURE; } XMEMSET(node, 0, sizeof(WOLF_STACK_OF(WOLFSSL_X509_NAME))); /* Alloc and copy WOLFSSL_X509_NAME */ node->data.name = (WOLFSSL_X509_NAME*)XMALLOC( sizeof(WOLFSSL_X509_NAME), NULL, DYNAMIC_TYPE_OPENSSL); if (node->data.name == NULL) { XFREE(node, NULL, DYNAMIC_TYPE_OPENSSL); WOLFSSL_MSG("memory allocation error"); return SSL_FAILURE; } XMEMCPY(node->data.name, subjectName, sizeof(WOLFSSL_X509_NAME)); XMEMSET(subjectName, 0, sizeof(WOLFSSL_X509_NAME)); /* push new node onto head of stack */ node->num = (ctx->ca_names == NULL) ? 1 : ctx->ca_names->num + 1; node->next = ctx->ca_names; ctx->ca_names = node; return SSL_SUCCESS; } #endif #ifndef NO_WOLFSSL_STUB int wolfSSL_CTX_set_default_verify_paths(WOLFSSL_CTX* ctx) { /* TODO:, not needed in goahead */ (void)ctx; WOLFSSL_STUB("SSL_CTX_set_default_verify_paths"); return SSL_NOT_IMPLEMENTED; } #endif #if defined(WOLFCRYPT_HAVE_SRP) && !defined(NO_SHA256) \ && !defined(WC_NO_RNG) static const byte srp_N[] = { 0xEE, 0xAF, 0x0A, 0xB9, 0xAD, 0xB3, 0x8D, 0xD6, 0x9C, 0x33, 0xF8, 0x0A, 0xFA, 0x8F, 0xC5, 0xE8, 0x60, 0x72, 0x61, 0x87, 0x75, 0xFF, 0x3C, 0x0B, 0x9E, 0xA2, 0x31, 0x4C, 0x9C, 0x25, 0x65, 0x76, 0xD6, 0x74, 0xDF, 0x74, 0x96, 0xEA, 0x81, 0xD3, 0x38, 0x3B, 0x48, 0x13, 0xD6, 0x92, 0xC6, 0xE0, 0xE0, 0xD5, 0xD8, 0xE2, 0x50, 0xB9, 0x8B, 0xE4, 0x8E, 0x49, 0x5C, 0x1D, 0x60, 0x89, 0xDA, 0xD1, 0x5D, 0xC7, 0xD7, 0xB4, 0x61, 0x54, 0xD6, 0xB6, 0xCE, 0x8E, 0xF4, 0xAD, 0x69, 0xB1, 0x5D, 0x49, 0x82, 0x55, 0x9B, 0x29, 0x7B, 0xCF, 0x18, 0x85, 0xC5, 0x29, 0xF5, 0x66, 0x66, 0x0E, 0x57, 0xEC, 0x68, 0xED, 0xBC, 0x3C, 0x05, 0x72, 0x6C, 0xC0, 0x2F, 0xD4, 0xCB, 0xF4, 0x97, 0x6E, 0xAA, 0x9A, 0xFD, 0x51, 0x38, 0xFE, 0x83, 0x76, 0x43, 0x5B, 0x9F, 0xC6, 0x1D, 0x2F, 0xC0, 0xEB, 0x06, 0xE3 }; static const byte srp_g[] = { 0x02 }; int wolfSSL_CTX_set_srp_username(WOLFSSL_CTX* ctx, char* username) { int r = 0; SrpSide srp_side = SRP_CLIENT_SIDE; WC_RNG rng; byte salt[SRP_SALT_SIZE]; WOLFSSL_ENTER("wolfSSL_CTX_set_srp_username"); if (ctx == NULL || ctx->srp == NULL || username==NULL) return SSL_FAILURE; if (ctx->method->side == WOLFSSL_SERVER_END){ srp_side = SRP_SERVER_SIDE; } else if (ctx->method->side == WOLFSSL_CLIENT_END){ srp_side = SRP_CLIENT_SIDE; } else { WOLFSSL_MSG("Init CTX failed"); return SSL_FAILURE; } if (wc_SrpInit(ctx->srp, SRP_TYPE_SHA256, srp_side) < 0){ WOLFSSL_MSG("Init CTX failed"); XFREE(ctx->srp, ctx->heap, DYNAMIC_TYPE_SRP); wolfSSL_CTX_free(ctx); return SSL_FAILURE; } r = wc_SrpSetUsername(ctx->srp, (const byte*)username, (word32)XSTRLEN(username)); if (r < 0) { WOLFSSL_MSG("fail to set srp username."); return SSL_FAILURE; } /* if wolfSSL_CTX_set_srp_password has already been called, */ /* execute wc_SrpSetPassword here */ if (ctx->srp_password != NULL){ if (wc_InitRng(&rng) < 0){ WOLFSSL_MSG("wc_InitRng failed"); return SSL_FAILURE; } XMEMSET(salt, 0, sizeof(salt)/sizeof(salt[0])); if (wc_RNG_GenerateBlock(&rng, salt, sizeof(salt)/sizeof(salt[0])) < 0){ WOLFSSL_MSG("wc_RNG_GenerateBlock failed"); wc_FreeRng(&rng); return SSL_FAILURE; } if (wc_SrpSetParams(ctx->srp, srp_N, sizeof(srp_N)/sizeof(srp_N[0]), srp_g, sizeof(srp_g)/sizeof(srp_g[0]), salt, sizeof(salt)/sizeof(salt[0])) < 0){ WOLFSSL_MSG("wc_SrpSetParam failed"); wc_FreeRng(&rng); return SSL_FAILURE; } r = wc_SrpSetPassword(ctx->srp, (const byte*)ctx->srp_password, (word32)XSTRLEN((char *)ctx->srp_password)); if (r < 0) { WOLFSSL_MSG("fail to set srp password."); return SSL_FAILURE; } wc_FreeRng(&rng); XFREE(ctx->srp_password, ctx->heap, DYNAMIC_TYPE_SRP); ctx->srp_password = NULL; } return SSL_SUCCESS; } int wolfSSL_CTX_set_srp_password(WOLFSSL_CTX* ctx, char* password) { int r; WC_RNG rng; byte salt[SRP_SALT_SIZE]; WOLFSSL_ENTER("wolfSSL_CTX_set_srp_password"); if (ctx == NULL || ctx->srp == NULL || password == NULL) return SSL_FAILURE; if (ctx->srp->user != NULL){ if (wc_InitRng(&rng) < 0){ WOLFSSL_MSG("wc_InitRng failed"); return SSL_FAILURE; } XMEMSET(salt, 0, sizeof(salt)/sizeof(salt[0])); if (wc_RNG_GenerateBlock(&rng, salt, sizeof(salt)/sizeof(salt[0])) < 0){ WOLFSSL_MSG("wc_RNG_GenerateBlock failed"); wc_FreeRng(&rng); return SSL_FAILURE; } if (wc_SrpSetParams(ctx->srp, srp_N, sizeof(srp_N)/sizeof(srp_N[0]), srp_g, sizeof(srp_g)/sizeof(srp_g[0]), salt, sizeof(salt)/sizeof(salt[0])) < 0){ WOLFSSL_MSG("wc_SrpSetParam failed"); wc_FreeRng(&rng); return SSL_FAILURE; } r = wc_SrpSetPassword(ctx->srp, (const byte*)password, (word32)XSTRLEN(password)); if (r < 0) { WOLFSSL_MSG("wc_SrpSetPassword failed."); wc_FreeRng(&rng); return SSL_FAILURE; } if (ctx->srp_password != NULL){ XFREE(ctx->srp_password,NULL, DYNAMIC_TYPE_SRP); ctx->srp_password = NULL; } wc_FreeRng(&rng); } else { /* save password for wolfSSL_set_srp_username */ if (ctx->srp_password != NULL) XFREE(ctx->srp_password,ctx->heap, DYNAMIC_TYPE_SRP); ctx->srp_password = (byte*)XMALLOC(XSTRLEN(password) + 1, ctx->heap, DYNAMIC_TYPE_SRP); if (ctx->srp_password == NULL){ WOLFSSL_MSG("memory allocation error"); return SSL_FAILURE; } XMEMCPY(ctx->srp_password, password, XSTRLEN(password) + 1); } return SSL_SUCCESS; } #endif /* WOLFCRYPT_HAVE_SRP && !NO_SHA256 && !WC_NO_RNG */ /* keyblock size in bytes or -1 */ int wolfSSL_get_keyblock_size(WOLFSSL* ssl) { if (ssl == NULL) return WOLFSSL_FATAL_ERROR; return 2 * (ssl->specs.key_size + ssl->specs.iv_size + ssl->specs.hash_size); } /* store keys returns WOLFSSL_SUCCESS or -1 on error */ int wolfSSL_get_keys(WOLFSSL* ssl, unsigned char** ms, unsigned int* msLen, unsigned char** sr, unsigned int* srLen, unsigned char** cr, unsigned int* crLen) { if (ssl == NULL || ssl->arrays == NULL) return WOLFSSL_FATAL_ERROR; *ms = ssl->arrays->masterSecret; *sr = ssl->arrays->serverRandom; *cr = ssl->arrays->clientRandom; *msLen = SECRET_LEN; *srLen = RAN_LEN; *crLen = RAN_LEN; return WOLFSSL_SUCCESS; } #endif /* OPENSSL_EXTRA */ #if defined(OPENSSL_EXTRA) || defined(WOLFSSL_EXTRA) void wolfSSL_set_accept_state(WOLFSSL* ssl) { word16 haveRSA = 1; word16 havePSK = 0; WOLFSSL_ENTER("SSL_set_accept_state"); if (ssl->options.side == WOLFSSL_CLIENT_END) { #ifdef HAVE_ECC ecc_key key; word32 idx = 0; if (ssl->options.haveStaticECC && ssl->buffers.key != NULL) { wc_ecc_init(&key); if (wc_EccPrivateKeyDecode(ssl->buffers.key->buffer, &idx, &key, ssl->buffers.key->length) != 0) { ssl->options.haveECDSAsig = 0; ssl->options.haveECC = 0; ssl->options.haveStaticECC = 0; } wc_ecc_free(&key); } #endif #ifndef NO_DH if (!ssl->options.haveDH && ssl->ctx->haveDH) { ssl->buffers.serverDH_P = ssl->ctx->serverDH_P; ssl->buffers.serverDH_G = ssl->ctx->serverDH_G; ssl->options.haveDH = 1; } #endif } ssl->options.side = WOLFSSL_SERVER_END; /* reset suites in case user switched */ #ifdef NO_RSA haveRSA = 0; #endif #ifndef NO_PSK havePSK = ssl->options.havePSK; #endif InitSuites(ssl->suites, ssl->version, ssl->buffers.keySz, haveRSA, havePSK, ssl->options.haveDH, ssl->options.haveNTRU, ssl->options.haveECDSAsig, ssl->options.haveECC, ssl->options.haveStaticECC, ssl->options.side); } #endif /* OPENSSL_EXTRA || WOLFSSL_EXTRA */ /* return true if connection established */ int wolfSSL_is_init_finished(WOLFSSL* ssl) { if (ssl == NULL) return 0; if (ssl->options.handShakeState == HANDSHAKE_DONE) return 1; return 0; } #ifdef OPENSSL_EXTRA void wolfSSL_CTX_set_tmp_rsa_callback(WOLFSSL_CTX* ctx, WOLFSSL_RSA*(*f)(WOLFSSL*, int, int)) { /* wolfSSL verifies all these internally */ (void)ctx; (void)f; } void wolfSSL_set_shutdown(WOLFSSL* ssl, int opt) { WOLFSSL_ENTER("wolfSSL_set_shutdown"); if(ssl==NULL) { WOLFSSL_MSG("Shutdown not set. ssl is null"); return; } ssl->options.sentNotify = (opt&WOLFSSL_SENT_SHUTDOWN) > 0; ssl->options.closeNotify = (opt&WOLFSSL_RECEIVED_SHUTDOWN) > 0; } long wolfSSL_CTX_get_options(WOLFSSL_CTX* ctx) { WOLFSSL_ENTER("wolfSSL_CTX_get_options"); WOLFSSL_MSG("wolfSSL options are set through API calls and macros"); if(ctx == NULL) return BAD_FUNC_ARG; return ctx->mask; } static long wolf_set_options(long old_op, long op); long wolfSSL_CTX_set_options(WOLFSSL_CTX* ctx, long opt) { WOLFSSL_ENTER("SSL_CTX_set_options"); if (ctx == NULL) return BAD_FUNC_ARG; ctx->mask = wolf_set_options(ctx->mask, opt); return ctx->mask; } long wolfSSL_CTX_clear_options(WOLFSSL_CTX* ctx, long opt) { WOLFSSL_ENTER("SSL_CTX_clear_options"); if(ctx == NULL) return BAD_FUNC_ARG; ctx->mask &= ~opt; return ctx->mask; } int wolfSSL_set_rfd(WOLFSSL* ssl, int rfd) { WOLFSSL_ENTER("SSL_set_rfd"); ssl->rfd = rfd; /* not used directly to allow IO callbacks */ ssl->IOCB_ReadCtx = &ssl->rfd; return WOLFSSL_SUCCESS; } int wolfSSL_set_wfd(WOLFSSL* ssl, int wfd) { WOLFSSL_ENTER("SSL_set_wfd"); ssl->wfd = wfd; /* not used directly to allow IO callbacks */ ssl->IOCB_WriteCtx = &ssl->wfd; return WOLFSSL_SUCCESS; } #ifndef NO_CERTS WOLFSSL_X509_STORE* wolfSSL_CTX_get_cert_store(WOLFSSL_CTX* ctx) { if (ctx == NULL) { return NULL; } return &ctx->x509_store; } void wolfSSL_CTX_set_cert_store(WOLFSSL_CTX* ctx, WOLFSSL_X509_STORE* str) { if (ctx == NULL || str == NULL) { return; } /* free cert manager if have one */ if (ctx->cm != NULL) { wolfSSL_CertManagerFree(ctx->cm); } ctx->cm = str->cm; ctx->x509_store.cache = str->cache; ctx->x509_store_pt = str; /* take ownership of store and free it with CTX free */ } WOLFSSL_X509* wolfSSL_X509_STORE_CTX_get_current_cert( WOLFSSL_X509_STORE_CTX* ctx) { WOLFSSL_ENTER("wolfSSL_X509_STORE_CTX_get_current_cert"); if (ctx) return ctx->current_cert; return NULL; } int wolfSSL_X509_STORE_CTX_get_error(WOLFSSL_X509_STORE_CTX* ctx) { WOLFSSL_ENTER("wolfSSL_X509_STORE_CTX_get_error"); if (ctx != NULL) return ctx->error; return 0; } int wolfSSL_X509_STORE_CTX_get_error_depth(WOLFSSL_X509_STORE_CTX* ctx) { WOLFSSL_ENTER("wolfSSL_X509_STORE_CTX_get_error_depth"); if(ctx) return ctx->error_depth; return WOLFSSL_FATAL_ERROR; } void wolfSSL_X509_STORE_CTX_set_verify_cb(WOLFSSL_X509_STORE_CTX *ctx, WOLFSSL_X509_STORE_CTX_verify_cb verify_cb) { WOLFSSL_ENTER("wolfSSL_X509_STORE_CTX_set_verify_cb"); if(ctx == NULL) return; ctx->verify_cb = verify_cb; } #endif /* !NO_CERTS */ WOLFSSL_BIO_METHOD* wolfSSL_BIO_f_buffer(void) { static WOLFSSL_BIO_METHOD meth; WOLFSSL_ENTER("BIO_f_buffer"); meth.type = WOLFSSL_BIO_BUFFER; return &meth; } #ifndef NO_WOLFSSL_STUB long wolfSSL_BIO_set_write_buffer_size(WOLFSSL_BIO* bio, long size) { /* wolfSSL has internal buffer, compatibility only */ WOLFSSL_ENTER("BIO_set_write_buffer_size"); WOLFSSL_STUB("BIO_set_write_buffer_size"); (void)bio; return size; } #endif WOLFSSL_BIO_METHOD* wolfSSL_BIO_s_bio(void) { static WOLFSSL_BIO_METHOD bio_meth; WOLFSSL_ENTER("wolfSSL_BIO_f_bio"); bio_meth.type = WOLFSSL_BIO_BIO; return &bio_meth; } #ifndef NO_FILESYSTEM WOLFSSL_BIO_METHOD* wolfSSL_BIO_s_file(void) { static WOLFSSL_BIO_METHOD file_meth; WOLFSSL_ENTER("wolfSSL_BIO_f_file"); file_meth.type = WOLFSSL_BIO_FILE; return &file_meth; } #endif WOLFSSL_BIO_METHOD* wolfSSL_BIO_f_ssl(void) { static WOLFSSL_BIO_METHOD meth; WOLFSSL_ENTER("BIO_f_ssl"); meth.type = WOLFSSL_BIO_SSL; return &meth; } WOLFSSL_BIO_METHOD *wolfSSL_BIO_s_socket(void) { static WOLFSSL_BIO_METHOD meth; WOLFSSL_ENTER("BIO_s_socket"); meth.type = WOLFSSL_BIO_SOCKET; return &meth; } WOLFSSL_BIO* wolfSSL_BIO_new_socket(int sfd, int closeF) { WOLFSSL_BIO* bio = wolfSSL_BIO_new(wolfSSL_BIO_s_socket()); WOLFSSL_ENTER("BIO_new_socket"); if (bio) { bio->type = WOLFSSL_BIO_SOCKET; bio->close = (byte)closeF; bio->fd = sfd; } return bio; } int wolfSSL_BIO_eof(WOLFSSL_BIO* b) { WOLFSSL_ENTER("BIO_eof"); if (b->eof) return 1; return 0; } long wolfSSL_BIO_set_ssl(WOLFSSL_BIO* b, WOLFSSL* ssl, int closeF) { WOLFSSL_ENTER("wolfSSL_BIO_set_ssl"); if (b != NULL) { b->ssl = ssl; b->close = (byte)closeF; /* add to ssl for bio free if SSL_free called before/instead of free_all? */ } return 0; } long wolfSSL_BIO_set_fd(WOLFSSL_BIO* b, int fd, int closeF) { WOLFSSL_ENTER("wolfSSL_BIO_set_fd"); if (b != NULL) { b->fd = fd; b->close = (byte)closeF; } return WOLFSSL_SUCCESS; } WOLFSSL_BIO* wolfSSL_BIO_new(WOLFSSL_BIO_METHOD* method) { WOLFSSL_BIO* bio = (WOLFSSL_BIO*) XMALLOC(sizeof(WOLFSSL_BIO), 0, DYNAMIC_TYPE_OPENSSL); WOLFSSL_ENTER("wolfSSL_BIO_new"); if (bio) { XMEMSET(bio, 0, sizeof(WOLFSSL_BIO)); bio->type = method->type; bio->close = BIO_CLOSE; /* default to close things */ if (method->type != WOLFSSL_BIO_FILE && method->type != WOLFSSL_BIO_SOCKET) { bio->mem_buf =(WOLFSSL_BUF_MEM*)XMALLOC(sizeof(WOLFSSL_BUF_MEM), 0, DYNAMIC_TYPE_OPENSSL); if (bio->mem_buf == NULL) { WOLFSSL_MSG("Memory error"); wolfSSL_BIO_free(bio); return NULL; } bio->mem_buf->data = (char*)bio->mem; } } return bio; } int wolfSSL_BIO_get_mem_data(WOLFSSL_BIO* bio, void* p) { WOLFSSL_ENTER("wolfSSL_BIO_get_mem_data"); if (bio == NULL || p == NULL) return WOLFSSL_FATAL_ERROR; *(byte **)p = bio->mem; return bio->memLen; } WOLFSSL_BIO* wolfSSL_BIO_new_mem_buf(void* buf, int len) { WOLFSSL_BIO* bio = NULL; if (buf == NULL || len < 0) { return bio; } bio = wolfSSL_BIO_new(wolfSSL_BIO_s_mem()); if (bio == NULL) { return bio; } bio->memLen = bio->wrSz = len; bio->mem = (byte*)XMALLOC(len, 0, DYNAMIC_TYPE_OPENSSL); if (bio->mem == NULL) { wolfSSL_BIO_free(bio); return NULL; } if (bio->mem_buf != NULL) { bio->mem_buf->data = (char*)bio->mem; bio->mem_buf->length = bio->memLen; } XMEMCPY(bio->mem, buf, len); return bio; } /* * Note : If the flag BIO_NOCLOSE is set then freeing memory buffers is up * to the application. */ int wolfSSL_BIO_free(WOLFSSL_BIO* bio) { /* unchain?, doesn't matter in goahead since from free all */ WOLFSSL_ENTER("wolfSSL_BIO_free"); if (bio) { /* remove from pair by setting the paired bios pair to NULL */ if (bio->pair != NULL) { bio->pair->pair = NULL; } if (bio->close) { if (bio->ssl) wolfSSL_free(bio->ssl); if (bio->fd) CloseSocket(bio->fd); } #ifndef NO_FILESYSTEM if (bio->type == WOLFSSL_BIO_FILE && bio->close == BIO_CLOSE) { if (bio->file) { XFCLOSE(bio->file); } } #endif if (bio->close != BIO_NOCLOSE) { if (bio->mem != NULL) { if (bio->mem_buf != NULL) { if (bio->mem_buf->data != (char*)bio->mem) { XFREE(bio->mem, bio->heap, DYNAMIC_TYPE_OPENSSL); bio->mem = NULL; } } else { XFREE(bio->mem, bio->heap, DYNAMIC_TYPE_OPENSSL); bio->mem = NULL; } } if (bio->mem_buf != NULL) { wolfSSL_BUF_MEM_free(bio->mem_buf); bio->mem_buf = NULL; } } XFREE(bio, 0, DYNAMIC_TYPE_OPENSSL); } return 0; } int wolfSSL_BIO_free_all(WOLFSSL_BIO* bio) { WOLFSSL_ENTER("BIO_free_all"); while (bio) { WOLFSSL_BIO* next = bio->next; wolfSSL_BIO_free(bio); bio = next; } return 0; } WOLFSSL_BIO* wolfSSL_BIO_push(WOLFSSL_BIO* top, WOLFSSL_BIO* append) { WOLFSSL_ENTER("BIO_push"); top->next = append; append->prev = top; return top; } int wolfSSL_BIO_flush(WOLFSSL_BIO* bio) { /* for wolfSSL no flushing needed */ WOLFSSL_ENTER("BIO_flush"); (void)bio; return 1; } #endif /* OPENSSL_EXTRA */ #ifdef WOLFSSL_ENCRYPTED_KEYS void wolfSSL_CTX_set_default_passwd_cb_userdata(WOLFSSL_CTX* ctx, void* userdata) { WOLFSSL_ENTER("SSL_CTX_set_default_passwd_cb_userdata"); ctx->passwd_userdata = userdata; } void wolfSSL_CTX_set_default_passwd_cb(WOLFSSL_CTX* ctx,pem_password_cb* cb) { WOLFSSL_ENTER("SSL_CTX_set_default_passwd_cb"); if (ctx != NULL) { ctx->passwd_cb = cb; } } pem_password_cb* wolfSSL_CTX_get_default_passwd_cb(WOLFSSL_CTX *ctx) { if (ctx == NULL || ctx->passwd_cb == NULL) { return NULL; } return ctx->passwd_cb; } void* wolfSSL_CTX_get_default_passwd_cb_userdata(WOLFSSL_CTX *ctx) { if (ctx == NULL) { return NULL; } return ctx->passwd_userdata; } #if !defined(NO_PWDBASED) && (defined(OPENSSL_EXTRA) || \ defined(OPENSSL_EXTRA_X509_SMALL) || defined(HAVE_WEBSERVER)) int wolfSSL_EVP_BytesToKey(const WOLFSSL_EVP_CIPHER* type, const WOLFSSL_EVP_MD* md, const byte* salt, const byte* data, int sz, int count, byte* key, byte* iv) { int ret; int hashType = WC_HASH_TYPE_NONE; #ifdef WOLFSSL_SMALL_STACK EncryptedInfo* info = NULL; #else EncryptedInfo info[1]; #endif #ifdef WOLFSSL_SMALL_STACK info = (EncryptedInfo*)XMALLOC(sizeof(EncryptedInfo), NULL, DYNAMIC_TYPE_ENCRYPTEDINFO); if (info == NULL) { WOLFSSL_MSG("malloc failed"); return WOLFSSL_FAILURE; } #endif XMEMSET(info, 0, sizeof(EncryptedInfo)); info->ivSz = EVP_SALT_SIZE; ret = wolfSSL_EVP_get_hashinfo(md, &hashType, NULL); if (ret == 0) ret = wc_EncryptedInfoGet(info, type); if (ret == 0) ret = wc_PBKDF1_ex(key, info->keySz, iv, info->ivSz, data, sz, salt, EVP_SALT_SIZE, count, hashType, NULL); #ifdef WOLFSSL_SMALL_STACK XFREE(info, NULL, DYNAMIC_TYPE_ENCRYPTEDINFO); #endif if (ret <= 0) return 0; /* failure - for compatibility */ return ret; } #endif /* !NO_PWDBASED && (OPENSSL_EXTRA || OPENSSL_EXTRA_X509_SMALL || HAVE_WEBSERVER) */ #endif /* WOLFSSL_ENCRYPTED_KEYS */ #if defined(OPENSSL_EXTRA) || defined(HAVE_WEBSERVER) int wolfSSL_num_locks(void) { return 0; } void wolfSSL_set_locking_callback(void (*f)(int, int, const char*, int)) { WOLFSSL_ENTER("wolfSSL_set_locking_callback"); if (wc_SetMutexCb(f) != 0) { WOLFSSL_MSG("Error when setting mutex call back"); } } typedef unsigned long (idCb)(void); static idCb* inner_idCb = NULL; unsigned long wolfSSL_thread_id(void) { if (inner_idCb != NULL) { return inner_idCb(); } else { return 0; } } void wolfSSL_set_id_callback(unsigned long (*f)(void)) { inner_idCb = f; } unsigned long wolfSSL_ERR_get_error(void) { WOLFSSL_ENTER("wolfSSL_ERR_get_error"); #if defined(OPENSSL_ALL) || defined(WOLFSSL_NGINX) || defined(WOLFSSL_HAPROXY) { unsigned long ret = wolfSSL_ERR_peek_error_line_data(NULL, NULL, NULL, NULL); wc_RemoveErrorNode(-1); return ret; } #elif (defined(OPENSSL_EXTRA) || defined(DEBUG_WOLFSSL_VERBOSE)) { int ret = wc_PullErrorNode(NULL, NULL, NULL); if (ret < 0) { if (ret == BAD_STATE_E) return 0; /* no errors in queue */ WOLFSSL_MSG("Error with pulling error node!"); WOLFSSL_LEAVE("wolfSSL_ERR_get_error", ret); ret = 0 - ret; /* return absolute value of error */ /* panic and try to clear out nodes */ wc_ClearErrorNodes(); } return (unsigned long)ret; } #else return (unsigned long)(0 - NOT_COMPILED_IN); #endif } #endif /* OPENSSL_EXTRA || HAVE_WEBSERVER */ #ifdef OPENSSL_EXTRA #if !defined(NO_WOLFSSL_SERVER) size_t wolfSSL_get_server_random(const WOLFSSL *ssl, unsigned char *out, size_t outSz) { size_t size; /* return max size of buffer */ if (outSz == 0) { return RAN_LEN; } if (ssl == NULL || out == NULL) { return 0; } if (ssl->options.saveArrays == 0 || ssl->arrays == NULL) { WOLFSSL_MSG("Arrays struct not saved after handshake"); return 0; } if (outSz > RAN_LEN) { size = RAN_LEN; } else { size = outSz; } XMEMCPY(out, ssl->arrays->serverRandom, size); return size; } #endif /* !defined(NO_WOLFSSL_SERVER) */ #if !defined(NO_WOLFSSL_CLIENT) /* Return the amount of random bytes copied over or error case. * ssl : ssl struct after handshake * out : buffer to hold random bytes * outSz : either 0 (return max buffer sz) or size of out buffer * * NOTE: wolfSSL_KeepArrays(ssl) must be called to retain handshake information. */ size_t wolfSSL_get_client_random(const WOLFSSL* ssl, unsigned char* out, size_t outSz) { size_t size; /* return max size of buffer */ if (outSz == 0) { return RAN_LEN; } if (ssl == NULL || out == NULL) { return 0; } if (ssl->options.saveArrays == 0 || ssl->arrays == NULL) { WOLFSSL_MSG("Arrays struct not saved after handshake"); return 0; } if (outSz > RAN_LEN) { size = RAN_LEN; } else { size = outSz; } XMEMCPY(out, ssl->arrays->clientRandom, size); return size; } #endif /* !NO_WOLFSSL_CLIENT */ unsigned long wolfSSLeay(void) { return SSLEAY_VERSION_NUMBER; } const char* wolfSSLeay_version(int type) { static const char* version = "SSLeay wolfSSL compatibility"; (void)type; return version; } #ifndef NO_MD5 int wolfSSL_MD5_Init(WOLFSSL_MD5_CTX* md5) { int ret; typedef char md5_test[sizeof(MD5_CTX) >= sizeof(wc_Md5) ? 1 : -1]; (void)sizeof(md5_test); WOLFSSL_ENTER("MD5_Init"); ret = wc_InitMd5((wc_Md5*)md5); /* return 1 on success, 0 otherwise */ if (ret == 0) return 1; return 0; } int wolfSSL_MD5_Update(WOLFSSL_MD5_CTX* md5, const void* input, unsigned long sz) { int ret; WOLFSSL_ENTER("wolfSSL_MD5_Update"); ret = wc_Md5Update((wc_Md5*)md5, (const byte*)input, (word32)sz); /* return 1 on success, 0 otherwise */ if (ret == 0) return 1; return 0; } int wolfSSL_MD5_Final(byte* input, WOLFSSL_MD5_CTX* md5) { int ret; WOLFSSL_ENTER("MD5_Final"); ret = wc_Md5Final((wc_Md5*)md5, input); /* return 1 on success, 0 otherwise */ if (ret == 0) return 1; return 0; } #endif /* !NO_MD5 */ #ifndef NO_SHA int wolfSSL_SHA_Init(WOLFSSL_SHA_CTX* sha) { int ret; typedef char sha_test[sizeof(SHA_CTX) >= sizeof(wc_Sha) ? 1 : -1]; (void)sizeof(sha_test); WOLFSSL_ENTER("SHA_Init"); ret = wc_InitSha((wc_Sha*)sha); /* return 1 on success, 0 otherwise */ if (ret == 0) return 1; return 0; } int wolfSSL_SHA_Update(WOLFSSL_SHA_CTX* sha, const void* input, unsigned long sz) { int ret; WOLFSSL_ENTER("SHA_Update"); ret = wc_ShaUpdate((wc_Sha*)sha, (const byte*)input, (word32)sz); /* return 1 on success, 0 otherwise */ if (ret == 0) return 1; return 0; } int wolfSSL_SHA_Final(byte* input, WOLFSSL_SHA_CTX* sha) { int ret; WOLFSSL_ENTER("SHA_Final"); ret = wc_ShaFinal((wc_Sha*)sha, input); /* return 1 on success, 0 otherwise */ if (ret == 0) return 1; return 0; } int wolfSSL_SHA1_Init(WOLFSSL_SHA_CTX* sha) { WOLFSSL_ENTER("SHA1_Init"); return SHA_Init(sha); } int wolfSSL_SHA1_Update(WOLFSSL_SHA_CTX* sha, const void* input, unsigned long sz) { WOLFSSL_ENTER("SHA1_Update"); return SHA_Update(sha, input, sz); } int wolfSSL_SHA1_Final(byte* input, WOLFSSL_SHA_CTX* sha) { WOLFSSL_ENTER("SHA1_Final"); return SHA_Final(input, sha); } #endif /* !NO_SHA */ #ifdef WOLFSSL_SHA224 int wolfSSL_SHA224_Init(WOLFSSL_SHA224_CTX* sha) { int ret; typedef char sha_test[sizeof(SHA224_CTX) >= sizeof(wc_Sha224) ? 1 : -1]; (void)sizeof(sha_test); WOLFSSL_ENTER("SHA224_Init"); ret = wc_InitSha224((wc_Sha224*)sha); /* return 1 on success, 0 otherwise */ if (ret == 0) return 1; return 0; } int wolfSSL_SHA224_Update(WOLFSSL_SHA224_CTX* sha, const void* input, unsigned long sz) { int ret; WOLFSSL_ENTER("SHA224_Update"); ret = wc_Sha224Update((wc_Sha224*)sha, (const byte*)input, (word32)sz); /* return 1 on success, 0 otherwise */ if (ret == 0) return 1; return 0; } int wolfSSL_SHA224_Final(byte* input, WOLFSSL_SHA224_CTX* sha) { int ret; WOLFSSL_ENTER("SHA224_Final"); ret = wc_Sha224Final((wc_Sha224*)sha, input); /* return 1 on success, 0 otherwise */ if (ret == 0) return 1; return 0; } #endif /* WOLFSSL_SHA224 */ int wolfSSL_SHA256_Init(WOLFSSL_SHA256_CTX* sha256) { int ret; typedef char sha_test[sizeof(SHA256_CTX) >= sizeof(wc_Sha256) ? 1 : -1]; (void)sizeof(sha_test); WOLFSSL_ENTER("SHA256_Init"); ret = wc_InitSha256((wc_Sha256*)sha256); /* return 1 on success, 0 otherwise */ if (ret == 0) return 1; return 0; } int wolfSSL_SHA256_Update(WOLFSSL_SHA256_CTX* sha, const void* input, unsigned long sz) { int ret; WOLFSSL_ENTER("SHA256_Update"); ret = wc_Sha256Update((wc_Sha256*)sha, (const byte*)input, (word32)sz); /* return 1 on success, 0 otherwise */ if (ret == 0) return 1; return 0; } int wolfSSL_SHA256_Final(byte* input, WOLFSSL_SHA256_CTX* sha) { int ret; WOLFSSL_ENTER("SHA256_Final"); ret = wc_Sha256Final((wc_Sha256*)sha, input); /* return 1 on success, 0 otherwise */ if (ret == 0) return 1; return 0; } #ifdef WOLFSSL_SHA384 int wolfSSL_SHA384_Init(WOLFSSL_SHA384_CTX* sha) { int ret; typedef char sha_test[sizeof(SHA384_CTX) >= sizeof(wc_Sha384) ? 1 : -1]; (void)sizeof(sha_test); WOLFSSL_ENTER("SHA384_Init"); ret = wc_InitSha384((wc_Sha384*)sha); /* return 1 on success, 0 otherwise */ if (ret == 0) return 1; return 0; } int wolfSSL_SHA384_Update(WOLFSSL_SHA384_CTX* sha, const void* input, unsigned long sz) { int ret; WOLFSSL_ENTER("SHA384_Update"); ret = wc_Sha384Update((wc_Sha384*)sha, (const byte*)input, (word32)sz); /* return 1 on success, 0 otherwise */ if (ret == 0) return 1; return 0; } int wolfSSL_SHA384_Final(byte* input, WOLFSSL_SHA384_CTX* sha) { int ret; WOLFSSL_ENTER("SHA384_Final"); ret = wc_Sha384Final((wc_Sha384*)sha, input); /* return 1 on success, 0 otherwise */ if (ret == 0) return 1; return 0; } #endif /* WOLFSSL_SHA384 */ #ifdef WOLFSSL_SHA512 int wolfSSL_SHA512_Init(WOLFSSL_SHA512_CTX* sha) { int ret; typedef char sha_test[sizeof(SHA512_CTX) >= sizeof(wc_Sha512) ? 1 : -1]; (void)sizeof(sha_test); WOLFSSL_ENTER("SHA512_Init"); ret = wc_InitSha512((wc_Sha512*)sha); /* return 1 on success, 0 otherwise */ if (ret == 0) return 1; return 0; } int wolfSSL_SHA512_Update(WOLFSSL_SHA512_CTX* sha, const void* input, unsigned long sz) { int ret; WOLFSSL_ENTER("SHA512_Update"); ret = wc_Sha512Update((wc_Sha512*)sha, (const byte*)input, (word32)sz); /* return 1 on success, 0 otherwise */ if (ret == 0) return 1; return 0; } int wolfSSL_SHA512_Final(byte* input, WOLFSSL_SHA512_CTX* sha) { int ret; WOLFSSL_ENTER("SHA512_Final"); ret = wc_Sha512Final((wc_Sha512*)sha, input); /* return 1 on success, 0 otherwise */ if (ret == 0) return 1; return 0; } #endif /* WOLFSSL_SHA512 */ static const struct s_ent { const unsigned char macType; const char *name; } md_tbl[] = { #ifndef NO_MD4 {MD4, "MD4"}, #endif /* NO_MD4 */ #ifndef NO_MD5 {WC_MD5, "MD5"}, #endif /* NO_MD5 */ #ifndef NO_SHA {WC_SHA, "SHA"}, #endif /* NO_SHA */ #ifdef WOLFSSL_SHA224 {WC_SHA224, "SHA224"}, #endif /* WOLFSSL_SHA224 */ #ifndef NO_SHA256 {WC_SHA256, "SHA256"}, #endif #ifdef WOLFSSL_SHA384 {WC_SHA384, "SHA384"}, #endif /* WOLFSSL_SHA384 */ #ifdef WOLFSSL_SHA512 {WC_SHA512, "SHA512"}, #endif /* WOLFSSL_SHA512 */ {0, NULL} }; const WOLFSSL_EVP_MD *wolfSSL_EVP_get_digestbyname(const char *name) { static const struct alias { const char *name; const char *alias; } alias_tbl[] = { {"MD4", "ssl3-md4"}, {"MD5", "ssl3-md5"}, {"SHA", "ssl3-sha1"}, {"SHA", "SHA1"}, { NULL, NULL} }; const struct alias *al; const struct s_ent *ent; for (al = alias_tbl; al->name != NULL; al++) if(XSTRNCMP(name, al->alias, XSTRLEN(al->alias)+1) == 0) { name = al->name; break; } for (ent = md_tbl; ent->name != NULL; ent++) if(XSTRNCMP(name, ent->name, XSTRLEN(ent->name)+1) == 0) { return (EVP_MD *)ent->name; } return NULL; } static WOLFSSL_EVP_MD *wolfSSL_EVP_get_md(const unsigned char type) { const struct s_ent *ent ; WOLFSSL_ENTER("EVP_get_md"); for( ent = md_tbl; ent->name != NULL; ent++){ if(type == ent->macType) { return (WOLFSSL_EVP_MD *)ent->name; } } return (WOLFSSL_EVP_MD *)""; } int wolfSSL_EVP_MD_type(const WOLFSSL_EVP_MD *md) { const struct s_ent *ent ; WOLFSSL_ENTER("EVP_MD_type"); for( ent = md_tbl; ent->name != NULL; ent++){ if(XSTRNCMP((const char *)md, ent->name, XSTRLEN(ent->name)+1) == 0) { return ent->macType; } } return 0; } #ifndef NO_MD4 /* return a pointer to MD4 EVP type */ const WOLFSSL_EVP_MD* wolfSSL_EVP_md4(void) { WOLFSSL_ENTER("wolfSSL_EVP_md4"); return EVP_get_digestbyname("MD4"); } #endif /* !NO_MD4 */ #ifndef NO_MD5 const WOLFSSL_EVP_MD* wolfSSL_EVP_md5(void) { WOLFSSL_ENTER("EVP_md5"); return EVP_get_digestbyname("MD5"); } #endif /* !NO_MD5 */ #ifndef NO_SHA const WOLFSSL_EVP_MD* wolfSSL_EVP_sha1(void) { WOLFSSL_ENTER("EVP_sha1"); return EVP_get_digestbyname("SHA"); } #endif /* NO_SHA */ #ifdef WOLFSSL_SHA224 const WOLFSSL_EVP_MD* wolfSSL_EVP_sha224(void) { WOLFSSL_ENTER("EVP_sha224"); return EVP_get_digestbyname("SHA224"); } #endif /* WOLFSSL_SHA224 */ const WOLFSSL_EVP_MD* wolfSSL_EVP_sha256(void) { WOLFSSL_ENTER("EVP_sha256"); return EVP_get_digestbyname("SHA256"); } #ifdef WOLFSSL_SHA384 const WOLFSSL_EVP_MD* wolfSSL_EVP_sha384(void) { WOLFSSL_ENTER("EVP_sha384"); return EVP_get_digestbyname("SHA384"); } #endif /* WOLFSSL_SHA384 */ #ifdef WOLFSSL_SHA512 const WOLFSSL_EVP_MD* wolfSSL_EVP_sha512(void) { WOLFSSL_ENTER("EVP_sha512"); return EVP_get_digestbyname("SHA512"); } #endif /* WOLFSSL_SHA512 */ WOLFSSL_EVP_MD_CTX *wolfSSL_EVP_MD_CTX_new(void) { WOLFSSL_EVP_MD_CTX* ctx; WOLFSSL_ENTER("EVP_MD_CTX_new"); ctx = (WOLFSSL_EVP_MD_CTX*)XMALLOC(sizeof *ctx, NULL, DYNAMIC_TYPE_OPENSSL); if (ctx){ wolfSSL_EVP_MD_CTX_init(ctx); } return ctx; } WOLFSSL_API void wolfSSL_EVP_MD_CTX_free(WOLFSSL_EVP_MD_CTX *ctx) { if (ctx) { WOLFSSL_ENTER("EVP_MD_CTX_free"); wolfSSL_EVP_MD_CTX_cleanup(ctx); XFREE(ctx, NULL, DYNAMIC_TYPE_OPENSSL); } } /* returns the type of message digest used by the ctx */ int wolfSSL_EVP_MD_CTX_type(const WOLFSSL_EVP_MD_CTX *ctx) { WOLFSSL_ENTER("EVP_MD_CTX_type"); return ctx->macType; } /* returns WOLFSSL_SUCCESS on success */ int wolfSSL_EVP_MD_CTX_copy(WOLFSSL_EVP_MD_CTX *out, const WOLFSSL_EVP_MD_CTX *in) { return wolfSSL_EVP_MD_CTX_copy_ex(out, in); } /* copies structure in to the structure out * * returns WOLFSSL_SUCCESS on success */ int wolfSSL_EVP_MD_CTX_copy_ex(WOLFSSL_EVP_MD_CTX *out, const WOLFSSL_EVP_MD_CTX *in) { if ((out == NULL) || (in == NULL)) return WOLFSSL_FAILURE; WOLFSSL_ENTER("EVP_CIPHER_MD_CTX_copy_ex"); XMEMCPY(out, in, sizeof(WOLFSSL_EVP_MD_CTX)); return WOLFSSL_SUCCESS; } void wolfSSL_EVP_MD_CTX_init(WOLFSSL_EVP_MD_CTX* ctx) { WOLFSSL_ENTER("EVP_CIPHER_MD_CTX_init"); XMEMSET(ctx, 0, sizeof(WOLFSSL_EVP_MD_CTX)); } const WOLFSSL_EVP_MD *wolfSSL_EVP_MD_CTX_md(const WOLFSSL_EVP_MD_CTX *ctx) { if (ctx == NULL) return NULL; WOLFSSL_ENTER("EVP_MD_CTX_md"); return (const WOLFSSL_EVP_MD *)wolfSSL_EVP_get_md(ctx->macType); } #ifndef NO_AES #ifdef HAVE_AES_CBC #ifdef WOLFSSL_AES_128 const WOLFSSL_EVP_CIPHER* wolfSSL_EVP_aes_128_cbc(void) { WOLFSSL_ENTER("wolfSSL_EVP_aes_128_cbc"); if (EVP_AES_128_CBC == NULL) wolfSSL_EVP_init(); return EVP_AES_128_CBC; } #endif /* WOLFSSL_AES_128 */ #ifdef WOLFSSL_AES_192 const WOLFSSL_EVP_CIPHER* wolfSSL_EVP_aes_192_cbc(void) { WOLFSSL_ENTER("wolfSSL_EVP_aes_192_cbc"); if (EVP_AES_192_CBC == NULL) wolfSSL_EVP_init(); return EVP_AES_192_CBC; } #endif /* WOLFSSL_AES_192 */ #ifdef WOLFSSL_AES_256 const WOLFSSL_EVP_CIPHER* wolfSSL_EVP_aes_256_cbc(void) { WOLFSSL_ENTER("wolfSSL_EVP_aes_256_cbc"); if (EVP_AES_256_CBC == NULL) wolfSSL_EVP_init(); return EVP_AES_256_CBC; } #endif /* WOLFSSL_AES_256 */ #endif /* HAVE_AES_CBC */ #ifdef WOLFSSL_AES_128 const WOLFSSL_EVP_CIPHER* wolfSSL_EVP_aes_128_ctr(void) { WOLFSSL_ENTER("wolfSSL_EVP_aes_128_ctr"); if (EVP_AES_128_CTR == NULL) wolfSSL_EVP_init(); return EVP_AES_128_CTR; } #endif /* WOLFSSL_AES_2128 */ #ifdef WOLFSSL_AES_192 const WOLFSSL_EVP_CIPHER* wolfSSL_EVP_aes_192_ctr(void) { WOLFSSL_ENTER("wolfSSL_EVP_aes_192_ctr"); if (EVP_AES_192_CTR == NULL) wolfSSL_EVP_init(); return EVP_AES_192_CTR; } #endif /* WOLFSSL_AES_192 */ #ifdef WOLFSSL_AES_256 const WOLFSSL_EVP_CIPHER* wolfSSL_EVP_aes_256_ctr(void) { WOLFSSL_ENTER("wolfSSL_EVP_aes_256_ctr"); if (EVP_AES_256_CTR == NULL) wolfSSL_EVP_init(); return EVP_AES_256_CTR; } #endif /* WOLFSSL_AES_256 */ #ifdef WOLFSSL_AES_128 const WOLFSSL_EVP_CIPHER* wolfSSL_EVP_aes_128_ecb(void) { WOLFSSL_ENTER("wolfSSL_EVP_aes_128_ecb"); if (EVP_AES_128_ECB == NULL) wolfSSL_EVP_init(); return EVP_AES_128_ECB; } #endif /* WOLFSSL_AES_128 */ #ifdef WOLFSSL_AES_192 const WOLFSSL_EVP_CIPHER* wolfSSL_EVP_aes_192_ecb(void) { WOLFSSL_ENTER("wolfSSL_EVP_aes_192_ecb"); if (EVP_AES_192_ECB == NULL) wolfSSL_EVP_init(); return EVP_AES_192_ECB; } #endif /* WOLFSSL_AES_192*/ #ifdef WOLFSSL_AES_256 const WOLFSSL_EVP_CIPHER* wolfSSL_EVP_aes_256_ecb(void) { WOLFSSL_ENTER("wolfSSL_EVP_aes_256_ecb"); if (EVP_AES_256_ECB == NULL) wolfSSL_EVP_init(); return EVP_AES_256_ECB; } #endif /* WOLFSSL_AES_256 */ #endif /* NO_AES */ #ifndef NO_DES3 const WOLFSSL_EVP_CIPHER* wolfSSL_EVP_des_cbc(void) { WOLFSSL_ENTER("wolfSSL_EVP_des_cbc"); if (EVP_DES_CBC == NULL) wolfSSL_EVP_init(); return EVP_DES_CBC; } #ifdef WOLFSSL_DES_ECB const WOLFSSL_EVP_CIPHER* wolfSSL_EVP_des_ecb(void) { WOLFSSL_ENTER("wolfSSL_EVP_des_ecb"); if (EVP_DES_ECB == NULL) wolfSSL_EVP_init(); return EVP_DES_ECB; } #endif const WOLFSSL_EVP_CIPHER* wolfSSL_EVP_des_ede3_cbc(void) { WOLFSSL_ENTER("wolfSSL_EVP_des_ede3_cbc"); if (EVP_DES_EDE3_CBC == NULL) wolfSSL_EVP_init(); return EVP_DES_EDE3_CBC; } #ifdef WOLFSSL_DES_ECB const WOLFSSL_EVP_CIPHER* wolfSSL_EVP_des_ede3_ecb(void) { WOLFSSL_ENTER("wolfSSL_EVP_des_ede3_ecb"); if (EVP_DES_EDE3_ECB == NULL) wolfSSL_EVP_init(); return EVP_DES_EDE3_ECB; } #endif #endif /* NO_DES3 */ #ifndef NO_RC4 const WOLFSSL_EVP_CIPHER* wolfSSL_EVP_rc4(void) { static const char* type = "ARC4"; WOLFSSL_ENTER("wolfSSL_EVP_rc4"); return type; } #endif #ifdef HAVE_IDEA const WOLFSSL_EVP_CIPHER* wolfSSL_EVP_idea_cbc(void) { WOLFSSL_ENTER("wolfSSL_EVP_idea_cbc"); if (EVP_IDEA_CBC == NULL) wolfSSL_EVP_init(); return EVP_IDEA_CBC; } #endif const WOLFSSL_EVP_CIPHER* wolfSSL_EVP_enc_null(void) { static const char* type = "NULL"; WOLFSSL_ENTER("wolfSSL_EVP_enc_null"); return type; } int wolfSSL_EVP_MD_CTX_cleanup(WOLFSSL_EVP_MD_CTX* ctx) { WOLFSSL_ENTER("EVP_MD_CTX_cleanup"); ForceZero(ctx, sizeof(*ctx)); ctx->macType = 0xFF; return 1; } void wolfSSL_EVP_CIPHER_CTX_init(WOLFSSL_EVP_CIPHER_CTX* ctx) { WOLFSSL_ENTER("EVP_CIPHER_CTX_init"); if (ctx) { ctx->cipherType = 0xff; /* no init */ ctx->keyLen = 0; ctx->enc = 1; /* start in encrypt mode */ } } /* WOLFSSL_SUCCESS on ok */ int wolfSSL_EVP_CIPHER_CTX_cleanup(WOLFSSL_EVP_CIPHER_CTX* ctx) { WOLFSSL_ENTER("EVP_CIPHER_CTX_cleanup"); if (ctx) { ctx->cipherType = 0xff; /* no more init */ ctx->keyLen = 0; } return WOLFSSL_SUCCESS; } /* return WOLFSSL_SUCCESS on ok, 0 on failure to match API compatibility */ int wolfSSL_EVP_CipherInit(WOLFSSL_EVP_CIPHER_CTX* ctx, const WOLFSSL_EVP_CIPHER* type, const byte* key, const byte* iv, int enc) { int ret = 0; (void)key; (void)iv; (void)enc; WOLFSSL_ENTER("wolfSSL_EVP_CipherInit"); if (ctx == NULL) { WOLFSSL_MSG("no ctx"); return 0; /* failure */ } if (type == NULL && ctx->cipherType == WOLFSSL_EVP_CIPH_TYPE_INIT) { WOLFSSL_MSG("no type set"); return 0; /* failure */ } if (ctx->cipherType == WOLFSSL_EVP_CIPH_TYPE_INIT){ ctx->bufUsed = 0; ctx->lastUsed = 0; ctx->flags = 0; } #ifndef NO_AES #ifdef HAVE_AES_CBC #ifdef WOLFSSL_AES_128 if (ctx->cipherType == AES_128_CBC_TYPE || (type && XSTRNCMP(type, EVP_AES_128_CBC, EVP_AES_SIZE) == 0)) { WOLFSSL_MSG("EVP_AES_128_CBC"); ctx->cipherType = AES_128_CBC_TYPE; ctx->flags &= ~WOLFSSL_EVP_CIPH_MODE; ctx->flags |= WOLFSSL_EVP_CIPH_CBC_MODE; ctx->keyLen = 16; ctx->block_size = AES_BLOCK_SIZE; if (enc == 0 || enc == 1) ctx->enc = enc ? 1 : 0; if (key) { ret = wc_AesSetKey(&ctx->cipher.aes, key, ctx->keyLen, iv, ctx->enc ? AES_ENCRYPTION : AES_DECRYPTION); if (ret != 0) return ret; } if (iv && key == NULL) { ret = wc_AesSetIV(&ctx->cipher.aes, iv); if (ret != 0) return ret; } } #endif /* WOLFSSL_AES_128 */ #ifdef WOLFSSL_AES_192 if (ctx->cipherType == AES_192_CBC_TYPE || (type && XSTRNCMP(type, EVP_AES_192_CBC, EVP_AES_SIZE) == 0)) { WOLFSSL_MSG("EVP_AES_192_CBC"); ctx->cipherType = AES_192_CBC_TYPE; ctx->flags &= ~WOLFSSL_EVP_CIPH_MODE; ctx->flags |= WOLFSSL_EVP_CIPH_CBC_MODE; ctx->keyLen = 24; ctx->block_size = AES_BLOCK_SIZE; if (enc == 0 || enc == 1) ctx->enc = enc ? 1 : 0; if (key) { ret = wc_AesSetKey(&ctx->cipher.aes, key, ctx->keyLen, iv, ctx->enc ? AES_ENCRYPTION : AES_DECRYPTION); if (ret != 0) return ret; } if (iv && key == NULL) { ret = wc_AesSetIV(&ctx->cipher.aes, iv); if (ret != 0) return ret; } } #endif /* WOLFSSL_AES_192 */ #ifdef WOLFSSL_AES_256 if (ctx->cipherType == AES_256_CBC_TYPE || (type && XSTRNCMP(type, EVP_AES_256_CBC, EVP_AES_SIZE) == 0)) { WOLFSSL_MSG("EVP_AES_256_CBC"); ctx->cipherType = AES_256_CBC_TYPE; ctx->flags &= ~WOLFSSL_EVP_CIPH_MODE; ctx->flags |= WOLFSSL_EVP_CIPH_CBC_MODE; ctx->keyLen = 32; ctx->block_size = AES_BLOCK_SIZE; if (enc == 0 || enc == 1) ctx->enc = enc ? 1 : 0; if (key) { ret = wc_AesSetKey(&ctx->cipher.aes, key, ctx->keyLen, iv, ctx->enc ? AES_ENCRYPTION : AES_DECRYPTION); if (ret != 0){ WOLFSSL_MSG("wc_AesSetKey() failed"); return ret; } } if (iv && key == NULL) { ret = wc_AesSetIV(&ctx->cipher.aes, iv); if (ret != 0){ WOLFSSL_MSG("wc_AesSetIV() failed"); return ret; } } } #endif /* WOLFSSL_AES_256 */ #endif /* HAVE_AES_CBC */ #ifdef WOLFSSL_AES_COUNTER #ifdef WOLFSSL_AES_128 if (ctx->cipherType == AES_128_CTR_TYPE || (type && XSTRNCMP(type, EVP_AES_128_CTR, EVP_AES_SIZE) == 0)) { WOLFSSL_MSG("EVP_AES_128_CTR"); ctx->flags &= ~WOLFSSL_EVP_CIPH_MODE; ctx->cipherType = AES_128_CTR_TYPE; ctx->flags |= WOLFSSL_EVP_CIPH_CTR_MODE; ctx->keyLen = 16; ctx->block_size = AES_BLOCK_SIZE; if (enc == 0 || enc == 1) ctx->enc = enc ? 1 : 0; if (key) { ret = wc_AesSetKey(&ctx->cipher.aes, key, ctx->keyLen, iv, AES_ENCRYPTION); if (ret != 0) return ret; } if (iv && key == NULL) { ret = wc_AesSetIV(&ctx->cipher.aes, iv); if (ret != 0) return ret; } } #endif /* WOLFSSL_AES_128 */ #ifdef WOLFSSL_AES_192 if (ctx->cipherType == AES_192_CTR_TYPE || (type && XSTRNCMP(type, EVP_AES_192_CTR, EVP_AES_SIZE) == 0)) { WOLFSSL_MSG("EVP_AES_192_CTR"); ctx->cipherType = AES_192_CTR_TYPE; ctx->flags &= ~WOLFSSL_EVP_CIPH_MODE; ctx->flags |= WOLFSSL_EVP_CIPH_CTR_MODE; ctx->keyLen = 24; ctx->block_size = AES_BLOCK_SIZE; if (enc == 0 || enc == 1) ctx->enc = enc ? 1 : 0; if (key) { ret = wc_AesSetKey(&ctx->cipher.aes, key, ctx->keyLen, iv, AES_ENCRYPTION); if (ret != 0) return ret; } if (iv && key == NULL) { ret = wc_AesSetIV(&ctx->cipher.aes, iv); if (ret != 0) return ret; } } #endif /* WOLFSSL_AES_192 */ #ifdef WOLFSSL_AES_256 if (ctx->cipherType == AES_256_CTR_TYPE || (type && XSTRNCMP(type, EVP_AES_256_CTR, EVP_AES_SIZE) == 0)) { WOLFSSL_MSG("EVP_AES_256_CTR"); ctx->cipherType = AES_256_CTR_TYPE; ctx->flags &= ~WOLFSSL_EVP_CIPH_MODE; ctx->flags |= WOLFSSL_EVP_CIPH_CTR_MODE; ctx->keyLen = 32; ctx->block_size = AES_BLOCK_SIZE; if (enc == 0 || enc == 1) ctx->enc = enc ? 1 : 0; if (key) { ret = wc_AesSetKey(&ctx->cipher.aes, key, ctx->keyLen, iv, AES_ENCRYPTION); if (ret != 0) return ret; } if (iv && key == NULL) { ret = wc_AesSetIV(&ctx->cipher.aes, iv); if (ret != 0) return ret; } } #endif /* WOLFSSL_AES_256 */ #endif /* WOLFSSL_AES_COUNTER */ #ifdef WOLFSSL_AES_128 if (ctx->cipherType == AES_128_ECB_TYPE || (type && XSTRNCMP(type, EVP_AES_128_ECB, EVP_AES_SIZE) == 0)) { WOLFSSL_MSG("EVP_AES_128_ECB"); ctx->cipherType = AES_128_ECB_TYPE; ctx->flags &= ~WOLFSSL_EVP_CIPH_MODE; ctx->flags |= WOLFSSL_EVP_CIPH_ECB_MODE; ctx->keyLen = 16; ctx->block_size = AES_BLOCK_SIZE; if (enc == 0 || enc == 1) ctx->enc = enc ? 1 : 0; if (key) { ret = wc_AesSetKey(&ctx->cipher.aes, key, ctx->keyLen, NULL, ctx->enc ? AES_ENCRYPTION : AES_DECRYPTION); } if (ret != 0) return ret; } #endif /* WOLFSSL_AES_128 */ #ifdef WOLFSSL_AES_192 if (ctx->cipherType == AES_192_ECB_TYPE || (type && XSTRNCMP(type, EVP_AES_192_ECB, EVP_AES_SIZE) == 0)) { WOLFSSL_MSG("EVP_AES_192_ECB"); ctx->cipherType = AES_192_ECB_TYPE; ctx->flags &= ~WOLFSSL_EVP_CIPH_MODE; ctx->flags |= WOLFSSL_EVP_CIPH_ECB_MODE; ctx->keyLen = 24; ctx->block_size = AES_BLOCK_SIZE; if (enc == 0 || enc == 1) ctx->enc = enc ? 1 : 0; if (key) { ret = wc_AesSetKey(&ctx->cipher.aes, key, ctx->keyLen, NULL, ctx->enc ? AES_ENCRYPTION : AES_DECRYPTION); } if (ret != 0) return ret; } #endif /* WOLFSSL_AES_192 */ #ifdef WOLFSSL_AES_256 if (ctx->cipherType == AES_256_ECB_TYPE || (type && XSTRNCMP(type, EVP_AES_256_ECB, EVP_AES_SIZE) == 0)) { WOLFSSL_MSG("EVP_AES_256_ECB"); ctx->cipherType = AES_256_ECB_TYPE; ctx->flags &= ~WOLFSSL_EVP_CIPH_MODE; ctx->flags |= WOLFSSL_EVP_CIPH_ECB_MODE; ctx->keyLen = 32; ctx->block_size = AES_BLOCK_SIZE; if (enc == 0 || enc == 1) ctx->enc = enc ? 1 : 0; if (key) { ret = wc_AesSetKey(&ctx->cipher.aes, key, ctx->keyLen, NULL, ctx->enc ? AES_ENCRYPTION : AES_DECRYPTION); } if (ret != 0) return ret; } #endif /* WOLFSSL_AES_256 */ #endif /* NO_AES */ #ifndef NO_DES3 if (ctx->cipherType == DES_CBC_TYPE || (type && XSTRNCMP(type, EVP_DES_CBC, EVP_DES_SIZE) == 0)) { WOLFSSL_MSG("EVP_DES_CBC"); ctx->cipherType = DES_CBC_TYPE; ctx->flags &= ~WOLFSSL_EVP_CIPH_MODE; ctx->flags |= WOLFSSL_EVP_CIPH_CBC_MODE; ctx->keyLen = 8; ctx->block_size = DES_BLOCK_SIZE; if (enc == 0 || enc == 1) ctx->enc = enc ? 1 : 0; if (key) { ret = wc_Des_SetKey(&ctx->cipher.des, key, iv, ctx->enc ? DES_ENCRYPTION : DES_DECRYPTION); if (ret != 0) return ret; } if (iv && key == NULL) wc_Des_SetIV(&ctx->cipher.des, iv); } #ifdef WOLFSSL_DES_ECB else if (ctx->cipherType == DES_ECB_TYPE || (type && XSTRNCMP(type, EVP_DES_ECB, EVP_DES_SIZE) == 0)) { WOLFSSL_MSG("EVP_DES_ECB"); ctx->cipherType = DES_ECB_TYPE; ctx->flags &= ~WOLFSSL_EVP_CIPH_MODE; ctx->flags |= WOLFSSL_EVP_CIPH_ECB_MODE; ctx->keyLen = 8; ctx->block_size = DES_BLOCK_SIZE; if (enc == 0 || enc == 1) ctx->enc = enc ? 1 : 0; if (key) { WOLFSSL_MSG("Des_SetKey"); ret = wc_Des_SetKey(&ctx->cipher.des, key, NULL, ctx->enc ? DES_ENCRYPTION : DES_DECRYPTION); if (ret != 0) return ret; } } #endif else if (ctx->cipherType == DES_EDE3_CBC_TYPE || (type && XSTRNCMP(type, EVP_DES_EDE3_CBC, EVP_DES_EDE3_SIZE) == 0)) { WOLFSSL_MSG("EVP_DES_EDE3_CBC"); ctx->cipherType = DES_EDE3_CBC_TYPE; ctx->flags &= ~WOLFSSL_EVP_CIPH_MODE; ctx->flags |= WOLFSSL_EVP_CIPH_CBC_MODE; ctx->keyLen = 24; ctx->block_size = DES_BLOCK_SIZE; if (enc == 0 || enc == 1) ctx->enc = enc ? 1 : 0; if (key) { ret = wc_Des3_SetKey(&ctx->cipher.des3, key, iv, ctx->enc ? DES_ENCRYPTION : DES_DECRYPTION); if (ret != 0) return ret; } if (iv && key == NULL) { ret = wc_Des3_SetIV(&ctx->cipher.des3, iv); if (ret != 0) return ret; } } else if (ctx->cipherType == DES_EDE3_ECB_TYPE || (type && XSTRNCMP(type, EVP_DES_EDE3_ECB, EVP_DES_EDE3_SIZE) == 0)) { WOLFSSL_MSG("EVP_DES_EDE3_ECB"); ctx->cipherType = DES_EDE3_ECB_TYPE; ctx->flags &= ~WOLFSSL_EVP_CIPH_MODE; ctx->flags |= WOLFSSL_EVP_CIPH_ECB_MODE; ctx->keyLen = 24; ctx->block_size = DES_BLOCK_SIZE; if (enc == 0 || enc == 1) ctx->enc = enc ? 1 : 0; if (key) { ret = wc_Des3_SetKey(&ctx->cipher.des3, key, NULL, ctx->enc ? DES_ENCRYPTION : DES_DECRYPTION); if (ret != 0) return ret; } } #endif /* NO_DES3 */ #ifndef NO_RC4 if (ctx->cipherType == ARC4_TYPE || (type && XSTRNCMP(type, "ARC4", 4) == 0)) { WOLFSSL_MSG("ARC4"); ctx->cipherType = ARC4_TYPE; ctx->flags &= ~WOLFSSL_EVP_CIPH_MODE; ctx->flags |= WOLFSSL_EVP_CIPH_STREAM_CIPHER; ctx->block_size = 1; if (ctx->keyLen == 0) /* user may have already set */ ctx->keyLen = 16; /* default to 128 */ if (key) wc_Arc4SetKey(&ctx->cipher.arc4, key, ctx->keyLen); } #endif /* NO_RC4 */ #ifdef HAVE_IDEA if (ctx->cipherType == IDEA_CBC_TYPE || (type && XSTRNCMP(type, EVP_IDEA_CBC, EVP_IDEA_SIZE) == 0)) { WOLFSSL_MSG("EVP_IDEA_CBC"); ctx->cipherType = IDEA_CBC_TYPE; ctx->flags &= ~WOLFSSL_EVP_CIPH_MODE; ctx->flags |= WOLFSSL_EVP_CIPH_CBC_MODE; ctx->keyLen = IDEA_KEY_SIZE; ctx->block_size = 8; if (enc == 0 || enc == 1) ctx->enc = enc ? 1 : 0; if (key) { ret = wc_IdeaSetKey(&ctx->cipher.idea, key, (word16)ctx->keyLen, iv, ctx->enc ? IDEA_ENCRYPTION : IDEA_DECRYPTION); if (ret != 0) return ret; } if (iv && key == NULL) wc_IdeaSetIV(&ctx->cipher.idea, iv); } #endif /* HAVE_IDEA */ if (ctx->cipherType == NULL_CIPHER_TYPE || (type && XSTRNCMP(type, "NULL", 4) == 0)) { WOLFSSL_MSG("NULL cipher"); ctx->cipherType = NULL_CIPHER_TYPE; ctx->keyLen = 0; ctx->block_size = 16; } (void)ret; /* remove warning. If execution reaches this point, ret=0 */ return WOLFSSL_SUCCESS; } /* WOLFSSL_SUCCESS on ok */ int wolfSSL_EVP_CIPHER_CTX_key_length(WOLFSSL_EVP_CIPHER_CTX* ctx) { WOLFSSL_ENTER("wolfSSL_EVP_CIPHER_CTX_key_length"); if (ctx) return ctx->keyLen; return 0; /* failure */ } /* WOLFSSL_SUCCESS on ok */ int wolfSSL_EVP_CIPHER_CTX_set_key_length(WOLFSSL_EVP_CIPHER_CTX* ctx, int keylen) { WOLFSSL_ENTER("wolfSSL_EVP_CIPHER_CTX_set_key_length"); if (ctx) ctx->keyLen = keylen; else return 0; /* failure */ return WOLFSSL_SUCCESS; } /* WOLFSSL_SUCCESS on ok */ int wolfSSL_EVP_Cipher(WOLFSSL_EVP_CIPHER_CTX* ctx, byte* dst, byte* src, word32 len) { int ret = 0; WOLFSSL_ENTER("wolfSSL_EVP_Cipher"); if (ctx == NULL || dst == NULL || src == NULL) { WOLFSSL_MSG("Bad function argument"); return 0; /* failure */ } if (ctx->cipherType == 0xff) { WOLFSSL_MSG("no init"); return 0; /* failure */ } switch (ctx->cipherType) { #ifndef NO_AES #ifdef HAVE_AES_CBC case AES_128_CBC_TYPE : case AES_192_CBC_TYPE : case AES_256_CBC_TYPE : WOLFSSL_MSG("AES CBC"); if (ctx->enc) ret = wc_AesCbcEncrypt(&ctx->cipher.aes, dst, src, len); else ret = wc_AesCbcDecrypt(&ctx->cipher.aes, dst, src, len); break; #endif /* HAVE_AES_CBC */ #ifdef HAVE_AES_ECB case AES_128_ECB_TYPE : case AES_192_ECB_TYPE : case AES_256_ECB_TYPE : WOLFSSL_MSG("AES ECB"); if (ctx->enc) ret = wc_AesEcbEncrypt(&ctx->cipher.aes, dst, src, len); else ret = wc_AesEcbDecrypt(&ctx->cipher.aes, dst, src, len); break; #endif #ifdef WOLFSSL_AES_COUNTER case AES_128_CTR_TYPE : case AES_192_CTR_TYPE : case AES_256_CTR_TYPE : WOLFSSL_MSG("AES CTR"); ret = wc_AesCtrEncrypt(&ctx->cipher.aes, dst, src, len); break; #endif /* WOLFSSL_AES_COUNTER */ #endif /* NO_AES */ #ifndef NO_DES3 case DES_CBC_TYPE : if (ctx->enc) wc_Des_CbcEncrypt(&ctx->cipher.des, dst, src, len); else wc_Des_CbcDecrypt(&ctx->cipher.des, dst, src, len); break; case DES_EDE3_CBC_TYPE : if (ctx->enc) ret = wc_Des3_CbcEncrypt(&ctx->cipher.des3, dst, src, len); else ret = wc_Des3_CbcDecrypt(&ctx->cipher.des3, dst, src, len); break; #ifdef WOLFSSL_DES_ECB case DES_ECB_TYPE : ret = wc_Des_EcbEncrypt(&ctx->cipher.des, dst, src, len); break; case DES_EDE3_ECB_TYPE : ret = wc_Des3_EcbEncrypt(&ctx->cipher.des3, dst, src, len); break; #endif #endif /* !NO_DES3 */ #ifndef NO_RC4 case ARC4_TYPE : wc_Arc4Process(&ctx->cipher.arc4, dst, src, len); break; #endif #ifdef HAVE_IDEA case IDEA_CBC_TYPE : if (ctx->enc) wc_IdeaCbcEncrypt(&ctx->cipher.idea, dst, src, len); else wc_IdeaCbcDecrypt(&ctx->cipher.idea, dst, src, len); break; #endif case NULL_CIPHER_TYPE : XMEMCPY(dst, src, len); break; default: { WOLFSSL_MSG("bad type"); return 0; /* failure */ } } if (ret != 0) { WOLFSSL_MSG("wolfSSL_EVP_Cipher failure"); return 0; /* failure */ } WOLFSSL_MSG("wolfSSL_EVP_Cipher success"); return WOLFSSL_SUCCESS; /* success */ } #define WOLFSSL_EVP_INCLUDED #include "wolfcrypt/src/evp.c" /* store for external read of iv, WOLFSSL_SUCCESS on success */ int wolfSSL_StoreExternalIV(WOLFSSL_EVP_CIPHER_CTX* ctx) { WOLFSSL_ENTER("wolfSSL_StoreExternalIV"); if (ctx == NULL) { WOLFSSL_MSG("Bad function argument"); return WOLFSSL_FATAL_ERROR; } switch (ctx->cipherType) { #ifndef NO_AES case AES_128_CBC_TYPE : case AES_192_CBC_TYPE : case AES_256_CBC_TYPE : WOLFSSL_MSG("AES CBC"); XMEMCPY(ctx->iv, &ctx->cipher.aes.reg, AES_BLOCK_SIZE); break; #ifdef WOLFSSL_AES_COUNTER case AES_128_CTR_TYPE : case AES_192_CTR_TYPE : case AES_256_CTR_TYPE : WOLFSSL_MSG("AES CTR"); XMEMCPY(ctx->iv, &ctx->cipher.aes.reg, AES_BLOCK_SIZE); break; #endif /* WOLFSSL_AES_COUNTER */ #endif /* NO_AES */ #ifndef NO_DES3 case DES_CBC_TYPE : WOLFSSL_MSG("DES CBC"); XMEMCPY(ctx->iv, &ctx->cipher.des.reg, DES_BLOCK_SIZE); break; case DES_EDE3_CBC_TYPE : WOLFSSL_MSG("DES EDE3 CBC"); XMEMCPY(ctx->iv, &ctx->cipher.des3.reg, DES_BLOCK_SIZE); break; #endif #ifdef HAVE_IDEA case IDEA_CBC_TYPE : WOLFSSL_MSG("IDEA CBC"); XMEMCPY(ctx->iv, &ctx->cipher.idea.reg, IDEA_BLOCK_SIZE); break; #endif case ARC4_TYPE : WOLFSSL_MSG("ARC4"); break; case NULL_CIPHER_TYPE : WOLFSSL_MSG("NULL"); break; default: { WOLFSSL_MSG("bad type"); return WOLFSSL_FATAL_ERROR; } } return WOLFSSL_SUCCESS; } /* set internal IV from external, WOLFSSL_SUCCESS on success */ int wolfSSL_SetInternalIV(WOLFSSL_EVP_CIPHER_CTX* ctx) { WOLFSSL_ENTER("wolfSSL_SetInternalIV"); if (ctx == NULL) { WOLFSSL_MSG("Bad function argument"); return WOLFSSL_FATAL_ERROR; } switch (ctx->cipherType) { #ifndef NO_AES case AES_128_CBC_TYPE : case AES_192_CBC_TYPE : case AES_256_CBC_TYPE : WOLFSSL_MSG("AES CBC"); XMEMCPY(&ctx->cipher.aes.reg, ctx->iv, AES_BLOCK_SIZE); break; #ifdef WOLFSSL_AES_COUNTER case AES_128_CTR_TYPE : case AES_192_CTR_TYPE : case AES_256_CTR_TYPE : WOLFSSL_MSG("AES CTR"); XMEMCPY(&ctx->cipher.aes.reg, ctx->iv, AES_BLOCK_SIZE); break; #endif #endif /* NO_AES */ #ifndef NO_DES3 case DES_CBC_TYPE : WOLFSSL_MSG("DES CBC"); XMEMCPY(&ctx->cipher.des.reg, ctx->iv, DES_BLOCK_SIZE); break; case DES_EDE3_CBC_TYPE : WOLFSSL_MSG("DES EDE3 CBC"); XMEMCPY(&ctx->cipher.des3.reg, ctx->iv, DES_BLOCK_SIZE); break; #endif #ifdef HAVE_IDEA case IDEA_CBC_TYPE : WOLFSSL_MSG("IDEA CBC"); XMEMCPY(&ctx->cipher.idea.reg, ctx->iv, IDEA_BLOCK_SIZE); break; #endif case ARC4_TYPE : WOLFSSL_MSG("ARC4"); break; case NULL_CIPHER_TYPE : WOLFSSL_MSG("NULL"); break; default: { WOLFSSL_MSG("bad type"); return WOLFSSL_FATAL_ERROR; } } return WOLFSSL_SUCCESS; } /* WOLFSSL_SUCCESS on ok */ int wolfSSL_EVP_DigestInit(WOLFSSL_EVP_MD_CTX* ctx, const WOLFSSL_EVP_MD* type) { int ret = WOLFSSL_SUCCESS; WOLFSSL_ENTER("EVP_DigestInit"); if (ctx == NULL || type == NULL) { return BAD_FUNC_ARG; } #ifdef WOLFSSL_ASYNC_CRYPT /* compile-time validation of ASYNC_CTX_SIZE */ typedef char async_test[WC_ASYNC_DEV_SIZE >= sizeof(WC_ASYNC_DEV) ? 1 : -1]; (void)sizeof(async_test); #endif if (XSTRNCMP(type, "SHA256", 6) == 0) { ctx->macType = WC_SHA256; ret = wolfSSL_SHA256_Init(&(ctx->hash.digest.sha256)); } #ifdef WOLFSSL_SHA224 else if (XSTRNCMP(type, "SHA224", 6) == 0) { ctx->macType = WC_SHA224; ret = wolfSSL_SHA224_Init(&(ctx->hash.digest.sha224)); } #endif #ifdef WOLFSSL_SHA384 else if (XSTRNCMP(type, "SHA384", 6) == 0) { ctx->macType = WC_SHA384; ret = wolfSSL_SHA384_Init(&(ctx->hash.digest.sha384)); } #endif #ifdef WOLFSSL_SHA512 else if (XSTRNCMP(type, "SHA512", 6) == 0) { ctx->macType = WC_SHA512; ret = wolfSSL_SHA512_Init(&(ctx->hash.digest.sha512)); } #endif #ifndef NO_MD4 else if (XSTRNCMP(type, "MD4", 3) == 0) { ctx->macType = MD4; wolfSSL_MD4_Init(&(ctx->hash.digest.md4)); } #endif #ifndef NO_MD5 else if (XSTRNCMP(type, "MD5", 3) == 0) { ctx->macType = WC_MD5; ret = wolfSSL_MD5_Init(&(ctx->hash.digest.md5)); } #endif #ifndef NO_SHA /* has to be last since would pick or 224, 256, 384, or 512 too */ else if (XSTRNCMP(type, "SHA", 3) == 0) { ctx->macType = WC_SHA; ret = wolfSSL_SHA_Init(&(ctx->hash.digest.sha)); } #endif /* NO_SHA */ else return BAD_FUNC_ARG; return ret; } /* WOLFSSL_SUCCESS on ok, WOLFSSL_FAILURE on failure */ int wolfSSL_EVP_DigestUpdate(WOLFSSL_EVP_MD_CTX* ctx, const void* data, size_t sz) { WOLFSSL_ENTER("EVP_DigestUpdate"); switch (ctx->macType) { #ifndef NO_MD4 case MD4: wolfSSL_MD4_Update((MD4_CTX*)&ctx->hash, data, (unsigned long)sz); break; #endif #ifndef NO_MD5 case WC_MD5: wolfSSL_MD5_Update((MD5_CTX*)&ctx->hash, data, (unsigned long)sz); break; #endif #ifndef NO_SHA case WC_SHA: wolfSSL_SHA_Update((SHA_CTX*)&ctx->hash, data, (unsigned long)sz); break; #endif #ifdef WOLFSSL_SHA224 case WC_SHA224: wolfSSL_SHA224_Update((SHA224_CTX*)&ctx->hash, data, (unsigned long)sz); break; #endif #ifndef NO_SHA256 case WC_SHA256: wolfSSL_SHA256_Update((SHA256_CTX*)&ctx->hash, data, (unsigned long)sz); break; #endif /* !NO_SHA256 */ #ifdef WOLFSSL_SHA384 case WC_SHA384: wolfSSL_SHA384_Update((SHA384_CTX*)&ctx->hash, data, (unsigned long)sz); break; #endif #ifdef WOLFSSL_SHA512 case WC_SHA512: wolfSSL_SHA512_Update((SHA512_CTX*)&ctx->hash, data, (unsigned long)sz); break; #endif /* WOLFSSL_SHA512 */ default: return WOLFSSL_FAILURE; } return WOLFSSL_SUCCESS; } /* WOLFSSL_SUCCESS on ok */ int wolfSSL_EVP_DigestFinal(WOLFSSL_EVP_MD_CTX* ctx, unsigned char* md, unsigned int* s) { WOLFSSL_ENTER("EVP_DigestFinal"); switch (ctx->macType) { #ifndef NO_MD4 case MD4: wolfSSL_MD4_Final(md, (MD4_CTX*)&ctx->hash); if (s) *s = MD4_DIGEST_SIZE; break; #endif #ifndef NO_MD5 case WC_MD5: wolfSSL_MD5_Final(md, (MD5_CTX*)&ctx->hash); if (s) *s = WC_MD5_DIGEST_SIZE; break; #endif #ifndef NO_SHA case WC_SHA: wolfSSL_SHA_Final(md, (SHA_CTX*)&ctx->hash); if (s) *s = WC_SHA_DIGEST_SIZE; break; #endif #ifdef WOLFSSL_SHA224 case WC_SHA224: wolfSSL_SHA224_Final(md, (SHA224_CTX*)&ctx->hash); if (s) *s = WC_SHA224_DIGEST_SIZE; break; #endif #ifndef NO_SHA256 case WC_SHA256: wolfSSL_SHA256_Final(md, (SHA256_CTX*)&ctx->hash); if (s) *s = WC_SHA256_DIGEST_SIZE; break; #endif /* !NO_SHA256 */ #ifdef WOLFSSL_SHA384 case WC_SHA384: wolfSSL_SHA384_Final(md, (SHA384_CTX*)&ctx->hash); if (s) *s = WC_SHA384_DIGEST_SIZE; break; #endif #ifdef WOLFSSL_SHA512 case WC_SHA512: wolfSSL_SHA512_Final(md, (SHA512_CTX*)&ctx->hash); if (s) *s = WC_SHA512_DIGEST_SIZE; break; #endif /* WOLFSSL_SHA512 */ default: return WOLFSSL_FAILURE; } return WOLFSSL_SUCCESS; } /* WOLFSSL_SUCCESS on ok */ int wolfSSL_EVP_DigestFinal_ex(WOLFSSL_EVP_MD_CTX* ctx, unsigned char* md, unsigned int* s) { WOLFSSL_ENTER("EVP_DigestFinal_ex"); return EVP_DigestFinal(ctx, md, s); } unsigned char* wolfSSL_HMAC(const WOLFSSL_EVP_MD* evp_md, const void* key, int key_len, const unsigned char* d, int n, unsigned char* md, unsigned int* md_len) { int type; int mdlen; unsigned char* ret = NULL; #ifdef WOLFSSL_SMALL_STACK Hmac* hmac = NULL; #else Hmac hmac[1]; #endif void* heap = NULL; WOLFSSL_ENTER("wolfSSL_HMAC"); if (!md) { WOLFSSL_MSG("Static buffer not supported, pass in md buffer"); return NULL; /* no static buffer support */ } #ifndef NO_MD5 if (XSTRNCMP(evp_md, "MD5", 3) == 0) { type = WC_MD5; mdlen = WC_MD5_DIGEST_SIZE; } else #endif #ifdef WOLFSSL_SHA224 if (XSTRNCMP(evp_md, "SHA224", 6) == 0) { type = WC_SHA224; mdlen = WC_SHA224_DIGEST_SIZE; } else #endif #ifndef NO_SHA256 if (XSTRNCMP(evp_md, "SHA256", 6) == 0) { type = WC_SHA256; mdlen = WC_SHA256_DIGEST_SIZE; } else #endif #ifdef WOLFSSL_SHA384 if (XSTRNCMP(evp_md, "SHA384", 6) == 0) { type = WC_SHA384; mdlen = WC_SHA384_DIGEST_SIZE; } else #endif #ifdef WOLFSSL_SHA512 if (XSTRNCMP(evp_md, "SHA512", 6) == 0) { type = WC_SHA512; mdlen = WC_SHA512_DIGEST_SIZE; } else #endif #ifndef NO_SHA if (XSTRNCMP(evp_md, "SHA", 3) == 0) { type = WC_SHA; mdlen = WC_SHA_DIGEST_SIZE; } else #endif { return NULL; } #ifdef WOLFSSL_SMALL_STACK hmac = (Hmac*)XMALLOC(sizeof(Hmac), heap, DYNAMIC_TYPE_HMAC); if (hmac == NULL) return NULL; #endif if (wc_HmacInit(hmac, heap, INVALID_DEVID) == 0) { if (wc_HmacSetKey(hmac, type, (const byte*)key, key_len) == 0) { if (wc_HmacUpdate(hmac, d, n) == 0) { if (wc_HmacFinal(hmac, md) == 0) { if (md_len) *md_len = mdlen; ret = md; } } } wc_HmacFree(hmac); } #ifdef WOLFSSL_SMALL_STACK XFREE(hmac, heap, DYNAMIC_TYPE_HMAC); #endif (void)evp_md; return ret; } void wolfSSL_ERR_clear_error(void) { WOLFSSL_ENTER("wolfSSL_ERR_clear_error"); #if defined(DEBUG_WOLFSSL) || defined(WOLFSSL_NGINX) wc_ClearErrorNodes(); #endif } /* frees all nodes in the current threads error queue * * id thread id. ERR_remove_state is depriciated and id is ignored. The * current threads queue will be free'd. */ void wolfSSL_ERR_remove_state(unsigned long id) { WOLFSSL_ENTER("wolfSSL_ERR_remove_state"); (void)id; if (wc_ERR_remove_state() != 0) { WOLFSSL_MSG("Error with removing the state"); } } int wolfSSL_RAND_status(void) { return WOLFSSL_SUCCESS; /* wolfCrypt provides enough seed internally */ } #ifndef NO_WOLFSSL_STUB void wolfSSL_RAND_add(const void* add, int len, double entropy) { (void)add; (void)len; (void)entropy; WOLFSSL_STUB("RAND_add"); /* wolfSSL seeds/adds internally, use explicit RNG if you want to take control */ } #endif #ifndef NO_DES3 /* 0 on ok */ int wolfSSL_DES_key_sched(WOLFSSL_const_DES_cblock* key, WOLFSSL_DES_key_schedule* schedule) { WOLFSSL_ENTER("wolfSSL_DES_key_sched"); if (key == NULL || schedule == NULL) { WOLFSSL_MSG("Null argument passed in"); } else { XMEMCPY(schedule, key, sizeof(WOLFSSL_const_DES_cblock)); } return 0; } /* intended to behave similar to Kerberos mit_des_cbc_cksum * return the last 4 bytes of cipher text */ WOLFSSL_DES_LONG wolfSSL_DES_cbc_cksum(const unsigned char* in, WOLFSSL_DES_cblock* out, long length, WOLFSSL_DES_key_schedule* sc, WOLFSSL_const_DES_cblock* iv) { WOLFSSL_DES_LONG ret; unsigned char* tmp; unsigned char* data = (unsigned char*)in; long dataSz = length; byte dynamicFlag = 0; /* when padding the buffer created needs free'd */ WOLFSSL_ENTER("wolfSSL_DES_cbc_cksum"); if (in == NULL || out == NULL || sc == NULL || iv == NULL) { WOLFSSL_MSG("Bad argument passed in"); return 0; } /* if input length is not a multiple of DES_BLOCK_SIZE pad with 0s */ if (dataSz % DES_BLOCK_SIZE) { dataSz += DES_BLOCK_SIZE - (dataSz % DES_BLOCK_SIZE); data = (unsigned char*)XMALLOC(dataSz, NULL, DYNAMIC_TYPE_TMP_BUFFER); if (data == NULL) { WOLFSSL_MSG("Issue creating temporary buffer"); return 0; } dynamicFlag = 1; /* set to free buffer at end */ XMEMCPY(data, in, length); XMEMSET(data + length, 0, dataSz - length); /* padding */ } tmp = (unsigned char*)XMALLOC(dataSz, NULL, DYNAMIC_TYPE_TMP_BUFFER); if (tmp == NULL) { WOLFSSL_MSG("Issue creating temporary buffer"); if (dynamicFlag == 1) { XFREE(data, NULL, DYNAMIC_TYPE_TMP_BUFFER); } return 0; } wolfSSL_DES_cbc_encrypt(data, tmp, dataSz, sc, (WOLFSSL_DES_cblock*)iv, 1); XMEMCPY((unsigned char*)out, tmp + (dataSz - DES_BLOCK_SIZE), DES_BLOCK_SIZE); ret = (((*((unsigned char*)out + 4) & 0xFF) << 24)| ((*((unsigned char*)out + 5) & 0xFF) << 16)| ((*((unsigned char*)out + 6) & 0xFF) << 8) | (*((unsigned char*)out + 7) & 0xFF)); XFREE(tmp, NULL, DYNAMIC_TYPE_TMP_BUFFER); if (dynamicFlag == 1) { XFREE(data, NULL, DYNAMIC_TYPE_TMP_BUFFER); } return ret; } void wolfSSL_DES_cbc_encrypt(const unsigned char* input, unsigned char* output, long length, WOLFSSL_DES_key_schedule* schedule, WOLFSSL_DES_cblock* ivec, int enc) { Des myDes; byte lastblock[DES_BLOCK_SIZE]; int lb_sz; long blk; WOLFSSL_ENTER("DES_cbc_encrypt"); /* OpenSSL compat, no ret */ wc_Des_SetKey(&myDes, (const byte*)schedule, (const byte*)ivec, !enc); lb_sz = length%DES_BLOCK_SIZE; blk = length/DES_BLOCK_SIZE; if (enc){ wc_Des_CbcEncrypt(&myDes, output, input, (word32)blk*DES_BLOCK_SIZE); if(lb_sz){ XMEMSET(lastblock, 0, DES_BLOCK_SIZE); XMEMCPY(lastblock, input+length-lb_sz, lb_sz); wc_Des_CbcEncrypt(&myDes, output+blk*DES_BLOCK_SIZE, lastblock, (word32)DES_BLOCK_SIZE); } } else { wc_Des_CbcDecrypt(&myDes, output, input, (word32)blk*DES_BLOCK_SIZE); if(lb_sz){ wc_Des_CbcDecrypt(&myDes, lastblock, input+length-lb_sz, (word32)DES_BLOCK_SIZE); XMEMCPY(output+length-lb_sz, lastblock, lb_sz); } } } /* WOLFSSL_DES_key_schedule is a unsigned char array of size 8 */ void wolfSSL_DES_ede3_cbc_encrypt(const unsigned char* input, unsigned char* output, long sz, WOLFSSL_DES_key_schedule* ks1, WOLFSSL_DES_key_schedule* ks2, WOLFSSL_DES_key_schedule* ks3, WOLFSSL_DES_cblock* ivec, int enc) { Des3 des; byte key[24];/* EDE uses 24 size key */ byte lastblock[DES_BLOCK_SIZE]; int lb_sz; long blk; WOLFSSL_ENTER("wolfSSL_DES_ede3_cbc_encrypt"); XMEMSET(key, 0, sizeof(key)); XMEMCPY(key, *ks1, DES_BLOCK_SIZE); XMEMCPY(&key[DES_BLOCK_SIZE], *ks2, DES_BLOCK_SIZE); XMEMCPY(&key[DES_BLOCK_SIZE * 2], *ks3, DES_BLOCK_SIZE); lb_sz = sz%DES_BLOCK_SIZE; blk = sz/DES_BLOCK_SIZE; if (enc) { wc_Des3_SetKey(&des, key, (const byte*)ivec, DES_ENCRYPTION); wc_Des3_CbcEncrypt(&des, output, input, (word32)blk*DES_BLOCK_SIZE); if(lb_sz){ XMEMSET(lastblock, 0, DES_BLOCK_SIZE); XMEMCPY(lastblock, input+sz-lb_sz, lb_sz); wc_Des3_CbcEncrypt(&des, output+blk*DES_BLOCK_SIZE, lastblock, (word32)DES_BLOCK_SIZE); } } else { wc_Des3_SetKey(&des, key, (const byte*)ivec, DES_DECRYPTION); wc_Des3_CbcDecrypt(&des, output, input, (word32)blk*DES_BLOCK_SIZE); if(lb_sz){ wc_Des3_CbcDecrypt(&des, lastblock, input+sz-lb_sz, (word32)DES_BLOCK_SIZE); XMEMCPY(output+sz-lb_sz, lastblock, lb_sz); } } } /* correctly sets ivec for next call */ void wolfSSL_DES_ncbc_encrypt(const unsigned char* input, unsigned char* output, long length, WOLFSSL_DES_key_schedule* schedule, WOLFSSL_DES_cblock* ivec, int enc) { Des myDes; byte lastblock[DES_BLOCK_SIZE]; int lb_sz; long blk; WOLFSSL_ENTER("DES_ncbc_encrypt"); /* OpenSSL compat, no ret */ wc_Des_SetKey(&myDes, (const byte*)schedule, (const byte*)ivec, !enc); lb_sz = length%DES_BLOCK_SIZE; blk = length/DES_BLOCK_SIZE; if (enc){ wc_Des_CbcEncrypt(&myDes, output, input, (word32)blk*DES_BLOCK_SIZE); if(lb_sz){ XMEMSET(lastblock, 0, DES_BLOCK_SIZE); XMEMCPY(lastblock, input+length-lb_sz, lb_sz); wc_Des_CbcEncrypt(&myDes, output+blk*DES_BLOCK_SIZE, lastblock, (word32)DES_BLOCK_SIZE); } } else { wc_Des_CbcDecrypt(&myDes, output, input, (word32)blk*DES_BLOCK_SIZE); if(lb_sz){ wc_Des_CbcDecrypt(&myDes, lastblock, input+length-lb_sz, (word32)DES_BLOCK_SIZE); XMEMCPY(output+length-lb_sz, lastblock, lb_sz); } } XMEMCPY(ivec, output + length - sizeof(DES_cblock), sizeof(DES_cblock)); } #endif /* NO_DES3 */ void wolfSSL_ERR_free_strings(void) { /* handled internally */ } void wolfSSL_EVP_cleanup(void) { /* nothing to do here */ } void wolfSSL_cleanup_all_ex_data(void) { /* nothing to do here */ } int wolfSSL_clear(WOLFSSL* ssl) { if (ssl == NULL) { return WOLFSSL_FAILURE; } ssl->options.isClosed = 0; ssl->options.connReset = 0; ssl->options.sentNotify = 0; ssl->options.serverState = NULL_STATE; ssl->options.clientState = NULL_STATE; ssl->options.connectState = CONNECT_BEGIN; ssl->options.acceptState = ACCEPT_BEGIN; ssl->options.handShakeState = NULL_STATE; ssl->options.handShakeDone = 0; /* ssl->options.processReply = doProcessInit; */ ssl->keys.encryptionOn = 0; XMEMSET(&ssl->msgsReceived, 0, sizeof(ssl->msgsReceived)); if (ssl->hsHashes != NULL) { #ifndef NO_OLD_TLS #ifndef NO_MD5 wc_InitMd5(&ssl->hsHashes->hashMd5); #endif #ifndef NO_SHA if (wc_InitSha(&ssl->hsHashes->hashSha) != 0) return WOLFSSL_FAILURE; #endif #endif #ifndef NO_SHA256 if (wc_InitSha256(&ssl->hsHashes->hashSha256) != 0) return WOLFSSL_FAILURE; #endif #ifdef WOLFSSL_SHA384 if (wc_InitSha384(&ssl->hsHashes->hashSha384) != 0) return WOLFSSL_FAILURE; #endif #ifdef WOLFSSL_SHA512 if (wc_InitSha512(&ssl->hsHashes->hashSha512) != 0) return WOLFSSL_FAILURE; #endif } #ifdef SESSION_CERTS ssl->session.chain.count = 0; #endif #ifdef KEEP_PEER_CERT FreeX509(&ssl->peerCert); InitX509(&ssl->peerCert, 0, ssl->heap); #endif return WOLFSSL_SUCCESS; } long wolfSSL_SSL_SESSION_set_timeout(WOLFSSL_SESSION* ses, long t) { word32 tmptime; if (!ses || t < 0) return BAD_FUNC_ARG; tmptime = t & 0xFFFFFFFF; ses->timeout = tmptime; return WOLFSSL_SUCCESS; } long wolfSSL_CTX_set_mode(WOLFSSL_CTX* ctx, long mode) { /* WOLFSSL_MODE_ACCEPT_MOVING_WRITE_BUFFER is wolfSSL default mode */ WOLFSSL_ENTER("SSL_CTX_set_mode"); if (mode == SSL_MODE_ENABLE_PARTIAL_WRITE) ctx->partialWrite = 1; return mode; } #ifndef NO_WOLFSSL_STUB long wolfSSL_SSL_get_mode(WOLFSSL* ssl) { /* TODO: */ (void)ssl; WOLFSSL_STUB("SSL_get_mode"); return 0; } #endif #ifndef NO_WOLFSSL_STUB long wolfSSL_CTX_get_mode(WOLFSSL_CTX* ctx) { /* TODO: */ (void)ctx; WOLFSSL_STUB("SSL_CTX_get_mode"); return 0; } #endif #ifndef NO_WOLFSSL_STUB void wolfSSL_CTX_set_default_read_ahead(WOLFSSL_CTX* ctx, int m) { /* TODO: maybe? */ (void)ctx; (void)m; WOLFSSL_STUB("SSL_CTX_set_default_read_ahead"); } #endif /* Storing app session context id, this value is inherited by WOLFSSL * objects created from WOLFSSL_CTX. Any session that is imported with a * different session context id will be rejected. * * ctx structure to set context in * sid_ctx value of context to set * sid_ctx_len length of sid_ctx buffer * * Returns SSL_SUCCESS in success case and SSL_FAILURE when failing */ int wolfSSL_CTX_set_session_id_context(WOLFSSL_CTX* ctx, const unsigned char* sid_ctx, unsigned int sid_ctx_len) { WOLFSSL_ENTER("SSL_CTX_set_session_id_context"); /* No application specific context needed for wolfSSL */ if (sid_ctx_len > ID_LEN || ctx == NULL || sid_ctx == NULL) { return SSL_FAILURE; } XMEMCPY(ctx->sessionCtx, sid_ctx, sid_ctx_len); ctx->sessionCtxSz = (byte)sid_ctx_len; return SSL_SUCCESS; } /* Storing app session context id. Any session that is imported with a * different session context id will be rejected. * * ssl structure to set context in * id value of context to set * len length of sid_ctx buffer * * Returns SSL_SUCCESS in success case and SSL_FAILURE when failing */ int wolfSSL_set_session_id_context(WOLFSSL* ssl, const unsigned char* id, unsigned int len) { WOLFSSL_STUB("wolfSSL_set_session_id_context"); if (len > ID_LEN || ssl == NULL || id == NULL) { return SSL_FAILURE; } XMEMCPY(ssl->sessionCtx, id, len); ssl->sessionCtxSz = (byte)len; return SSL_SUCCESS; } long wolfSSL_CTX_sess_get_cache_size(WOLFSSL_CTX* ctx) { (void)ctx; #ifndef NO_SESSION_CACHE return SESSIONS_PER_ROW * SESSION_ROWS; #else return 0; #endif } /* returns the unsigned error value and increments the pointer into the * error queue. * * file pointer to file name * line gets set to line number of error when not NULL */ unsigned long wolfSSL_ERR_get_error_line(const char** file, int* line) { #ifdef DEBUG_WOLFSSL int ret = wc_PullErrorNode(file, NULL, line); if (ret < 0) { if (ret == BAD_STATE_E) return 0; /* no errors in queue */ WOLFSSL_MSG("Issue getting error node"); WOLFSSL_LEAVE("wolfSSL_ERR_get_error_line", ret); ret = 0 - ret; /* return absolute value of error */ /* panic and try to clear out nodes */ wc_ClearErrorNodes(); } return (unsigned long)ret; #else (void)file; (void)line; return 0; #endif } #ifdef DEBUG_WOLFSSL static const char WOLFSSL_SYS_ACCEPT_T[] = "accept"; static const char WOLFSSL_SYS_BIND_T[] = "bind"; static const char WOLFSSL_SYS_CONNECT_T[] = "connect"; static const char WOLFSSL_SYS_FOPEN_T[] = "fopen"; static const char WOLFSSL_SYS_FREAD_T[] = "fread"; static const char WOLFSSL_SYS_GETADDRINFO_T[] = "getaddrinfo"; static const char WOLFSSL_SYS_GETSOCKOPT_T[] = "getsockopt"; static const char WOLFSSL_SYS_GETSOCKNAME_T[] = "getsockname"; static const char WOLFSSL_SYS_GETHOSTBYNAME_T[] = "gethostbyname"; static const char WOLFSSL_SYS_GETNAMEINFO_T[] = "getnameinfo"; static const char WOLFSSL_SYS_GETSERVBYNAME_T[] = "getservbyname"; static const char WOLFSSL_SYS_IOCTLSOCKET_T[] = "ioctlsocket"; static const char WOLFSSL_SYS_LISTEN_T[] = "listen"; static const char WOLFSSL_SYS_OPENDIR_T[] = "opendir"; static const char WOLFSSL_SYS_SETSOCKOPT_T[] = "setsockopt"; static const char WOLFSSL_SYS_SOCKET_T[] = "socket"; /* switch with int mapped to function name for compatibility */ static const char* wolfSSL_ERR_sys_func(int fun) { switch (fun) { case WOLFSSL_SYS_ACCEPT: return WOLFSSL_SYS_ACCEPT_T; case WOLFSSL_SYS_BIND: return WOLFSSL_SYS_BIND_T; case WOLFSSL_SYS_CONNECT: return WOLFSSL_SYS_CONNECT_T; case WOLFSSL_SYS_FOPEN: return WOLFSSL_SYS_FOPEN_T; case WOLFSSL_SYS_FREAD: return WOLFSSL_SYS_FREAD_T; case WOLFSSL_SYS_GETADDRINFO: return WOLFSSL_SYS_GETADDRINFO_T; case WOLFSSL_SYS_GETSOCKOPT: return WOLFSSL_SYS_GETSOCKOPT_T; case WOLFSSL_SYS_GETSOCKNAME: return WOLFSSL_SYS_GETSOCKNAME_T; case WOLFSSL_SYS_GETHOSTBYNAME: return WOLFSSL_SYS_GETHOSTBYNAME_T; case WOLFSSL_SYS_GETNAMEINFO: return WOLFSSL_SYS_GETNAMEINFO_T; case WOLFSSL_SYS_GETSERVBYNAME: return WOLFSSL_SYS_GETSERVBYNAME_T; case WOLFSSL_SYS_IOCTLSOCKET: return WOLFSSL_SYS_IOCTLSOCKET_T; case WOLFSSL_SYS_LISTEN: return WOLFSSL_SYS_LISTEN_T; case WOLFSSL_SYS_OPENDIR: return WOLFSSL_SYS_OPENDIR_T; case WOLFSSL_SYS_SETSOCKOPT: return WOLFSSL_SYS_SETSOCKOPT_T; case WOLFSSL_SYS_SOCKET: return WOLFSSL_SYS_SOCKET_T; default: return "NULL"; } } #endif /* DEBUG_WOLFSSL */ /* @TODO when having an error queue this needs to push to the queue */ void wolfSSL_ERR_put_error(int lib, int fun, int err, const char* file, int line) { WOLFSSL_ENTER("wolfSSL_ERR_put_error"); #ifndef DEBUG_WOLFSSL (void)fun; (void)err; (void)file; (void)line; WOLFSSL_MSG("Not compiled in debug mode"); #else WOLFSSL_ERROR_LINE(err, wolfSSL_ERR_sys_func(fun), (unsigned int)line, file, NULL); #endif (void)lib; } /* Similar to wolfSSL_ERR_get_error_line but takes in a flags argument for * more flexability. * * file output pointer to file where error happened * line output to line number of error * data output data. Is a string if ERR_TXT_STRING flag is used * flags bit flag to adjust data output * * Returns the error value or 0 if no errors are in the queue */ unsigned long wolfSSL_ERR_get_error_line_data(const char** file, int* line, const char** data, int *flags) { int ret; WOLFSSL_STUB("wolfSSL_ERR_get_error_line_data"); if (flags != NULL) { if ((*flags & ERR_TXT_STRING) == ERR_TXT_STRING) { ret = wc_PullErrorNode(file, data, line); if (ret < 0) { if (ret == BAD_STATE_E) return 0; /* no errors in queue */ WOLFSSL_MSG("Error with pulling error node!"); WOLFSSL_LEAVE("wolfSSL_ERR_get_error_line_data", ret); ret = 0 - ret; /* return absolute value of error */ /* panic and try to clear out nodes */ wc_ClearErrorNodes(); } return (unsigned long)ret; } } ret = wc_PullErrorNode(file, NULL, line); if (ret < 0) { if (ret == BAD_STATE_E) return 0; /* no errors in queue */ WOLFSSL_MSG("Error with pulling error node!"); WOLFSSL_LEAVE("wolfSSL_ERR_get_error_line_data", ret); ret = 0 - ret; /* return absolute value of error */ /* panic and try to clear out nodes */ wc_ClearErrorNodes(); } return (unsigned long)ret; } #endif /* OPENSSL_EXTRA */ #ifdef KEEP_PEER_CERT #ifdef SESSION_CERTS /* Decode the X509 DER encoded certificate into a WOLFSSL_X509 object. * * x509 WOLFSSL_X509 object to decode into. * in X509 DER data. * len Length of the X509 DER data. * returns the new certificate on success, otherwise NULL. */ static int DecodeToX509(WOLFSSL_X509* x509, const byte* in, int len) { int ret; #ifdef WOLFSSL_SMALL_STACK DecodedCert* cert = NULL; #else DecodedCert cert[1]; #endif #ifdef WOLFSSL_SMALL_STACK cert = (DecodedCert*)XMALLOC(sizeof(DecodedCert), NULL, DYNAMIC_TYPE_DCERT); if (cert == NULL) return MEMORY_E; #endif /* Create a DecodedCert object and copy fields into WOLFSSL_X509 object. */ InitDecodedCert(cert, (byte*)in, len, NULL); if ((ret = ParseCertRelative(cert, CERT_TYPE, 0, NULL)) == 0) { InitX509(x509, 0, NULL); ret = CopyDecodedToX509(x509, cert); FreeDecodedCert(cert); } #ifdef WOLFSSL_SMALL_STACK XFREE(cert, NULL, DYNAMIC_TYPE_DCERT); #endif return ret; } #endif /* SESSION_CERTS */ WOLFSSL_X509* wolfSSL_get_peer_certificate(WOLFSSL* ssl) { WOLFSSL_ENTER("SSL_get_peer_certificate"); if (ssl->peerCert.issuer.sz) return &ssl->peerCert; #ifdef SESSION_CERTS else if (ssl->session.chain.count > 0) { if (DecodeToX509(&ssl->peerCert, ssl->session.chain.certs[0].buffer, ssl->session.chain.certs[0].length) == 0) { return &ssl->peerCert; } } #endif return 0; } #endif /* KEEP_PEER_CERT */ #ifndef NO_CERTS #if defined(KEEP_PEER_CERT) || defined(SESSION_CERTS) || \ defined(OPENSSL_EXTRA) || defined(OPENSSL_EXTRA_X509_SMALL) /* user externally called free X509, if dynamic go ahead with free, otherwise * don't */ static void ExternalFreeX509(WOLFSSL_X509* x509) { WOLFSSL_ENTER("ExternalFreeX509"); if (x509) { if (x509->dynamicMemory) { FreeX509(x509); XFREE(x509, x509->heap, DYNAMIC_TYPE_X509); } else { WOLFSSL_MSG("free called on non dynamic object, not freeing"); } } } /* Frees an external WOLFSSL_X509 structure */ void wolfSSL_X509_free(WOLFSSL_X509* x509) { WOLFSSL_ENTER("wolfSSL_FreeX509"); ExternalFreeX509(x509); } /* copy name into in buffer, at most sz bytes, if buffer is null will malloc buffer, call responsible for freeing */ char* wolfSSL_X509_NAME_oneline(WOLFSSL_X509_NAME* name, char* in, int sz) { int copySz; if (name == NULL) { WOLFSSL_MSG("WOLFSSL_X509_NAME pointer was NULL"); return NULL; } copySz = min(sz, name->sz); WOLFSSL_ENTER("wolfSSL_X509_NAME_oneline"); if (!name->sz) return in; if (!in) { #ifdef WOLFSSL_STATIC_MEMORY WOLFSSL_MSG("Using static memory -- please pass in a buffer"); return NULL; #else in = (char*)XMALLOC(name->sz, NULL, DYNAMIC_TYPE_OPENSSL); if (!in ) return in; copySz = name->sz; #endif } if (copySz <= 0) return in; XMEMCPY(in, name->name, copySz - 1); in[copySz - 1] = 0; return in; } /* Wraps wolfSSL_X509_d2i * * returns a WOLFSSL_X509 structure pointer on success and NULL on fail */ WOLFSSL_X509* wolfSSL_d2i_X509(WOLFSSL_X509** x509, const unsigned char** in, int len) { return wolfSSL_X509_d2i(x509, *in, len); } WOLFSSL_X509* wolfSSL_X509_d2i(WOLFSSL_X509** x509, const byte* in, int len) { WOLFSSL_X509 *newX509 = NULL; WOLFSSL_ENTER("wolfSSL_X509_d2i"); if (in != NULL && len != 0) { #ifdef WOLFSSL_SMALL_STACK DecodedCert* cert = NULL; #else DecodedCert cert[1]; #endif #ifdef WOLFSSL_SMALL_STACK cert = (DecodedCert*)XMALLOC(sizeof(DecodedCert), NULL, DYNAMIC_TYPE_DCERT); if (cert == NULL) return NULL; #endif InitDecodedCert(cert, (byte*)in, len, NULL); if (ParseCertRelative(cert, CERT_TYPE, 0, NULL) == 0) { newX509 = (WOLFSSL_X509*)XMALLOC(sizeof(WOLFSSL_X509), NULL, DYNAMIC_TYPE_X509); if (newX509 != NULL) { InitX509(newX509, 1, NULL); if (CopyDecodedToX509(newX509, cert) != 0) { XFREE(newX509, NULL, DYNAMIC_TYPE_X509); newX509 = NULL; } } } FreeDecodedCert(cert); #ifdef WOLFSSL_SMALL_STACK XFREE(cert, NULL, DYNAMIC_TYPE_DCERT); #endif } if (x509 != NULL) *x509 = newX509; return newX509; } #endif /* KEEP_PEER_CERT || SESSION_CERTS || OPENSSL_EXTRA || OPENSSL_EXTRA_X509_SMALL */ #if defined(OPENSSL_ALL) || defined(KEEP_PEER_CERT) || defined(SESSION_CERTS) /* return the next, if any, altname from the peer cert */ char* wolfSSL_X509_get_next_altname(WOLFSSL_X509* cert) { char* ret = NULL; WOLFSSL_ENTER("wolfSSL_X509_get_next_altname"); /* don't have any to work with */ if (cert == NULL || cert->altNames == NULL) return NULL; /* already went through them */ if (cert->altNamesNext == NULL) return NULL; ret = cert->altNamesNext->name; cert->altNamesNext = cert->altNamesNext->next; return ret; } int wolfSSL_X509_get_isCA(WOLFSSL_X509* x509) { int isCA = 0; WOLFSSL_ENTER("wolfSSL_X509_get_isCA"); if (x509 != NULL) isCA = x509->isCa; WOLFSSL_LEAVE("wolfSSL_X509_get_isCA", isCA); return isCA; } int wolfSSL_X509_get_signature(WOLFSSL_X509* x509, unsigned char* buf, int* bufSz) { WOLFSSL_ENTER("wolfSSL_X509_get_signature"); if (x509 == NULL || bufSz == NULL || *bufSz < (int)x509->sig.length) return WOLFSSL_FATAL_ERROR; if (buf != NULL) XMEMCPY(buf, x509->sig.buffer, x509->sig.length); *bufSz = x509->sig.length; return WOLFSSL_SUCCESS; } /* write X509 serial number in unsigned binary to buffer buffer needs to be at least EXTERNAL_SERIAL_SIZE (32) for all cases return WOLFSSL_SUCCESS on success */ int wolfSSL_X509_get_serial_number(WOLFSSL_X509* x509, byte* in, int* inOutSz) { WOLFSSL_ENTER("wolfSSL_X509_get_serial_number"); if (x509 == NULL || in == NULL || inOutSz == NULL || *inOutSz < x509->serialSz) return BAD_FUNC_ARG; XMEMCPY(in, x509->serial, x509->serialSz); *inOutSz = x509->serialSz; return WOLFSSL_SUCCESS; } const byte* wolfSSL_X509_get_der(WOLFSSL_X509* x509, int* outSz) { WOLFSSL_ENTER("wolfSSL_X509_get_der"); if (x509 == NULL || x509->derCert == NULL || outSz == NULL) return NULL; *outSz = (int)x509->derCert->length; return x509->derCert->buffer; } int wolfSSL_X509_version(WOLFSSL_X509* x509) { WOLFSSL_ENTER("wolfSSL_X509_version"); if (x509 == NULL) return 0; return x509->version; } const byte* wolfSSL_X509_notBefore(WOLFSSL_X509* x509) { WOLFSSL_ENTER("wolfSSL_X509_notBefore"); if (x509 == NULL) return NULL; return x509->notBefore; } const byte* wolfSSL_X509_notAfter(WOLFSSL_X509* x509) { WOLFSSL_ENTER("wolfSSL_X509_notAfter"); if (x509 == NULL) return NULL; return x509->notAfter; } #ifdef WOLFSSL_SEP /* copy oid into in buffer, at most *inOutSz bytes, if buffer is null will malloc buffer, call responsible for freeing. Actual size returned in *inOutSz. Requires inOutSz be non-null */ byte* wolfSSL_X509_get_device_type(WOLFSSL_X509* x509, byte* in, int *inOutSz) { int copySz; WOLFSSL_ENTER("wolfSSL_X509_get_dev_type"); if (inOutSz == NULL) return NULL; if (!x509->deviceTypeSz) return in; copySz = min(*inOutSz, x509->deviceTypeSz); if (!in) { #ifdef WOLFSSL_STATIC_MEMORY WOLFSSL_MSG("Using static memory -- please pass in a buffer"); return NULL; #else in = (byte*)XMALLOC(x509->deviceTypeSz, 0, DYNAMIC_TYPE_OPENSSL); if (!in) return in; copySz = x509->deviceTypeSz; #endif } XMEMCPY(in, x509->deviceType, copySz); *inOutSz = copySz; return in; } byte* wolfSSL_X509_get_hw_type(WOLFSSL_X509* x509, byte* in, int* inOutSz) { int copySz; WOLFSSL_ENTER("wolfSSL_X509_get_hw_type"); if (inOutSz == NULL) return NULL; if (!x509->hwTypeSz) return in; copySz = min(*inOutSz, x509->hwTypeSz); if (!in) { #ifdef WOLFSSL_STATIC_MEMORY WOLFSSL_MSG("Using static memory -- please pass in a buffer"); return NULL; #else in = (byte*)XMALLOC(x509->hwTypeSz, 0, DYNAMIC_TYPE_OPENSSL); if (!in) return in; copySz = x509->hwTypeSz; #endif } XMEMCPY(in, x509->hwType, copySz); *inOutSz = copySz; return in; } byte* wolfSSL_X509_get_hw_serial_number(WOLFSSL_X509* x509,byte* in, int* inOutSz) { int copySz; WOLFSSL_ENTER("wolfSSL_X509_get_hw_serial_number"); if (inOutSz == NULL) return NULL; if (!x509->hwTypeSz) return in; copySz = min(*inOutSz, x509->hwSerialNumSz); if (!in) { #ifdef WOLFSSL_STATIC_MEMORY WOLFSSL_MSG("Using static memory -- please pass in a buffer"); return NULL; #else in = (byte*)XMALLOC(x509->hwSerialNumSz, 0, DYNAMIC_TYPE_OPENSSL); if (!in) return in; copySz = x509->hwSerialNumSz; #endif } XMEMCPY(in, x509->hwSerialNum, copySz); *inOutSz = copySz; return in; } #endif /* WOLFSSL_SEP */ /* require OPENSSL_EXTRA since wolfSSL_X509_free is wrapped by OPENSSL_EXTRA */ #if !defined(NO_CERTS) && defined(OPENSSL_EXTRA) /* return 1 on success 0 on fail */ int wolfSSL_sk_X509_push(WOLF_STACK_OF(WOLFSSL_X509_NAME)* sk, WOLFSSL_X509* x509) { WOLFSSL_STACK* node; if (sk == NULL || x509 == NULL) { return WOLFSSL_FAILURE; } /* no previous values in stack */ if (sk->data.x509 == NULL) { sk->data.x509 = x509; sk->num += 1; return WOLFSSL_SUCCESS; } /* stack already has value(s) create a new node and add more */ node = (WOLFSSL_STACK*)XMALLOC(sizeof(WOLFSSL_STACK), NULL, DYNAMIC_TYPE_X509); if (node == NULL) { WOLFSSL_MSG("Memory error"); return WOLFSSL_FAILURE; } XMEMSET(node, 0, sizeof(WOLFSSL_STACK)); /* push new x509 onto head of stack */ node->data.x509 = sk->data.x509; node->next = sk->next; sk->next = node; sk->data.x509 = x509; sk->num += 1; return WOLFSSL_SUCCESS; } WOLFSSL_X509* wolfSSL_sk_X509_pop(WOLF_STACK_OF(WOLFSSL_X509_NAME)* sk) { WOLFSSL_STACK* node; WOLFSSL_X509* x509; if (sk == NULL) { return NULL; } node = sk->next; x509 = sk->data.x509; if (node != NULL) { /* update sk and remove node from stack */ sk->data.x509 = node->data.x509; sk->next = node->next; XFREE(node, NULL, DYNAMIC_TYPE_X509); } else { /* last x509 in stack */ sk->data.x509 = NULL; } if (sk->num > 0) { sk->num -= 1; } return x509; } /* Getter function for WOLFSSL_X509_NAME pointer * * sk is the stack to retrieve pointer from * i is the index value in stack * * returns a pointer to a WOLFSSL_X509_NAME structure on success and NULL on * fail */ void* wolfSSL_sk_X509_NAME_value(const STACK_OF(WOLFSSL_X509_NAME)* sk, int i) { WOLFSSL_ENTER("wolfSSL_sk_X509_NAME_value"); for (; sk != NULL && i > 0; i--) sk = sk->next; if (i != 0 || sk == NULL) return NULL; return sk->data.name; } /* Getter function for WOLFSSL_X509 pointer * * sk is the stack to retrieve pointer from * i is the index value in stack * * returns a pointer to a WOLFSSL_X509 structure on success and NULL on * fail */ void* wolfSSL_sk_X509_value(STACK_OF(WOLFSSL_X509)* sk, int i) { WOLFSSL_ENTER("wolfSSL_sk_X509_value"); for (; sk != NULL && i > 0; i--) sk = sk->next; if (i != 0 || sk == NULL) return NULL; return sk->data.x509; } /* Free's all nodes in X509 stack. This is different then wolfSSL_sk_X509_free * in that it allows for choosing the function to use when freeing an X509s. * * sk stack to free nodes in * f X509 free function */ void wolfSSL_sk_X509_pop_free(STACK_OF(WOLFSSL_X509)* sk, void f (WOLFSSL_X509*)){ WOLFSSL_STACK* node; WOLFSSL_ENTER("wolfSSL_sk_X509_pop_free"); if (sk == NULL) { return; } /* parse through stack freeing each node */ node = sk->next; while (sk->num > 1) { WOLFSSL_STACK* tmp = node; node = node->next; f(tmp->data.x509); XFREE(tmp, NULL, DYNAMIC_TYPE_X509); sk->num -= 1; } /* free head of stack */ if (sk->num == 1) { f(sk->data.x509); } XFREE(sk, NULL, DYNAMIC_TYPE_X509); } /* free structure for x509 stack */ void wolfSSL_sk_X509_free(WOLF_STACK_OF(WOLFSSL_X509_NAME)* sk) { WOLFSSL_STACK* node; if (sk == NULL) { return; } /* parse through stack freeing each node */ node = sk->next; while (sk->num > 1) { WOLFSSL_STACK* tmp = node; node = node->next; wolfSSL_X509_free(tmp->data.x509); XFREE(tmp, NULL, DYNAMIC_TYPE_X509); sk->num -= 1; } /* free head of stack */ if (sk->num == 1) { wolfSSL_X509_free(sk->data.x509); } XFREE(sk, NULL, DYNAMIC_TYPE_X509); } #endif /* NO_CERTS && OPENSSL_EXTRA */ #ifdef OPENSSL_EXTRA /* Returns the general name at index i from the stack * * sk stack to get general name from * i index to get * * return a pointer to the internal node of the stack */ WOLFSSL_ASN1_OBJECT* wolfSSL_sk_GENERAL_NAME_value(WOLFSSL_STACK* sk, int i) { WOLFSSL_STACK* cur; int j; WOLFSSL_ENTER("wolfSSL_sk_GENERAL_NAME_value"); if (i < 0 || sk == NULL) { return NULL; } cur = sk; for (j = 0; j < i && cur != NULL; j++) { cur = cur->next; } if (cur == NULL) { return NULL; } return cur->data.obj; } /* Gets the number of nodes in the stack * * sk stack to get the number of nodes from * * returns the number of nodes, -1 if no nodes */ int wolfSSL_sk_GENERAL_NAME_num(WOLFSSL_STACK* sk) { WOLFSSL_ENTER("wolfSSL_sk_GENERAL_NAME_num"); if (sk == NULL) { return -1; } return (int)sk->num; } /* Frees all nodes in a GENERAL NAME stack * * sk stack of nodes to free * f free function to use, not called with wolfSSL */ void wolfSSL_sk_GENERAL_NAME_pop_free(WOLFSSL_STACK* sk, void f (WOLFSSL_ASN1_OBJECT*)) { WOLFSSL_STACK* node; WOLFSSL_ENTER("wolfSSL_sk_GENERAL_NAME_pop_free"); (void)f; if (sk == NULL) { return; } /* parse through stack freeing each node */ node = sk->next; while (sk->num > 1) { WOLFSSL_STACK* tmp = node; node = node->next; wolfSSL_ASN1_OBJECT_free(tmp->data.obj); XFREE(tmp, NULL, DYNAMIC_TYPE_ASN1); sk->num -= 1; } /* free head of stack */ if (sk->num == 1) { wolfSSL_ASN1_OBJECT_free(sk->data.obj); } XFREE(sk, NULL, DYNAMIC_TYPE_ASN1); } #endif /* OPENSSL_EXTRA */ #ifndef NO_FILESYSTEM #ifndef NO_STDIO_FILESYSTEM WOLFSSL_X509* wolfSSL_X509_d2i_fp(WOLFSSL_X509** x509, XFILE file) { WOLFSSL_X509* newX509 = NULL; WOLFSSL_ENTER("wolfSSL_X509_d2i_fp"); if (file != XBADFILE) { byte* fileBuffer = NULL; long sz = 0; XFSEEK(file, 0, XSEEK_END); sz = XFTELL(file); XREWIND(file); if (sz < 0) { WOLFSSL_MSG("Bad tell on FILE"); return NULL; } fileBuffer = (byte*)XMALLOC(sz, NULL, DYNAMIC_TYPE_FILE); if (fileBuffer != NULL) { int ret = (int)XFREAD(fileBuffer, 1, sz, file); if (ret == sz) { newX509 = wolfSSL_X509_d2i(NULL, fileBuffer, (int)sz); } XFREE(fileBuffer, NULL, DYNAMIC_TYPE_FILE); } } if (x509 != NULL) *x509 = newX509; return newX509; } #endif /* NO_STDIO_FILESYSTEM */ WOLFSSL_X509* wolfSSL_X509_load_certificate_file(const char* fname, int format) { #ifdef WOLFSSL_SMALL_STACK byte staticBuffer[1]; /* force heap usage */ #else byte staticBuffer[FILE_BUFFER_SIZE]; #endif byte* fileBuffer = staticBuffer; int dynamic = 0; int ret; long sz = 0; XFILE file; WOLFSSL_X509* x509 = NULL; /* Check the inputs */ if ((fname == NULL) || (format != WOLFSSL_FILETYPE_ASN1 && format != WOLFSSL_FILETYPE_PEM)) return NULL; file = XFOPEN(fname, "rb"); if (file == XBADFILE) return NULL; XFSEEK(file, 0, XSEEK_END); sz = XFTELL(file); XREWIND(file); if (sz > (long)sizeof(staticBuffer)) { fileBuffer = (byte*)XMALLOC(sz, NULL, DYNAMIC_TYPE_FILE); if (fileBuffer == NULL) { XFCLOSE(file); return NULL; } dynamic = 1; } else if (sz < 0) { XFCLOSE(file); return NULL; } ret = (int)XFREAD(fileBuffer, 1, sz, file); if (ret != sz) { XFCLOSE(file); if (dynamic) XFREE(fileBuffer, NULL, DYNAMIC_TYPE_FILE); return NULL; } XFCLOSE(file); x509 = wolfSSL_X509_load_certificate_buffer(fileBuffer, (int)sz, format); if (dynamic) XFREE(fileBuffer, NULL, DYNAMIC_TYPE_FILE); return x509; } #endif /* NO_FILESYSTEM */ WOLFSSL_X509* wolfSSL_X509_load_certificate_buffer( const unsigned char* buf, int sz, int format) { int ret; WOLFSSL_X509* x509 = NULL; DerBuffer* der = NULL; WOLFSSL_ENTER("wolfSSL_X509_load_certificate_ex"); if (format == WOLFSSL_FILETYPE_PEM) { #ifdef WOLFSSL_PEM_TO_DER if (PemToDer(buf, sz, CERT_TYPE, &der, NULL, NULL, NULL) != 0) { FreeDer(&der); } #else ret = NOT_COMPILED_IN; #endif } else { ret = AllocDer(&der, (word32)sz, CERT_TYPE, NULL); if (ret == 0) { XMEMCPY(der->buffer, buf, sz); } } /* At this point we want `der` to have the certificate in DER format */ /* ready to be decoded. */ if (der != NULL && der->buffer != NULL) { #ifdef WOLFSSL_SMALL_STACK DecodedCert* cert = NULL; #else DecodedCert cert[1]; #endif #ifdef WOLFSSL_SMALL_STACK cert = (DecodedCert*)XMALLOC(sizeof(DecodedCert), NULL, DYNAMIC_TYPE_DCERT); if (cert != NULL) #endif { InitDecodedCert(cert, der->buffer, der->length, NULL); if (ParseCertRelative(cert, CERT_TYPE, 0, NULL) == 0) { x509 = (WOLFSSL_X509*)XMALLOC(sizeof(WOLFSSL_X509), NULL, DYNAMIC_TYPE_X509); if (x509 != NULL) { InitX509(x509, 1, NULL); if (CopyDecodedToX509(x509, cert) != 0) { XFREE(x509, NULL, DYNAMIC_TYPE_X509); x509 = NULL; } } } FreeDecodedCert(cert); #ifdef WOLFSSL_SMALL_STACK XFREE(cert, NULL, DYNAMIC_TYPE_DCERT); #endif } FreeDer(&der); } return x509; } #endif /* KEEP_PEER_CERT || SESSION_CERTS */ /* OPENSSL_EXTRA is needed for wolfSSL_X509_d21 function KEEP_OUR_CERT is to insure ability for returning ssl certificate */ #if defined(OPENSSL_EXTRA) && defined(KEEP_OUR_CERT) WOLFSSL_X509* wolfSSL_get_certificate(WOLFSSL* ssl) { if (ssl == NULL) { return NULL; } if (ssl->buffers.weOwnCert) { if (ssl->ourCert == NULL) { if (ssl->buffers.certificate == NULL) { WOLFSSL_MSG("Certificate buffer not set!"); return NULL; } ssl->ourCert = wolfSSL_X509_d2i(NULL, ssl->buffers.certificate->buffer, ssl->buffers.certificate->length); } return ssl->ourCert; } else { /* if cert not owned get parent ctx cert or return null */ if (ssl->ctx) { if (ssl->ctx->ourCert == NULL) { if (ssl->ctx->certificate == NULL) { WOLFSSL_MSG("Ctx Certificate buffer not set!"); return NULL; } ssl->ctx->ourCert = wolfSSL_X509_d2i(NULL, ssl->ctx->certificate->buffer, ssl->ctx->certificate->length); ssl->ctx->ownOurCert = 1; } return ssl->ctx->ourCert; } } return NULL; } #endif /* OPENSSL_EXTRA && KEEP_OUR_CERT */ #endif /* NO_CERTS */ #ifdef OPENSSL_EXTRA /* return 1 on success 0 on fail */ int wolfSSL_sk_ASN1_OBJECT_push(WOLF_STACK_OF(WOLFSSL_ASN1_OBJEXT)* sk, WOLFSSL_ASN1_OBJECT* obj) { WOLFSSL_STACK* node; if (sk == NULL || obj == NULL) { return WOLFSSL_FAILURE; } /* no previous values in stack */ if (sk->data.obj == NULL) { sk->data.obj = obj; sk->num += 1; return WOLFSSL_SUCCESS; } /* stack already has value(s) create a new node and add more */ node = (WOLFSSL_STACK*)XMALLOC(sizeof(WOLFSSL_STACK), NULL, DYNAMIC_TYPE_ASN1); if (node == NULL) { WOLFSSL_MSG("Memory error"); return WOLFSSL_FAILURE; } XMEMSET(node, 0, sizeof(WOLFSSL_STACK)); /* push new obj onto head of stack */ node->data.obj = sk->data.obj; node->next = sk->next; sk->next = node; sk->data.obj = obj; sk->num += 1; return WOLFSSL_SUCCESS; } WOLFSSL_ASN1_OBJECT* wolfSSL_sk_ASN1_OBJCET_pop( WOLF_STACK_OF(WOLFSSL_ASN1_OBJECT)* sk) { WOLFSSL_STACK* node; WOLFSSL_ASN1_OBJECT* obj; if (sk == NULL) { return NULL; } node = sk->next; obj = sk->data.obj; if (node != NULL) { /* update sk and remove node from stack */ sk->data.obj = node->data.obj; sk->next = node->next; XFREE(node, NULL, DYNAMIC_TYPE_ASN1); } else { /* last obj in stack */ sk->data.obj = NULL; } if (sk->num > 0) { sk->num -= 1; } return obj; } #ifndef NO_ASN WOLFSSL_ASN1_OBJECT* wolfSSL_ASN1_OBJECT_new(void) { WOLFSSL_ASN1_OBJECT* obj; obj = (WOLFSSL_ASN1_OBJECT*)XMALLOC(sizeof(WOLFSSL_ASN1_OBJECT), NULL, DYNAMIC_TYPE_ASN1); if (obj == NULL) { return NULL; } XMEMSET(obj, 0, sizeof(WOLFSSL_ASN1_OBJECT)); obj->d.ia5 = &(obj->d.ia5_internal); return obj; } void wolfSSL_ASN1_OBJECT_free(WOLFSSL_ASN1_OBJECT* obj) { if (obj == NULL) { return; } if (obj->dynamic == 1) { if (obj->obj != NULL) { WOLFSSL_MSG("Freeing ASN1 OBJECT data"); XFREE(obj->obj, obj->heap, DYNAMIC_TYPE_ASN1); } } XFREE(obj, NULL, DYNAMIC_TYPE_ASN1); } /* free structure for x509 stack */ void wolfSSL_sk_ASN1_OBJECT_free(WOLF_STACK_OF(WOLFSSL_ASN1_OBJECT)* sk) { WOLFSSL_STACK* node; if (sk == NULL) { return; } /* parse through stack freeing each node */ node = sk->next; while (sk->num > 1) { WOLFSSL_STACK* tmp = node; node = node->next; wolfSSL_ASN1_OBJECT_free(tmp->data.obj); XFREE(tmp, NULL, DYNAMIC_TYPE_ASN1); sk->num -= 1; } /* free head of stack */ if (sk->num == 1) { wolfSSL_ASN1_OBJECT_free(sk->data.obj); } XFREE(sk, NULL, DYNAMIC_TYPE_ASN1); } int wolfSSL_ASN1_STRING_to_UTF8(unsigned char **out, WOLFSSL_ASN1_STRING *in) { /* ASN1_STRING_to_UTF8() converts the string in to UTF8 format, the converted data is allocated in a buffer in *out. The length of out is returned or a negative error code. The buffer *out should be free using OPENSSL_free(). */ (void)out; (void)in; WOLFSSL_STUB("ASN1_STRING_to_UTF8"); return -1; } #endif /* NO_ASN */ void wolfSSL_set_connect_state(WOLFSSL* ssl) { word16 haveRSA = 1; word16 havePSK = 0; if (ssl == NULL) { WOLFSSL_MSG("WOLFSSL struct pointer passed in was null"); return; } #ifndef NO_DH /* client creates its own DH parameters on handshake */ if (ssl->buffers.serverDH_P.buffer && ssl->buffers.weOwnDH) { XFREE(ssl->buffers.serverDH_P.buffer, ssl->heap, DYNAMIC_TYPE_PUBLIC_KEY); } ssl->buffers.serverDH_P.buffer = NULL; if (ssl->buffers.serverDH_G.buffer && ssl->buffers.weOwnDH) { XFREE(ssl->buffers.serverDH_G.buffer, ssl->heap, DYNAMIC_TYPE_PUBLIC_KEY); } ssl->buffers.serverDH_G.buffer = NULL; #endif if (ssl->options.side == WOLFSSL_SERVER_END) { #ifdef NO_RSA haveRSA = 0; #endif #ifndef NO_PSK havePSK = ssl->options.havePSK; #endif InitSuites(ssl->suites, ssl->version, ssl->buffers.keySz, haveRSA, havePSK, ssl->options.haveDH, ssl->options.haveNTRU, ssl->options.haveECDSAsig, ssl->options.haveECC, ssl->options.haveStaticECC, WOLFSSL_CLIENT_END); } ssl->options.side = WOLFSSL_CLIENT_END; } #endif /* OPENSSL_EXTRA || WOLFSSL_EXTRA */ int wolfSSL_get_shutdown(const WOLFSSL* ssl) { WOLFSSL_ENTER("wolfSSL_get_shutdown"); /* in OpenSSL, WOLFSSL_SENT_SHUTDOWN = 1, when closeNotifySent * * WOLFSSL_RECEIVED_SHUTDOWN = 2, from close notify or fatal err */ return ((ssl->options.closeNotify||ssl->options.connReset) << 1) | (ssl->options.sentNotify); } int wolfSSL_session_reused(WOLFSSL* ssl) { return ssl->options.resuming; } #if defined(OPENSSL_EXTRA) || defined(HAVE_EXT_CACHE) void wolfSSL_SESSION_free(WOLFSSL_SESSION* session) { if (session == NULL) return; #ifdef HAVE_EXT_CACHE if (session->isAlloced) { #ifdef HAVE_SESSION_TICKET if (session->isDynamic) XFREE(session->ticket, NULL, DYNAMIC_TYPE_SESSION_TICK); #endif XFREE(session, NULL, DYNAMIC_TYPE_OPENSSL); } #else /* No need to free since cache is static */ (void)session; #endif } #endif const char* wolfSSL_get_version(WOLFSSL* ssl) { WOLFSSL_ENTER("SSL_get_version"); if (ssl->version.major == SSLv3_MAJOR) { switch (ssl->version.minor) { #ifndef NO_OLD_TLS #ifdef WOLFSSL_ALLOW_SSLV3 case SSLv3_MINOR : return "SSLv3"; #endif #ifdef WOLFSSL_ALLOW_TLSV10 case TLSv1_MINOR : return "TLSv1"; #endif case TLSv1_1_MINOR : return "TLSv1.1"; #endif case TLSv1_2_MINOR : return "TLSv1.2"; #ifdef WOLFSSL_TLS13 case TLSv1_3_MINOR : /* TODO: [TLS13] Remove draft versions. */ #ifndef WOLFSSL_TLS13_FINAL #ifdef WOLFSSL_TLS13_DRAFT_18 return "TLSv1.3 (Draft 18)"; #elif defined(WOLFSSL_TLS13_DRAFT_22) return "TLSv1.3 (Draft 22)"; #elif defined(WOLFSSL_TLS13_DRAFT_23) return "TLSv1.3 (Draft 23)"; #elif defined(WOLFSSL_TLS13_DRAFT_26) return "TLSv1.3 (Draft 26)"; #else return "TLSv1.3 (Draft 28)"; #endif #else return "TLSv1.3"; #endif #endif default: return "unknown"; } } #ifdef WOLFSSL_DTLS else if (ssl->version.major == DTLS_MAJOR) { switch (ssl->version.minor) { case DTLS_MINOR : return "DTLS"; case DTLSv1_2_MINOR : return "DTLSv1.2"; default: return "unknown"; } } #endif /* WOLFSSL_DTLS */ return "unknown"; } /* current library version */ const char* wolfSSL_lib_version(void) { return LIBWOLFSSL_VERSION_STRING; } /* current library version in hex */ word32 wolfSSL_lib_version_hex(void) { return LIBWOLFSSL_VERSION_HEX; } int wolfSSL_get_current_cipher_suite(WOLFSSL* ssl) { WOLFSSL_ENTER("SSL_get_current_cipher_suite"); if (ssl) return (ssl->options.cipherSuite0 << 8) | ssl->options.cipherSuite; return 0; } WOLFSSL_CIPHER* wolfSSL_get_current_cipher(WOLFSSL* ssl) { WOLFSSL_ENTER("SSL_get_current_cipher"); if (ssl) return &ssl->cipher; else return NULL; } const char* wolfSSL_CIPHER_get_name(const WOLFSSL_CIPHER* cipher) { WOLFSSL_ENTER("SSL_CIPHER_get_name"); if (cipher == NULL || cipher->ssl == NULL) { return NULL; } return wolfSSL_get_cipher_name_iana(cipher->ssl); } const char* wolfSSL_SESSION_CIPHER_get_name(WOLFSSL_SESSION* session) { if (session == NULL) { return NULL; } #ifdef SESSION_CERTS return GetCipherNameIana(session->cipherSuite0, session->cipherSuite); #else return NULL; #endif } const char* wolfSSL_get_cipher(WOLFSSL* ssl) { WOLFSSL_ENTER("wolfSSL_get_cipher"); return wolfSSL_CIPHER_get_name(wolfSSL_get_current_cipher(ssl)); } /* gets cipher name in the format DHE-RSA-... rather then TLS_DHE... */ const char* wolfSSL_get_cipher_name(WOLFSSL* ssl) { /* get access to cipher_name_idx in internal.c */ return wolfSSL_get_cipher_name_internal(ssl); } const char* wolfSSL_get_cipher_name_from_suite(const byte cipherSuite0, const byte cipherSuite) { return GetCipherNameInternal(cipherSuite0, cipherSuite); } #ifdef HAVE_ECC /* Return the name of the curve used for key exchange as a printable string. * * ssl The SSL/TLS object. * returns NULL if ECDH was not used, otherwise the name as a string. */ const char* wolfSSL_get_curve_name(WOLFSSL* ssl) { if (ssl == NULL) return NULL; if (!IsAtLeastTLSv1_3(ssl->version) && ssl->specs.kea != ecdhe_psk_kea && ssl->specs.kea != ecc_diffie_hellman_kea) return NULL; if (ssl->ecdhCurveOID == 0) return NULL; if (ssl->ecdhCurveOID == ECC_X25519_OID) return "X25519"; return wc_ecc_get_name(wc_ecc_get_oid(ssl->ecdhCurveOID, NULL, NULL)); } #endif #if defined(OPENSSL_EXTRA_X509_SMALL) || defined(KEEP_PEER_CERT) || \ defined(SESSION_CERTS) /* Smaller subset of X509 compatibility functions. Avoid increasing the size of * this subset and its memory usage */ #if !defined(NO_CERTS) /* returns a pointer to a new WOLFSSL_X509 structure on success and NULL on * fail */ WOLFSSL_X509* wolfSSL_X509_new() { WOLFSSL_X509* x509; x509 = (WOLFSSL_X509*)XMALLOC(sizeof(WOLFSSL_X509), NULL, DYNAMIC_TYPE_X509); if (x509 != NULL) { InitX509(x509, 1, NULL); } return x509; } WOLFSSL_X509_NAME* wolfSSL_X509_get_subject_name(WOLFSSL_X509* cert) { WOLFSSL_ENTER("wolfSSL_X509_get_subject_name"); if (cert && cert->subject.sz != 0) return &cert->subject; return NULL; } WOLFSSL_X509_NAME* wolfSSL_X509_get_issuer_name(WOLFSSL_X509* cert) { WOLFSSL_ENTER("X509_get_issuer_name"); if (cert && cert->issuer.sz != 0) return &cert->issuer; return NULL; } int wolfSSL_X509_get_signature_type(WOLFSSL_X509* x509) { int type = 0; WOLFSSL_ENTER("wolfSSL_X509_get_signature_type"); if (x509 != NULL) type = x509->sigOID; return type; } #if defined(OPENSSL_EXTRA_X509_SMALL) #ifdef HAVE_ECC static int SetECKeyExternal(WOLFSSL_EC_KEY* eckey); #endif /* Used to get a string from the WOLFSSL_X509_NAME structure that * corresponds with the NID value passed in. * * name structure to get string from * nid NID value to search for * buf [out] buffer to hold results. If NULL then the buffer size minus the * null char is returned. * len size of "buf" passed in * * returns the length of string found, not including the NULL terminator. * It's possible the function could return a negative value in the * case that len is less than or equal to 0. A negative value is * considered an error case. */ int wolfSSL_X509_NAME_get_text_by_NID(WOLFSSL_X509_NAME* name, int nid, char* buf, int len) { char *text = NULL; int textSz = 0; WOLFSSL_ENTER("wolfSSL_X509_NAME_get_text_by_NID"); switch (nid) { case ASN_COMMON_NAME: text = name->fullName.fullName + name->fullName.cnIdx; textSz = name->fullName.cnLen; break; case ASN_SUR_NAME: text = name->fullName.fullName + name->fullName.snIdx; textSz = name->fullName.snLen; break; case ASN_SERIAL_NUMBER: text = name->fullName.fullName + name->fullName.serialIdx; textSz = name->fullName.serialLen; break; case ASN_COUNTRY_NAME: text = name->fullName.fullName + name->fullName.cIdx; textSz = name->fullName.cLen; break; case ASN_LOCALITY_NAME: text = name->fullName.fullName + name->fullName.lIdx; textSz = name->fullName.lLen; break; case ASN_STATE_NAME: text = name->fullName.fullName + name->fullName.stIdx; textSz = name->fullName.stLen; break; case ASN_ORG_NAME: text = name->fullName.fullName + name->fullName.oIdx; textSz = name->fullName.oLen; break; case ASN_ORGUNIT_NAME: text = name->fullName.fullName + name->fullName.ouIdx; textSz = name->fullName.ouLen; break; case ASN_DOMAIN_COMPONENT: text = name->fullName.fullName + name->fullName.dcIdx[0]; textSz = name->fullName.dcLen[0]; break; default: WOLFSSL_MSG("Entry type not found"); return SSL_FATAL_ERROR; } /* if buf is NULL return size of buffer needed (minus null char) */ if (buf == NULL) { return textSz; } if (buf != NULL && text != NULL) { textSz = min(textSz + 1, len); /* + 1 to account for null char */ if (textSz > 0) { XMEMCPY(buf, text, textSz - 1); buf[textSz - 1] = '\0'; } } WOLFSSL_LEAVE("wolfSSL_X509_NAME_get_text_by_NID", textSz); return (textSz - 1); /* do not include null character in size */ } /* Creates a new WOLFSSL_EVP_PKEY structure that has the public key from x509 * * returns a pointer to the created WOLFSSL_EVP_PKEY on success and NULL on fail */ WOLFSSL_EVP_PKEY* wolfSSL_X509_get_pubkey(WOLFSSL_X509* x509) { WOLFSSL_EVP_PKEY* key = NULL; WOLFSSL_ENTER("X509_get_pubkey"); if (x509 != NULL) { key = (WOLFSSL_EVP_PKEY*)XMALLOC( sizeof(WOLFSSL_EVP_PKEY), x509->heap, DYNAMIC_TYPE_PUBLIC_KEY); if (key != NULL) { XMEMSET(key, 0, sizeof(WOLFSSL_EVP_PKEY)); if (x509->pubKeyOID == RSAk) { key->type = EVP_PKEY_RSA; } else { key->type = EVP_PKEY_EC; } key->save_type = 0; key->pkey.ptr = (char*)XMALLOC( x509->pubKey.length, x509->heap, DYNAMIC_TYPE_PUBLIC_KEY); if (key->pkey.ptr == NULL) { XFREE(key, x509->heap, DYNAMIC_TYPE_PUBLIC_KEY); return NULL; } XMEMCPY(key->pkey.ptr, x509->pubKey.buffer, x509->pubKey.length); key->pkey_sz = x509->pubKey.length; #ifdef HAVE_ECC key->pkey_curve = (int)x509->pkCurveOID; #endif /* HAVE_ECC */ /* decode RSA key */ #ifndef NO_RSA if (key->type == EVP_PKEY_RSA) { key->ownRsa = 1; key->rsa = wolfSSL_RSA_new(); if (key->rsa == NULL) { XFREE(key, x509->heap, DYNAMIC_TYPE_PUBLIC_KEY); return NULL; } if (wolfSSL_RSA_LoadDer_ex(key->rsa, (const unsigned char*)key->pkey.ptr, key->pkey_sz, WOLFSSL_RSA_LOAD_PUBLIC) != SSL_SUCCESS) { wolfSSL_RSA_free(key->rsa); XFREE(key, x509->heap, DYNAMIC_TYPE_PUBLIC_KEY); return NULL; } } #endif /* NO_RSA */ /* decode ECC key */ #ifdef HAVE_ECC if (key->type == EVP_PKEY_EC) { word32 idx = 0; key->ownEcc = 1; key->ecc = wolfSSL_EC_KEY_new(); if (key->ecc == NULL || key->ecc->internal == NULL) { XFREE(key, x509->heap, DYNAMIC_TYPE_PUBLIC_KEY); return NULL; } /* not using wolfSSL_EC_KEY_LoadDer because public key in x509 * is in the format of x963 (no sequence at start of buffer) */ if (wc_EccPublicKeyDecode((const unsigned char*)key->pkey.ptr, &idx, (ecc_key*)key->ecc->internal, key->pkey_sz) < 0) { WOLFSSL_MSG("wc_EccPublicKeyDecode failed"); XFREE(key, x509->heap, DYNAMIC_TYPE_PUBLIC_KEY); wolfSSL_EC_KEY_free(key->ecc); return NULL; } if (SetECKeyExternal(key->ecc) != SSL_SUCCESS) { WOLFSSL_MSG("SetECKeyExternal failed"); XFREE(key, x509->heap, DYNAMIC_TYPE_PUBLIC_KEY); wolfSSL_EC_KEY_free(key->ecc); return NULL; } key->ecc->inSet = 1; } #endif /* HAVE_ECC */ } } return key; } #endif /* OPENSSL_EXTRA_X509_SMALL */ #endif /* !NO_CERTS */ /* End of smaller subset of X509 compatibility functions. Avoid increasing the * size of this subset and its memory usage */ #endif /* OPENSSL_EXTRA_X509_SMALL */ #if defined(OPENSSL_EXTRA) #if !defined(NO_CERTS) int wolfSSL_X509_ext_isSet_by_NID(WOLFSSL_X509* x509, int nid) { int isSet = 0; WOLFSSL_ENTER("wolfSSL_X509_ext_isSet_by_NID"); if (x509 != NULL) { switch (nid) { case BASIC_CA_OID: isSet = x509->basicConstSet; break; case ALT_NAMES_OID: isSet = x509->subjAltNameSet; break; case AUTH_KEY_OID: isSet = x509->authKeyIdSet; break; case SUBJ_KEY_OID: isSet = x509->subjKeyIdSet; break; case KEY_USAGE_OID: isSet = x509->keyUsageSet; break; #ifdef WOLFSSL_SEP case CERT_POLICY_OID: isSet = x509->certPolicySet; break; #endif /* WOLFSSL_SEP */ } } WOLFSSL_LEAVE("wolfSSL_X509_ext_isSet_by_NID", isSet); return isSet; } int wolfSSL_X509_ext_get_critical_by_NID(WOLFSSL_X509* x509, int nid) { int crit = 0; WOLFSSL_ENTER("wolfSSL_X509_ext_get_critical_by_NID"); if (x509 != NULL) { switch (nid) { case BASIC_CA_OID: crit = x509->basicConstCrit; break; case ALT_NAMES_OID: crit = x509->subjAltNameCrit; break; case AUTH_KEY_OID: crit = x509->authKeyIdCrit; break; case SUBJ_KEY_OID: crit = x509->subjKeyIdCrit; break; case KEY_USAGE_OID: crit = x509->keyUsageCrit; break; #ifdef WOLFSSL_SEP case CERT_POLICY_OID: crit = x509->certPolicyCrit; break; #endif /* WOLFSSL_SEP */ } } WOLFSSL_LEAVE("wolfSSL_X509_ext_get_critical_by_NID", crit); return crit; } int wolfSSL_X509_get_isSet_pathLength(WOLFSSL_X509* x509) { int isSet = 0; WOLFSSL_ENTER("wolfSSL_X509_get_isSet_pathLength"); if (x509 != NULL) isSet = x509->basicConstPlSet; WOLFSSL_LEAVE("wolfSSL_X509_get_isSet_pathLength", isSet); return isSet; } word32 wolfSSL_X509_get_pathLength(WOLFSSL_X509* x509) { word32 pathLength = 0; WOLFSSL_ENTER("wolfSSL_X509_get_pathLength"); if (x509 != NULL) pathLength = x509->pathLength; WOLFSSL_LEAVE("wolfSSL_X509_get_pathLength", pathLength); return pathLength; } unsigned int wolfSSL_X509_get_keyUsage(WOLFSSL_X509* x509) { word16 usage = 0; WOLFSSL_ENTER("wolfSSL_X509_get_keyUsage"); if (x509 != NULL) usage = x509->keyUsage; WOLFSSL_LEAVE("wolfSSL_X509_get_keyUsage", usage); return usage; } byte* wolfSSL_X509_get_authorityKeyID(WOLFSSL_X509* x509, byte* dst, int* dstLen) { byte *id = NULL; int copySz = 0; WOLFSSL_ENTER("wolfSSL_X509_get_authorityKeyID"); if (x509 != NULL) { if (x509->authKeyIdSet) { copySz = min(dstLen != NULL ? *dstLen : 0, (int)x509->authKeyIdSz); id = x509->authKeyId; } if (dst != NULL && dstLen != NULL && id != NULL && copySz > 0) { XMEMCPY(dst, id, copySz); id = dst; *dstLen = copySz; } } WOLFSSL_LEAVE("wolfSSL_X509_get_authorityKeyID", copySz); return id; } byte* wolfSSL_X509_get_subjectKeyID(WOLFSSL_X509* x509, byte* dst, int* dstLen) { byte *id = NULL; int copySz = 0; WOLFSSL_ENTER("wolfSSL_X509_get_subjectKeyID"); if (x509 != NULL) { if (x509->subjKeyIdSet) { copySz = min(dstLen != NULL ? *dstLen : 0, (int)x509->subjKeyIdSz); id = x509->subjKeyId; } if (dst != NULL && dstLen != NULL && id != NULL && copySz > 0) { XMEMCPY(dst, id, copySz); id = dst; *dstLen = copySz; } } WOLFSSL_LEAVE("wolfSSL_X509_get_subjectKeyID", copySz); return id; } int wolfSSL_X509_NAME_entry_count(WOLFSSL_X509_NAME* name) { int count = 0; WOLFSSL_ENTER("wolfSSL_X509_NAME_entry_count"); if (name != NULL) count = name->fullName.entryCount; WOLFSSL_LEAVE("wolfSSL_X509_NAME_entry_count", count); return count; } int wolfSSL_X509_NAME_get_index_by_NID(WOLFSSL_X509_NAME* name, int nid, int pos) { int ret = -1; WOLFSSL_ENTER("wolfSSL_X509_NAME_get_index_by_NID"); if (name == NULL) { return BAD_FUNC_ARG; } /* these index values are already stored in DecodedName use those when available */ if (name->fullName.fullName && name->fullName.fullNameLen > 0) { name->fullName.dcMode = 0; switch (nid) { case ASN_COMMON_NAME: if (pos != name->fullName.cnIdx) ret = name->fullName.cnIdx; break; case ASN_DOMAIN_COMPONENT: name->fullName.dcMode = 1; if (pos < name->fullName.dcNum - 1){ ret = pos + 1; } else { ret = -1; } break; default: WOLFSSL_MSG("NID not yet implemented"); break; } } WOLFSSL_LEAVE("wolfSSL_X509_NAME_get_index_by_NID", ret); (void)pos; (void)nid; return ret; } WOLFSSL_ASN1_STRING* wolfSSL_X509_NAME_ENTRY_get_data( WOLFSSL_X509_NAME_ENTRY* in) { WOLFSSL_ENTER("wolfSSL_X509_NAME_ENTRY_get_data"); return in->value; } /* Creates a new WOLFSSL_ASN1_STRING structure. * * returns a pointer to the new structure created on success or NULL if fail */ WOLFSSL_ASN1_STRING* wolfSSL_ASN1_STRING_new() { WOLFSSL_ASN1_STRING* asn1; WOLFSSL_ENTER("wolfSSL_ASN1_STRING_new"); asn1 = (WOLFSSL_ASN1_STRING*)XMALLOC(sizeof(WOLFSSL_ASN1_STRING), NULL, DYNAMIC_TYPE_OPENSSL); if (asn1 != NULL) { XMEMSET(asn1, 0, sizeof(WOLFSSL_ASN1_STRING)); } return asn1; /* no check for null because error case is returning null*/ } /* used to free a WOLFSSL_ASN1_STRING structure */ void wolfSSL_ASN1_STRING_free(WOLFSSL_ASN1_STRING* asn1) { WOLFSSL_ENTER("wolfSSL_ASN1_STRING_free"); if (asn1 != NULL) { if (asn1->length > 0 && asn1->data != NULL) { XFREE(asn1->data, NULL, DYNAMIC_TYPE_OPENSSL); } XFREE(asn1, NULL, DYNAMIC_TYPE_OPENSSL); } } /* Creates a new WOLFSSL_ASN1_STRING structure given the input type. * * type is the type of set when WOLFSSL_ASN1_STRING is created * * returns a pointer to the new structure created on success or NULL if fail */ WOLFSSL_ASN1_STRING* wolfSSL_ASN1_STRING_type_new(int type) { WOLFSSL_ASN1_STRING* asn1; WOLFSSL_ENTER("wolfSSL_ASN1_STRING_type_new"); asn1 = wolfSSL_ASN1_STRING_new(); if (asn1 == NULL) { return NULL; } asn1->type = type; return asn1; } /* if dataSz is negative then use XSTRLEN to find length of data * return WOLFSSL_SUCCESS on success and WOLFSSL_FAILURE on failure */ int wolfSSL_ASN1_STRING_set(WOLFSSL_ASN1_STRING* asn1, const void* data, int dataSz) { int sz; WOLFSSL_ENTER("wolfSSL_ASN1_STRING_set"); if (data == NULL || asn1 == NULL) { return WOLFSSL_FAILURE; } if (dataSz < 0) { sz = (int)XSTRLEN((const char*)data) + 1; /* +1 for null */ } else { sz = dataSz; } if (sz < 0) { return WOLFSSL_FAILURE; } /* free any existing data before copying */ if (asn1->data != NULL) { XFREE(asn1->data, NULL, DYNAMIC_TYPE_OPENSSL); } /* create new data buffer and copy over */ asn1->data = (char*)XMALLOC(sz, NULL, DYNAMIC_TYPE_OPENSSL); if (asn1->data == NULL) { return WOLFSSL_FAILURE; } XMEMCPY(asn1->data, data, sz); asn1->length = sz; return WOLFSSL_SUCCESS; } unsigned char* wolfSSL_ASN1_STRING_data(WOLFSSL_ASN1_STRING* asn) { WOLFSSL_ENTER("wolfSSL_ASN1_STRING_data"); if (asn) { return (unsigned char*)asn->data; } else { return NULL; } } int wolfSSL_ASN1_STRING_length(WOLFSSL_ASN1_STRING* asn) { WOLFSSL_ENTER("wolfSSL_ASN1_STRING_length"); if (asn) { return asn->length; } else { return 0; } } #ifdef XSNPRINTF /* a snprintf function needs to be available */ /* Writes the human readable form of x509 to bio. * * bio WOLFSSL_BIO to write to. * x509 Certificate to write. * * returns WOLFSSL_SUCCESS on success and WOLFSSL_FAILURE on failure */ int wolfSSL_X509_print(WOLFSSL_BIO* bio, WOLFSSL_X509* x509) { WOLFSSL_ENTER("wolfSSL_X509_print"); if (bio == NULL || x509 == NULL) { return WOLFSSL_FAILURE; } if (wolfSSL_BIO_write(bio, "Certificate:\n", sizeof("Certificate:\n")) <= 0) { return WOLFSSL_FAILURE; } if (wolfSSL_BIO_write(bio, " Data:\n", sizeof(" Data:\n")) <= 0) { return WOLFSSL_FAILURE; } /* print version of cert */ { int version; char tmp[17]; if ((version = wolfSSL_X509_version(x509)) <= 0) { WOLFSSL_MSG("Error getting X509 version"); return WOLFSSL_FAILURE; } if (wolfSSL_BIO_write(bio, " Version: ", sizeof(" Version: ")) <= 0) { return WOLFSSL_FAILURE; } XSNPRINTF(tmp, sizeof(tmp), "%d\n", version); if (wolfSSL_BIO_write(bio, tmp, (int)XSTRLEN(tmp)) <= 0) { return WOLFSSL_FAILURE; } } /* print serial number out */ { unsigned char serial[32]; int sz = sizeof(serial); XMEMSET(serial, 0, sz); if (wolfSSL_X509_get_serial_number(x509, serial, &sz) != WOLFSSL_SUCCESS) { WOLFSSL_MSG("Error getting x509 serial number"); return WOLFSSL_FAILURE; } if (wolfSSL_BIO_write(bio, " Serial Number: ", sizeof(" Serial Number: ")) <= 0) { return WOLFSSL_FAILURE; } /* if serial can fit into byte than print on the same line */ if (sz <= (int)sizeof(byte)) { char tmp[17]; XSNPRINTF(tmp, sizeof(tmp), "%d (0x%x)\n", serial[0],serial[0]); if (wolfSSL_BIO_write(bio, tmp, (int)XSTRLEN(tmp)) <= 0) { return WOLFSSL_FAILURE; } } else { int i; char tmp[100]; int tmpSz = 100; char val[5]; int valSz = 5; /* serial is larger than int size so print off hex values */ if (wolfSSL_BIO_write(bio, "\n ", sizeof("\n ")) <= 0) { return WOLFSSL_FAILURE; } tmp[0] = '\0'; for (i = 0; i < sz - 1 && (3 * i) < tmpSz - valSz; i++) { XSNPRINTF(val, sizeof(val) - 1, "%02x:", serial[i]); val[3] = '\0'; /* make sure is null terminated */ XSTRNCAT(tmp, val, valSz); } XSNPRINTF(val, sizeof(val) - 1, "%02x\n", serial[i]); val[3] = '\0'; /* make sure is null terminated */ XSTRNCAT(tmp, val, valSz); if (wolfSSL_BIO_write(bio, tmp, (int)XSTRLEN(tmp)) <= 0) { return WOLFSSL_FAILURE; } } } /* print signature algo */ { int oid; char* sig; if ((oid = wolfSSL_X509_get_signature_type(x509)) <= 0) { WOLFSSL_MSG("Error getting x509 signature type"); return WOLFSSL_FAILURE; } if (wolfSSL_BIO_write(bio, " Signature Algorithm: ", sizeof(" Signature Algorithm: ")) <= 0) { return WOLFSSL_FAILURE; } sig = GetSigName(oid); if (wolfSSL_BIO_write(bio, sig, (int)XSTRLEN(sig)) <= 0) { return WOLFSSL_FAILURE; } if (wolfSSL_BIO_write(bio, "\n", sizeof("\n")) <= 0) { return WOLFSSL_FAILURE; } } /* print issuer */ { char* issuer; #ifdef WOLFSSL_SMALL_STACK char* buff = NULL; int issSz = 0; #else char buff[256]; int issSz = 256; #endif issuer = wolfSSL_X509_NAME_oneline( wolfSSL_X509_get_issuer_name(x509), buff, issSz); if (wolfSSL_BIO_write(bio, " Issuer: ", sizeof(" Issuer: ")) <= 0) { #ifdef WOLFSSL_SMALL_STACK XFREE(issuer, NULL, DYNAMIC_TYPE_OPENSSL); #endif return WOLFSSL_FAILURE; } if (issuer != NULL) { if (wolfSSL_BIO_write(bio, issuer, (int)XSTRLEN(issuer)) <= 0) { #ifdef WOLFSSL_SMALL_STACK XFREE(issuer, NULL, DYNAMIC_TYPE_OPENSSL); #endif return WOLFSSL_FAILURE; } } #ifdef WOLFSSL_SMALL_STACK XFREE(issuer, NULL, DYNAMIC_TYPE_OPENSSL); #endif if (wolfSSL_BIO_write(bio, "\n", sizeof("\n")) <= 0) { return WOLFSSL_FAILURE; } } /* print validity */ { char tmp[80]; if (wolfSSL_BIO_write(bio, " Validity\n", sizeof(" Validity\n")) <= 0) { return WOLFSSL_FAILURE; } if (wolfSSL_BIO_write(bio, " Not Before: ", sizeof(" Not Before: ")) <= 0) { return WOLFSSL_FAILURE; } if (GetTimeString(x509->notBefore + 2, ASN_UTC_TIME, tmp, sizeof(tmp)) != WOLFSSL_SUCCESS) { if (GetTimeString(x509->notBefore + 2, ASN_GENERALIZED_TIME, tmp, sizeof(tmp)) != WOLFSSL_SUCCESS) { WOLFSSL_MSG("Error getting not before date"); return WOLFSSL_FAILURE; } } tmp[sizeof(tmp) - 1] = '\0'; /* make sure null terminated */ if (wolfSSL_BIO_write(bio, tmp, (int)XSTRLEN(tmp)) <= 0) { return WOLFSSL_FAILURE; } if (wolfSSL_BIO_write(bio, "\n Not After : ", sizeof("\n Not After : ")) <= 0) { return WOLFSSL_FAILURE; } if (GetTimeString(x509->notAfter + 2,ASN_UTC_TIME, tmp, sizeof(tmp)) != WOLFSSL_SUCCESS) { if (GetTimeString(x509->notAfter + 2,ASN_GENERALIZED_TIME, tmp, sizeof(tmp)) != WOLFSSL_SUCCESS) { WOLFSSL_MSG("Error getting not before date"); return WOLFSSL_FAILURE; } } tmp[sizeof(tmp) - 1] = '\0'; /* make sure null terminated */ if (wolfSSL_BIO_write(bio, tmp, (int)XSTRLEN(tmp)) <= 0) { return WOLFSSL_FAILURE; } } /* print subject */ { char* subject; #ifdef WOLFSSL_SMALL_STACK char* buff = NULL; int subSz = 0; #else char buff[256]; int subSz = 256; #endif subject = wolfSSL_X509_NAME_oneline( wolfSSL_X509_get_subject_name(x509), buff, subSz); if (wolfSSL_BIO_write(bio, "\n Subject: ", sizeof("\n Subject: ")) <= 0) { #ifdef WOLFSSL_SMALL_STACK XFREE(subject, NULL, DYNAMIC_TYPE_OPENSSL); #endif return WOLFSSL_FAILURE; } if (subject != NULL) { if (wolfSSL_BIO_write(bio, subject, (int)XSTRLEN(subject)) <= 0) { #ifdef WOLFSSL_SMALL_STACK XFREE(subject, NULL, DYNAMIC_TYPE_OPENSSL); #endif return WOLFSSL_FAILURE; } } #ifdef WOLFSSL_SMALL_STACK XFREE(subject, NULL, DYNAMIC_TYPE_OPENSSL); #endif } /* get and print public key */ if (wolfSSL_BIO_write(bio, "\n Subject Public Key Info:\n", sizeof("\n Subject Public Key Info:\n")) <= 0) { return WOLFSSL_FAILURE; } { char tmp[100]; switch (x509->pubKeyOID) { #ifndef NO_RSA case RSAk: if (wolfSSL_BIO_write(bio, " Public Key Algorithm: RSA\n", sizeof(" Public Key Algorithm: RSA\n")) <= 0) { return WOLFSSL_FAILURE; } #ifdef HAVE_USER_RSA if (wolfSSL_BIO_write(bio, " Build without user RSA to print key\n", sizeof(" Build without user RSA to print key\n")) <= 0) { return WOLFSSL_FAILURE; } #else { RsaKey rsa; word32 idx = 0; int sz; byte lbit = 0; int rawLen; unsigned char* rawKey; if (wc_InitRsaKey(&rsa, NULL) != 0) { WOLFSSL_MSG("wc_InitRsaKey failure"); return WOLFSSL_FAILURE; } if (wc_RsaPublicKeyDecode(x509->pubKey.buffer, &idx, &rsa, x509->pubKey.length) != 0) { WOLFSSL_MSG("Error decoding RSA key"); return WOLFSSL_FAILURE; } if ((sz = wc_RsaEncryptSize(&rsa)) < 0) { WOLFSSL_MSG("Error getting RSA key size"); return WOLFSSL_FAILURE; } XSNPRINTF(tmp, sizeof(tmp) - 1, "%s%s: (%d bit)\n%s\n", " ", "Public-Key", 8 * sz, " Modulus:"); tmp[sizeof(tmp) - 1] = '\0'; if (wolfSSL_BIO_write(bio, tmp, (int)XSTRLEN(tmp)) <= 0) { return WOLFSSL_FAILURE; } /* print out modulus */ XSNPRINTF(tmp, sizeof(tmp) - 1," "); tmp[sizeof(tmp) - 1] = '\0'; if (mp_leading_bit(&rsa.n)) { lbit = 1; XSTRNCAT(tmp, "00", sizeof("00")); } rawLen = mp_unsigned_bin_size(&rsa.n); rawKey = (unsigned char*)XMALLOC(rawLen, NULL, DYNAMIC_TYPE_TMP_BUFFER); if (rawKey == NULL) { WOLFSSL_MSG("Memory error"); return WOLFSSL_FAILURE; } mp_to_unsigned_bin(&rsa.n, rawKey); for (idx = 0; idx < (word32)rawLen; idx++) { char val[5]; int valSz = 5; if ((idx == 0) && !lbit) { XSNPRINTF(val, valSz - 1, "%02x", rawKey[idx]); } else if ((idx != 0) && (((idx + lbit) % 15) == 0)) { tmp[sizeof(tmp) - 1] = '\0'; if (wolfSSL_BIO_write(bio, tmp, (int)XSTRLEN(tmp)) <= 0) { XFREE(rawKey, NULL, DYNAMIC_TYPE_TMP_BUFFER); return WOLFSSL_FAILURE; } XSNPRINTF(tmp, sizeof(tmp) - 1, ":\n "); XSNPRINTF(val, valSz - 1, "%02x", rawKey[idx]); } else { XSNPRINTF(val, valSz - 1, ":%02x", rawKey[idx]); } XSTRNCAT(tmp, val, valSz); } XFREE(rawKey, NULL, DYNAMIC_TYPE_TMP_BUFFER); /* print out remaning modulus values */ if ((idx > 0) && (((idx - 1 + lbit) % 15) != 0)) { tmp[sizeof(tmp) - 1] = '\0'; if (wolfSSL_BIO_write(bio, tmp, (int)XSTRLEN(tmp)) <= 0) { return WOLFSSL_FAILURE; } } /* print out exponent values */ rawLen = mp_unsigned_bin_size(&rsa.e); if (rawLen < 0) { WOLFSSL_MSG("Error getting exponent size"); return WOLFSSL_FAILURE; } if ((word32)rawLen < sizeof(word32)) { rawLen = sizeof(word32); } rawKey = (unsigned char*)XMALLOC(rawLen, NULL, DYNAMIC_TYPE_TMP_BUFFER); if (rawKey == NULL) { WOLFSSL_MSG("Memory error"); return WOLFSSL_FAILURE; } XMEMSET(rawKey, 0, rawLen); mp_to_unsigned_bin(&rsa.e, rawKey); if ((word32)rawLen <= sizeof(word32)) { idx = *(word32*)rawKey; } XSNPRINTF(tmp, sizeof(tmp) - 1, "\n Exponent: %d\n", idx); if (wolfSSL_BIO_write(bio, tmp, (int)XSTRLEN(tmp)) <= 0) { XFREE(rawKey, NULL, DYNAMIC_TYPE_TMP_BUFFER); return WOLFSSL_FAILURE; } XFREE(rawKey, NULL, DYNAMIC_TYPE_TMP_BUFFER); } #endif /* HAVE_USER_RSA */ break; #endif /* NO_RSA */ #ifdef HAVE_ECC case ECDSAk: { word32 i; ecc_key ecc; if (wolfSSL_BIO_write(bio, " Public Key Algorithm: EC\n", sizeof(" Public Key Algorithm: EC\n")) <= 0) { return WOLFSSL_FAILURE; } if (wc_ecc_init_ex(&ecc, x509->heap, INVALID_DEVID) != 0) { return WOLFSSL_FAILURE; } i = 0; if (wc_EccPublicKeyDecode(x509->pubKey.buffer, &i, &ecc, x509->pubKey.length) != 0) { wc_ecc_free(&ecc); return WOLFSSL_FAILURE; } XSNPRINTF(tmp, sizeof(tmp) - 1, "%s%s: (%d bit)\n%s\n", " ", "Public-Key", 8 * wc_ecc_size(&ecc), " pub:"); tmp[sizeof(tmp) - 1] = '\0'; if (wolfSSL_BIO_write(bio, tmp, (int)XSTRLEN(tmp)) <= 0) { wc_ecc_free(&ecc); return WOLFSSL_FAILURE; } XSNPRINTF(tmp, sizeof(tmp) - 1," "); { word32 derSz; byte* der; derSz = wc_ecc_size(&ecc) * WOLFSSL_BIT_SIZE; der = (byte*)XMALLOC(derSz, x509->heap, DYNAMIC_TYPE_TMP_BUFFER); if (der == NULL) { wc_ecc_free(&ecc); return WOLFSSL_FAILURE; } if (wc_ecc_export_x963(&ecc, der, &derSz) != 0) { wc_ecc_free(&ecc); XFREE(der, x509->heap, DYNAMIC_TYPE_TMP_BUFFER); return WOLFSSL_FAILURE; } for (i = 0; i < derSz; i++) { char val[5]; int valSz = 5; if (i == 0) { XSNPRINTF(val, valSz - 1, "%02x", der[i]); } else if ((i % 15) == 0) { tmp[sizeof(tmp) - 1] = '\0'; if (wolfSSL_BIO_write(bio, tmp, (int)XSTRLEN(tmp)) <= 0) { wc_ecc_free(&ecc); XFREE(der, x509->heap, DYNAMIC_TYPE_TMP_BUFFER); return WOLFSSL_FAILURE; } XSNPRINTF(tmp, sizeof(tmp) - 1, ":\n "); XSNPRINTF(val, valSz - 1, "%02x", der[i]); } else { XSNPRINTF(val, valSz - 1, ":%02x", der[i]); } XSTRNCAT(tmp, val, valSz); } /* print out remaning modulus values */ if ((i > 0) && (((i - 1) % 15) != 0)) { tmp[sizeof(tmp) - 1] = '\0'; if (wolfSSL_BIO_write(bio, tmp, (int)XSTRLEN(tmp)) <= 0) { wc_ecc_free(&ecc); XFREE(der, x509->heap, DYNAMIC_TYPE_TMP_BUFFER); return WOLFSSL_FAILURE; } } XFREE(der, x509->heap, DYNAMIC_TYPE_TMP_BUFFER); } XSNPRINTF(tmp, sizeof(tmp) - 1, "\n%s%s: %s\n", " ", "ASN1 OID", ecc.dp->name); if (wolfSSL_BIO_write(bio, tmp, (int)XSTRLEN(tmp)) <= 0) { wc_ecc_free(&ecc); return WOLFSSL_FAILURE; } wc_ecc_free(&ecc); } break; #endif /* HAVE_ECC */ default: WOLFSSL_MSG("Unknown key type"); return WOLFSSL_FAILURE; } } /* print out extensions */ if (wolfSSL_BIO_write(bio, " X509v3 extensions:\n", sizeof(" X509v3 extensions:\n")) <= 0) { return WOLFSSL_FAILURE; } /* print subject key id */ if (x509->subjKeyIdSet && x509->subjKeyId != NULL && x509->subjKeyIdSz > 0) { char tmp[100]; word32 i; char val[5]; int valSz = 5; if (wolfSSL_BIO_write(bio, " X509v3 Subject Key Identifier:\n", sizeof(" X509v3 Subject Key Identifier:\n")) <= 0) { return WOLFSSL_FAILURE; } XSNPRINTF(tmp, sizeof(tmp) - 1, " "); for (i = 0; i < sizeof(tmp) && i < (x509->subjKeyIdSz - 1); i++) { XSNPRINTF(val, valSz - 1, "%02X:", x509->subjKeyId[i]); XSTRNCAT(tmp, val, valSz); } XSNPRINTF(val, valSz - 1, "%02X\n", x509->subjKeyId[i]); XSTRNCAT(tmp, val, valSz); if (wolfSSL_BIO_write(bio, tmp, (int)XSTRLEN(tmp)) <= 0) { return WOLFSSL_FAILURE; } } /* printf out authority key id */ if (x509->authKeyIdSet && x509->authKeyId != NULL && x509->authKeyIdSz > 0) { char tmp[100]; word32 i; char val[5]; int valSz = 5; if (wolfSSL_BIO_write(bio, " X509v3 Authority Key Identifier:\n", sizeof(" X509v3 Authority Key Identifier:\n")) <= 0) { return WOLFSSL_FAILURE; } XSNPRINTF(tmp, sizeof(tmp) - 1, " keyid"); for (i = 0; i < x509->authKeyIdSz; i++) { /* check if buffer is almost full */ if (XSTRLEN(tmp) >= sizeof(tmp) - valSz) { if (wolfSSL_BIO_write(bio, tmp, (int)XSTRLEN(tmp)) <= 0) { return WOLFSSL_FAILURE; } tmp[0] = '\0'; } XSNPRINTF(val, valSz - 1, ":%02X", x509->authKeyId[i]); XSTRNCAT(tmp, val, valSz); } if (wolfSSL_BIO_write(bio, tmp, (int)XSTRLEN(tmp)) <= 0) { return WOLFSSL_FAILURE; } /* print issuer */ { char* issuer; #ifdef WOLFSSL_SMALL_STACK char* buff = NULL; int issSz = 0; #else char buff[256]; int issSz = 256; #endif issuer = wolfSSL_X509_NAME_oneline( wolfSSL_X509_get_issuer_name(x509), buff, issSz); if (wolfSSL_BIO_write(bio, "\n DirName:", sizeof("\n DirName:")) <= 0) { #ifdef WOLFSSL_SMALL_STACK XFREE(issuer, NULL, DYNAMIC_TYPE_OPENSSL); #endif return WOLFSSL_FAILURE; } if (issuer != NULL) { if (wolfSSL_BIO_write(bio, issuer, (int)XSTRLEN(issuer)) <= 0) { #ifdef WOLFSSL_SMALL_STACK XFREE(issuer, NULL, DYNAMIC_TYPE_OPENSSL); #endif return WOLFSSL_FAILURE; } } #ifdef WOLFSSL_SMALL_STACK XFREE(issuer, NULL, DYNAMIC_TYPE_OPENSSL); #endif if (wolfSSL_BIO_write(bio, "\n", sizeof("\n")) <= 0) { return WOLFSSL_FAILURE; } } } /* print basic constraint */ if (x509->basicConstSet) { char tmp[100]; if (wolfSSL_BIO_write(bio, "\n X509v3 Basic Constraints:\n", sizeof("\n X509v3 Basic Constraints:\n")) <= 0) { return WOLFSSL_FAILURE; } XSNPRINTF(tmp, sizeof(tmp), " CA:%s\n", (x509->isCa)? "TRUE": "FALSE"); if (wolfSSL_BIO_write(bio, tmp, (int)XSTRLEN(tmp)) <= 0) { return WOLFSSL_FAILURE; } } /* print out signature */ { unsigned char* sig; int sigSz; int i; char tmp[100]; int sigOid = wolfSSL_X509_get_signature_type(x509); if (wolfSSL_BIO_write(bio, " Signature Algorithm: ", sizeof(" Signature Algorithm: ")) <= 0) { return WOLFSSL_FAILURE; } XSNPRINTF(tmp, sizeof(tmp) - 1,"%s\n", GetSigName(sigOid)); tmp[sizeof(tmp) - 1] = '\0'; if (wolfSSL_BIO_write(bio, tmp, (int)XSTRLEN(tmp)) <= 0) { return WOLFSSL_FAILURE; } sigSz = (int)x509->sig.length; sig = (unsigned char*)XMALLOC(sigSz, NULL, DYNAMIC_TYPE_TMP_BUFFER); if (sig == NULL || sigSz <= 0) { return WOLFSSL_FAILURE; } if (wolfSSL_X509_get_signature(x509, sig, &sigSz) <= 0) { XFREE(sig, NULL, DYNAMIC_TYPE_TMP_BUFFER); return WOLFSSL_FAILURE; } XSNPRINTF(tmp, sizeof(tmp) - 1," "); tmp[sizeof(tmp) - 1] = '\0'; for (i = 0; i < sigSz; i++) { char val[5]; int valSz = 5; if (i == 0) { XSNPRINTF(val, valSz - 1, "%02x", sig[i]); } else if (((i % 18) == 0)) { tmp[sizeof(tmp) - 1] = '\0'; if (wolfSSL_BIO_write(bio, tmp, (int)XSTRLEN(tmp)) <= 0) { XFREE(sig, NULL, DYNAMIC_TYPE_TMP_BUFFER); return WOLFSSL_FAILURE; } XSNPRINTF(tmp, sizeof(tmp) - 1, ":\n "); XSNPRINTF(val, valSz - 1, "%02x", sig[i]); } else { XSNPRINTF(val, valSz - 1, ":%02x", sig[i]); } XSTRNCAT(tmp, val, valSz); } XFREE(sig, NULL, DYNAMIC_TYPE_TMP_BUFFER); /* print out remaning sig values */ if ((i > 0) && (((i - 1) % 18) != 0)) { tmp[sizeof(tmp) - 1] = '\0'; if (wolfSSL_BIO_write(bio, tmp, (int)XSTRLEN(tmp)) <= 0) { return WOLFSSL_FAILURE; } } } /* done with print out */ if (wolfSSL_BIO_write(bio, "\n", sizeof("\n")) <= 0) { return WOLFSSL_FAILURE; } return WOLFSSL_SUCCESS; } #endif /* XSNPRINTF */ #endif /* NO_CERTS */ char* wolfSSL_CIPHER_description(const WOLFSSL_CIPHER* cipher, char* in, int len) { char *ret = in; const char *keaStr, *authStr, *encStr, *macStr; size_t strLen; if (cipher == NULL || in == NULL) return NULL; switch (cipher->ssl->specs.kea) { case no_kea: keaStr = "None"; break; #ifndef NO_RSA case rsa_kea: keaStr = "RSA"; break; #endif #ifndef NO_DH case diffie_hellman_kea: keaStr = "DHE"; break; #endif case fortezza_kea: keaStr = "FZ"; break; #ifndef NO_PSK case psk_kea: keaStr = "PSK"; break; #ifndef NO_DH case dhe_psk_kea: keaStr = "DHEPSK"; break; #endif #ifdef HAVE_ECC case ecdhe_psk_kea: keaStr = "ECDHEPSK"; break; #endif #endif #ifdef HAVE_NTRU case ntru_kea: keaStr = "NTRU"; break; #endif #ifdef HAVE_ECC case ecc_diffie_hellman_kea: keaStr = "ECDHE"; break; case ecc_static_diffie_hellman_kea: keaStr = "ECDH"; break; #endif default: keaStr = "unknown"; break; } switch (cipher->ssl->specs.sig_algo) { case anonymous_sa_algo: authStr = "None"; break; #ifndef NO_RSA case rsa_sa_algo: authStr = "RSA"; break; #endif #ifndef NO_DSA case dsa_sa_algo: authStr = "DSA"; break; #endif #ifdef HAVE_ECC case ecc_dsa_sa_algo: authStr = "ECDSA"; break; #endif default: authStr = "unknown"; break; } switch (cipher->ssl->specs.bulk_cipher_algorithm) { case wolfssl_cipher_null: encStr = "None"; break; #ifndef NO_RC4 case wolfssl_rc4: encStr = "RC4(128)"; break; #endif #ifndef NO_DES3 case wolfssl_triple_des: encStr = "3DES(168)"; break; #endif #ifdef HAVE_IDEA case wolfssl_idea: encStr = "IDEA(128)"; break; #endif #ifndef NO_AES case wolfssl_aes: if (cipher->ssl->specs.key_size == 128) encStr = "AES(128)"; else if (cipher->ssl->specs.key_size == 256) encStr = "AES(256)"; else encStr = "AES(?)"; break; #ifdef HAVE_AESGCM case wolfssl_aes_gcm: if (cipher->ssl->specs.key_size == 128) encStr = "AESGCM(128)"; else if (cipher->ssl->specs.key_size == 256) encStr = "AESGCM(256)"; else encStr = "AESGCM(?)"; break; #endif #ifdef HAVE_AESCCM case wolfssl_aes_ccm: if (cipher->ssl->specs.key_size == 128) encStr = "AESCCM(128)"; else if (cipher->ssl->specs.key_size == 256) encStr = "AESCCM(256)"; else encStr = "AESCCM(?)"; break; #endif #endif #ifdef HAVE_CHACHA case wolfssl_chacha: encStr = "CHACHA20/POLY1305(256)"; break; #endif #ifdef HAVE_CAMELLIA case wolfssl_camellia: if (cipher->ssl->specs.key_size == 128) encStr = "Camellia(128)"; else if (cipher->ssl->specs.key_size == 256) encStr = "Camellia(256)"; else encStr = "Camellia(?)"; break; #endif #if defined(HAVE_HC128) && !defined(NO_HC128) case wolfssl_hc128: encStr = "HC128(128)"; break; #endif #if defined(HAVE_RABBIT) && !defined(NO_RABBIT) case wolfssl_rabbit: encStr = "RABBIT(128)"; break; #endif default: encStr = "unknown"; break; } switch (cipher->ssl->specs.mac_algorithm) { case no_mac: macStr = "None"; break; #ifndef NO_MD5 case md5_mac: macStr = "MD5"; break; #endif #ifndef NO_SHA case sha_mac: macStr = "SHA1"; break; #endif #ifdef HAVE_SHA224 case sha224_mac: macStr = "SHA224"; break; #endif #ifndef NO_SHA256 case sha256_mac: macStr = "SHA256"; break; #endif #ifdef HAVE_SHA384 case sha384_mac: macStr = "SHA384"; break; #endif #ifdef HAVE_SHA512 case sha512_mac: macStr = "SHA512"; break; #endif #ifdef HAVE_BLAKE2 case blake2b_mac: macStr = "BLAKE2b"; break; #endif default: macStr = "unknown"; break; } /* Build up the string by copying onto the end. */ XSTRNCPY(in, wolfSSL_CIPHER_get_name(cipher), len); in[len-1] = '\0'; strLen = XSTRLEN(in); len -= (int)strLen; in += strLen; XSTRNCPY(in, " ", len); in[len-1] = '\0'; strLen = XSTRLEN(in); len -= (int)strLen; in += strLen; XSTRNCPY(in, wolfSSL_get_version(cipher->ssl), len); in[len-1] = '\0'; strLen = XSTRLEN(in); len -= (int)strLen; in += strLen; XSTRNCPY(in, " Kx=", len); in[len-1] = '\0'; strLen = XSTRLEN(in); len -= (int)strLen; in += strLen; XSTRNCPY(in, keaStr, len); in[len-1] = '\0'; strLen = XSTRLEN(in); len -= (int)strLen; in += strLen; XSTRNCPY(in, " Au=", len); in[len-1] = '\0'; strLen = XSTRLEN(in); len -= (int)strLen; in += strLen; XSTRNCPY(in, authStr, len); in[len-1] = '\0'; strLen = XSTRLEN(in); len -= (int)strLen; in += strLen; XSTRNCPY(in, " Enc=", len); in[len-1] = '\0'; strLen = XSTRLEN(in); len -= (int)strLen; in += strLen; XSTRNCPY(in, encStr, len); in[len-1] = '\0'; strLen = XSTRLEN(in); len -= (int)strLen; in += strLen; XSTRNCPY(in, " Mac=", len); in[len-1] = '\0'; strLen = XSTRLEN(in); len -= (int)strLen; in += strLen; XSTRNCPY(in, macStr, len); in[len-1] = '\0'; return ret; } #ifndef NO_SESSION_CACHE WOLFSSL_SESSION* wolfSSL_get1_session(WOLFSSL* ssl) { if (ssl == NULL) { return NULL; } /* sessions are stored statically, no need for reference count */ return wolfSSL_get_session(ssl); } #endif /* NO_SESSION_CACHE */ /* was do nothing */ /* void OPENSSL_free(void* buf) { (void)buf; } */ #ifndef NO_WOLFSSL_STUB int wolfSSL_OCSP_parse_url(char* url, char** host, char** port, char** path, int* ssl) { (void)url; (void)host; (void)port; (void)path; (void)ssl; WOLFSSL_STUB("OCSP_parse_url"); return 0; } #endif WOLFSSL_METHOD* wolfSSLv2_client_method(void) { return 0; } WOLFSSL_METHOD* wolfSSLv2_server_method(void) { return 0; } #ifndef NO_MD4 void wolfSSL_MD4_Init(WOLFSSL_MD4_CTX* md4) { /* make sure we have a big enough buffer */ typedef char ok[sizeof(md4->buffer) >= sizeof(Md4) ? 1 : -1]; (void) sizeof(ok); WOLFSSL_ENTER("MD4_Init"); wc_InitMd4((Md4*)md4); } void wolfSSL_MD4_Update(WOLFSSL_MD4_CTX* md4, const void* data, unsigned long len) { WOLFSSL_ENTER("MD4_Update"); wc_Md4Update((Md4*)md4, (const byte*)data, (word32)len); } void wolfSSL_MD4_Final(unsigned char* digest, WOLFSSL_MD4_CTX* md4) { WOLFSSL_ENTER("MD4_Final"); wc_Md4Final((Md4*)md4, digest); } #endif /* NO_MD4 */ /* Removes a WOLFSSL_BIO struct from the WOLFSSL_BIO linked list. * * bio is the WOLFSSL_BIO struct in the list and removed. * * The return WOLFSSL_BIO struct is the next WOLFSSL_BIO in the list or NULL if * there is none. */ WOLFSSL_BIO* wolfSSL_BIO_pop(WOLFSSL_BIO* bio) { if (bio == NULL) { WOLFSSL_MSG("Bad argument passed in"); return NULL; } if (bio->prev != NULL) { bio->prev->next = bio->next; } if (bio->next != NULL) { bio->next->prev = bio->prev; } return bio->next; } int wolfSSL_BIO_pending(WOLFSSL_BIO* bio) { return (int)wolfSSL_BIO_ctrl_pending(bio); } WOLFSSL_BIO_METHOD* wolfSSL_BIO_s_mem(void) { static WOLFSSL_BIO_METHOD meth; WOLFSSL_ENTER("BIO_s_mem"); meth.type = WOLFSSL_BIO_MEMORY; return &meth; } WOLFSSL_BIO_METHOD* wolfSSL_BIO_f_base64(void) { static WOLFSSL_BIO_METHOD meth; WOLFSSL_ENTER("wolfSSL_BIO_f_base64"); meth.type = WOLFSSL_BIO_BASE64; return &meth; } /* Set the flag for the bio. * * bio the structre to set the flag in * flags the flag to use */ void wolfSSL_BIO_set_flags(WOLFSSL_BIO* bio, int flags) { WOLFSSL_ENTER("wolfSSL_BIO_set_flags"); if (bio != NULL) { bio->flags |= flags; } } #ifndef NO_WOLFSSL_STUB void wolfSSL_RAND_screen(void) { WOLFSSL_STUB("RAND_screen"); } #endif int wolfSSL_RAND_load_file(const char* fname, long len) { (void)fname; /* wolfCrypt provides enough entropy internally or will report error */ if (len == -1) return 1024; else return (int)len; } #ifndef NO_WOLFSSL_STUB WOLFSSL_COMP_METHOD* wolfSSL_COMP_zlib(void) { WOLFSSL_STUB("COMP_zlib"); return 0; } #endif #ifndef NO_WOLFSSL_STUB WOLFSSL_COMP_METHOD* wolfSSL_COMP_rle(void) { WOLFSSL_STUB("COMP_rle"); return 0; } #endif #ifndef NO_WOLFSSL_STUB int wolfSSL_COMP_add_compression_method(int method, void* data) { (void)method; (void)data; WOLFSSL_STUB("COMP_add_compression_method"); return 0; } #endif #ifndef NO_WOLFSSL_STUB void wolfSSL_set_dynlock_create_callback(WOLFSSL_dynlock_value* (*f)( const char*, int)) { WOLFSSL_STUB("CRYPTO_set_dynlock_create_callback"); (void)f; } #endif #ifndef NO_WOLFSSL_STUB void wolfSSL_set_dynlock_lock_callback( void (*f)(int, WOLFSSL_dynlock_value*, const char*, int)) { WOLFSSL_STUB("CRYPTO_set_set_dynlock_lock_callback"); (void)f; } #endif #ifndef NO_WOLFSSL_STUB void wolfSSL_set_dynlock_destroy_callback( void (*f)(WOLFSSL_dynlock_value*, const char*, int)) { WOLFSSL_STUB("CRYPTO_set_set_dynlock_destroy_callback"); (void)f; } #endif const char* wolfSSL_X509_verify_cert_error_string(long err) { return wolfSSL_ERR_reason_error_string(err); } #ifndef NO_WOLFSSL_STUB int wolfSSL_X509_LOOKUP_add_dir(WOLFSSL_X509_LOOKUP* lookup, const char* dir, long len) { (void)lookup; (void)dir; (void)len; WOLFSSL_STUB("X509_LOOKUP_add_dir"); return 0; } #endif int wolfSSL_X509_LOOKUP_load_file(WOLFSSL_X509_LOOKUP* lookup, const char* file, long type) { #if !defined(NO_FILESYSTEM) && \ (defined(WOLFSSL_PEM_TO_DER) || defined(WOLFSSL_DER_TO_PEM)) int ret = WOLFSSL_FAILURE; XFILE fp; long sz; byte* pem = NULL; byte* curr = NULL; byte* prev = NULL; WOLFSSL_X509* x509; const char* header = NULL; const char* footer = NULL; if (type != X509_FILETYPE_PEM) return BAD_FUNC_ARG; fp = XFOPEN(file, "r"); if (fp == NULL) return BAD_FUNC_ARG; XFSEEK(fp, 0, XSEEK_END); sz = XFTELL(fp); XREWIND(fp); if (sz <= 0) goto end; pem = (byte*)XMALLOC(sz, 0, DYNAMIC_TYPE_PEM); if (pem == NULL) { ret = MEMORY_ERROR; goto end; } /* Read in file which may be CRLs or certificates. */ if (XFREAD(pem, (size_t)sz, 1, fp) != 1) goto end; prev = curr = pem; do { /* get PEM header and footer based on type */ if (wc_PemGetHeaderFooter(CRL_TYPE, &header, &footer) == 0 && XSTRNSTR((char*)curr, header, (unsigned int)sz) != NULL) { #ifdef HAVE_CRL WOLFSSL_CERT_MANAGER* cm = lookup->store->cm; if (cm->crl == NULL) { if (wolfSSL_CertManagerEnableCRL(cm, 0) != WOLFSSL_SUCCESS) { WOLFSSL_MSG("Enable CRL failed"); goto end; } } ret = BufferLoadCRL(cm->crl, curr, sz, WOLFSSL_FILETYPE_PEM, 1); if (ret != WOLFSSL_SUCCESS) goto end; #endif curr = (byte*)XSTRNSTR((char*)curr, footer, (unsigned int)sz); } else if (wc_PemGetHeaderFooter(CERT_TYPE, &header, &footer) == 0 && XSTRNSTR((char*)curr, header, (unsigned int)sz) != NULL) { x509 = wolfSSL_X509_load_certificate_buffer(curr, (int)sz, WOLFSSL_FILETYPE_PEM); if (x509 == NULL) goto end; ret = wolfSSL_X509_STORE_add_cert(lookup->store, x509); wolfSSL_X509_free(x509); if (ret != WOLFSSL_SUCCESS) goto end; curr = (byte*)XSTRNSTR((char*)curr, footer, (unsigned int)sz); } else goto end; if (curr == NULL) goto end; curr++; sz -= (long)(curr - prev); prev = curr; } while (ret == WOLFSSL_SUCCESS); end: if (pem != NULL) XFREE(pem, 0, DYNAMIC_TYPE_PEM); XFCLOSE(fp); return ret; #else (void)lookup; (void)file; (void)type; return WOLFSSL_FAILURE; #endif } WOLFSSL_X509_LOOKUP_METHOD* wolfSSL_X509_LOOKUP_hash_dir(void) { /* Method implementation in functions. */ static WOLFSSL_X509_LOOKUP_METHOD meth = { 1 }; return &meth; } WOLFSSL_X509_LOOKUP_METHOD* wolfSSL_X509_LOOKUP_file(void) { /* Method implementation in functions. */ static WOLFSSL_X509_LOOKUP_METHOD meth = { 0 }; return &meth; } WOLFSSL_X509_LOOKUP* wolfSSL_X509_STORE_add_lookup(WOLFSSL_X509_STORE* store, WOLFSSL_X509_LOOKUP_METHOD* m) { /* Method is a dummy value and is not needed. */ (void)m; /* Make sure the lookup has a back reference to the store. */ store->lookup.store = store; return &store->lookup; } #ifndef NO_CERTS /* Converts the X509 to DER format and outputs it into bio. * * bio is the structure to hold output DER * x509 certificate to create DER from * * returns WOLFSSL_SUCCESS on success */ int wolfSSL_i2d_X509_bio(WOLFSSL_BIO* bio, WOLFSSL_X509* x509) { WOLFSSL_ENTER("wolfSSL_i2d_X509_bio"); if (bio == NULL || x509 == NULL) { return WOLFSSL_FAILURE; } if (x509->derCert != NULL) { word32 len = x509->derCert->length; byte* der = x509->derCert->buffer; if (wolfSSL_BIO_write(bio, der, len) == (int)len) { return SSL_SUCCESS; } } return WOLFSSL_FAILURE; } /* Converts an internal structure to a DER buffer * * x509 structure to get DER buffer from * out buffer to hold result. If NULL then *out is NULL then a new buffer is * created. * * returns the size of the DER result on success */ int wolfSSL_i2d_X509(WOLFSSL_X509* x509, unsigned char** out) { const unsigned char* der; int derSz = 0; if (x509 == NULL || out == NULL) { return BAD_FUNC_ARG; } der = wolfSSL_X509_get_der(x509, &derSz); if (der == NULL) { return MEMORY_E; } if (*out == NULL) { *out = (unsigned char*)XMALLOC(derSz, NULL, DYNAMIC_TYPE_OPENSSL); if (*out == NULL) { return MEMORY_E; } } XMEMCPY(*out, der, derSz); return derSz; } /* Converts the DER from bio and creates a WOLFSSL_X509 structure from it. * * bio is the structure holding DER * x509 certificate to create from DER. Can be NULL * * returns pointer to WOLFSSL_X509 structure on success and NULL on fail */ WOLFSSL_X509* wolfSSL_d2i_X509_bio(WOLFSSL_BIO* bio, WOLFSSL_X509** x509) { WOLFSSL_X509* localX509 = NULL; unsigned char* mem = NULL; int ret; word32 size; WOLFSSL_ENTER("wolfSSL_d2i_X509_bio"); if (bio == NULL) { WOLFSSL_MSG("Bad Function Argument bio is NULL"); return NULL; } ret = wolfSSL_BIO_get_mem_data(bio, &mem); if (mem == NULL || ret <= 0) { WOLFSSL_MSG("Failed to get data from bio struct"); return NULL; } size = ret; localX509 = wolfSSL_X509_d2i(NULL, mem, size); if (localX509 == NULL) { return NULL; } if (x509 != NULL) { *x509 = localX509; } return localX509; } #if !defined(NO_ASN) && !defined(NO_PWDBASED) WC_PKCS12* wolfSSL_d2i_PKCS12_bio(WOLFSSL_BIO* bio, WC_PKCS12** pkcs12) { WC_PKCS12* localPkcs12 = NULL; unsigned char* mem = NULL; int ret; word32 size; WOLFSSL_ENTER("wolfSSL_d2i_PKCS12_bio"); if (bio == NULL) { WOLFSSL_MSG("Bad Function Argument bio is NULL"); return NULL; } localPkcs12 = wc_PKCS12_new(); if (localPkcs12 == NULL) { WOLFSSL_MSG("Memory error"); return NULL; } if (pkcs12 != NULL) { *pkcs12 = localPkcs12; } ret = wolfSSL_BIO_get_mem_data(bio, &mem); if (mem == NULL || ret <= 0) { WOLFSSL_MSG("Failed to get data from bio struct"); wc_PKCS12_free(localPkcs12); if (pkcs12 != NULL) { *pkcs12 = NULL; } return NULL; } size = ret; ret = wc_d2i_PKCS12(mem, size, localPkcs12); if (ret < 0) { WOLFSSL_MSG("Failed to get PKCS12 sequence"); wc_PKCS12_free(localPkcs12); if (pkcs12 != NULL) { *pkcs12 = NULL; } return NULL; } return localPkcs12; } /* helper function to get DER buffer from WOLFSSL_EVP_PKEY */ static int wolfSSL_i2d_PrivateKey(WOLFSSL_EVP_PKEY* key, unsigned char** der) { *der = (unsigned char*)key->pkey.ptr; return key->pkey_sz; } /* Creates a new WC_PKCS12 structure * * pass password to use * name friendlyName to use * pkey private key to go into PKCS12 bundle * cert certificate to go into PKCS12 bundle * ca extra certificates that can be added to bundle. Can be NULL * keyNID type of encryption to use on the key (-1 means no encryption) * certNID type of ecnryption to use on the certificate * itt number of iterations with encryption * macItt number of iterations with mac creation * keyType flag for signature and/or encryption key * * returns a pointer to a new WC_PKCS12 structure on success and NULL on fail */ WC_PKCS12* wolfSSL_PKCS12_create(char* pass, char* name, WOLFSSL_EVP_PKEY* pkey, WOLFSSL_X509* cert, WOLF_STACK_OF(WOLFSSL_X509)* ca, int keyNID, int certNID, int itt, int macItt, int keyType) { WC_PKCS12* pkcs12; WC_DerCertList* list = NULL; word32 passSz; byte* keyDer; word32 keyDerSz; byte* certDer; int certDerSz; int ret; WOLFSSL_ENTER("wolfSSL_PKCS12_create()"); if (pass == NULL || pkey == NULL || cert == NULL) { WOLFSSL_LEAVE("wolfSSL_PKCS12_create()", BAD_FUNC_ARG); return NULL; } passSz = (word32)XSTRLEN(pass); if ((ret = wolfSSL_i2d_PrivateKey(pkey, &keyDer)) < 0) { WOLFSSL_LEAVE("wolfSSL_PKCS12_create", ret); return NULL; } keyDerSz = ret; certDer = (byte*)wolfSSL_X509_get_der(cert, &certDerSz); if (certDer == NULL) { return NULL; } if (ca != NULL) { WC_DerCertList* cur; unsigned long numCerts = ca->num; byte* curDer; int curDerSz = 0; WOLFSSL_STACK* sk = ca; while (numCerts > 0 && sk != NULL) { cur = (WC_DerCertList*)XMALLOC(sizeof(WC_DerCertList), NULL, DYNAMIC_TYPE_PKCS); if (cur == NULL) { wc_FreeCertList(list, NULL); return NULL; } curDer = (byte*)wolfSSL_X509_get_der(sk->data.x509, &curDerSz); if (curDer == NULL || curDerSz < 0) { XFREE(cur, NULL, DYNAMIC_TYPE_PKCS); wc_FreeCertList(list, NULL); return NULL; } cur->buffer = (byte*)XMALLOC(curDerSz, NULL, DYNAMIC_TYPE_PKCS); if (cur->buffer == NULL) { XFREE(cur, NULL, DYNAMIC_TYPE_PKCS); wc_FreeCertList(list, NULL); return NULL; } XMEMCPY(cur->buffer, curDer, curDerSz); cur->bufferSz = curDerSz; cur->next = list; list = cur; sk = sk->next; numCerts--; } } pkcs12 = wc_PKCS12_create(pass, passSz, name, keyDer, keyDerSz, certDer, certDerSz, list, keyNID, certNID, itt, macItt, keyType, NULL); if (ca != NULL) { wc_FreeCertList(list, NULL); } return pkcs12; } /* return WOLFSSL_SUCCESS on success, WOLFSSL_FAILURE on failure */ int wolfSSL_PKCS12_parse(WC_PKCS12* pkcs12, const char* psw, WOLFSSL_EVP_PKEY** pkey, WOLFSSL_X509** cert, WOLF_STACK_OF(WOLFSSL_X509)** ca) { DecodedCert DeCert; void* heap = NULL; int ret; byte* certData = NULL; word32 certDataSz; byte* pk = NULL; word32 pkSz; WC_DerCertList* certList = NULL; WOLFSSL_ENTER("wolfSSL_PKCS12_parse"); if (pkcs12 == NULL || psw == NULL || pkey == NULL || cert == NULL) { WOLFSSL_MSG("Bad argument value"); return WOLFSSL_FAILURE; } heap = wc_PKCS12_GetHeap(pkcs12); *pkey = NULL; *cert = NULL; if (ca == NULL) { ret = wc_PKCS12_parse(pkcs12, psw, &pk, &pkSz, &certData, &certDataSz, NULL); } else { *ca = NULL; ret = wc_PKCS12_parse(pkcs12, psw, &pk, &pkSz, &certData, &certDataSz, &certList); } if (ret < 0) { WOLFSSL_LEAVE("wolfSSL_PKCS12_parse", ret); return WOLFSSL_FAILURE; } /* Decode cert and place in X509 stack struct */ if (certList != NULL) { WC_DerCertList* current = certList; *ca = (WOLF_STACK_OF(WOLFSSL_X509)*)XMALLOC(sizeof(WOLF_STACK_OF(WOLFSSL_X509)), heap, DYNAMIC_TYPE_X509); if (*ca == NULL) { if (pk != NULL) { XFREE(pk, heap, DYNAMIC_TYPE_PUBLIC_KEY); } if (certData != NULL) { XFREE(*cert, heap, DYNAMIC_TYPE_PKCS); *cert = NULL; } /* Free up WC_DerCertList and move on */ while (current != NULL) { WC_DerCertList* next = current->next; XFREE(current->buffer, heap, DYNAMIC_TYPE_PKCS); XFREE(current, heap, DYNAMIC_TYPE_PKCS); current = next; } return WOLFSSL_FAILURE; } XMEMSET(*ca, 0, sizeof(WOLF_STACK_OF(WOLFSSL_X509))); /* add list of DER certs as X509's to stack */ while (current != NULL) { WC_DerCertList* toFree = current; WOLFSSL_X509* x509; x509 = (WOLFSSL_X509*)XMALLOC(sizeof(WOLFSSL_X509), heap, DYNAMIC_TYPE_X509); InitX509(x509, 1, heap); InitDecodedCert(&DeCert, current->buffer, current->bufferSz, heap); if (ParseCertRelative(&DeCert, CERT_TYPE, NO_VERIFY, NULL) != 0) { WOLFSSL_MSG("Issue with parsing certificate"); FreeDecodedCert(&DeCert); wolfSSL_X509_free(x509); } else { if ((ret = CopyDecodedToX509(x509, &DeCert)) != 0) { WOLFSSL_MSG("Failed to copy decoded cert"); FreeDecodedCert(&DeCert); wolfSSL_X509_free(x509); wolfSSL_sk_X509_free(*ca); *ca = NULL; if (pk != NULL) { XFREE(pk, heap, DYNAMIC_TYPE_PUBLIC_KEY); } if (certData != NULL) { XFREE(certData, heap, DYNAMIC_TYPE_PKCS); } /* Free up WC_DerCertList */ while (current != NULL) { WC_DerCertList* next = current->next; XFREE(current->buffer, heap, DYNAMIC_TYPE_PKCS); XFREE(current, heap, DYNAMIC_TYPE_PKCS); current = next; } return WOLFSSL_FAILURE; } FreeDecodedCert(&DeCert); if (wolfSSL_sk_X509_push(*ca, x509) != 1) { WOLFSSL_MSG("Failed to push x509 onto stack"); wolfSSL_X509_free(x509); wolfSSL_sk_X509_free(*ca); *ca = NULL; if (pk != NULL) { XFREE(pk, heap, DYNAMIC_TYPE_PUBLIC_KEY); } if (certData != NULL) { XFREE(certData, heap, DYNAMIC_TYPE_PKCS); } /* Free up WC_DerCertList */ while (current != NULL) { WC_DerCertList* next = current->next; XFREE(current->buffer, heap, DYNAMIC_TYPE_PKCS); XFREE(current, heap, DYNAMIC_TYPE_PKCS); current = next; } return WOLFSSL_FAILURE; } } current = current->next; XFREE(toFree->buffer, heap, DYNAMIC_TYPE_PKCS); XFREE(toFree, heap, DYNAMIC_TYPE_PKCS); } } /* Decode cert and place in X509 struct */ if (certData != NULL) { *cert = (WOLFSSL_X509*)XMALLOC(sizeof(WOLFSSL_X509), heap, DYNAMIC_TYPE_X509); if (*cert == NULL) { if (pk != NULL) { XFREE(pk, heap, DYNAMIC_TYPE_PUBLIC_KEY); } if (ca != NULL) { wolfSSL_sk_X509_free(*ca); *ca = NULL; } XFREE(certData, heap, DYNAMIC_TYPE_PKCS); return WOLFSSL_FAILURE; } InitX509(*cert, 1, heap); InitDecodedCert(&DeCert, certData, certDataSz, heap); if (ParseCertRelative(&DeCert, CERT_TYPE, NO_VERIFY, NULL) != 0) { WOLFSSL_MSG("Issue with parsing certificate"); } if ((ret = CopyDecodedToX509(*cert, &DeCert)) != 0) { WOLFSSL_MSG("Failed to copy decoded cert"); FreeDecodedCert(&DeCert); if (pk != NULL) { XFREE(pk, heap, DYNAMIC_TYPE_PUBLIC_KEY); } if (ca != NULL) { wolfSSL_sk_X509_free(*ca); *ca = NULL; } wolfSSL_X509_free(*cert); *cert = NULL; return WOLFSSL_FAILURE; } FreeDecodedCert(&DeCert); XFREE(certData, heap, DYNAMIC_TYPE_PKCS); } /* get key type */ ret = BAD_STATE_E; if (pk != NULL) { /* decode key if present */ *pkey = wolfSSL_PKEY_new_ex(heap); if (*pkey == NULL) { wolfSSL_X509_free(*cert); *cert = NULL; if (ca != NULL) { wolfSSL_sk_X509_free(*ca); *ca = NULL; } XFREE(pk, heap, DYNAMIC_TYPE_PUBLIC_KEY); return WOLFSSL_FAILURE; } #ifndef NO_RSA { word32 keyIdx = 0; RsaKey key; if (wc_InitRsaKey(&key, heap) != 0) { ret = BAD_STATE_E; } else { if ((ret = wc_RsaPrivateKeyDecode(pk, &keyIdx, &key, pkSz)) == 0) { (*pkey)->type = EVP_PKEY_RSA; (*pkey)->rsa = wolfSSL_RSA_new(); (*pkey)->ownRsa = 1; /* we own RSA */ if ((*pkey)->rsa == NULL) { WOLFSSL_MSG("issue creating EVP RSA key"); wolfSSL_X509_free(*cert); *cert = NULL; if (ca != NULL) { wolfSSL_sk_X509_free(*ca); *ca = NULL; } wolfSSL_EVP_PKEY_free(*pkey); *pkey = NULL; XFREE(pk, heap, DYNAMIC_TYPE_PKCS); return WOLFSSL_FAILURE; } if ((ret = wolfSSL_RSA_LoadDer_ex((*pkey)->rsa, pk, pkSz, WOLFSSL_RSA_LOAD_PRIVATE)) != SSL_SUCCESS) { WOLFSSL_MSG("issue loading RSA key"); wolfSSL_X509_free(*cert); *cert = NULL; if (ca != NULL) { wolfSSL_sk_X509_free(*ca); *ca = NULL; } wolfSSL_EVP_PKEY_free(*pkey); *pkey = NULL; XFREE(pk, heap, DYNAMIC_TYPE_PKCS); return WOLFSSL_FAILURE; } WOLFSSL_MSG("Found PKCS12 RSA key"); ret = 0; /* set in success state for upcoming ECC check */ } wc_FreeRsaKey(&key); } } #endif /* NO_RSA */ #ifdef HAVE_ECC { word32 keyIdx = 0; ecc_key key; if (ret != 0) { /* if is in fail state check if ECC key */ if (wc_ecc_init(&key) != 0) { wolfSSL_X509_free(*cert); *cert = NULL; if (ca != NULL) { wolfSSL_sk_X509_free(*ca); *ca = NULL; } wolfSSL_EVP_PKEY_free(*pkey); *pkey = NULL; XFREE(pk, heap, DYNAMIC_TYPE_PKCS); return WOLFSSL_FAILURE; } if ((ret = wc_EccPrivateKeyDecode(pk, &keyIdx, &key, pkSz)) != 0) { wolfSSL_X509_free(*cert); *cert = NULL; if (ca != NULL) { wolfSSL_sk_X509_free(*ca); *ca = NULL; } wolfSSL_EVP_PKEY_free(*pkey); *pkey = NULL; XFREE(pk, heap, DYNAMIC_TYPE_PKCS); WOLFSSL_MSG("Bad PKCS12 key format"); return WOLFSSL_FAILURE; } (*pkey)->type = EVP_PKEY_EC; (*pkey)->pkey_curve = key.dp->oidSum; wc_ecc_free(&key); WOLFSSL_MSG("Found PKCS12 ECC key"); } } #else if (ret != 0) { /* if is in fail state and no ECC then fail */ wolfSSL_X509_free(*cert); *cert = NULL; if (ca != NULL) { wolfSSL_sk_X509_free(*ca); *ca = NULL; } wolfSSL_EVP_PKEY_free(*pkey); *pkey = NULL; XFREE(pk, heap, DYNAMIC_TYPE_PKCS); WOLFSSL_MSG("Bad PKCS12 key format"); return WOLFSSL_FAILURE; } #endif /* HAVE_ECC */ (*pkey)->save_type = 0; (*pkey)->pkey_sz = pkSz; (*pkey)->pkey.ptr = (char*)pk; } (void)ret; (void)ca; return WOLFSSL_SUCCESS; } #endif /* !defined(NO_ASN) && !defined(NO_PWDBASED) */ /* no-op function. Was initially used for adding encryption algorithms available * for PKCS12 */ void wolfSSL_PKCS12_PBE_add(void) { WOLFSSL_ENTER("wolfSSL_PKCS12_PBE_add"); } WOLFSSL_STACK* wolfSSL_X509_STORE_CTX_get_chain(WOLFSSL_X509_STORE_CTX* ctx) { WOLFSSL_ENTER("wolfSSL_X509_STORE_CTX_get_chain"); if (ctx == NULL) { return NULL; } #ifdef SESSION_CERTS /* if chain is null but sesChain is available then populate stack */ if (ctx->chain == NULL && ctx->sesChain != NULL) { int i; WOLFSSL_X509_CHAIN* c = ctx->sesChain; WOLFSSL_STACK* sk = (WOLFSSL_STACK*)XMALLOC(sizeof(WOLFSSL_STACK), NULL, DYNAMIC_TYPE_X509); if (sk == NULL) { return NULL; } XMEMSET(sk, 0, sizeof(WOLFSSL_STACK)); ctx->chain = sk; for (i = 0; i < c->count && i < MAX_CHAIN_DEPTH; i++) { WOLFSSL_X509* x509 = wolfSSL_get_chain_X509(c, i); if (x509 == NULL) { WOLFSSL_MSG("Unable to get x509 from chain"); wolfSSL_sk_X509_free(sk); return NULL; } if (wolfSSL_sk_X509_push(sk, x509) != SSL_SUCCESS) { WOLFSSL_MSG("Unable to load x509 into stack"); wolfSSL_sk_X509_free(sk); wolfSSL_X509_free(x509); return NULL; } } #if defined(WOLFSSL_NGINX) || defined(WOLFSSL_HAPROXY) || defined(OPENSSL_EXTRA) /* add CA used to verify top of chain to the list */ if (c->count > 0) { WOLFSSL_X509* x509 = wolfSSL_get_chain_X509(c, c->count - 1); if (x509 != NULL) { WOLFSSL_X509* issuer = NULL; if (wolfSSL_X509_STORE_CTX_get1_issuer(&issuer, ctx, x509) == WOLFSSL_SUCCESS) { /* check that the certificate being looked up is not self * signed and that a issuer was found */ if (issuer != NULL && wolfSSL_X509_NAME_cmp(&x509->issuer, &x509->subject) != 0) { if (wolfSSL_sk_X509_push(sk, issuer) != SSL_SUCCESS) { WOLFSSL_MSG("Unable to load CA x509 into stack"); wolfSSL_sk_X509_free(sk); wolfSSL_X509_free(issuer); return NULL; } } else { WOLFSSL_MSG("Certificate is self signed"); } } else { WOLFSSL_MSG("Could not find CA for certificate"); } } } #endif } #endif /* SESSION_CERTS */ return ctx->chain; } int wolfSSL_X509_STORE_add_cert(WOLFSSL_X509_STORE* store, WOLFSSL_X509* x509) { int result = WOLFSSL_FATAL_ERROR; WOLFSSL_ENTER("wolfSSL_X509_STORE_add_cert"); if (store != NULL && store->cm != NULL && x509 != NULL && x509->derCert != NULL) { DerBuffer* derCert = NULL; result = AllocDer(&derCert, x509->derCert->length, x509->derCert->type, NULL); if (result == 0) { /* AddCA() frees the buffer. */ XMEMCPY(derCert->buffer, x509->derCert->buffer, x509->derCert->length); result = AddCA(store->cm, &derCert, WOLFSSL_USER_CA, 1); } } WOLFSSL_LEAVE("wolfSSL_X509_STORE_add_cert", result); if (result != WOLFSSL_SUCCESS) { result = WOLFSSL_FATAL_ERROR; } return result; } WOLFSSL_X509_STORE* wolfSSL_X509_STORE_new(void) { WOLFSSL_X509_STORE* store = NULL; if((store = (WOLFSSL_X509_STORE*)XMALLOC(sizeof(WOLFSSL_X509_STORE), NULL, DYNAMIC_TYPE_X509_STORE)) == NULL) goto err_exit; if((store->cm = wolfSSL_CertManagerNew()) == NULL) goto err_exit; store->isDynamic = 1; #ifdef HAVE_CRL store->crl = NULL; if((store->crl = (WOLFSSL_X509_CRL *)XMALLOC(sizeof(WOLFSSL_X509_CRL), NULL, DYNAMIC_TYPE_TMP_BUFFER)) == NULL) goto err_exit; if(InitCRL(store->crl, NULL) < 0) goto err_exit; #endif return store; err_exit: if(store == NULL) return NULL; if(store->cm != NULL) wolfSSL_CertManagerFree(store->cm); #ifdef HAVE_CRL if(store->crl != NULL) wolfSSL_X509_CRL_free(store->crl); #endif wolfSSL_X509_STORE_free(store); return NULL; } void wolfSSL_X509_STORE_free(WOLFSSL_X509_STORE* store) { if (store != NULL && store->isDynamic) { if (store->cm != NULL) wolfSSL_CertManagerFree(store->cm); #ifdef HAVE_CRL if (store->crl != NULL) wolfSSL_X509_CRL_free(store->crl); #endif XFREE(store, NULL, DYNAMIC_TYPE_X509_STORE); } } int wolfSSL_X509_STORE_set_flags(WOLFSSL_X509_STORE* store, unsigned long flag) { int ret = WOLFSSL_SUCCESS; WOLFSSL_ENTER("wolfSSL_X509_STORE_set_flags"); if ((flag & WOLFSSL_CRL_CHECKALL) || (flag & WOLFSSL_CRL_CHECK)) { ret = wolfSSL_CertManagerEnableCRL(store->cm, (int)flag); } (void)store; (void)flag; return ret; } int wolfSSL_X509_STORE_set_default_paths(WOLFSSL_X509_STORE* store) { (void)store; return WOLFSSL_SUCCESS; } #ifndef NO_WOLFSSL_STUB int wolfSSL_X509_STORE_get_by_subject(WOLFSSL_X509_STORE_CTX* ctx, int idx, WOLFSSL_X509_NAME* name, WOLFSSL_X509_OBJECT* obj) { (void)ctx; (void)idx; (void)name; (void)obj; WOLFSSL_STUB("X509_STORE_get_by_subject"); return 0; } #endif WOLFSSL_X509_STORE_CTX* wolfSSL_X509_STORE_CTX_new(void) { WOLFSSL_X509_STORE_CTX* ctx = (WOLFSSL_X509_STORE_CTX*)XMALLOC( sizeof(WOLFSSL_X509_STORE_CTX), NULL, DYNAMIC_TYPE_X509_CTX); if (ctx != NULL) { ctx->param = NULL; wolfSSL_X509_STORE_CTX_init(ctx, NULL, NULL, NULL); } return ctx; } int wolfSSL_X509_STORE_CTX_init(WOLFSSL_X509_STORE_CTX* ctx, WOLFSSL_X509_STORE* store, WOLFSSL_X509* x509, WOLF_STACK_OF(WOLFSSL_X509)* sk) { (void)sk; WOLFSSL_ENTER("wolfSSL_X509_STORE_CTX_init"); if (ctx != NULL) { ctx->store = store; ctx->current_cert = x509; ctx->chain = sk; ctx->domain = NULL; #ifdef HAVE_EX_DATA ctx->ex_data = NULL; #endif ctx->userCtx = NULL; ctx->error = 0; ctx->error_depth = 0; ctx->discardSessionCerts = 0; #ifdef OPENSSL_EXTRA if (ctx->param == NULL) { ctx->param = (WOLFSSL_X509_VERIFY_PARAM*)XMALLOC( sizeof(WOLFSSL_X509_VERIFY_PARAM), NULL,DYNAMIC_TYPE_OPENSSL); if (ctx->param == NULL){ WOLFSSL_MSG("wolfSSL_X509_STORE_CTX_init failed"); return SSL_FATAL_ERROR; } } #endif return SSL_SUCCESS; } return WOLFSSL_FATAL_ERROR; } void wolfSSL_X509_STORE_CTX_free(WOLFSSL_X509_STORE_CTX* ctx) { if (ctx != NULL) { if (ctx->store != NULL) wolfSSL_X509_STORE_free(ctx->store); if (ctx->current_cert != NULL) wolfSSL_FreeX509(ctx->current_cert); if (ctx->chain != NULL) wolfSSL_sk_X509_free(ctx->chain); #ifdef OPENSSL_EXTRA if (ctx->param != NULL){ XFREE(ctx->param,NULL,DYNAMIC_TYPE_OPENSSL); } #endif XFREE(ctx, NULL, DYNAMIC_TYPE_X509_CTX); } } void wolfSSL_X509_STORE_CTX_cleanup(WOLFSSL_X509_STORE_CTX* ctx) { (void)ctx; /* Do nothing */ } int wolfSSL_X509_verify_cert(WOLFSSL_X509_STORE_CTX* ctx) { if (ctx != NULL && ctx->store != NULL && ctx->store->cm != NULL && ctx->current_cert != NULL && ctx->current_cert->derCert != NULL) { return wolfSSL_CertManagerVerifyBuffer(ctx->store->cm, ctx->current_cert->derCert->buffer, ctx->current_cert->derCert->length, WOLFSSL_FILETYPE_ASN1); } return WOLFSSL_FATAL_ERROR; } #endif /* NO_CERTS */ #if !defined(NO_FILESYSTEM) static void *wolfSSL_d2i_X509_fp_ex(XFILE file, void **x509, int type) { void *newx509 = NULL; DerBuffer* der = NULL; byte *fileBuffer = NULL; if (file != XBADFILE) { long sz = 0; XFSEEK(file, 0, XSEEK_END); sz = XFTELL(file); XREWIND(file); if (sz < 0) { WOLFSSL_MSG("Bad tell on FILE"); return NULL; } fileBuffer = (byte *)XMALLOC(sz, NULL, DYNAMIC_TYPE_FILE); if (fileBuffer != NULL) { if((long)XFREAD(fileBuffer, 1, sz, file) != sz) { WOLFSSL_MSG("File read failed"); goto err_exit; } if(type == CERT_TYPE) newx509 = (void *)wolfSSL_X509_d2i(NULL, fileBuffer, (int)sz); #ifdef HAVE_CRL else if(type == CRL_TYPE) newx509 = (void *)wolfSSL_d2i_X509_CRL(NULL, fileBuffer, (int)sz); #endif #if !defined(NO_ASN) && !defined(NO_PWDBASED) else if(type == PKCS12_TYPE){ if((newx509 = wc_PKCS12_new()) == NULL) goto err_exit; if(wc_d2i_PKCS12(fileBuffer, (int)sz, (WC_PKCS12*)newx509) < 0) goto err_exit; } #endif else goto err_exit; if(newx509 == NULL) { WOLFSSL_MSG("X509 failed"); goto err_exit; } } } if (x509 != NULL) *x509 = newx509; goto _exit; err_exit: if(newx509 != NULL){ if(type == CERT_TYPE) wolfSSL_X509_free((WOLFSSL_X509*)newx509); #ifdef HAVE_CRL else { if(type == CRL_TYPE) wolfSSL_X509_CRL_free((WOLFSSL_X509_CRL*)newx509); } #endif } _exit: if(der != NULL) FreeDer(&der); if(fileBuffer != NULL) XFREE(fileBuffer, NULL, DYNAMIC_TYPE_FILE); return newx509; } WOLFSSL_X509_PKCS12 *wolfSSL_d2i_PKCS12_fp(XFILE fp, WOLFSSL_X509_PKCS12 **pkcs12) { WOLFSSL_ENTER("wolfSSL_d2i_PKCS12_fp"); return (WOLFSSL_X509_PKCS12 *)wolfSSL_d2i_X509_fp_ex(fp, (void **)pkcs12, PKCS12_TYPE); } WOLFSSL_X509 *wolfSSL_d2i_X509_fp(XFILE fp, WOLFSSL_X509 **x509) { WOLFSSL_ENTER("wolfSSL_d2i_X509_fp"); return (WOLFSSL_X509 *)wolfSSL_d2i_X509_fp_ex(fp, (void **)x509, CERT_TYPE); } #endif /* !NO_FILESYSTEM */ #ifdef HAVE_CRL #ifndef NO_FILESYSTEM WOLFSSL_X509_CRL *wolfSSL_d2i_X509_CRL_fp(XFILE fp, WOLFSSL_X509_CRL **crl) { WOLFSSL_ENTER("wolfSSL_d2i_X509_CRL_fp"); return (WOLFSSL_X509_CRL *)wolfSSL_d2i_X509_fp_ex(fp, (void **)crl, CRL_TYPE); } #endif /* !NO_FILESYSTEM */ WOLFSSL_X509_CRL* wolfSSL_d2i_X509_CRL(WOLFSSL_X509_CRL** crl, const unsigned char* in, int len) { WOLFSSL_X509_CRL *newcrl = NULL; int ret ; WOLFSSL_ENTER("wolfSSL_d2i_X509_CRL"); if(in == NULL){ WOLFSSL_MSG("Bad argument value"); return NULL; } newcrl = (WOLFSSL_X509_CRL*)XMALLOC(sizeof(WOLFSSL_X509_CRL), NULL, DYNAMIC_TYPE_TMP_BUFFER); if (newcrl == NULL){ WOLFSSL_MSG("New CRL allocation failed"); return NULL; } if (InitCRL(newcrl, NULL) < 0) { WOLFSSL_MSG("Init tmp CRL failed"); goto err_exit; } ret = BufferLoadCRL(newcrl, in, len, WOLFSSL_FILETYPE_ASN1, 1); if (ret != WOLFSSL_SUCCESS){ WOLFSSL_MSG("Buffer Load CRL failed"); goto err_exit; } if(crl){ *crl = newcrl; } goto _exit; err_exit: if(newcrl != NULL) wolfSSL_X509_CRL_free(newcrl); newcrl = NULL; _exit: return newcrl; } void wolfSSL_X509_CRL_free(WOLFSSL_X509_CRL *crl) { WOLFSSL_ENTER("wolfSSL_X509_CRL_free"); FreeCRL(crl, 1); return; } #endif /* HAVE_CRL */ #ifndef NO_WOLFSSL_STUB WOLFSSL_ASN1_TIME* wolfSSL_X509_CRL_get_lastUpdate(WOLFSSL_X509_CRL* crl) { (void)crl; WOLFSSL_STUB("X509_CRL_get_lastUpdate"); return 0; } #endif #ifndef NO_WOLFSSL_STUB WOLFSSL_ASN1_TIME* wolfSSL_X509_CRL_get_nextUpdate(WOLFSSL_X509_CRL* crl) { (void)crl; WOLFSSL_STUB("X509_CRL_get_nextUpdate"); return 0; } #endif #ifndef NO_WOLFSSL_STUB int wolfSSL_X509_CRL_verify(WOLFSSL_X509_CRL* crl, WOLFSSL_EVP_PKEY* key) { (void)crl; (void)key; WOLFSSL_STUB("X509_CRL_verify"); return 0; } #endif #endif /* OPENSSL_EXTRA */ #if defined(OPENSSL_EXTRA_X509_SMALL) /* Subset of OPENSSL_EXTRA for PKEY operations PKEY free is needed by the * subset of X509 API */ WOLFSSL_EVP_PKEY* wolfSSL_PKEY_new(){ return wolfSSL_PKEY_new_ex(NULL); } WOLFSSL_EVP_PKEY* wolfSSL_PKEY_new_ex(void* heap) { WOLFSSL_EVP_PKEY* pkey; int ret; WOLFSSL_ENTER("wolfSSL_PKEY_new"); pkey = (WOLFSSL_EVP_PKEY*)XMALLOC(sizeof(WOLFSSL_EVP_PKEY), heap, DYNAMIC_TYPE_PUBLIC_KEY); if (pkey != NULL) { XMEMSET(pkey, 0, sizeof(WOLFSSL_EVP_PKEY)); pkey->heap = heap; pkey->type = WOLFSSL_EVP_PKEY_DEFAULT; #ifndef HAVE_FIPS ret = wc_InitRng_ex(&(pkey->rng), heap, INVALID_DEVID); #else ret = wc_InitRng(&(pkey->rng)); #endif if (ret != 0){ wolfSSL_EVP_PKEY_free(pkey); WOLFSSL_MSG("memory falure"); return NULL; } } else { WOLFSSL_MSG("memory failure"); } return pkey; } void wolfSSL_EVP_PKEY_free(WOLFSSL_EVP_PKEY* key) { WOLFSSL_ENTER("wolfSSL_PKEY_free"); if (key != NULL) { wc_FreeRng(&(key->rng)); if (key->pkey.ptr != NULL) { XFREE(key->pkey.ptr, key->heap, DYNAMIC_TYPE_PUBLIC_KEY); } switch(key->type) { #ifndef NO_RSA case EVP_PKEY_RSA: if (key->rsa != NULL && key->ownRsa == 1) { wolfSSL_RSA_free(key->rsa); } break; #endif /* NO_RSA */ #ifdef HAVE_ECC case EVP_PKEY_EC: if (key->ecc != NULL && key->ownEcc == 1) { wolfSSL_EC_KEY_free(key->ecc); } break; #endif /* HAVE_ECC */ default: break; } XFREE(key, key->heap, DYNAMIC_TYPE_PUBLIC_KEY); } } #endif /* OPENSSL_EXTRA_X509_SMALL */ #ifdef OPENSSL_EXTRA void wolfSSL_X509_STORE_CTX_set_time(WOLFSSL_X509_STORE_CTX* ctx, unsigned long flags, time_t t) { (void)flags; if (ctx == NULL || ctx->param == NULL) return; ctx->param->check_time = t; ctx->param->flags |= WOLFSSL_USE_CHECK_TIME; } #ifndef NO_WOLFSSL_STUB void wolfSSL_X509_OBJECT_free_contents(WOLFSSL_X509_OBJECT* obj) { (void)obj; WOLFSSL_STUB("X509_OBJECT_free_contents"); } #endif #ifndef NO_WOLFSSL_STUB int wolfSSL_X509_cmp_current_time(const WOLFSSL_ASN1_TIME* asnTime) { (void)asnTime; WOLFSSL_STUB("X509_cmp_current_time"); return 0; } #endif #ifndef NO_WOLFSSL_STUB int wolfSSL_sk_X509_REVOKED_num(WOLFSSL_X509_REVOKED* revoked) { (void)revoked; WOLFSSL_STUB("sk_X509_REVOKED_num"); return 0; } #endif #ifndef NO_WOLFSSL_STUB WOLFSSL_X509_REVOKED* wolfSSL_X509_CRL_get_REVOKED(WOLFSSL_X509_CRL* crl) { (void)crl; WOLFSSL_STUB("X509_CRL_get_REVOKED"); return 0; } #endif #ifndef NO_WOLFSSL_STUB WOLFSSL_X509_REVOKED* wolfSSL_sk_X509_REVOKED_value( WOLFSSL_X509_REVOKED* revoked, int value) { (void)revoked; (void)value; WOLFSSL_STUB("sk_X509_REVOKED_value"); return 0; } #endif /* Used to create a new WOLFSSL_ASN1_INTEGER structure. * returns a pointer to new structure on success and NULL on failure */ WOLFSSL_ASN1_INTEGER* wolfSSL_ASN1_INTEGER_new(void) { WOLFSSL_ASN1_INTEGER* a; a = (WOLFSSL_ASN1_INTEGER*)XMALLOC(sizeof(WOLFSSL_ASN1_INTEGER), NULL, DYNAMIC_TYPE_OPENSSL); if (a == NULL) { return NULL; } XMEMSET(a, 0, sizeof(WOLFSSL_ASN1_INTEGER)); a->data = a->intData; a->dataMax = WOLFSSL_ASN1_INTEGER_MAX; return a; } /* free's internal elements of WOLFSSL_ASN1_INTEGER and free's "in" itself */ void wolfSSL_ASN1_INTEGER_free(WOLFSSL_ASN1_INTEGER* in) { if (in != NULL) { if (in->isDynamic) { XFREE(in->data, NULL, DYNAMIC_TYPE_OPENSSL); } XFREE(in, NULL, DYNAMIC_TYPE_OPENSSL); } } WOLFSSL_ASN1_INTEGER* wolfSSL_X509_get_serialNumber(WOLFSSL_X509* x509) { WOLFSSL_ASN1_INTEGER* a; int i = 0; WOLFSSL_ENTER("wolfSSL_X509_get_serialNumber"); a = wolfSSL_ASN1_INTEGER_new(); if (a == NULL) return NULL; /* Make sure there is space for the data, ASN.1 type and length. */ if (x509->serialSz > (WOLFSSL_ASN1_INTEGER_MAX - 2)) { /* dynamicly create data buffer, +2 for type and length */ a->data = (unsigned char*)XMALLOC(x509->serialSz + 2, NULL, DYNAMIC_TYPE_OPENSSL); if (a->data == NULL) { wolfSSL_ASN1_INTEGER_free(a); return NULL; } a->dataMax = x509->serialSz + 2; a->isDynamic = 1; } a->data[i++] = ASN_INTEGER; i += SetLength(x509->serialSz, a->data + i); XMEMCPY(&a->data[i], x509->serial, x509->serialSz); return a; } #endif /* OPENSSL_EXTRA */ #if defined(WOLFSSL_MYSQL_COMPATIBLE) || defined(WOLFSSL_NGINX) || \ defined(WOLFSSL_HAPROXY) || defined(OPENSSL_EXTRA) || defined(OPENSSL_ALL) int wolfSSL_ASN1_TIME_print(WOLFSSL_BIO* bio, const WOLFSSL_ASN1_TIME* asnTime) { char buf[MAX_TIME_STRING_SZ]; int ret = WOLFSSL_SUCCESS; WOLFSSL_ENTER("wolfSSL_ASN1_TIME_print"); if (bio == NULL || asnTime == NULL) { WOLFSSL_MSG("NULL function argument"); return WOLFSSL_FAILURE; } if (wolfSSL_ASN1_TIME_to_string((WOLFSSL_ASN1_TIME*)asnTime, buf, sizeof(buf)) == NULL) { XMEMSET(buf, 0, MAX_TIME_STRING_SZ); XMEMCPY(buf, "Bad time value", 14); ret = WOLFSSL_FAILURE; } if (wolfSSL_BIO_write(bio, buf, (int)XSTRLEN(buf)) <= 0) { WOLFSSL_MSG("Unable to write to bio"); return WOLFSSL_FAILURE; } return ret; } char* wolfSSL_ASN1_TIME_to_string(WOLFSSL_ASN1_TIME* t, char* buf, int len) { int format; int dateLen; byte* date = (byte*)t; WOLFSSL_ENTER("wolfSSL_ASN1_TIME_to_string"); if (t == NULL || buf == NULL || len < 5) { WOLFSSL_MSG("Bad argument"); return NULL; } format = *date; date++; dateLen = *date; date++; if (dateLen > len) { WOLFSSL_MSG("Length of date is longer then buffer"); return NULL; } if (!GetTimeString(date, format, buf, len)) { return NULL; } return buf; } #endif /* WOLFSSL_MYSQL_COMPATIBLE || WOLFSSL_NGINX || WOLFSSL_HAPROXY || OPENSSL_EXTRA*/ #ifdef OPENSSL_EXTRA #if !defined(NO_ASN_TIME) && !defined(USER_TIME) && \ !defined(TIME_OVERRIDES) && !defined(NO_FILESYSTEM) WOLFSSL_ASN1_TIME* wolfSSL_ASN1_TIME_adj(WOLFSSL_ASN1_TIME *s, time_t t, int offset_day, long offset_sec) { const time_t sec_per_day = 24*60*60; struct tm* ts = NULL; struct tm* tmpTime = NULL; time_t t_adj = 0; time_t offset_day_sec = 0; #if defined(NEED_TMP_TIME) struct tm tmpTimeStorage; tmpTime = &tmpTimeStorage; #else (void)tmpTime; #endif WOLFSSL_ENTER("wolfSSL_ASN1_TIME_adj"); if (s == NULL){ s = (WOLFSSL_ASN1_TIME*)XMALLOC(sizeof(WOLFSSL_ASN1_TIME), NULL, DYNAMIC_TYPE_OPENSSL); if (s == NULL){ return NULL; } } /* compute GMT time with offset */ offset_day_sec = offset_day * sec_per_day; t_adj = t + offset_day_sec + offset_sec; ts = (struct tm *)XGMTIME(&t_adj, tmpTime); if (ts == NULL){ WOLFSSL_MSG("failed to get time data."); XFREE(s, NULL, DYNAMIC_TYPE_OPENSSL); return NULL; } /* create ASN1 time notation */ /* UTC Time */ if (ts->tm_year >= 50 && ts->tm_year < 150){ char utc_str[ASN_UTC_TIME_SIZE]; int utc_year = 0,utc_mon,utc_day,utc_hour,utc_min,utc_sec; byte *data_ptr = NULL; if (ts->tm_year >= 50 && ts->tm_year < 100){ utc_year = ts->tm_year; } else if (ts->tm_year >= 100 && ts->tm_year < 150){ utc_year = ts->tm_year - 100; } utc_mon = ts->tm_mon + 1; utc_day = ts->tm_mday; utc_hour = ts->tm_hour; utc_min = ts->tm_min; utc_sec = ts->tm_sec; XSNPRINTF((char *)utc_str, ASN_UTC_TIME_SIZE, "%02d%02d%02d%02d%02d%02dZ", utc_year, utc_mon, utc_day, utc_hour, utc_min, utc_sec); data_ptr = s->data; *data_ptr = (byte) ASN_UTC_TIME; data_ptr++; *data_ptr = (byte) ASN_UTC_TIME_SIZE; data_ptr++; XMEMCPY(data_ptr,(byte *)utc_str, ASN_UTC_TIME_SIZE); /* GeneralizedTime */ } else { char gt_str[ASN_GENERALIZED_TIME_SIZE]; int gt_year,gt_mon,gt_day,gt_hour,gt_min,gt_sec; byte *data_ptr = NULL; gt_year = ts->tm_year + 1900; gt_mon = ts->tm_mon + 1; gt_day = ts->tm_mday; gt_hour = ts->tm_hour; gt_min = ts->tm_min; gt_sec = ts->tm_sec; XSNPRINTF((char *)gt_str, ASN_GENERALIZED_TIME_SIZE, "%4d%02d%02d%02d%02d%02dZ", gt_year, gt_mon, gt_day, gt_hour, gt_min,gt_sec); data_ptr = s->data; *data_ptr = (byte) ASN_GENERALIZED_TIME; data_ptr++; *data_ptr = (byte) ASN_GENERALIZED_TIME_SIZE; data_ptr++; XMEMCPY(data_ptr,(byte *)gt_str, ASN_GENERALIZED_TIME_SIZE); } return s; } #endif /* !NO_ASN_TIME && !USER_TIME && !TIME_OVERRIDES && !NO_FILESYSTEM */ #ifndef NO_WOLFSSL_STUB int wolfSSL_ASN1_INTEGER_cmp(const WOLFSSL_ASN1_INTEGER* a, const WOLFSSL_ASN1_INTEGER* b) { (void)a; (void)b; WOLFSSL_STUB("ASN1_INTEGER_cmp"); return 0; } #endif #ifndef NO_WOLFSSL_STUB long wolfSSL_ASN1_INTEGER_get(const WOLFSSL_ASN1_INTEGER* i) { (void)i; WOLFSSL_STUB("ASN1_INTEGER_get"); return 0; } #endif void* wolfSSL_X509_STORE_CTX_get_ex_data(WOLFSSL_X509_STORE_CTX* ctx, int idx) { WOLFSSL_ENTER("wolfSSL_X509_STORE_CTX_get_ex_data"); #if defined(HAVE_EX_DATA) || defined(FORTRESS) if (ctx != NULL && idx == 0) return ctx->ex_data; #else (void)ctx; (void)idx; #endif return 0; } /* Gets an index to store SSL structure at. * * Returns positive index on success and negative values on failure */ int wolfSSL_get_ex_data_X509_STORE_CTX_idx(void) { WOLFSSL_ENTER("wolfSSL_get_ex_data_X509_STORE_CTX_idx"); /* store SSL at index 0 */ return 0; } /* Set an error stat in the X509 STORE CTX * */ void wolfSSL_X509_STORE_CTX_set_error(WOLFSSL_X509_STORE_CTX* ctx, int er) { WOLFSSL_ENTER("wolfSSL_X509_STORE_CTX_set_error"); if (ctx != NULL) { ctx->error = er; } } /* Sets a function callback that will send information about the state of all * WOLFSSL objects that have been created by the WOLFSSL_CTX structure passed * in. * * ctx WOLFSSL_CTX structre to set callback function in * f callback function to use */ void wolfSSL_CTX_set_info_callback(WOLFSSL_CTX* ctx, void (*f)(const WOLFSSL* ssl, int type, int val)) { WOLFSSL_ENTER("wolfSSL_CTX_set_info_callback"); if (ctx == NULL) { WOLFSSL_MSG("Bad function argument"); } else { ctx->CBIS = f; } } unsigned long wolfSSL_ERR_peek_error(void) { WOLFSSL_ENTER("wolfSSL_ERR_peek_error"); return wolfSSL_ERR_peek_error_line_data(NULL, NULL, NULL, NULL); } /* This function is to find global error values that are the same through out * all library version. With wolfSSL having only one set of error codes the * return value is pretty straight forward. The only thing needed is all wolfSSL * error values are typically negative. * * Returns the error reason */ int wolfSSL_ERR_GET_REASON(unsigned long err) { int ret = (int)err; WOLFSSL_ENTER("wolfSSL_ERR_GET_REASON"); #if defined(OPENSSL_ALL) || defined(WOLFSSL_NGINX) || defined(WOLFSSL_HAPROXY) /* Nginx looks for this error to know to stop parsing certificates. */ if (err == ((ERR_LIB_PEM << 24) | PEM_R_NO_START_LINE)) return PEM_R_NO_START_LINE; #endif /* check if error value is in range of wolfSSL errors */ ret = 0 - ret; /* setting as negative value */ /* wolfCrypt range is less than MAX (-100) wolfSSL range is MIN (-300) and lower */ if (ret < MAX_CODE_E) { return ret; } else { WOLFSSL_MSG("Not in range of typical error values"); ret = (int)err; } return ret; } /* returns a string that describes the alert * * alertID the alert value to look up */ const char* wolfSSL_alert_type_string_long(int alertID) { WOLFSSL_ENTER("wolfSSL_aalert_type_string_long"); switch (alertID) { case close_notify: { static const char close_notify_str[] = "close_notify"; return close_notify_str; } case unexpected_message: { static const char unexpected_message_str[] = "unexpected_message"; return unexpected_message_str; } case bad_record_mac: { static const char bad_record_mac_str[] = "bad_record_mac"; return bad_record_mac_str; } case record_overflow: { static const char record_overflow_str[] = "record_overflow"; return record_overflow_str; } case decompression_failure: { static const char decompression_failure_str[] = "decompression_failure"; return decompression_failure_str; } case handshake_failure: { static const char handshake_failure_str[] = "handshake_failure"; return handshake_failure_str; } case no_certificate: { static const char no_certificate_str[] = "no_certificate"; return no_certificate_str; } case bad_certificate: { static const char bad_certificate_str[] = "bad_certificate"; return bad_certificate_str; } case unsupported_certificate: { static const char unsupported_certificate_str[] = "unsupported_certificate"; return unsupported_certificate_str; } case certificate_revoked: { static const char certificate_revoked_str[] = "certificate_revoked"; return certificate_revoked_str; } case certificate_expired: { static const char certificate_expired_str[] = "certificate_expired"; return certificate_expired_str; } case certificate_unknown: { static const char certificate_unknown_str[] = "certificate_unknown"; return certificate_unknown_str; } case illegal_parameter: { static const char illegal_parameter_str[] = "illegal_parameter"; return illegal_parameter_str; } case decode_error: { static const char decode_error_str[] = "decode_error"; return decode_error_str; } case decrypt_error: { static const char decrypt_error_str[] = "decrypt_error"; return decrypt_error_str; } #ifdef WOLFSSL_MYSQL_COMPATIBLE /* catch name conflict for enum protocol with MYSQL build */ case wc_protocol_version: { static const char wc_protocol_version_str[] = "wc_protocol_version"; return wc_protocol_version_str; } #else case protocol_version: { static const char protocol_version_str[] = "protocol_version"; return protocol_version_str; } #endif case no_renegotiation: { static const char no_renegotiation_str[] = "no_renegotiation"; return no_renegotiation_str; } case unrecognized_name: { static const char unrecognized_name_str[] = "unrecognized_name"; return unrecognized_name_str; } case bad_certificate_status_response: { static const char bad_certificate_status_response_str[] = "bad_certificate_status_response"; return bad_certificate_status_response_str; } case no_application_protocol: { static const char no_application_protocol_str[] = "no_application_protocol"; return no_application_protocol_str; } default: WOLFSSL_MSG("Unknown Alert"); return NULL; } } const char* wolfSSL_alert_desc_string_long(int alertID) { WOLFSSL_ENTER("wolfSSL_alert_desc_string_long"); return wolfSSL_alert_type_string_long(alertID); } /* Gets the current state of the WOLFSSL structure * * ssl WOLFSSL structure to get state of * * Returns a human readable string of the WOLFSSL structure state */ const char* wolfSSL_state_string_long(const WOLFSSL* ssl) { static const char* OUTPUT_STR[14][6][3] = { { {"SSLv3 Initialization","SSLv3 Initialization","SSLv3 Initialization"}, {"TLSv1 Initialization","TLSv2 Initialization","TLSv2 Initialization"}, {"TLSv1_1 Initialization","TLSv1_1 Initialization","TLSv1_1 Initialization"}, {"TLSv1_2 Initialization","TLSv1_2 Initialization","TLSv1_2 Initialization"}, {"DTLSv1 Initialization","DTLSv1 Initialization","DTLSv1 Initialization"}, {"DTLSv1_2 Initialization","DTLSv1_2 Initialization","DTLSv1_2 Initialization"}, }, { {"SSLv3 read Server Hello Verify Request", "SSLv3 write Server Hello Verify Request", "SSLv3 Server Hello Verify Request"}, {"TLSv1 read Server Hello Verify Request", "TLSv1 write Server Hello Verify Request", "TLSv1 Server Hello Verify Request"}, {"TLSv1_1 read Server Hello Verify Request", "TLSv1_1 write Server Hello Verify Request", "TLSv1_1 Server Hello Verify Request"}, {"TLSv1_2 read Server Hello Verify Request", "TLSv1_2 write Server Hello Verify Request", "TLSv1_2 Server Hello Verify Request"}, {"DTLSv1 read Server Hello Verify Request", "DTLSv1 write Server Hello Verify Request", "DTLSv1 Server Hello Verify Request"}, {"DTLSv1_2 read Server Hello Verify Request", "DTLSv1_2 write Server Hello Verify Request", "DTLSv1_2 Server Hello Verify Request"}, }, { {"SSLv3 read Server Hello", "SSLv3 write Server Hello", "SSLv3 Server Hello"}, {"TLSv1 read Server Hello", "TLSv1 write Server Hello", "TLSv1 Server Hello"}, {"TLSv1_1 read Server Hello", "TLSv1_1 write Server Hello", "TLSv1_1 Server Hello"}, {"TLSv1_2 read Server Hello", "TLSv1_2 write Server Hello", "TLSv1_2 Server Hello"}, {"DTLSv1 read Server Hello", "DTLSv1 write Server Hello", "DTLSv1 Server Hello"}, {"DTLSv1_2 read Server Hello" "DTLSv1_2 write Server Hello", "DTLSv1_2 Server Hello", }, }, { {"SSLv3 read Server Session Ticket", "SSLv3 write Server Session Ticket", "SSLv3 Server Session Ticket"}, {"TLSv1 read Server Session Ticket", "TLSv1 write Server Session Ticket", "TLSv1 Server Session Ticket"}, {"TLSv1_1 read Server Session Ticket", "TLSv1_1 write Server Session Ticket", "TLSv1_1 Server Session Ticket"}, {"TLSv1_2 read Server Session Ticket", "TLSv1_2 write Server Session Ticket", "TLSv1_2 Server Session Ticket"}, {"DTLSv1 read Server Session Ticket", "DTLSv1 write Server Session Ticket", "DTLSv1 Server Session Ticket"}, {"DTLSv1_2 read Server Session Ticket", "DTLSv1_2 write Server Session Ticket", "DTLSv1_2 Server Session Ticket"}, }, { {"SSLv3 read Server Cert", "SSLv3 write Server Cert", "SSLv3 Server Cert"}, {"TLSv1 read Server Cert", "TLSv1 write Server Cert", "TLSv1 Server Cert"}, {"TLSv1_1 read Server Cert", "TLSv1_1 write Server Cert", "TLSv1_1 Server Cert"}, {"TLSv1_2 read Server Cert", "TLSv1_2 write Server Cert", "TLSv1_2 Server Cert"}, {"DTLSv1 read Server Cert", "DTLSv1 write Server Cert", "DTLSv1 Server Cert"}, {"DTLSv1_2 read Server Cert", "DTLSv1_2 write Server Cert", "DTLSv1_2 Server Cert"}, }, { {"SSLv3 read Server Key Exchange", "SSLv3 write Server Key Exchange", "SSLv3 Server Key Exchange"}, {"TLSv1 read Server Key Exchange", "TLSv1 write Server Key Exchange", "TLSv1 Server Key Exchange"}, {"TLSv1_1 read Server Key Exchange", "TLSv1_1 write Server Key Exchange", "TLSv1_1 Server Key Exchange"}, {"TLSv1_2 read Server Key Exchange", "TLSv1_2 write Server Key Exchange", "TLSv1_2 Server Key Exchange"}, {"DTLSv1 read Server Key Exchange", "DTLSv1 write Server Key Exchange", "DTLSv1 Server Key Exchange"}, {"DTLSv1_2 read Server Key Exchange", "DTLSv1_2 write Server Key Exchange", "DTLSv1_2 Server Key Exchange"}, }, { {"SSLv3 read Server Hello Done", "SSLv3 write Server Hello Done", "SSLv3 Server Hello Done"}, {"TLSv1 read Server Hello Done", "TLSv1 write Server Hello Done", "TLSv1 Server Hello Done"}, {"TLSv1_1 read Server Hello Done", "TLSv1_1 write Server Hello Done", "TLSv1_1 Server Hello Done"}, {"TLSv1_2 read Server Hello Done", "TLSv1_2 write Server Hello Done", "TLSv1_2 Server Hello Done"}, {"DTLSv1 read Server Hello Done", "DTLSv1 write Server Hello Done", "DTLSv1 Server Hello Done"}, {"DTLSv1_2 read Server Hello Done", "DTLSv1_2 write Server Hello Done", "DTLSv1_2 Server Hello Done"}, }, { {"SSLv3 read Server Change CipherSpec", "SSLv3 write Server Change CipherSpec", "SSLv3 Server Change CipherSpec"}, {"TLSv1 read Server Change CipherSpec", "TLSv1 write Server Change CipherSpec", "TLSv1 Server Change CipherSpec"}, {"TLSv1_1 read Server Change CipherSpec", "TLSv1_1 write Server Change CipherSpec", "TLSv1_1 Server Change CipherSpec"}, {"TLSv1_2 read Server Change CipherSpec", "TLSv1_2 write Server Change CipherSpec", "TLSv1_2 Server Change CipherSpec"}, {"DTLSv1 read Server Change CipherSpec", "DTLSv1 write Server Change CipherSpec", "DTLSv1 Server Change CipherSpec"}, {"DTLSv1_2 read Server Change CipherSpec", "DTLSv1_2 write Server Change CipherSpec", "DTLSv1_2 Server Change CipherSpec"}, }, { {"SSLv3 read Server Finished", "SSLv3 write Server Finished", "SSLv3 Server Finished"}, {"TLSv1 read Server Finished", "TLSv1 write Server Finished", "TLSv1 Server Finished"}, {"TLSv1_1 read Server Finished", "TLSv1_1 write Server Finished", "TLSv1_1 Server Finished"}, {"TLSv1_2 read Server Finished", "TLSv1_2 write Server Finished", "TLSv1_2 Server Finished"}, {"DTLSv1 read Server Finished", "DTLSv1 write Server Finished", "DTLSv1 Server Finished"}, {"DTLSv1_2 read Server Finished", "DTLSv1_2 write Server Finished", "DTLSv1_2 Server Finished"}, }, { {"SSLv3 read Client Hello", "SSLv3 write Client Hello", "SSLv3 Client Hello"}, {"TLSv1 read Client Hello", "TLSv1 write Client Hello", "TLSv1 Client Hello"}, {"TLSv1_1 read Client Hello", "TLSv1_1 write Client Hello", "TLSv1_1 Client Hello"}, {"TLSv1_2 read Client Hello", "TLSv1_2 write Client Hello", "TLSv1_2 Client Hello"}, {"DTLSv1 read Client Hello", "DTLSv1 write Client Hello", "DTLSv1 Client Hello"}, {"DTLSv1_2 read Client Hello", "DTLSv1_2 write Client Hello", "DTLSv1_2 Client Hello"}, }, { {"SSLv3 read Client Key Exchange", "SSLv3 write Client Key Exchange", "SSLv3 Client Key Exchange"}, {"TLSv1 read Client Key Exchange", "TLSv1 write Client Key Exchange", "TLSv1 Client Key Exchange"}, {"TLSv1_1 read Client Key Exchange", "TLSv1_1 write Client Key Exchange", "TLSv1_1 Client Key Exchange"}, {"TLSv1_2 read Client Key Exchange", "TLSv1_2 write Client Key Exchange", "TLSv1_2 Client Key Exchange"}, {"DTLSv1 read Client Key Exchange", "DTLSv1 write Client Key Exchange", "DTLSv1 Client Key Exchange"}, {"DTLSv1_2 read Client Key Exchange", "DTLSv1_2 write Client Key Exchange", "DTLSv1_2 Client Key Exchange"}, }, { {"SSLv3 read Client Change CipherSpec", "SSLv3 write Client Change CipherSpec", "SSLv3 Client Change CipherSpec"}, {"TLSv1 read Client Change CipherSpec", "TLSv1 write Client Change CipherSpec", "TLSv1 Client Change CipherSpec"}, {"TLSv1_1 read Client Change CipherSpec", "TLSv1_1 write Client Change CipherSpec", "TLSv1_1 Client Change CipherSpec"}, {"TLSv1_2 read Client Change CipherSpec", "TLSv1_2 write Client Change CipherSpec", "TLSv1_2 Client Change CipherSpec"}, {"DTLSv1 read Client Change CipherSpec", "DTLSv1 write Client Change CipherSpec", "DTLSv1 Client Change CipherSpec"}, {"DTLSv1_2 read Client Change CipherSpec", "DTLSv1_2 write Client Change CipherSpec", "DTLSv1_2 Client Change CipherSpec"}, }, { {"SSLv3 read Client Finished", "SSLv3 write Client Finished", "SSLv3 Client Finished"}, {"TLSv1 read Client Finished", "TLSv1 write Client Finished", "TLSv1 Client Finished"}, {"TLSv1_1 read Client Finished", "TLSv1_1 write Client Finished", "TLSv1_1 Client Finished"}, {"TLSv1_2 read Client Finished", "TLSv1_2 write Client Finished", "TLSv1_2 Client Finished"}, {"DTLSv1 read Client Finished", "DTLSv1 write Client Finished", "DTLSv1 Client Finished"}, {"DTLSv1_2 read Client Finished", "DTLSv1_2 write Client Finished", "DTLSv1_2 Client Finished"}, }, { {"SSLv3 Handshake Done", "SSLv3 Handshake Done", "SSLv3 Handshake Done"}, {"TLSv1 Handshake Done", "TLSv1 Handshake Done", "TLSv1 Handshake Done"}, {"TLSv1_1 Handshake Done", "TLSv1_1 Handshake Done", "TLSv1_1 Handshake Done"}, {"TLSv1_2 Handshake Done", "TLSv1_2 Handshake Done", "TLSv1_2 Handshake Done"}, {"DTLSv1 Handshake Done", "DTLSv1 Handshake Done", "DTLSv1 Handshake Done"}, {"DTLSv1_2 Handshake Done" "DTLSv1_2 Handshake Done" "DTLSv1_2 Handshake Done"} } }; enum ProtocolVer { SSL_V3 = 0, TLS_V1, TLS_V1_1, TLS_V1_2, DTLS_V1, DTLS_V1_2, UNKNOWN = 100 }; enum IOMode { SS_READ = 0, SS_WRITE, SS_NEITHER }; enum SslState { ss_null_state = 0, ss_server_helloverify, ss_server_hello, ss_sessionticket, ss_server_cert, ss_server_keyexchange, ss_server_hellodone, ss_server_changecipherspec, ss_server_finished, ss_client_hello, ss_client_keyexchange, ss_client_changecipherspec, ss_client_finished, ss_handshake_done }; int protocol = 0; int cbmode = 0; int state = 0; WOLFSSL_ENTER("wolfSSL_state_string_long"); if (ssl == NULL) { WOLFSSL_MSG("Null argument passed in"); return NULL; } /* Get state of callback */ if (ssl->cbmode == SSL_CB_MODE_WRITE){ cbmode = SS_WRITE; } else if (ssl->cbmode == SSL_CB_MODE_READ){ cbmode = SS_READ; } else { cbmode = SS_NEITHER; } /* Get protocol version */ switch (ssl->version.major){ case SSLv3_MAJOR: switch (ssl->version.minor){ case TLSv1_MINOR: protocol = TLS_V1; break; case TLSv1_1_MINOR: protocol = TLS_V1_1; break; case TLSv1_2_MINOR: protocol = TLS_V1_2; break; case SSLv3_MINOR: protocol = SSL_V3; break; default: protocol = UNKNOWN; } break; case DTLS_MAJOR: switch (ssl->version.minor){ case DTLS_MINOR: protocol = DTLS_V1; break; case DTLSv1_2_MINOR: protocol = DTLS_V1_2; break; default: protocol = UNKNOWN; } break; default: protocol = UNKNOWN; } /* accept process */ if (ssl->cbmode == SSL_CB_MODE_READ){ state = ssl->cbtype; switch (state) { case hello_verify_request: state = ss_server_helloverify; break; case session_ticket: state = ss_sessionticket; break; case server_hello: state = ss_server_hello; break; case server_hello_done: state = ss_server_hellodone; break; case certificate: state = ss_server_cert; break; case server_key_exchange: state = ss_server_keyexchange; break; case client_hello: state = ss_client_hello; break; case client_key_exchange: state = ss_client_keyexchange; break; case finished: if (ssl->options.side == WOLFSSL_SERVER_END) state = ss_client_finished; else if (ssl->options.side == WOLFSSL_CLIENT_END) state = ss_server_finished; break; default: WOLFSSL_MSG("Unknown State"); state = ss_null_state; } } else { /* Send process */ if (ssl->options.side == WOLFSSL_SERVER_END) state = ssl->options.serverState; else state = ssl->options.clientState; switch(state){ case SERVER_HELLOVERIFYREQUEST_COMPLETE: state = ss_server_helloverify; break; case SERVER_HELLO_COMPLETE: state = ss_server_hello; break; case SERVER_CERT_COMPLETE: state = ss_server_cert; break; case SERVER_KEYEXCHANGE_COMPLETE: state = ss_server_keyexchange; break; case SERVER_HELLODONE_COMPLETE: state = ss_server_hellodone; break; case SERVER_CHANGECIPHERSPEC_COMPLETE: state = ss_server_changecipherspec; break; case SERVER_FINISHED_COMPLETE: state = ss_server_finished; break; case CLIENT_HELLO_COMPLETE: state = ss_client_hello; break; case CLIENT_KEYEXCHANGE_COMPLETE: state = ss_client_keyexchange; break; case CLIENT_CHANGECIPHERSPEC_COMPLETE: state = ss_client_changecipherspec; break; case CLIENT_FINISHED_COMPLETE: state = ss_client_finished; break; case HANDSHAKE_DONE: state = ss_handshake_done; break; default: WOLFSSL_MSG("Unknown State"); state = ss_null_state; } } if (protocol == UNKNOWN) return NULL; else return OUTPUT_STR[state][protocol][cbmode]; } #ifndef NO_WOLFSSL_STUB int wolfSSL_PEM_def_callback(char* name, int num, int w, void* key) { (void)name; (void)num; (void)w; (void)key; WOLFSSL_STUB("PEM_def_callback"); return 0; } #endif static long wolf_set_options(long old_op, long op) { /* if SSL_OP_ALL then turn all bug workarounds on */ if ((op & SSL_OP_ALL) == SSL_OP_ALL) { WOLFSSL_MSG("\tSSL_OP_ALL"); op |= SSL_OP_MICROSOFT_SESS_ID_BUG; op |= SSL_OP_NETSCAPE_CHALLENGE_BUG; op |= SSL_OP_NETSCAPE_REUSE_CIPHER_CHANGE_BUG; op |= SSL_OP_SSLREF2_REUSE_CERT_TYPE_BUG; op |= SSL_OP_MICROSOFT_BIG_SSLV3_BUFFER; op |= SSL_OP_MSIE_SSLV2_RSA_PADDING; op |= SSL_OP_SSLEAY_080_CLIENT_DH_BUG; op |= SSL_OP_TLS_D5_BUG; op |= SSL_OP_TLS_BLOCK_PADDING_BUG; op |= SSL_OP_TLS_ROLLBACK_BUG; op |= SSL_OP_DONT_INSERT_EMPTY_FRAGMENTS; } /* by default cookie exchange is on with DTLS */ if ((op & SSL_OP_COOKIE_EXCHANGE) == SSL_OP_COOKIE_EXCHANGE) { WOLFSSL_MSG("\tSSL_OP_COOKIE_EXCHANGE : on by default"); } if ((op & WOLFSSL_OP_NO_SSLv2) == WOLFSSL_OP_NO_SSLv2) { WOLFSSL_MSG("\tWOLFSSL_OP_NO_SSLv2 : wolfSSL does not support SSLv2"); } if ((op & SSL_OP_NO_TLSv1_3) == SSL_OP_NO_TLSv1_3) { WOLFSSL_MSG("\tSSL_OP_NO_TLSv1_3"); } if ((op & SSL_OP_NO_TLSv1_2) == SSL_OP_NO_TLSv1_2) { WOLFSSL_MSG("\tSSL_OP_NO_TLSv1_2"); } if ((op & SSL_OP_NO_TLSv1_1) == SSL_OP_NO_TLSv1_1) { WOLFSSL_MSG("\tSSL_OP_NO_TLSv1_1"); } if ((op & SSL_OP_NO_TLSv1) == SSL_OP_NO_TLSv1) { WOLFSSL_MSG("\tSSL_OP_NO_TLSv1"); } if ((op & SSL_OP_NO_SSLv3) == SSL_OP_NO_SSLv3) { WOLFSSL_MSG("\tSSL_OP_NO_SSLv3"); } if ((op & SSL_OP_NO_COMPRESSION) == SSL_OP_NO_COMPRESSION) { #ifdef HAVE_LIBZ WOLFSSL_MSG("SSL_OP_NO_COMPRESSION"); #else WOLFSSL_MSG("SSL_OP_NO_COMPRESSION: compression not compiled in"); #endif } return old_op | op; } long wolfSSL_set_options(WOLFSSL* ssl, long op) { word16 haveRSA = 1; word16 havePSK = 0; int keySz = 0; WOLFSSL_ENTER("wolfSSL_set_options"); if (ssl == NULL) { return 0; } ssl->options.mask = wolf_set_options(ssl->options.mask, op); if ((ssl->options.mask & SSL_OP_NO_TLSv1_3) == SSL_OP_NO_TLSv1_3) { if (ssl->version.minor == TLSv1_3_MINOR) ssl->version.minor = TLSv1_2_MINOR; } if ((ssl->options.mask & SSL_OP_NO_TLSv1_2) == SSL_OP_NO_TLSv1_2) { if (ssl->version.minor == TLSv1_2_MINOR) ssl->version.minor = TLSv1_1_MINOR; } if ((ssl->options.mask & SSL_OP_NO_TLSv1_1) == SSL_OP_NO_TLSv1_1) { if (ssl->version.minor == TLSv1_1_MINOR) ssl->version.minor = TLSv1_MINOR; } if ((ssl->options.mask & SSL_OP_NO_TLSv1) == SSL_OP_NO_TLSv1) { if (ssl->version.minor == TLSv1_MINOR) ssl->version.minor = SSLv3_MINOR; } if ((ssl->options.mask & SSL_OP_NO_COMPRESSION) == SSL_OP_NO_COMPRESSION) { #ifdef HAVE_LIBZ ssl->options.usingCompression = 0; #endif } /* in the case of a version change the cipher suites should be reset */ #ifndef NO_PSK havePSK = ssl->options.havePSK; #endif #ifdef NO_RSA haveRSA = 0; #endif #ifndef NO_CERTS keySz = ssl->buffers.keySz; #endif InitSuites(ssl->suites, ssl->version, keySz, haveRSA, havePSK, ssl->options.haveDH, ssl->options.haveNTRU, ssl->options.haveECDSAsig, ssl->options.haveECC, ssl->options.haveStaticECC, ssl->options.side); return ssl->options.mask; } long wolfSSL_get_options(const WOLFSSL* ssl) { WOLFSSL_ENTER("wolfSSL_get_options"); if(ssl == NULL) return WOLFSSL_FAILURE; return ssl->options.mask; } long wolfSSL_clear_options(WOLFSSL* ssl, long opt) { WOLFSSL_ENTER("SSL_clear_options"); if(ssl == NULL) return WOLFSSL_FAILURE; ssl->options.mask &= ~opt; return ssl->options.mask; } /*** TBD ***/ #ifndef NO_WOLFSSL_STUB WOLFSSL_API long wolfSSL_clear_num_renegotiations(WOLFSSL *s) { (void)s; WOLFSSL_STUB("SSL_clear_num_renegotiations"); return 0; } #endif /*** TBD ***/ #ifndef NO_WOLFSSL_STUB WOLFSSL_API long wolfSSL_total_renegotiations(WOLFSSL *s) { (void)s; WOLFSSL_STUB("SSL_total_renegotiations"); return 0; } #endif #ifndef NO_DH long wolfSSL_set_tmp_dh(WOLFSSL *ssl, WOLFSSL_DH *dh) { int pSz, gSz; byte *p, *g; int ret = 0; WOLFSSL_ENTER("wolfSSL_set_tmp_dh"); if (!ssl || !dh) return BAD_FUNC_ARG; /* Get needed size for p and g */ pSz = wolfSSL_BN_bn2bin(dh->p, NULL); gSz = wolfSSL_BN_bn2bin(dh->g, NULL); if (pSz <= 0 || gSz <= 0) return WOLFSSL_FATAL_ERROR; p = (byte*)XMALLOC(pSz, ssl->heap, DYNAMIC_TYPE_PUBLIC_KEY); if (!p) return MEMORY_E; g = (byte*)XMALLOC(gSz, ssl->heap, DYNAMIC_TYPE_PUBLIC_KEY); if (!g) { XFREE(p, ssl->heap, DYNAMIC_TYPE_PUBLIC_KEY); return MEMORY_E; } pSz = wolfSSL_BN_bn2bin(dh->p, p); gSz = wolfSSL_BN_bn2bin(dh->g, g); if (pSz >= 0 && gSz >= 0) /* Conversion successful */ ret = wolfSSL_SetTmpDH(ssl, p, pSz, g, gSz); XFREE(p, ssl->heap, DYNAMIC_TYPE_PUBLIC_KEY); XFREE(g, ssl->heap, DYNAMIC_TYPE_PUBLIC_KEY); return pSz > 0 && gSz > 0 ? ret : WOLFSSL_FATAL_ERROR; } #endif /* !NO_DH */ #ifdef HAVE_PK_CALLBACKS long wolfSSL_set_tlsext_debug_arg(WOLFSSL* ssl, void *arg) { if (ssl == NULL) { return WOLFSSL_FAILURE; } ssl->loggingCtx = arg; return WOLFSSL_SUCCESS; } #endif /* HAVE_PK_CALLBACKS */ #if defined(OPENSSL_ALL) || defined(WOLFSSL_HAPROXY) const unsigned char *SSL_SESSION_get0_id_context(const SSL_SESSION *sess, unsigned int *sid_ctx_length) { const byte *c = wolfSSL_SESSION_get_id((SSL_SESSION *)sess, sid_ctx_length); return c; } #endif /*** TBD ***/ #ifndef NO_WOLFSSL_STUB WOLFSSL_API int wolfSSL_sk_SSL_COMP_zero(WOLFSSL_STACK* st) { (void)st; WOLFSSL_STUB("wolfSSL_sk_SSL_COMP_zero"); /* wolfSSL_set_options(ssl, SSL_OP_NO_COMPRESSION); */ return WOLFSSL_FAILURE; } #endif #ifdef HAVE_CERTIFICATE_STATUS_REQUEST long wolfSSL_set_tlsext_status_type(WOLFSSL *s, int type) { WOLFSSL_ENTER("wolfSSL_set_tlsext_status_type"); if (s == NULL){ return BAD_FUNC_ARG; } if (type == TLSEXT_STATUSTYPE_ocsp){ int r = 0; r = TLSX_UseCertificateStatusRequest(&s->extensions, type, 0, s, s->heap, s->devId); return (long)r; } else { WOLFSSL_MSG( "SSL_set_tlsext_status_type only supports TLSEXT_STATUSTYPE_ocsp type."); return SSL_FAILURE; } } #endif /* HAVE_CERTIFICATE_STATUS_REQUEST */ #ifndef NO_WOLFSSL_STUB WOLFSSL_API long wolfSSL_get_tlsext_status_exts(WOLFSSL *s, void *arg) { (void)s; (void)arg; WOLFSSL_STUB("wolfSSL_get_tlsext_status_exts"); return WOLFSSL_FAILURE; } #endif /*** TBD ***/ #ifndef NO_WOLFSSL_STUB WOLFSSL_API long wolfSSL_set_tlsext_status_exts(WOLFSSL *s, void *arg) { (void)s; (void)arg; WOLFSSL_STUB("wolfSSL_set_tlsext_status_exts"); return WOLFSSL_FAILURE; } #endif /*** TBD ***/ #ifndef NO_WOLFSSL_STUB WOLFSSL_API long wolfSSL_get_tlsext_status_ids(WOLFSSL *s, void *arg) { (void)s; (void)arg; WOLFSSL_STUB("wolfSSL_get_tlsext_status_ids"); return WOLFSSL_FAILURE; } #endif /*** TBD ***/ #ifndef NO_WOLFSSL_STUB WOLFSSL_API long wolfSSL_set_tlsext_status_ids(WOLFSSL *s, void *arg) { (void)s; (void)arg; WOLFSSL_STUB("wolfSSL_set_tlsext_status_ids"); return WOLFSSL_FAILURE; } #endif /*** TBD ***/ #ifndef NO_WOLFSSL_STUB WOLFSSL_API int SSL_SESSION_set1_id(WOLFSSL_SESSION *s, const unsigned char *sid, unsigned int sid_len) { (void)s; (void)sid; (void)sid_len; WOLFSSL_STUB("SSL_SESSION_set1_id"); return WOLFSSL_FAILURE; } #endif #ifndef NO_WOLFSSL_STUB /*** TBD ***/ WOLFSSL_API int SSL_SESSION_set1_id_context(WOLFSSL_SESSION *s, const unsigned char *sid_ctx, unsigned int sid_ctx_len) { (void)s; (void)sid_ctx; (void)sid_ctx_len; WOLFSSL_STUB("SSL_SESSION_set1_id_context"); return WOLFSSL_FAILURE; } #endif #ifndef NO_WOLFSSL_STUB /*** TBD ***/ WOLFSSL_API void *X509_get0_tbs_sigalg(const WOLFSSL_X509 *x) { (void)x; WOLFSSL_STUB("X509_get0_tbs_sigalg"); return NULL; } #endif #ifndef NO_WOLFSSL_STUB /*** TBD ***/ WOLFSSL_API void X509_ALGOR_get0(WOLFSSL_ASN1_OBJECT **paobj, int *pptype, const void **ppval, const void *algor) { (void)paobj; (void)pptype; (void)ppval; (void)algor; WOLFSSL_STUB("X509_ALGOR_get0"); } #endif #ifndef NO_WOLFSSL_STUB /*** TBD ***/ WOLFSSL_API void *X509_get_X509_PUBKEY(void * x) { (void)x; WOLFSSL_STUB("X509_get_X509_PUBKEY"); return NULL; } #endif #ifndef NO_WOLFSSL_STUB /*** TBD ***/ WOLFSSL_API int X509_PUBKEY_get0_param(WOLFSSL_ASN1_OBJECT **ppkalg, const unsigned char **pk, int *ppklen, void **pa, WOLFSSL_EVP_PKEY *pub) { (void)ppkalg; (void)pk; (void)ppklen; (void)pa; (void)pub; WOLFSSL_STUB("X509_PUBKEY_get0_param"); return WOLFSSL_FAILURE; } #endif #ifndef NO_WOLFSSL_STUB /*** TBD ***/ WOLFSSL_API WOLFSSL_EVP_PKEY *wolfSSL_get_privatekey(const WOLFSSL *ssl) { (void)ssl; WOLFSSL_STUB("SSL_get_privatekey"); return NULL; } #endif #ifndef NO_WOLFSSL_STUB /*** TBD ***/ WOLFSSL_API int i2t_ASN1_OBJECT(char *buf, int buf_len, WOLFSSL_ASN1_OBJECT *a) { (void)buf; (void)buf_len; (void)a; WOLFSSL_STUB("i2t_ASN1_OBJECT"); return -1; } #endif #if defined(OPENSSL_ALL) || defined(WOLFSSL_HAPROXY) #ifndef NO_WOLFSSL_STUB /*** TBD ***/ WOLFSSL_API size_t SSL_get_finished(const WOLFSSL *s, void *buf, size_t count) { (void)s; (void)buf; (void)count; WOLFSSL_STUB("SSL_get_finished"); return WOLFSSL_FAILURE; } #endif #ifndef NO_WOLFSSL_STUB /*** TBD ***/ WOLFSSL_API size_t SSL_get_peer_finished(const WOLFSSL *s, void *buf, size_t count) { (void)s; (void)buf; (void)count; WOLFSSL_STUB("SSL_get_peer_finished"); return WOLFSSL_FAILURE; } #endif #endif /* WOLFSSL_HAPROXY */ #ifndef NO_WOLFSSL_STUB /*** TBD ***/ WOLFSSL_API void SSL_CTX_set_tmp_dh_callback(WOLFSSL_CTX *ctx, WOLFSSL_DH *(*dh) (WOLFSSL *ssl, int is_export, int keylength)) { (void)ctx; (void)dh; WOLFSSL_STUB("SSL_CTX_set_tmp_dh_callback"); } #endif #ifndef NO_WOLFSSL_STUB /*** TBD ***/ WOLFSSL_API WOLF_STACK_OF(SSL_COMP) *SSL_COMP_get_compression_methods(void) { WOLFSSL_STUB("SSL_COMP_get_compression_methods"); return NULL; } #endif #ifndef NO_WOLFSSL_STUB /*** TBD ***/ WOLFSSL_API int wolfSSL_sk_SSL_CIPHER_num(const void * p) { (void)p; WOLFSSL_STUB("wolfSSL_sk_SSL_CIPHER_num"); return -1; } #endif #if !defined(NO_FILESYSTEM) #ifndef NO_WOLFSSL_STUB /*** TBD ***/ WOLFSSL_API WOLFSSL_X509 *wolfSSL_PEM_read_X509(FILE *fp, WOLFSSL_X509 **x, pem_password_cb *cb, void *u) { (void)fp; (void)x; (void)cb; (void)u; WOLFSSL_STUB("PEM_read_X509"); return NULL; } #endif #ifndef NO_WOLFSSL_STUB /*** TBD ***/ WOLFSSL_API WOLFSSL_EVP_PKEY *wolfSSL_PEM_read_PrivateKey(FILE *fp, WOLFSSL_EVP_PKEY **x, pem_password_cb *cb, void *u) { (void)fp; (void)x; (void)cb; (void)u; WOLFSSL_STUB("PEM_read_PrivateKey"); return NULL; } #endif #endif #ifndef NO_WOLFSSL_STUB /*** TBD ***/ WOLFSSL_API int X509_STORE_load_locations(WOLFSSL_X509_STORE *ctx, const char *file, const char *dir) { (void)ctx; (void)file; (void)dir; WOLFSSL_STUB("X509_STORE_load_locations"); return WOLFSSL_FAILURE; } #endif #ifndef NO_WOLFSSL_STUB /*** TBD ***/ WOLFSSL_API WOLFSSL_CIPHER* wolfSSL_sk_SSL_CIPHER_value(void *ciphers, int idx) { (void)ciphers; (void)idx; WOLFSSL_STUB("wolfSSL_sk_SSL_CIPHER_value"); return NULL; } #endif WOLFSSL_API void ERR_load_SSL_strings(void) { } #ifdef HAVE_OCSP WOLFSSL_API long wolfSSL_get_tlsext_status_ocsp_resp(WOLFSSL *s, unsigned char **resp) { if (s == NULL || resp == NULL) return 0; *resp = s->ocspResp; return s->ocspRespSz; } WOLFSSL_API long wolfSSL_set_tlsext_status_ocsp_resp(WOLFSSL *s, unsigned char *resp, int len) { if (s == NULL) return WOLFSSL_FAILURE; s->ocspResp = resp; s->ocspRespSz = len; return WOLFSSL_SUCCESS; } #endif /* HAVE_OCSP */ long wolfSSL_get_verify_result(const WOLFSSL *ssl) { if (ssl == NULL) { return WOLFSSL_FAILURE; } return ssl->peerVerifyRet; } #ifndef NO_WOLFSSL_STUB /* shows the number of accepts attempted by CTX in it's lifetime */ long wolfSSL_CTX_sess_accept(WOLFSSL_CTX* ctx) { WOLFSSL_STUB("wolfSSL_CTX_sess_accept"); (void)ctx; return 0; } #endif #ifndef NO_WOLFSSL_STUB /* shows the number of connects attempted CTX in it's lifetime */ long wolfSSL_CTX_sess_connect(WOLFSSL_CTX* ctx) { WOLFSSL_STUB("wolfSSL_CTX_sess_connect"); (void)ctx; return 0; } #endif #ifndef NO_WOLFSSL_STUB /* shows the number of accepts completed by CTX in it's lifetime */ long wolfSSL_CTX_sess_accept_good(WOLFSSL_CTX* ctx) { WOLFSSL_STUB("wolfSSL_CTX_sess_accept_good"); (void)ctx; return 0; } #endif #ifndef NO_WOLFSSL_STUB /* shows the number of connects completed by CTX in it's lifetime */ long wolfSSL_CTX_sess_connect_good(WOLFSSL_CTX* ctx) { WOLFSSL_STUB("wolfSSL_CTX_sess_connect_good"); (void)ctx; return 0; } #endif #ifndef NO_WOLFSSL_STUB /* shows the number of renegotiation accepts attempted by CTX */ long wolfSSL_CTX_sess_accept_renegotiate(WOLFSSL_CTX* ctx) { WOLFSSL_STUB("wolfSSL_CTX_sess_accept_renegotiate"); (void)ctx; return 0; } #endif #ifndef NO_WOLFSSL_STUB /* shows the number of renegotiation accepts attempted by CTX */ long wolfSSL_CTX_sess_connect_renegotiate(WOLFSSL_CTX* ctx) { WOLFSSL_STUB("wolfSSL_CTX_sess_connect_renegotiate"); (void)ctx; return 0; } #endif #ifndef NO_WOLFSSL_STUB long wolfSSL_CTX_sess_hits(WOLFSSL_CTX* ctx) { WOLFSSL_STUB("wolfSSL_CTX_sess_hits"); (void)ctx; return 0; } #endif #ifndef NO_WOLFSSL_STUB long wolfSSL_CTX_sess_cb_hits(WOLFSSL_CTX* ctx) { WOLFSSL_STUB("wolfSSL_CTX_sess_cb_hits"); (void)ctx; return 0; } #endif #ifndef NO_WOLFSSL_STUB long wolfSSL_CTX_sess_cache_full(WOLFSSL_CTX* ctx) { WOLFSSL_STUB("wolfSSL_CTX_sess_cache_full"); (void)ctx; return 0; } #endif #ifndef NO_WOLFSSL_STUB long wolfSSL_CTX_sess_misses(WOLFSSL_CTX* ctx) { WOLFSSL_STUB("wolfSSL_CTX_sess_misses"); (void)ctx; return 0; } #endif #ifndef NO_WOLFSSL_STUB long wolfSSL_CTX_sess_timeouts(WOLFSSL_CTX* ctx) { WOLFSSL_STUB("wolfSSL_CTX_sess_timeouts"); (void)ctx; return 0; } #endif /* Return the total number of sessions */ long wolfSSL_CTX_sess_number(WOLFSSL_CTX* ctx) { word32 total = 0; WOLFSSL_ENTER("wolfSSL_CTX_sess_number"); (void)ctx; #ifdef WOLFSSL_SESSION_STATS if (wolfSSL_get_session_stats(NULL, &total, NULL, NULL) != SSL_SUCCESS) { WOLFSSL_MSG("Error getting session stats"); } #else WOLFSSL_MSG("Please use macro WOLFSSL_SESSION_STATS for session stats"); #endif return (long)total; } #ifndef NO_CERTS long wolfSSL_CTX_add_extra_chain_cert(WOLFSSL_CTX* ctx, WOLFSSL_X509* x509) { byte* chain = NULL; long chainSz = 0; int derSz; const byte* der; int ret; int idx = 0; DerBuffer *derBuffer = NULL; WOLFSSL_ENTER("wolfSSL_CTX_add_extra_chain_cert"); if (ctx == NULL || x509 == NULL) { WOLFSSL_MSG("Bad Argument"); return WOLFSSL_FAILURE; } der = wolfSSL_X509_get_der(x509, &derSz); if (der == NULL || derSz <= 0) { WOLFSSL_MSG("Error getting X509 DER"); return WOLFSSL_FAILURE; } if (ctx->certificate == NULL) { /* Process buffer makes first certificate the leaf. */ ret = ProcessBuffer(ctx, der, derSz, WOLFSSL_FILETYPE_ASN1, CERT_TYPE, NULL, NULL, 1); if (ret != WOLFSSL_SUCCESS) { WOLFSSL_LEAVE("wolfSSL_CTX_add_extra_chain_cert", ret); return WOLFSSL_FAILURE; } } else { /* TODO: Do this elsewhere. */ ret = AllocDer(&derBuffer, derSz, CERT_TYPE, ctx->heap); if (ret != 0) { WOLFSSL_MSG("Memory Error"); return WOLFSSL_FAILURE; } XMEMCPY(derBuffer->buffer, der, derSz); ret = AddCA(ctx->cm, &derBuffer, WOLFSSL_USER_CA, !ctx->verifyNone); if (ret != WOLFSSL_SUCCESS) { WOLFSSL_LEAVE("wolfSSL_CTX_add_extra_chain_cert", ret); return WOLFSSL_FAILURE; } /* adding cert to existing chain */ if (ctx->certChain != NULL && ctx->certChain->length > 0) { chainSz += ctx->certChain->length; } chainSz += OPAQUE24_LEN + derSz; chain = (byte*)XMALLOC(chainSz, ctx->heap, DYNAMIC_TYPE_DER); if (chain == NULL) { WOLFSSL_MSG("Memory Error"); return WOLFSSL_FAILURE; } if (ctx->certChain != NULL && ctx->certChain->length > 0) { XMEMCPY(chain, ctx->certChain->buffer, ctx->certChain->length); idx = ctx->certChain->length; } c32to24(derSz, chain + idx); idx += OPAQUE24_LEN, XMEMCPY(chain + idx, der, derSz); idx += derSz; #ifdef WOLFSSL_TLS13 ctx->certChainCnt++; #endif FreeDer(&ctx->certChain); ret = AllocDer(&ctx->certChain, idx, CERT_TYPE, ctx->heap); if (ret == 0) { XMEMCPY(ctx->certChain->buffer, chain, idx); } } /* on success WOLFSSL_X509 memory is responsibility of ctx */ wolfSSL_X509_free(x509); if (chain != NULL) XFREE(chain, ctx->heap, DYNAMIC_TYPE_DER); return WOLFSSL_SUCCESS; } long wolfSSL_CTX_set_tlsext_status_arg(WOLFSSL_CTX* ctx, void* arg) { if (ctx == NULL || ctx->cm == NULL) { return WOLFSSL_FAILURE; } ctx->cm->ocspIOCtx = arg; return WOLFSSL_SUCCESS; } #endif /* NO_CERTS */ /* Get the session cache mode for CTX * * ctx WOLFSSL_CTX struct to get cache mode from * * Returns a bit mask that has the session cache mode */ WOLFSSL_API long wolfSSL_CTX_get_session_cache_mode(WOLFSSL_CTX* ctx) { long m = 0; WOLFSSL_ENTER("SSL_CTX_set_session_cache_mode"); if (ctx == NULL) { return m; } if (ctx->sessionCacheOff != 1) { m |= SSL_SESS_CACHE_SERVER; } if (ctx->sessionCacheFlushOff == 1) { m |= SSL_SESS_CACHE_NO_AUTO_CLEAR; } #ifdef HAVE_EXT_CACHE if (ctx->internalCacheOff == 1) { m |= SSL_SESS_CACHE_NO_INTERNAL_STORE; } #endif return m; } int wolfSSL_CTX_get_read_ahead(WOLFSSL_CTX* ctx) { if (ctx == NULL) { return WOLFSSL_FAILURE; } return ctx->readAhead; } int wolfSSL_CTX_set_read_ahead(WOLFSSL_CTX* ctx, int v) { if (ctx == NULL) { return WOLFSSL_FAILURE; } ctx->readAhead = (byte)v; return WOLFSSL_SUCCESS; } long wolfSSL_CTX_set_tlsext_opaque_prf_input_callback_arg(WOLFSSL_CTX* ctx, void* arg) { if (ctx == NULL) { return WOLFSSL_FAILURE; } ctx->userPRFArg = arg; return WOLFSSL_SUCCESS; } #ifndef NO_DES3 /* 0 on success */ int wolfSSL_DES_set_key(WOLFSSL_const_DES_cblock* myDes, WOLFSSL_DES_key_schedule* key) { #ifdef WOLFSSL_CHECK_DESKEY return wolfSSL_DES_set_key_checked(myDes, key); #else wolfSSL_DES_set_key_unchecked(myDes, key); return 0; #endif } /* return true in fail case (1) */ static int DES_check(word32 mask, word32 mask2, unsigned char* key) { word32 value[2]; /* sanity check on length made in wolfSSL_DES_set_key_checked */ value[0] = mask; value[1] = mask2; return (XMEMCMP(value, key, sizeof(value)) == 0)? 1: 0; } /* check that the key is odd parity and is not a weak key * returns -1 if parity is wrong, -2 if weak/null key and 0 on success */ int wolfSSL_DES_set_key_checked(WOLFSSL_const_DES_cblock* myDes, WOLFSSL_DES_key_schedule* key) { if (myDes == NULL || key == NULL) { WOLFSSL_MSG("Bad argument passed to wolfSSL_DES_set_key_checked"); return -2; } else { word32 i; word32 sz = sizeof(WOLFSSL_DES_key_schedule); /* sanity check before call to DES_check */ if (sz != (sizeof(word32) * 2)) { WOLFSSL_MSG("Unexpected WOLFSSL_DES_key_schedule size"); return -2; } /* check odd parity */ for (i = 0; i < sz; i++) { unsigned char c = *((unsigned char*)myDes + i); if (((c & 0x01) ^ ((c >> 1) & 0x01) ^ ((c >> 2) & 0x01) ^ ((c >> 3) & 0x01) ^ ((c >> 4) & 0x01) ^ ((c >> 5) & 0x01) ^ ((c >> 6) & 0x01) ^ ((c >> 7) & 0x01)) != 1) { WOLFSSL_MSG("Odd parity test fail"); return -1; } } if (wolfSSL_DES_is_weak_key(myDes) == 1) { WOLFSSL_MSG("Weak key found"); return -2; } /* passed tests, now copy over key */ XMEMCPY(key, myDes, sizeof(WOLFSSL_const_DES_cblock)); return 0; } } /* check is not weak. Weak key list from Nist "Recommendation for the Triple * Data Encryption Algorithm (TDEA) Block Cipher" * * returns 1 if is weak 0 if not */ int wolfSSL_DES_is_weak_key(WOLFSSL_const_DES_cblock* key) { word32 mask, mask2; WOLFSSL_ENTER("wolfSSL_DES_is_weak_key"); if (key == NULL) { WOLFSSL_MSG("NULL key passed in"); return 1; } mask = 0x01010101; mask2 = 0x01010101; if (DES_check(mask, mask2, *key)) { WOLFSSL_MSG("Weak key found"); return 1; } mask = 0xFEFEFEFE; mask2 = 0xFEFEFEFE; if (DES_check(mask, mask2, *key)) { WOLFSSL_MSG("Weak key found"); return 1; } mask = 0xE0E0E0E0; mask2 = 0xF1F1F1F1; if (DES_check(mask, mask2, *key)) { WOLFSSL_MSG("Weak key found"); return 1; } mask = 0x1F1F1F1F; mask2 = 0x0E0E0E0E; if (DES_check(mask, mask2, *key)) { WOLFSSL_MSG("Weak key found"); return 1; } /* semi-weak *key check (list from same Nist paper) */ mask = 0x011F011F; mask2 = 0x010E010E; if (DES_check(mask, mask2, *key) || DES_check(ByteReverseWord32(mask), ByteReverseWord32(mask2), *key)) { WOLFSSL_MSG("Weak key found"); return 1; } mask = 0x01E001E0; mask2 = 0x01F101F1; if (DES_check(mask, mask2, *key) || DES_check(ByteReverseWord32(mask), ByteReverseWord32(mask2), *key)) { WOLFSSL_MSG("Weak key found"); return 1; } mask = 0x01FE01FE; mask2 = 0x01FE01FE; if (DES_check(mask, mask2, *key) || DES_check(ByteReverseWord32(mask), ByteReverseWord32(mask2), *key)) { WOLFSSL_MSG("Weak key found"); return 1; } mask = 0x1FE01FE0; mask2 = 0x0EF10EF1; if (DES_check(mask, mask2, *key) || DES_check(ByteReverseWord32(mask), ByteReverseWord32(mask2), *key)) { WOLFSSL_MSG("Weak key found"); return 1; } mask = 0x1FFE1FFE; mask2 = 0x0EFE0EFE; if (DES_check(mask, mask2, *key) || DES_check(ByteReverseWord32(mask), ByteReverseWord32(mask2), *key)) { WOLFSSL_MSG("Weak key found"); return 1; } return 0; } void wolfSSL_DES_set_key_unchecked(WOLFSSL_const_DES_cblock* myDes, WOLFSSL_DES_key_schedule* key) { if (myDes != NULL && key != NULL) { XMEMCPY(key, myDes, sizeof(WOLFSSL_const_DES_cblock)); } } /* Sets the parity of the DES key for use */ void wolfSSL_DES_set_odd_parity(WOLFSSL_DES_cblock* myDes) { word32 i; word32 sz = sizeof(WOLFSSL_DES_cblock); WOLFSSL_ENTER("wolfSSL_DES_set_odd_parity"); for (i = 0; i < sz; i++) { unsigned char c = *((unsigned char*)myDes + i); if (( ((c >> 1) & 0x01) ^ ((c >> 2) & 0x01) ^ ((c >> 3) & 0x01) ^ ((c >> 4) & 0x01) ^ ((c >> 5) & 0x01) ^ ((c >> 6) & 0x01) ^ ((c >> 7) & 0x01)) != 1) { WOLFSSL_MSG("Setting odd parity bit"); *((unsigned char*)myDes + i) = *((unsigned char*)myDes + i) | 0x01; } } } #ifdef WOLFSSL_DES_ECB /* Encrpyt or decrypt input message desa with key and get output in desb. * if enc is DES_ENCRYPT,input message is encrypted or * if enc is DES_DECRYPT,input message is decrypted. * */ void wolfSSL_DES_ecb_encrypt(WOLFSSL_DES_cblock* desa, WOLFSSL_DES_cblock* desb, WOLFSSL_DES_key_schedule* key, int enc) { Des myDes; WOLFSSL_ENTER("wolfSSL_DES_ecb_encrypt"); if (desa == NULL || key == NULL || desb == NULL || (enc != DES_ENCRYPT && enc != DES_DECRYPT)) { WOLFSSL_MSG("Bad argument passed to wolfSSL_DES_ecb_encrypt"); } else { if (wc_Des_SetKey(&myDes, (const byte*) key, (const byte*) NULL, !enc) != 0) { WOLFSSL_MSG("wc_Des_SetKey return error."); return; } if (enc){ if (wc_Des_EcbEncrypt(&myDes, (byte*) desb, (const byte*) desa, sizeof(WOLFSSL_DES_cblock)) != 0){ WOLFSSL_MSG("wc_Des_EcbEncrpyt return error."); } } else { if (wc_Des_EcbDecrypt(&myDes, (byte*) desb, (const byte*) desa, sizeof(WOLFSSL_DES_cblock)) != 0){ WOLFSSL_MSG("wc_Des_EcbDecrpyt return error."); } } } } #endif #endif /* NO_DES3 */ #ifndef NO_RC4 /* Set the key state for Arc4 structure. * * key Arc4 structure to use * len length of data buffer * data initial state to set Arc4 structure */ void wolfSSL_RC4_set_key(WOLFSSL_RC4_KEY* key, int len, const unsigned char* data) { typedef char rc4_test[sizeof(WOLFSSL_RC4_KEY) >= sizeof(Arc4) ? 1 : -1]; (void)sizeof(rc4_test); WOLFSSL_ENTER("wolfSSL_RC4_set_key"); if (key == NULL || len < 0) { WOLFSSL_MSG("bad argument passed in"); return; } XMEMSET(key, 0, sizeof(WOLFSSL_RC4_KEY)); wc_Arc4SetKey((Arc4*)key, data, (word32)len); } /* Encrypt/decrypt with Arc4 structure. * * len length of buffer to encrypt/decrypt (in/out) * in buffer to encrypt/decrypt * out results of encryption/decryption */ void wolfSSL_RC4(WOLFSSL_RC4_KEY* key, size_t len, const unsigned char* in, unsigned char* out) { WOLFSSL_ENTER("wolfSSL_RC4"); if (key == NULL || in == NULL || out == NULL) { WOLFSSL_MSG("Bad argument passed in"); return; } wc_Arc4Process((Arc4*)key, out, in, (word32)len); } #endif /* NO_RC4 */ #ifndef NO_AES #ifdef WOLFSSL_AES_DIRECT /* AES encrypt direct, it is expected to be blocks of AES_BLOCK_SIZE for input. * * input Data to encrypt * output Encrypted data after done * key AES key to use for encryption */ void wolfSSL_AES_encrypt(const unsigned char* input, unsigned char* output, AES_KEY *key) { WOLFSSL_ENTER("wolfSSL_AES_encrypt"); if (input == NULL || output == NULL || key == NULL) { WOLFSSL_MSG("Null argument passed in"); return; } wc_AesEncryptDirect((Aes*)key, output, input); } /* AES decrypt direct, it is expected to be blocks of AES_BLOCK_SIZE for input. * * input Data to decrypt * output Decrypted data after done * key AES key to use for encryption */ void wolfSSL_AES_decrypt(const unsigned char* input, unsigned char* output, AES_KEY *key) { WOLFSSL_ENTER("wolfSSL_AES_decrypt"); if (input == NULL || output == NULL || key == NULL) { WOLFSSL_MSG("Null argument passed in"); return; } wc_AesDecryptDirect((Aes*)key, output, input); } #endif /* WOLFSSL_AES_DIRECT */ /* Setup of an AES key to use for encryption. * * key key in bytes to use for encryption * bits size of key in bits * aes AES structure to initialize */ int wolfSSL_AES_set_encrypt_key(const unsigned char *key, const int bits, AES_KEY *aes) { typedef char aes_test[sizeof(AES_KEY) >= sizeof(Aes) ? 1 : -1]; (void)sizeof(aes_test); WOLFSSL_ENTER("wolfSSL_AES_set_encrypt_key"); if (key == NULL || aes == NULL) { WOLFSSL_MSG("Null argument passed in"); return -1; } XMEMSET(aes, 0, sizeof(AES_KEY)); if (wc_AesSetKey((Aes*)aes, key, ((bits)/8), NULL, AES_ENCRYPTION) != 0) { WOLFSSL_MSG("Error in setting AES key"); return -1; } return 0; } /* Setup of an AES key to use for decryption. * * key key in bytes to use for decryption * bits size of key in bits * aes AES structure to initialize */ int wolfSSL_AES_set_decrypt_key(const unsigned char *key, const int bits, AES_KEY *aes) { typedef char aes_test[sizeof(AES_KEY) >= sizeof(Aes) ? 1 : -1]; (void)sizeof(aes_test); WOLFSSL_ENTER("wolfSSL_AES_set_decrypt_key"); if (key == NULL || aes == NULL) { WOLFSSL_MSG("Null argument passed in"); return -1; } XMEMSET(aes, 0, sizeof(AES_KEY)); if (wc_AesSetKey((Aes*)aes, key, ((bits)/8), NULL, AES_DECRYPTION) != 0) { WOLFSSL_MSG("Error in setting AES key"); return -1; } return 0; } #ifdef HAVE_AES_ECB /* Encrypt/decrypt a 16 byte block of data using the key passed in. * * in buffer to encrypt/decyrpt * out buffer to hold result of encryption/decryption * key AES structure to use with encryption/decryption * enc AES_ENCRPT for encryption and AES_DECRYPT for decryption */ void wolfSSL_AES_ecb_encrypt(const unsigned char *in, unsigned char* out, AES_KEY *key, const int enc) { Aes* aes; WOLFSSL_ENTER("wolfSSL_AES_ecb_encrypt"); if (key == NULL || in == NULL || out == NULL) { WOLFSSL_MSG("Error, Null argument passed in"); return; } aes = (Aes*)key; if (enc == AES_ENCRYPT) { if (wc_AesEcbEncrypt(aes, out, in, AES_BLOCK_SIZE) != 0) { WOLFSSL_MSG("Error with AES CBC encrypt"); } } else { #ifdef HAVE_AES_DECRYPT if (wc_AesEcbDecrypt(aes, out, in, AES_BLOCK_SIZE) != 0) { WOLFSSL_MSG("Error with AES CBC decrypt"); } #else WOLFSSL_MSG("AES decryption not compiled in"); #endif } } #endif /* HAVE_AES_ECB */ /* Encrypt data using key and iv passed in. iv gets updated to most recent iv * state after encryptiond/decryption. * * in buffer to encrypt/decyrpt * out buffer to hold result of encryption/decryption * len length of input buffer * key AES structure to use with encryption/decryption * iv iv to use with operation * enc AES_ENCRPT for encryption and AES_DECRYPT for decryption */ void wolfSSL_AES_cbc_encrypt(const unsigned char *in, unsigned char* out, size_t len, AES_KEY *key, unsigned char* iv, const int enc) { Aes* aes; WOLFSSL_ENTER("wolfSSL_AES_cbc_encrypt"); if (key == NULL || in == NULL || out == NULL || iv == NULL) { WOLFSSL_MSG("Error, Null argument passed in"); return; } aes = (Aes*)key; if (wc_AesSetIV(aes, (const byte*)iv) != 0) { WOLFSSL_MSG("Error with setting iv"); return; } if (enc == AES_ENCRYPT) { if (wc_AesCbcEncrypt(aes, out, in, (word32)len) != 0) { WOLFSSL_MSG("Error with AES CBC encrypt"); } } else { if (wc_AesCbcDecrypt(aes, out, in, (word32)len) != 0) { WOLFSSL_MSG("Error with AES CBC decrypt"); } } /* to be compatible copy iv to iv buffer after completing operation */ XMEMCPY(iv, (byte*)(aes->reg), AES_BLOCK_SIZE); } /* Encrypt data using CFB mode with key and iv passed in. iv gets updated to * most recent iv state after encryptiond/decryption. * * in buffer to encrypt/decyrpt * out buffer to hold result of encryption/decryption * len length of input buffer * key AES structure to use with encryption/decryption * iv iv to use with operation * num contains the amount of block used * enc AES_ENCRPT for encryption and AES_DECRYPT for decryption */ void wolfSSL_AES_cfb128_encrypt(const unsigned char *in, unsigned char* out, size_t len, AES_KEY *key, unsigned char* iv, int* num, const int enc) { #ifndef WOLFSSL_AES_CFB WOLFSSL_MSG("CFB mode not enabled please use macro WOLFSSL_AES_CFB"); (void)in; (void)out; (void)len; (void)key; (void)iv; (void)num; (void)enc; return; #else Aes* aes; WOLFSSL_ENTER("wolfSSL_AES_cbc_encrypt"); if (key == NULL || in == NULL || out == NULL || iv == NULL) { WOLFSSL_MSG("Error, Null argument passed in"); return; } aes = (Aes*)key; if (wc_AesSetIV(aes, (const byte*)iv) != 0) { WOLFSSL_MSG("Error with setting iv"); return; } if (enc == AES_ENCRYPT) { if (wc_AesCfbEncrypt(aes, out, in, (word32)len) != 0) { WOLFSSL_MSG("Error with AES CBC encrypt"); } } else { if (wc_AesCfbDecrypt(aes, out, in, (word32)len) != 0) { WOLFSSL_MSG("Error with AES CBC decrypt"); } } /* to be compatible copy iv to iv buffer after completing operation */ XMEMCPY(iv, (byte*)(aes->reg), AES_BLOCK_SIZE); /* store number of left over bytes to num */ *num = (aes->left)? AES_BLOCK_SIZE - aes->left : 0; #endif /* WOLFSSL_AES_CFB */ } #endif /* NO_AES */ #ifndef NO_WOLFSSL_STUB int wolfSSL_BIO_printf(WOLFSSL_BIO* bio, const char* format, ...) { (void)bio; (void)format; WOLFSSL_STUB("BIO_printf"); return 0; } #endif #ifndef NO_WOLFSSL_STUB int wolfSSL_ASN1_UTCTIME_print(WOLFSSL_BIO* bio, const WOLFSSL_ASN1_UTCTIME* a) { (void)bio; (void)a; WOLFSSL_STUB("ASN1_UTCTIME_print"); return 0; } #endif /* Return the month as a string. * * n The number of the month as a two characters (1 based). * returns the month as a string. */ static WC_INLINE const char* MonthStr(const char* n) { static const char monthStr[12][4] = { "Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec" }; return monthStr[(n[0] - '0') * 10 + (n[1] - '0') - 1]; } int wolfSSL_ASN1_GENERALIZEDTIME_print(WOLFSSL_BIO* bio, const WOLFSSL_ASN1_GENERALIZEDTIME* asnTime) { const char* p = (const char *)(asnTime->data + 2); WOLFSSL_ENTER("wolfSSL_ASN1_GENERALIZEDTIME_print"); if (bio == NULL || asnTime == NULL) return BAD_FUNC_ARG; /* GetTimeString not always available. */ wolfSSL_BIO_write(bio, MonthStr(p + 4), 3); wolfSSL_BIO_write(bio, " ", 1); /* Day */ wolfSSL_BIO_write(bio, p + 6, 2); wolfSSL_BIO_write(bio, " ", 1); /* Hour */ wolfSSL_BIO_write(bio, p + 8, 2); wolfSSL_BIO_write(bio, ":", 1); /* Min */ wolfSSL_BIO_write(bio, p + 10, 2); wolfSSL_BIO_write(bio, ":", 1); /* Secs */ wolfSSL_BIO_write(bio, p + 12, 2); wolfSSL_BIO_write(bio, " ", 1); wolfSSL_BIO_write(bio, p, 4); return 0; } void wolfSSL_ASN1_GENERALIZEDTIME_free(WOLFSSL_ASN1_TIME* asn1Time) { WOLFSSL_ENTER("wolfSSL_ASN1_GENERALIZEDTIME_free"); if (asn1Time == NULL) return; XMEMSET(asn1Time->data, 0, sizeof(asn1Time->data)); } int wolfSSL_sk_num(WOLF_STACK_OF(WOLFSSL_ASN1_OBJECT)* sk) { if (sk == NULL) return 0; return (int)sk->num; } void* wolfSSL_sk_value(WOLF_STACK_OF(WOLFSSL_ASN1_OBJECT)* sk, int i) { for (; sk != NULL && i > 0; i--) sk = sk->next; if (sk == NULL) return NULL; return (void*)sk->data.obj; } #endif /* OPENSSL_EXTRA */ #if defined(OPENSSL_EXTRA) || defined(HAVE_EXT_CACHE) /* stunnel 4.28 needs */ void wolfSSL_CTX_sess_set_get_cb(WOLFSSL_CTX* ctx, WOLFSSL_SESSION*(*f)(WOLFSSL*, unsigned char*, int, int*)) { #ifdef HAVE_EXT_CACHE ctx->get_sess_cb = f; #else (void)ctx; (void)f; #endif } void wolfSSL_CTX_sess_set_new_cb(WOLFSSL_CTX* ctx, int (*f)(WOLFSSL*, WOLFSSL_SESSION*)) { #ifdef HAVE_EXT_CACHE ctx->new_sess_cb = f; #else (void)ctx; (void)f; #endif } void wolfSSL_CTX_sess_set_remove_cb(WOLFSSL_CTX* ctx, void (*f)(WOLFSSL_CTX*, WOLFSSL_SESSION*)) { #ifdef HAVE_EXT_CACHE ctx->rem_sess_cb = f; #else (void)ctx; (void)f; #endif } #endif /* OPENSSL_EXTRA || HAVE_EXT_CACHE */ #ifdef OPENSSL_EXTRA /* * * Note: It is expected that the importing and exporting function have been * built with the same settings. For example if session tickets was * enabled with the wolfSSL library exporting a session then it is * expected to be turned on with the wolfSSL library importing the session. */ int wolfSSL_i2d_SSL_SESSION(WOLFSSL_SESSION* sess, unsigned char** p) { int size = 0; #ifdef HAVE_EXT_CACHE int idx = 0; #ifdef SESSION_CERTS int i; #endif unsigned char *data; if (sess == NULL) { return BAD_FUNC_ARG; } /* bornOn | timeout | sessionID len | sessionID | masterSecret | haveEMS */ size += OPAQUE32_LEN + OPAQUE32_LEN + OPAQUE8_LEN + sess->sessionIDSz + SECRET_LEN + OPAQUE8_LEN; #ifdef SESSION_CERTS /* Peer chain */ size += OPAQUE8_LEN; for (i = 0; i < sess->chain.count; i++) size += OPAQUE16_LEN + sess->chain.certs[i].length; /* Protocol version + cipher suite */ size += OPAQUE16_LEN + OPAQUE16_LEN; #endif #ifndef NO_CLIENT_CACHE /* ServerID len | ServerID */ size += OPAQUE16_LEN + sess->idLen; #endif #ifdef HAVE_SESSION_TICKET /* ticket len | ticket */ size += OPAQUE16_LEN + sess->ticketLen; #endif #ifdef OPENSSL_EXTRA /* session context ID len | session context ID */ size += OPAQUE8_LEN + sess->sessionCtxSz; #endif if (p != NULL) { if (*p == NULL) *p = (unsigned char*)XMALLOC(size, NULL, DYNAMIC_TYPE_OPENSSL); if (*p == NULL) return 0; data = *p; c32toa(sess->bornOn, data + idx); idx += OPAQUE32_LEN; c32toa(sess->timeout, data + idx); idx += OPAQUE32_LEN; data[idx++] = sess->sessionIDSz; XMEMCPY(data + idx, sess->sessionID, sess->sessionIDSz); idx += sess->sessionIDSz; XMEMCPY(data + idx, sess->masterSecret, SECRET_LEN); idx += SECRET_LEN; data[idx++] = (byte)sess->haveEMS; #ifdef SESSION_CERTS data[idx++] = (byte)sess->chain.count; for (i = 0; i < sess->chain.count; i++) { c16toa((word16)sess->chain.certs[i].length, data + idx); idx += OPAQUE16_LEN; XMEMCPY(data + idx, sess->chain.certs[i].buffer, sess->chain.certs[i].length); idx += sess->chain.certs[i].length; } data[idx++] = sess->version.major; data[idx++] = sess->version.minor; data[idx++] = sess->cipherSuite0; data[idx++] = sess->cipherSuite; #endif #ifndef NO_CLIENT_CACHE c16toa(sess->idLen, data + idx); idx += OPAQUE16_LEN; XMEMCPY(data + idx, sess->serverID, sess->idLen); idx += sess->idLen; #endif #ifdef HAVE_SESSION_TICKET c16toa(sess->ticketLen, data + idx); idx += OPAQUE16_LEN; XMEMCPY(data + idx, sess->ticket, sess->ticketLen); idx += sess->ticketLen; #endif #ifdef OPENSSL_EXTRA data[idx++] = sess->sessionCtxSz; XMEMCPY(data + idx, sess->sessionCtx, sess->sessionCtxSz); idx += sess->sessionCtxSz; #endif } #endif (void)sess; (void)p; #ifdef HAVE_EXT_CACHE (void)idx; #endif return size; } /* TODO: no function to free new session. * * Note: It is expected that the importing and exporting function have been * built with the same settings. For example if session tickets was * enabled with the wolfSSL library exporting a session then it is * expected to be turned on with the wolfSSL library importing the session. */ WOLFSSL_SESSION* wolfSSL_d2i_SSL_SESSION(WOLFSSL_SESSION** sess, const unsigned char** p, long i) { WOLFSSL_SESSION* s = NULL; int ret = 0; #if defined(HAVE_EXT_CACHE) int idx; byte* data; #ifdef SESSION_CERTS int j; word16 length; #endif #endif (void)p; (void)i; (void)ret; if (sess != NULL) s = *sess; #ifdef HAVE_EXT_CACHE if (p == NULL || *p == NULL) return NULL; if (s == NULL) { s = (WOLFSSL_SESSION*)XMALLOC(sizeof(WOLFSSL_SESSION), NULL, DYNAMIC_TYPE_OPENSSL); if (s == NULL) return NULL; XMEMSET(s, 0, sizeof(WOLFSSL_SESSION)); s->isAlloced = 1; #ifdef HAVE_SESSION_TICKET s->isDynamic = 0; #endif } idx = 0; data = (byte*)*p; /* bornOn | timeout | sessionID len */ if (i < OPAQUE32_LEN + OPAQUE32_LEN + OPAQUE8_LEN) { ret = BUFFER_ERROR; goto end; } ato32(data + idx, &s->bornOn); idx += OPAQUE32_LEN; ato32(data + idx, &s->timeout); idx += OPAQUE32_LEN; s->sessionIDSz = data[idx++]; /* sessionID | secret | haveEMS */ if (i - idx < s->sessionIDSz + SECRET_LEN + OPAQUE8_LEN) { ret = BUFFER_ERROR; goto end; } XMEMCPY(s->sessionID, data + idx, s->sessionIDSz); idx += s->sessionIDSz; XMEMCPY(s->masterSecret, data + idx, SECRET_LEN); idx += SECRET_LEN; s->haveEMS = data[idx++]; #ifdef SESSION_CERTS /* Certificate chain */ if (i - idx == 0) { ret = BUFFER_ERROR; goto end; } s->chain.count = data[idx++]; for (j = 0; j < s->chain.count; j++) { if (i - idx < OPAQUE16_LEN) { ret = BUFFER_ERROR; goto end; } ato16(data + idx, &length); idx += OPAQUE16_LEN; s->chain.certs[j].length = length; if (i - idx < length) { ret = BUFFER_ERROR; goto end; } XMEMCPY(s->chain.certs[j].buffer, data + idx, length); idx += length; } /* Protocol Version | Cipher suite */ if (i - idx < OPAQUE16_LEN + OPAQUE16_LEN) { ret = BUFFER_ERROR; goto end; } s->version.major = data[idx++]; s->version.minor = data[idx++]; s->cipherSuite0 = data[idx++]; s->cipherSuite = data[idx++]; #endif #ifndef NO_CLIENT_CACHE /* ServerID len */ if (i - idx < OPAQUE16_LEN) { ret = BUFFER_ERROR; goto end; } ato16(data + idx, &s->idLen); idx += OPAQUE16_LEN; /* ServerID */ if (i - idx < s->idLen) { ret = BUFFER_ERROR; goto end; } XMEMCPY(s->serverID, data + idx, s->idLen); idx += s->idLen; #endif #ifdef HAVE_SESSION_TICKET /* ticket len */ if (i - idx < OPAQUE16_LEN) { ret = BUFFER_ERROR; goto end; } ato16(data + idx, &s->ticketLen); idx += OPAQUE16_LEN; /* Dispose of ol dynamic ticket and ensure space for new ticket. */ if (s->isDynamic) XFREE(s->ticket, NULL, DYNAMIC_TYPE_SESSION_TICK); if (s->ticketLen <= SESSION_TICKET_LEN) s->ticket = s->staticTicket; else { s->ticket = (byte*)XMALLOC(s->ticketLen, NULL, DYNAMIC_TYPE_SESSION_TICK); if (s->ticket == NULL) { ret = MEMORY_ERROR; goto end; } s->isDynamic = 1; } /* ticket */ if (i - idx < s->ticketLen) { ret = BUFFER_ERROR; goto end; } XMEMCPY(s->ticket, data + idx, s->ticketLen); idx += s->ticketLen; #endif #ifdef OPENSSL_EXTRA /* byte for length of session context ID */ if (i - idx < OPAQUE8_LEN) { ret = BUFFER_ERROR; goto end; } s->sessionCtxSz = data[idx++]; /* app session context ID */ if (i - idx < s->sessionCtxSz) { ret = BUFFER_ERROR; goto end; } XMEMCPY(s->sessionCtx, data + idx, s->sessionCtxSz); idx += s->sessionCtxSz; #endif (void)idx; if (sess != NULL) *sess = s; *p += idx; end: if (ret != 0 && (sess == NULL || *sess != s)) wolfSSL_SESSION_free(s); #endif return s; } long wolfSSL_SESSION_get_timeout(const WOLFSSL_SESSION* sess) { WOLFSSL_ENTER("wolfSSL_SESSION_get_timeout"); return sess->timeout; } long wolfSSL_SESSION_get_time(const WOLFSSL_SESSION* sess) { WOLFSSL_ENTER("wolfSSL_SESSION_get_time"); return sess->bornOn; } #endif /* OPENSSL_EXTRA */ #ifdef KEEP_PEER_CERT char* wolfSSL_X509_get_subjectCN(WOLFSSL_X509* x509) { if (x509 == NULL) return NULL; return x509->subjectCN; } #endif /* KEEP_PEER_CERT */ #ifdef OPENSSL_EXTRA #if defined(FORTRESS) && !defined(NO_FILESYSTEM) int wolfSSL_cmp_peer_cert_to_file(WOLFSSL* ssl, const char *fname) { int ret = WOLFSSL_FATAL_ERROR; WOLFSSL_ENTER("wolfSSL_cmp_peer_cert_to_file"); if (ssl != NULL && fname != NULL) { #ifdef WOLFSSL_SMALL_STACK byte staticBuffer[1]; /* force heap usage */ #else byte staticBuffer[FILE_BUFFER_SIZE]; #endif byte* myBuffer = staticBuffer; int dynamic = 0; XFILE file = XBADFILE; size_t sz = 0; WOLFSSL_CTX* ctx = ssl->ctx; WOLFSSL_X509* peer_cert = &ssl->peerCert; DerBuffer* fileDer = NULL; file = XFOPEN(fname, "rb"); if (file == XBADFILE) return WOLFSSL_BAD_FILE; XFSEEK(file, 0, XSEEK_END); sz = XFTELL(file); XREWIND(file); if (sz > (long)sizeof(staticBuffer)) { WOLFSSL_MSG("Getting dynamic buffer"); myBuffer = (byte*)XMALLOC(sz, ctx->heap, DYNAMIC_TYPE_FILE); dynamic = 1; } if ((myBuffer != NULL) && (sz > 0) && (XFREAD(myBuffer, 1, sz, file) == sz) && (PemToDer(myBuffer, (long)sz, CERT_TYPE, &fileDer, ctx->heap, NULL, NULL) == 0) && (fileDer->length != 0) && (fileDer->length == peer_cert->derCert->length) && (XMEMCMP(peer_cert->derCert->buffer, fileDer->buffer, fileDer->length) == 0)) { ret = 0; } FreeDer(&fileDer); if (dynamic) XFREE(myBuffer, ctx->heap, DYNAMIC_TYPE_FILE); XFCLOSE(file); } return ret; } #endif #endif /* OPENSSL_EXTRA */ #if defined(OPENSSL_EXTRA) || \ (defined(OPENSSL_EXTRA_X509_SMALL) && !defined(NO_RSA)) static WC_RNG globalRNG; static int initGlobalRNG = 0; #endif #ifdef OPENSSL_EXTRA /* Not thread safe! Can be called multiple times. * Checks if the global RNG has been created. If not then one is created. * * Returns SSL_SUCCESS when no error is encountered. */ static int wolfSSL_RAND_Init(void) { if (initGlobalRNG == 0) { if (wc_InitRng(&globalRNG) < 0) { WOLFSSL_MSG("wolfSSL Init Global RNG failed"); return 0; } initGlobalRNG = 1; } return SSL_SUCCESS; } /* SSL_SUCCESS on ok */ int wolfSSL_RAND_seed(const void* seed, int len) { WOLFSSL_MSG("wolfSSL_RAND_seed"); (void)seed; (void)len; return wolfSSL_RAND_Init(); } /* Returns the path for reading seed data from. * Uses the env variable $RANDFILE first if set, if not then used $HOME/.rnd * * Note uses stdlib by default unless XGETENV macro is overwritten * * fname buffer to hold path * len length of fname buffer * * Returns a pointer to fname on success and NULL on failure */ const char* wolfSSL_RAND_file_name(char* fname, unsigned long len) { #ifndef NO_FILESYSTEM char* rt; char ap[] = "/.rnd"; WOLFSSL_ENTER("wolfSSL_RAND_file_name"); if (fname == NULL) { return NULL; } XMEMSET(fname, 0, len); /* if access to stdlib.h */ if ((rt = XGETENV("RANDFILE")) != NULL) { if (len > XSTRLEN(rt)) { XMEMCPY(fname, rt, XSTRLEN(rt)); } else { WOLFSSL_MSG("RANDFILE too large for buffer"); rt = NULL; } } /* $RANDFILE was not set or is too large, check $HOME */ if (rt == NULL) { WOLFSSL_MSG("Environment variable RANDFILE not set"); if ((rt = XGETENV("HOME")) == NULL) { WOLFSSL_MSG("Environment variable HOME not set"); return NULL; } if (len > XSTRLEN(rt) + XSTRLEN(ap)) { fname[0] = '\0'; XSTRNCAT(fname, rt, len); XSTRNCAT(fname, ap, len - XSTRLEN(rt)); return fname; } else { WOLFSSL_MSG("HOME too large for buffer"); return NULL; } } return fname; #else /* no filesystem defined */ WOLFSSL_ENTER("wolfSSL_RAND_file_name"); WOLFSSL_MSG("No filesystem feature enabled, not compiled in"); (void)fname; (void)len; return NULL; #endif } /* Writes 1024 bytes from the RNG to the given file name. * * fname name of file to write to * * Returns the number of bytes writen */ int wolfSSL_RAND_write_file(const char* fname) { int bytes = 0; WOLFSSL_ENTER("RAND_write_file"); if (fname == NULL) { return SSL_FAILURE; } #ifndef NO_FILESYSTEM { #ifndef WOLFSSL_SMALL_STACK unsigned char buf[1024]; #else unsigned char* buf = (unsigned char *)XMALLOC(1024, NULL, DYNAMIC_TYPE_TMP_BUFFER); if (buf == NULL) { WOLFSSL_MSG("malloc failed"); return SSL_FAILURE; } #endif bytes = 1024; /* default size of buf */ if (initGlobalRNG == 0 && wolfSSL_RAND_Init() != SSL_SUCCESS) { WOLFSSL_MSG("No RNG to use"); #ifdef WOLFSSL_SMALL_STACK XFREE(buf, NULL, DYNAMIC_TYPE_TMP_BUFFER); #endif return 0; } if (wc_RNG_GenerateBlock(&globalRNG, buf, bytes) != 0) { WOLFSSL_MSG("Error generating random buffer"); bytes = 0; } else { XFILE f; f = XFOPEN(fname, "wb"); if (f == NULL) { WOLFSSL_MSG("Error opening the file"); bytes = 0; } else { XFWRITE(buf, 1, bytes, f); XFCLOSE(f); } } ForceZero(buf, bytes); #ifdef WOLFSSL_SMALL_STACK XFREE(buf, NULL, DYNAMIC_TYPE_TMP_BUFFER); #endif } #endif return bytes; } #ifndef FREERTOS_TCP /* These constant values are protocol values made by egd */ #if defined(USE_WOLFSSL_IO) && !defined(USE_WINDOWS_API) #define WOLFSSL_EGD_NBLOCK 0x01 #include <sys/un.h> #endif /* at compile time check for HASH DRBG and throw warning if not found */ #ifndef HAVE_HASHDRBG #warning HAVE_HASHDRBG is needed for wolfSSL_RAND_egd to seed #endif /* This collects entropy from the path nm and seeds the global PRNG with it. * Makes a call to wolfSSL_RAND_Init which is not thread safe. * * nm is the file path to the egd server * * Returns the number of bytes read. */ int wolfSSL_RAND_egd(const char* nm) { #if defined(USE_WOLFSSL_IO) && !defined(USE_WINDOWS_API) && !defined(HAVE_FIPS) struct sockaddr_un rem; int fd; int ret = WOLFSSL_SUCCESS; word32 bytes = 0; word32 idx = 0; #ifndef WOLFSSL_SMALL_STACK unsigned char buf[256]; #else unsigned char* buf; buf = (unsigned char*)XMALLOC(256, NULL, DYNAMIC_TYPE_TMP_BUFFER); if (buf == NULL) { WOLFSSL_MSG("Not enough memory"); return WOLFSSL_FATAL_ERROR; } #endif if (nm == NULL) { #ifdef WOLFSSL_SMALL_STACK XFREE(buf, NULL, DYNAMIC_TYPE_TMP_BUFFER); #endif return WOLFSSL_FATAL_ERROR; } fd = socket(AF_UNIX, SOCK_STREAM, 0); if (fd < 0) { WOLFSSL_MSG("Error creating socket"); #ifdef WOLFSSL_SMALL_STACK XFREE(buf, NULL, DYNAMIC_TYPE_TMP_BUFFER); #endif return WOLFSSL_FATAL_ERROR; } if (ret == WOLFSSL_SUCCESS) { rem.sun_family = AF_UNIX; XSTRNCPY(rem.sun_path, nm, sizeof(rem.sun_path)); rem.sun_path[sizeof(rem.sun_path)-1] = '\0'; } /* connect to egd server */ if (ret == WOLFSSL_SUCCESS) { if (connect(fd, (struct sockaddr*)&rem, sizeof(struct sockaddr_un)) == -1) { WOLFSSL_MSG("error connecting to egd server"); ret = WOLFSSL_FATAL_ERROR; } } while (ret == WOLFSSL_SUCCESS && bytes < 255 && idx + 2 < 256) { if (ret == WOLFSSL_SUCCESS) { buf[idx] = WOLFSSL_EGD_NBLOCK; buf[idx + 1] = 255 - bytes; /* request 255 bytes from server */ ret = (int)write(fd, buf + idx, 2); if (ret <= 0 || ret != 2) { if (errno == EAGAIN) { ret = WOLFSSL_SUCCESS; continue; } WOLFSSL_MSG("error requesting entropy from egd server"); ret = WOLFSSL_FATAL_ERROR; break; } } /* attempting to read */ buf[idx] = 0; ret = (int)read(fd, buf + idx, 256 - bytes); if (ret == 0) { WOLFSSL_MSG("error reading entropy from egd server"); ret = WOLFSSL_FATAL_ERROR; break; } if (ret > 0 && buf[idx] > 0) { bytes += buf[idx]; /* egd stores amount sent in first byte */ if (bytes + idx > 255 || buf[idx] > ret) { WOLFSSL_MSG("Buffer error"); ret = WOLFSSL_FATAL_ERROR; break; } XMEMMOVE(buf + idx, buf + idx + 1, buf[idx]); idx = bytes; ret = WOLFSSL_SUCCESS; if (bytes >= 255) { break; } } else { if (errno == EAGAIN || errno == EINTR) { WOLFSSL_MSG("EGD would read"); ret = WOLFSSL_SUCCESS; /* try again */ } else if (buf[idx] == 0) { /* if egd returned 0 then there is no more entropy to be had. Do not try more reads. */ ret = WOLFSSL_SUCCESS; break; } else { WOLFSSL_MSG("Error with read"); ret = WOLFSSL_FATAL_ERROR; } } } if (bytes > 0 && ret == WOLFSSL_SUCCESS) { wolfSSL_RAND_Init(); /* call to check global RNG is created */ if (wc_RNG_DRBG_Reseed(&globalRNG, (const byte*) buf, bytes) != 0) { WOLFSSL_MSG("Error with reseeding DRBG structure"); ret = WOLFSSL_FATAL_ERROR; } #ifdef SHOW_SECRETS { /* print out entropy found */ word32 i; printf("EGD Entropy = "); for (i = 0; i < bytes; i++) { printf("%02X", buf[i]); } printf("\n"); } #endif } ForceZero(buf, bytes); #ifdef WOLFSSL_SMALL_STACK XFREE(buf, NULL, DYNAMIC_TYPE_TMP_BUFFER); #endif close(fd); if (ret == WOLFSSL_SUCCESS) { return bytes; } else { return ret; } #else /* defined(USE_WOLFSSL_IO) && !defined(USE_WINDOWS_API) && !HAVE_FIPS */ WOLFSSL_MSG("Type of socket needed is not available"); WOLFSSL_MSG("\tor using FIPS mode where RNG API is not available"); (void)nm; return WOLFSSL_FATAL_ERROR; #endif /* defined(USE_WOLFSSL_IO) && !defined(USE_WINDOWS_API) */ } #endif /* !FREERTOS_TCP */ void wolfSSL_RAND_Cleanup(void) { WOLFSSL_ENTER("wolfSSL_RAND_Cleanup()"); if (initGlobalRNG != 0) { wc_FreeRng(&globalRNG); initGlobalRNG = 0; } } int wolfSSL_RAND_pseudo_bytes(unsigned char* buf, int num) { return wolfSSL_RAND_bytes(buf, num); } /* SSL_SUCCESS on ok */ int wolfSSL_RAND_bytes(unsigned char* buf, int num) { int ret = 0; int initTmpRng = 0; WC_RNG* rng = NULL; #ifdef WOLFSSL_SMALL_STACK WC_RNG* tmpRNG = NULL; #else WC_RNG tmpRNG[1]; #endif WOLFSSL_ENTER("wolfSSL_RAND_bytes"); #ifdef WOLFSSL_SMALL_STACK tmpRNG = (WC_RNG*)XMALLOC(sizeof(WC_RNG), NULL, DYNAMIC_TYPE_RNG); if (tmpRNG == NULL) return ret; #endif if (wc_InitRng(tmpRNG) == 0) { rng = tmpRNG; initTmpRng = 1; } else if (initGlobalRNG) rng = &globalRNG; if (rng) { if (wc_RNG_GenerateBlock(rng, buf, num) != 0) WOLFSSL_MSG("Bad wc_RNG_GenerateBlock"); else ret = WOLFSSL_SUCCESS; } if (initTmpRng) wc_FreeRng(tmpRNG); #ifdef WOLFSSL_SMALL_STACK XFREE(tmpRNG, NULL, DYNAMIC_TYPE_RNG); #endif return ret; } int wolfSSL_RAND_poll() { byte entropy[16]; int ret = 0; word32 entropy_sz = 16; WOLFSSL_ENTER("wolfSSL_RAND_poll"); if (initGlobalRNG == 0){ WOLFSSL_MSG("Global RNG no Init"); return WOLFSSL_FAILURE; } ret = wc_GenerateSeed(&globalRNG.seed, entropy, entropy_sz); if (ret != 0){ WOLFSSL_MSG("Bad wc_RNG_GenerateBlock"); ret = WOLFSSL_FAILURE; }else ret = WOLFSSL_SUCCESS; return ret; } WOLFSSL_BN_CTX* wolfSSL_BN_CTX_new(void) { static int ctx; /* wolfcrypt doesn't now need ctx */ WOLFSSL_MSG("wolfSSL_BN_CTX_new"); return (WOLFSSL_BN_CTX*)&ctx; } void wolfSSL_BN_CTX_init(WOLFSSL_BN_CTX* ctx) { (void)ctx; WOLFSSL_MSG("wolfSSL_BN_CTX_init"); } void wolfSSL_BN_CTX_free(WOLFSSL_BN_CTX* ctx) { (void)ctx; WOLFSSL_MSG("wolfSSL_BN_CTX_free"); /* do free since static ctx that does nothing */ } #endif /* OPENSSL_EXTRA */ #if defined(OPENSSL_EXTRA) || defined(OPENSSL_EXTRA_X509_SMALL) static void InitwolfSSL_BigNum(WOLFSSL_BIGNUM* bn) { if (bn) { XMEMSET(bn, 0, sizeof(WOLFSSL_BIGNUM)); bn->neg = 0; bn->internal = NULL; } } WOLFSSL_BIGNUM* wolfSSL_BN_new(void) { WOLFSSL_BIGNUM* external; mp_int* mpi; WOLFSSL_MSG("wolfSSL_BN_new"); mpi = (mp_int*) XMALLOC(sizeof(mp_int), NULL, DYNAMIC_TYPE_BIGINT); if (mpi == NULL) { WOLFSSL_MSG("wolfSSL_BN_new malloc mpi failure"); return NULL; } external = (WOLFSSL_BIGNUM*) XMALLOC(sizeof(WOLFSSL_BIGNUM), NULL, DYNAMIC_TYPE_BIGINT); if (external == NULL) { WOLFSSL_MSG("wolfSSL_BN_new malloc WOLFSSL_BIGNUM failure"); XFREE(mpi, NULL, DYNAMIC_TYPE_BIGINT); return NULL; } InitwolfSSL_BigNum(external); external->internal = mpi; if (mp_init(mpi) != MP_OKAY) { wolfSSL_BN_free(external); return NULL; } return external; } void wolfSSL_BN_free(WOLFSSL_BIGNUM* bn) { WOLFSSL_MSG("wolfSSL_BN_free"); if (bn) { if (bn->internal) { mp_forcezero((mp_int*)bn->internal); XFREE(bn->internal, NULL, DYNAMIC_TYPE_BIGINT); bn->internal = NULL; } XFREE(bn, NULL, DYNAMIC_TYPE_BIGINT); bn = NULL; } } #endif /* OPENSSL_EXTRA || OPENSSL_EXTRA_X509_SMALL */ #ifdef OPENSSL_EXTRA void wolfSSL_BN_clear_free(WOLFSSL_BIGNUM* bn) { WOLFSSL_MSG("wolfSSL_BN_clear_free"); wolfSSL_BN_free(bn); } /* WOLFSSL_SUCCESS on ok */ int wolfSSL_BN_sub(WOLFSSL_BIGNUM* r, const WOLFSSL_BIGNUM* a, const WOLFSSL_BIGNUM* b) { WOLFSSL_MSG("wolfSSL_BN_sub"); if (r == NULL || a == NULL || b == NULL) return 0; if (mp_sub((mp_int*)a->internal,(mp_int*)b->internal, (mp_int*)r->internal) == MP_OKAY) return WOLFSSL_SUCCESS; WOLFSSL_MSG("wolfSSL_BN_sub mp_sub failed"); return 0; } /* WOLFSSL_SUCCESS on ok */ int wolfSSL_BN_mod(WOLFSSL_BIGNUM* r, const WOLFSSL_BIGNUM* a, const WOLFSSL_BIGNUM* b, const WOLFSSL_BN_CTX* c) { (void)c; WOLFSSL_MSG("wolfSSL_BN_mod"); if (r == NULL || a == NULL || b == NULL) return 0; if (mp_mod((mp_int*)a->internal,(mp_int*)b->internal, (mp_int*)r->internal) == MP_OKAY) return WOLFSSL_SUCCESS; WOLFSSL_MSG("wolfSSL_BN_mod mp_mod failed"); return 0; } /* r = (a^p) % m */ int wolfSSL_BN_mod_exp(WOLFSSL_BIGNUM *r, const WOLFSSL_BIGNUM *a, const WOLFSSL_BIGNUM *p, const WOLFSSL_BIGNUM *m, WOLFSSL_BN_CTX *ctx) { int ret; WOLFSSL_ENTER("wolfSSL_BN_mod_exp"); (void) ctx; if (r == NULL || a == NULL || p == NULL || m == NULL) { WOLFSSL_MSG("Bad Argument"); return WOLFSSL_FAILURE; } if ((ret = mp_exptmod((mp_int*)a->internal,(mp_int*)p->internal, (mp_int*)m->internal, (mp_int*)r->internal)) == MP_OKAY) { return WOLFSSL_SUCCESS; } WOLFSSL_LEAVE("wolfSSL_BN_mod_exp", ret); (void)ret; return WOLFSSL_FAILURE; } /* r = (a * p) % m */ int wolfSSL_BN_mod_mul(WOLFSSL_BIGNUM *r, const WOLFSSL_BIGNUM *a, const WOLFSSL_BIGNUM *p, const WOLFSSL_BIGNUM *m, WOLFSSL_BN_CTX *ctx) { int ret; WOLFSSL_ENTER("wolfSSL_BN_mod_mul"); (void) ctx; if (r == NULL || a == NULL || p == NULL || m == NULL) { WOLFSSL_MSG("Bad Argument"); return SSL_FAILURE; } if ((ret = mp_mulmod((mp_int*)a->internal,(mp_int*)p->internal, (mp_int*)m->internal, (mp_int*)r->internal)) == MP_OKAY) { return SSL_SUCCESS; } WOLFSSL_LEAVE("wolfSSL_BN_mod_mul", ret); (void)ret; return SSL_FAILURE; } const WOLFSSL_BIGNUM* wolfSSL_BN_value_one(void) { static WOLFSSL_BIGNUM* bn_one = NULL; WOLFSSL_MSG("wolfSSL_BN_value_one"); if (bn_one == NULL) { bn_one = wolfSSL_BN_new(); if (bn_one) { if (mp_set_int((mp_int*)bn_one->internal, 1) != MP_OKAY) { /* handle error by freeing BN and returning NULL */ wolfSSL_BN_free(bn_one); bn_one = NULL; } } } return bn_one; } /* return compliant with OpenSSL * size of BIGNUM in bytes, 0 if error */ int wolfSSL_BN_num_bytes(const WOLFSSL_BIGNUM* bn) { WOLFSSL_ENTER("wolfSSL_BN_num_bytes"); if (bn == NULL || bn->internal == NULL) return WOLFSSL_FAILURE; return mp_unsigned_bin_size((mp_int*)bn->internal); } /* return compliant with OpenSSL * size of BIGNUM in bits, 0 if error */ int wolfSSL_BN_num_bits(const WOLFSSL_BIGNUM* bn) { WOLFSSL_ENTER("wolfSSL_BN_num_bits"); if (bn == NULL || bn->internal == NULL) return WOLFSSL_FAILURE; return mp_count_bits((mp_int*)bn->internal); } /* return compliant with OpenSSL * 1 if BIGNUM is zero, 0 else */ int wolfSSL_BN_is_zero(const WOLFSSL_BIGNUM* bn) { WOLFSSL_MSG("wolfSSL_BN_is_zero"); if (bn == NULL || bn->internal == NULL) return WOLFSSL_FAILURE; if (mp_iszero((mp_int*)bn->internal) == MP_YES) return WOLFSSL_SUCCESS; return WOLFSSL_FAILURE; } /* return compliant with OpenSSL * 1 if BIGNUM is one, 0 else */ int wolfSSL_BN_is_one(const WOLFSSL_BIGNUM* bn) { WOLFSSL_MSG("wolfSSL_BN_is_one"); if (bn == NULL || bn->internal == NULL) return WOLFSSL_FAILURE; if (mp_cmp_d((mp_int*)bn->internal, 1) == MP_EQ) return WOLFSSL_SUCCESS; return WOLFSSL_FAILURE; } /* return compliant with OpenSSL * 1 if BIGNUM is odd, 0 else */ int wolfSSL_BN_is_odd(const WOLFSSL_BIGNUM* bn) { WOLFSSL_MSG("wolfSSL_BN_is_odd"); if (bn == NULL || bn->internal == NULL) return WOLFSSL_FAILURE; if (mp_isodd((mp_int*)bn->internal) == MP_YES) return WOLFSSL_SUCCESS; return WOLFSSL_FAILURE; } /* return compliant with OpenSSL * -1 if a < b, 0 if a == b and 1 if a > b */ int wolfSSL_BN_cmp(const WOLFSSL_BIGNUM* a, const WOLFSSL_BIGNUM* b) { int ret; WOLFSSL_MSG("wolfSSL_BN_cmp"); if (a == NULL || a->internal == NULL || b == NULL || b->internal == NULL) return WOLFSSL_FATAL_ERROR; ret = mp_cmp((mp_int*)a->internal, (mp_int*)b->internal); return (ret == MP_EQ ? 0 : (ret == MP_GT ? 1 : -1)); } /* return compliant with OpenSSL * length of BIGNUM in bytes, -1 if error */ int wolfSSL_BN_bn2bin(const WOLFSSL_BIGNUM* bn, unsigned char* r) { WOLFSSL_MSG("wolfSSL_BN_bn2bin"); if (bn == NULL || bn->internal == NULL) { WOLFSSL_MSG("NULL bn error"); return WOLFSSL_FATAL_ERROR; } if (r == NULL) return mp_unsigned_bin_size((mp_int*)bn->internal); if (mp_to_unsigned_bin((mp_int*)bn->internal, r) != MP_OKAY) { WOLFSSL_MSG("mp_to_unsigned_bin error"); return WOLFSSL_FATAL_ERROR; } return mp_unsigned_bin_size((mp_int*)bn->internal); } WOLFSSL_BIGNUM* wolfSSL_BN_bin2bn(const unsigned char* str, int len, WOLFSSL_BIGNUM* ret) { int weOwn = 0; WOLFSSL_MSG("wolfSSL_BN_bin2bn"); /* if ret is null create a BN */ if (ret == NULL) { ret = wolfSSL_BN_new(); weOwn = 1; if (ret == NULL) return NULL; } /* check ret and ret->internal then read in value */ if (ret && ret->internal) { if (mp_read_unsigned_bin((mp_int*)ret->internal, str, len) != 0) { WOLFSSL_MSG("mp_read_unsigned_bin failure"); if (weOwn) wolfSSL_BN_free(ret); return NULL; } } return ret; } /* return compliant with OpenSSL * 1 if success, 0 if error */ #ifndef NO_WOLFSSL_STUB int wolfSSL_mask_bits(WOLFSSL_BIGNUM* bn, int n) { (void)bn; (void)n; WOLFSSL_ENTER("wolfSSL_BN_mask_bits"); WOLFSSL_STUB("BN_mask_bits"); return SSL_FAILURE; } #endif /* WOLFSSL_SUCCESS on ok */ int wolfSSL_BN_rand(WOLFSSL_BIGNUM* bn, int bits, int top, int bottom) { int ret = 0; int len = bits / 8; int initTmpRng = 0; WC_RNG* rng = NULL; #ifdef WOLFSSL_SMALL_STACK WC_RNG* tmpRNG = NULL; byte* buff = NULL; #else WC_RNG tmpRNG[1]; byte buff[1024]; #endif (void)top; (void)bottom; WOLFSSL_MSG("wolfSSL_BN_rand"); if (bits % 8) len++; #ifdef WOLFSSL_SMALL_STACK buff = (byte*)XMALLOC(1024, NULL, DYNAMIC_TYPE_TMP_BUFFER); tmpRNG = (WC_RNG*) XMALLOC(sizeof(WC_RNG), NULL, DYNAMIC_TYPE_RNG); if (buff == NULL || tmpRNG == NULL) { XFREE(buff, NULL, DYNAMIC_TYPE_TMP_BUFFER); XFREE(tmpRNG, NULL, DYNAMIC_TYPE_RNG); return ret; } #endif if (bn == NULL || bn->internal == NULL) WOLFSSL_MSG("Bad function arguments"); else if (wc_InitRng(tmpRNG) == 0) { rng = tmpRNG; initTmpRng = 1; } else if (initGlobalRNG) rng = &globalRNG; if (rng) { if (wc_RNG_GenerateBlock(rng, buff, len) != 0) WOLFSSL_MSG("Bad wc_RNG_GenerateBlock"); else { buff[0] |= 0x80 | 0x40; buff[len-1] |= 0x01; if (mp_read_unsigned_bin((mp_int*)bn->internal,buff,len) != MP_OKAY) WOLFSSL_MSG("mp read bin failed"); else ret = WOLFSSL_SUCCESS; } } if (initTmpRng) wc_FreeRng(tmpRNG); #ifdef WOLFSSL_SMALL_STACK XFREE(buff, NULL, DYNAMIC_TYPE_TMP_BUFFER); XFREE(tmpRNG, NULL, DYNAMIC_TYPE_RNG); #endif return ret; } /* WOLFSSL_SUCCESS on ok * code is same as wolfSSL_BN_rand except for how top and bottom is handled. * top -1 then leave most sig bit alone * top 0 then most sig is set to 1 * top is 1 then first two most sig bits are 1 * * bottom is hot then odd number */ int wolfSSL_BN_pseudo_rand(WOLFSSL_BIGNUM* bn, int bits, int top, int bottom) { int ret = 0; int len = bits / 8; int initTmpRng = 0; WC_RNG* rng = NULL; #ifdef WOLFSSL_SMALL_STACK WC_RNG* tmpRNG = NULL; byte* buff = NULL; #else WC_RNG tmpRNG[1]; byte buff[1024]; #endif WOLFSSL_MSG("wolfSSL_BN_rand"); if (bits % 8) len++; #ifdef WOLFSSL_SMALL_STACK buff = (byte*)XMALLOC(1024, NULL, DYNAMIC_TYPE_TMP_BUFFER); tmpRNG = (WC_RNG*) XMALLOC(sizeof(WC_RNG), NULL, DYNAMIC_TYPE_TMP_BUFFER); if (buff == NULL || tmpRNG == NULL) { XFREE(buff, NULL, DYNAMIC_TYPE_TMP_BUFFER); XFREE(tmpRNG, NULL, DYNAMIC_TYPE_TMP_BUFFER); return ret; } #endif if (bn == NULL || bn->internal == NULL) WOLFSSL_MSG("Bad function arguments"); else if (wc_InitRng(tmpRNG) == 0) { rng = tmpRNG; initTmpRng = 1; } else if (initGlobalRNG) rng = &globalRNG; if (rng) { if (wc_RNG_GenerateBlock(rng, buff, len) != 0) WOLFSSL_MSG("Bad wc_RNG_GenerateBlock"); else { switch (top) { case -1: break; case 0: buff[0] |= 0x80; break; case 1: buff[0] |= 0x80 | 0x40; break; } if (bottom == 1) { buff[len-1] |= 0x01; } if (mp_read_unsigned_bin((mp_int*)bn->internal,buff,len) != MP_OKAY) WOLFSSL_MSG("mp read bin failed"); else ret = WOLFSSL_SUCCESS; } } if (initTmpRng) wc_FreeRng(tmpRNG); #ifdef WOLFSSL_SMALL_STACK XFREE(buff, NULL, DYNAMIC_TYPE_TMP_BUFFER); XFREE(tmpRNG, NULL, DYNAMIC_TYPE_TMP_BUFFER); #endif return ret; } /* return code compliant with OpenSSL : * 1 if bit set, 0 else */ int wolfSSL_BN_is_bit_set(const WOLFSSL_BIGNUM* bn, int n) { if (bn == NULL || bn->internal == NULL) { WOLFSSL_MSG("bn NULL error"); return WOLFSSL_FAILURE; } if (n > DIGIT_BIT) { WOLFSSL_MSG("input bit count too large"); return WOLFSSL_FAILURE; } return mp_is_bit_set((mp_int*)bn->internal, (mp_digit)n); } /* return code compliant with OpenSSL : * 1 if success, 0 else */ int wolfSSL_BN_set_bit(WOLFSSL_BIGNUM* bn, int n) { if (bn == NULL || bn->internal == NULL) { WOLFSSL_MSG("bn NULL error"); return WOLFSSL_FAILURE; } if (mp_set_bit((mp_int*)bn->internal, n) != MP_OKAY) { WOLFSSL_MSG("mp_set_int error"); return WOLFSSL_FAILURE; } return WOLFSSL_SUCCESS; } /* WOLFSSL_SUCCESS on ok */ /* Note on use: this function expects str to be an even length. It is * converting pairs of bytes into 8-bit values. As an example, the RSA * public exponent is commonly 0x010001. To get it to convert, you need * to pass in the string "010001", it will fail if you use "10001". This * is an affect of how Base16_Decode() works. */ int wolfSSL_BN_hex2bn(WOLFSSL_BIGNUM** bn, const char* str) { int ret = 0; word32 decSz = 1024; #ifdef WOLFSSL_SMALL_STACK byte* decoded = NULL; #else byte decoded[1024]; #endif int weOwn = 0; WOLFSSL_MSG("wolfSSL_BN_hex2bn"); #ifdef WOLFSSL_SMALL_STACK decoded = (byte*)XMALLOC(decSz, NULL, DYNAMIC_TYPE_DER); if (decoded == NULL) return ret; #endif if (str == NULL || str[0] == '\0') WOLFSSL_MSG("Bad function argument"); else if (Base16_Decode((byte*)str, (int)XSTRLEN(str), decoded, &decSz) < 0) WOLFSSL_MSG("Bad Base16_Decode error"); else if (bn == NULL) ret = decSz; else { if (*bn == NULL) { *bn = wolfSSL_BN_new(); if (*bn != NULL) { weOwn = 1; } } if (*bn == NULL) WOLFSSL_MSG("BN new failed"); else if (wolfSSL_BN_bin2bn(decoded, decSz, *bn) == NULL) { WOLFSSL_MSG("Bad bin2bn error"); if (weOwn == 1) { wolfSSL_BN_free(*bn); /* Free new BN */ } } else ret = WOLFSSL_SUCCESS; } #ifdef WOLFSSL_SMALL_STACK XFREE(decoded, NULL, DYNAMIC_TYPE_DER); #endif return ret; } WOLFSSL_BIGNUM* wolfSSL_BN_dup(const WOLFSSL_BIGNUM* bn) { WOLFSSL_BIGNUM* ret; WOLFSSL_MSG("wolfSSL_BN_dup"); if (bn == NULL || bn->internal == NULL) { WOLFSSL_MSG("bn NULL error"); return NULL; } ret = wolfSSL_BN_new(); if (ret == NULL) { WOLFSSL_MSG("bn new error"); return NULL; } if (mp_copy((mp_int*)bn->internal, (mp_int*)ret->internal) != MP_OKAY) { WOLFSSL_MSG("mp_copy error"); wolfSSL_BN_free(ret); return NULL; } ret->neg = bn->neg; return ret; } WOLFSSL_BIGNUM* wolfSSL_BN_copy(WOLFSSL_BIGNUM* r, const WOLFSSL_BIGNUM* bn) { WOLFSSL_MSG("wolfSSL_BN_copy"); if (r == NULL || bn == NULL) { WOLFSSL_MSG("r or bn NULL error"); return NULL; } if (mp_copy((mp_int*)bn->internal, (mp_int*)r->internal) != MP_OKAY) { WOLFSSL_MSG("mp_copy error"); return NULL; } r->neg = bn->neg; return r; } /* return code compliant with OpenSSL : * 1 if success, 0 else */ int wolfSSL_BN_set_word(WOLFSSL_BIGNUM* bn, WOLFSSL_BN_ULONG w) { WOLFSSL_MSG("wolfSSL_BN_set_word"); if (bn == NULL) { WOLFSSL_MSG("bn NULL error"); return WOLFSSL_FAILURE; } if (mp_set_int((mp_int*)bn->internal, w) != MP_OKAY) { WOLFSSL_MSG("mp_init_set_int error"); return WOLFSSL_FAILURE; } return WOLFSSL_SUCCESS; } /* Returns the big number as an unsigned long if possible. * * bn big number structure to get value from * * Returns value or 0xFFFFFFFFL if bigger than unsigned long. */ unsigned long wolfSSL_BN_get_word(const WOLFSSL_BIGNUM* bn) { mp_int* mp; WOLFSSL_MSG("wolfSSL_BN_get_word"); if (bn == NULL) { WOLFSSL_MSG("Invalid argument"); return 0; } if (wolfSSL_BN_num_bytes(bn) > (int)sizeof(unsigned long)) { WOLFSSL_MSG("bignum is larger than unsigned long"); return 0xFFFFFFFFL; } mp = (mp_int*)bn->internal; return (unsigned long)(mp->dp[0]); } /* return code compliant with OpenSSL : * number length in decimal if success, 0 if error */ #ifndef NO_WOLFSSL_STUB int wolfSSL_BN_dec2bn(WOLFSSL_BIGNUM** bn, const char* str) { (void)bn; (void)str; WOLFSSL_MSG("wolfSSL_BN_dec2bn"); WOLFSSL_STUB("BN_dec2bn"); return SSL_FAILURE; } #endif #if defined(WOLFSSL_KEY_GEN) || defined(HAVE_COMP_KEY) char *wolfSSL_BN_bn2dec(const WOLFSSL_BIGNUM *bn) { int len = 0; char *buf; WOLFSSL_MSG("wolfSSL_BN_bn2dec"); if (bn == NULL || bn->internal == NULL) { WOLFSSL_MSG("bn NULL error"); return NULL; } if (mp_radix_size((mp_int*)bn->internal, MP_RADIX_DEC, &len) != MP_OKAY) { WOLFSSL_MSG("mp_radix_size failure"); return NULL; } buf = (char*) XMALLOC(len, NULL, DYNAMIC_TYPE_OPENSSL); if (buf == NULL) { WOLFSSL_MSG("BN_bn2dec malloc buffer failure"); return NULL; } if (mp_todecimal((mp_int*)bn->internal, buf) != MP_OKAY) { XFREE(buf, NULL, DYNAMIC_TYPE_ECC); return NULL; } return buf; } #else char* wolfSSL_BN_bn2dec(const WOLFSSL_BIGNUM* bn) { (void)bn; WOLFSSL_MSG("wolfSSL_BN_bn2dec"); return NULL; } #endif /* defined(WOLFSSL_KEY_GEN) || defined(HAVE_COMP_KEY) */ /* return code compliant with OpenSSL : * 1 if success, 0 else */ int wolfSSL_BN_lshift(WOLFSSL_BIGNUM *r, const WOLFSSL_BIGNUM *bn, int n) { WOLFSSL_MSG("wolfSSL_BN_lshift"); if (r == NULL || r->internal == NULL || bn == NULL || bn->internal == NULL){ WOLFSSL_MSG("bn NULL error"); return WOLFSSL_FAILURE; } if (mp_mul_2d((mp_int*)bn->internal, n, (mp_int*)r->internal) != MP_OKAY) { WOLFSSL_MSG("mp_mul_2d error"); return WOLFSSL_FAILURE; } return WOLFSSL_SUCCESS; } /* return code compliant with OpenSSL : * 1 if success, 0 else */ int wolfSSL_BN_rshift(WOLFSSL_BIGNUM *r, const WOLFSSL_BIGNUM *bn, int n) { WOLFSSL_MSG("wolfSSL_BN_rshift"); if (r == NULL || r->internal == NULL || bn == NULL || bn->internal == NULL){ WOLFSSL_MSG("bn NULL error"); return WOLFSSL_FAILURE; } if (mp_div_2d((mp_int*)bn->internal, n, (mp_int*)r->internal, NULL) != MP_OKAY) { WOLFSSL_MSG("mp_mul_2d error"); return WOLFSSL_FAILURE; } return WOLFSSL_SUCCESS; } /* return code compliant with OpenSSL : * 1 if success, 0 else */ int wolfSSL_BN_add_word(WOLFSSL_BIGNUM *bn, WOLFSSL_BN_ULONG w) { WOLFSSL_MSG("wolfSSL_BN_add_word"); if (bn == NULL || bn->internal == NULL) { WOLFSSL_MSG("bn NULL error"); return WOLFSSL_FAILURE; } if (mp_add_d((mp_int*)bn->internal, w, (mp_int*)bn->internal) != MP_OKAY) { WOLFSSL_MSG("mp_add_d error"); return WOLFSSL_FAILURE; } return WOLFSSL_SUCCESS; } /* return code compliant with OpenSSL : * 1 if success, 0 else */ int wolfSSL_BN_add(WOLFSSL_BIGNUM *r, WOLFSSL_BIGNUM *a, WOLFSSL_BIGNUM *b) { WOLFSSL_MSG("wolfSSL_BN_add"); if (r == NULL || r->internal == NULL || a == NULL || a->internal == NULL || b == NULL || b->internal == NULL) { WOLFSSL_MSG("bn NULL error"); return WOLFSSL_FAILURE; } if (mp_add((mp_int*)a->internal, (mp_int*)b->internal, (mp_int*)r->internal) != MP_OKAY) { WOLFSSL_MSG("mp_add_d error"); return WOLFSSL_FAILURE; } return WOLFSSL_SUCCESS; } #ifdef WOLFSSL_KEY_GEN /* return code compliant with OpenSSL : * 1 if prime, 0 if not, -1 if error */ int wolfSSL_BN_is_prime_ex(const WOLFSSL_BIGNUM *bn, int nbchecks, WOLFSSL_BN_CTX *ctx, WOLFSSL_BN_GENCB *cb) { int res; (void)ctx; (void)cb; WOLFSSL_MSG("wolfSSL_BN_is_prime_ex"); if (bn == NULL || bn->internal == NULL) { WOLFSSL_MSG("bn NULL error"); return WOLFSSL_FATAL_ERROR; } if (mp_prime_is_prime((mp_int*)bn->internal, nbchecks, &res) != MP_OKAY) { WOLFSSL_MSG("mp_prime_is_prime error"); return WOLFSSL_FATAL_ERROR; } if (res != MP_YES) { WOLFSSL_MSG("mp_prime_is_prime not prime"); return WOLFSSL_FAILURE; } return WOLFSSL_SUCCESS; } /* return code compliant with OpenSSL : * (bn mod w) if success, -1 if error */ WOLFSSL_BN_ULONG wolfSSL_BN_mod_word(const WOLFSSL_BIGNUM *bn, WOLFSSL_BN_ULONG w) { WOLFSSL_BN_ULONG ret = 0; WOLFSSL_MSG("wolfSSL_BN_mod_word"); if (bn == NULL || bn->internal == NULL) { WOLFSSL_MSG("bn NULL error"); return (WOLFSSL_BN_ULONG)WOLFSSL_FATAL_ERROR; } if (mp_mod_d((mp_int*)bn->internal, w, &ret) != MP_OKAY) { WOLFSSL_MSG("mp_add_d error"); return (WOLFSSL_BN_ULONG)WOLFSSL_FATAL_ERROR; } return ret; } #endif /* #ifdef WOLFSSL_KEY_GEN */ char *wolfSSL_BN_bn2hex(const WOLFSSL_BIGNUM *bn) { #if defined(WOLFSSL_KEY_GEN) || defined(HAVE_COMP_KEY) || defined(DEBUG_WOLFSSL) int len = 0; char *buf; WOLFSSL_ENTER("wolfSSL_BN_bn2hex"); if (bn == NULL || bn->internal == NULL) { WOLFSSL_MSG("bn NULL error"); return NULL; } if (mp_radix_size((mp_int*)bn->internal, MP_RADIX_HEX, &len) != MP_OKAY) { WOLFSSL_MSG("mp_radix_size failure"); return NULL; } buf = (char*) XMALLOC(len, NULL, DYNAMIC_TYPE_ECC); if (buf == NULL) { WOLFSSL_MSG("BN_bn2hex malloc buffer failure"); return NULL; } if (mp_tohex((mp_int*)bn->internal, buf) != MP_OKAY) { XFREE(buf, NULL, DYNAMIC_TYPE_ECC); return NULL; } return buf; #else (void)bn; WOLFSSL_MSG("wolfSSL_BN_bn2hex not compiled in"); return (char*)""; #endif } #ifndef NO_FILESYSTEM /* return code compliant with OpenSSL : * 1 if success, 0 if error */ int wolfSSL_BN_print_fp(XFILE fp, const WOLFSSL_BIGNUM *bn) { #if defined(WOLFSSL_KEY_GEN) || defined(HAVE_COMP_KEY) || defined(DEBUG_WOLFSSL) char *buf; WOLFSSL_ENTER("wolfSSL_BN_print_fp"); if (fp == NULL || bn == NULL || bn->internal == NULL) { WOLFSSL_MSG("bn NULL error"); return WOLFSSL_FAILURE; } buf = wolfSSL_BN_bn2hex(bn); if (buf == NULL) { WOLFSSL_MSG("wolfSSL_BN_bn2hex failure"); return WOLFSSL_FAILURE; } fprintf(fp, "%s", buf); XFREE(buf, NULL, DYNAMIC_TYPE_ECC); return WOLFSSL_SUCCESS; #else (void)fp; (void)bn; WOLFSSL_MSG("wolfSSL_BN_print_fp not compiled in"); return WOLFSSL_SUCCESS; #endif } #endif /* !NO_FILESYSTEM */ WOLFSSL_BIGNUM *wolfSSL_BN_CTX_get(WOLFSSL_BN_CTX *ctx) { /* ctx is not used, return new Bignum */ (void)ctx; WOLFSSL_ENTER("wolfSSL_BN_CTX_get"); return wolfSSL_BN_new(); } #ifndef NO_WOLFSSL_STUB void wolfSSL_BN_CTX_start(WOLFSSL_BN_CTX *ctx) { (void)ctx; WOLFSSL_ENTER("wolfSSL_BN_CTX_start"); WOLFSSL_STUB("BN_CTX_start"); WOLFSSL_MSG("wolfSSL_BN_CTX_start TBD"); } #endif WOLFSSL_BIGNUM *wolfSSL_BN_mod_inverse(WOLFSSL_BIGNUM *r, WOLFSSL_BIGNUM *a, const WOLFSSL_BIGNUM *n, WOLFSSL_BN_CTX *ctx) { int dynamic = 0; /* ctx is not used */ (void)ctx; WOLFSSL_ENTER("wolfSSL_BN_mod_inverse"); /* check parameter */ if (r == NULL) { r = wolfSSL_BN_new(); if (r == NULL){ WOLFSSL_MSG("WolfSSL_BN_new() failed"); return NULL; } dynamic = 1; } if (a == NULL) { WOLFSSL_MSG("a NULL error"); if (dynamic == 1) { wolfSSL_BN_free(r); } return NULL; } if (n == NULL) { WOLFSSL_MSG("n NULL error"); if (dynamic == 1) { wolfSSL_BN_free(r); } return NULL; } /* Compute inverse of a modulo n and return r */ if (mp_invmod((mp_int *)a->internal,(mp_int *)n->internal, (mp_int*)r->internal) == MP_VAL){ WOLFSSL_MSG("mp_invmod() error"); if (dynamic == 1) { wolfSSL_BN_free(r); } return NULL; } return r; } #ifndef NO_DH static void InitwolfSSL_DH(WOLFSSL_DH* dh) { if (dh) { dh->p = NULL; dh->g = NULL; dh->q = NULL; dh->pub_key = NULL; dh->priv_key = NULL; dh->internal = NULL; dh->inSet = 0; dh->exSet = 0; } } WOLFSSL_DH* wolfSSL_DH_new(void) { WOLFSSL_DH* external; DhKey* key; WOLFSSL_MSG("wolfSSL_DH_new"); key = (DhKey*) XMALLOC(sizeof(DhKey), NULL, DYNAMIC_TYPE_DH); if (key == NULL) { WOLFSSL_MSG("wolfSSL_DH_new malloc DhKey failure"); return NULL; } external = (WOLFSSL_DH*) XMALLOC(sizeof(WOLFSSL_DH), NULL, DYNAMIC_TYPE_DH); if (external == NULL) { WOLFSSL_MSG("wolfSSL_DH_new malloc WOLFSSL_DH failure"); XFREE(key, NULL, DYNAMIC_TYPE_DH); return NULL; } InitwolfSSL_DH(external); if (wc_InitDhKey(key) != 0) { WOLFSSL_MSG("wolfSSL_DH_new InitDhKey failure"); XFREE(key, NULL, DYNAMIC_TYPE_DH); XFREE(external, NULL, DYNAMIC_TYPE_DH); return NULL; } external->internal = key; return external; } void wolfSSL_DH_free(WOLFSSL_DH* dh) { WOLFSSL_MSG("wolfSSL_DH_free"); if (dh) { if (dh->internal) { wc_FreeDhKey((DhKey*)dh->internal); XFREE(dh->internal, NULL, DYNAMIC_TYPE_DH); dh->internal = NULL; } wolfSSL_BN_free(dh->priv_key); wolfSSL_BN_free(dh->pub_key); wolfSSL_BN_free(dh->g); wolfSSL_BN_free(dh->p); wolfSSL_BN_free(dh->q); InitwolfSSL_DH(dh); /* set back to NULLs for safety */ XFREE(dh, NULL, DYNAMIC_TYPE_DH); } } static int SetDhInternal(WOLFSSL_DH* dh) { int ret = WOLFSSL_FATAL_ERROR; int pSz = 1024; int gSz = 1024; #ifdef WOLFSSL_SMALL_STACK unsigned char* p = NULL; unsigned char* g = NULL; #else unsigned char p[1024]; unsigned char g[1024]; #endif WOLFSSL_ENTER("SetDhInternal"); if (dh == NULL || dh->p == NULL || dh->g == NULL) WOLFSSL_MSG("Bad function arguments"); else if (wolfSSL_BN_bn2bin(dh->p, NULL) > pSz) WOLFSSL_MSG("Bad p internal size"); else if (wolfSSL_BN_bn2bin(dh->g, NULL) > gSz) WOLFSSL_MSG("Bad g internal size"); else { #ifdef WOLFSSL_SMALL_STACK p = (unsigned char*)XMALLOC(pSz, NULL, DYNAMIC_TYPE_PUBLIC_KEY); g = (unsigned char*)XMALLOC(gSz, NULL, DYNAMIC_TYPE_PUBLIC_KEY); if (p == NULL || g == NULL) { XFREE(p, NULL, DYNAMIC_TYPE_PUBLIC_KEY); XFREE(g, NULL, DYNAMIC_TYPE_PUBLIC_KEY); return ret; } #endif pSz = wolfSSL_BN_bn2bin(dh->p, p); gSz = wolfSSL_BN_bn2bin(dh->g, g); if (pSz <= 0 || gSz <= 0) WOLFSSL_MSG("Bad BN2bin set"); else if (wc_DhSetKey((DhKey*)dh->internal, p, pSz, g, gSz) < 0) WOLFSSL_MSG("Bad DH SetKey"); else { dh->inSet = 1; ret = WOLFSSL_SUCCESS; } #ifdef WOLFSSL_SMALL_STACK XFREE(p, NULL, DYNAMIC_TYPE_PUBLIC_KEY); XFREE(g, NULL, DYNAMIC_TYPE_PUBLIC_KEY); #endif } return ret; } /* return code compliant with OpenSSL : * DH prime size in bytes if success, 0 if error */ int wolfSSL_DH_size(WOLFSSL_DH* dh) { WOLFSSL_MSG("wolfSSL_DH_size"); if (dh == NULL) return WOLFSSL_FATAL_ERROR; return wolfSSL_BN_num_bytes(dh->p); } /* This sets a big number with the 1536-bit prime from RFC 3526. * * bn if not NULL then the big number structure is used. If NULL then a new * big number structure is created. * * Returns a WOLFSSL_BIGNUM structure on success and NULL with failure. */ WOLFSSL_BIGNUM* wolfSSL_DH_1536_prime(WOLFSSL_BIGNUM* bn) { const char prm[] = { "FFFFFFFFFFFFFFFFC90FDAA22168C234" "C4C6628B80DC1CD129024E088A67CC74" "020BBEA63B139B22514A08798E3404DD" "EF9519B3CD3A431B302B0A6DF25F1437" "4FE1356D6D51C245E485B576625E7EC6" "F44C42E9A637ED6B0BFF5CB6F406B7ED" "EE386BFB5A899FA5AE9F24117C4B1FE6" "49286651ECE45B3DC2007CB8A163BF05" "98DA48361C55D39A69163FA8FD24CF5F" "83655D23DCA3AD961C62F356208552BB" "9ED529077096966D670C354E4ABC9804" "F1746C08CA237327FFFFFFFFFFFFFFFF" }; WOLFSSL_ENTER("wolfSSL_DH_1536_prime"); if (wolfSSL_BN_hex2bn(&bn, prm) != SSL_SUCCESS) { WOLFSSL_MSG("Error converting DH 1536 prime to big number"); return NULL; } return bn; } /* return code compliant with OpenSSL : * 1 if success, 0 if error */ int wolfSSL_DH_generate_key(WOLFSSL_DH* dh) { int ret = WOLFSSL_FAILURE; word32 pubSz = 768; word32 privSz = 768; int initTmpRng = 0; WC_RNG* rng = NULL; #ifdef WOLFSSL_SMALL_STACK unsigned char* pub = NULL; unsigned char* priv = NULL; WC_RNG* tmpRNG = NULL; #else unsigned char pub [768]; unsigned char priv[768]; WC_RNG tmpRNG[1]; #endif WOLFSSL_MSG("wolfSSL_DH_generate_key"); #ifdef WOLFSSL_SMALL_STACK tmpRNG = (WC_RNG*)XMALLOC(sizeof(WC_RNG), NULL, DYNAMIC_TYPE_RNG); pub = (unsigned char*)XMALLOC(pubSz, NULL, DYNAMIC_TYPE_PUBLIC_KEY); priv = (unsigned char*)XMALLOC(privSz, NULL, DYNAMIC_TYPE_PRIVATE_KEY); if (tmpRNG == NULL || pub == NULL || priv == NULL) { XFREE(tmpRNG, NULL, DYNAMIC_TYPE_RNG); XFREE(pub, NULL, DYNAMIC_TYPE_PUBLIC_KEY); XFREE(priv, NULL, DYNAMIC_TYPE_PRIVATE_KEY); return ret; } #endif if (dh == NULL || dh->p == NULL || dh->g == NULL) WOLFSSL_MSG("Bad function arguments"); else if (dh->inSet == 0 && SetDhInternal(dh) != WOLFSSL_SUCCESS) WOLFSSL_MSG("Bad DH set internal"); else if (wc_InitRng(tmpRNG) == 0) { rng = tmpRNG; initTmpRng = 1; } else { WOLFSSL_MSG("Bad RNG Init, trying global"); if (initGlobalRNG == 0) WOLFSSL_MSG("Global RNG no Init"); else rng = &globalRNG; } if (rng) { if (wc_DhGenerateKeyPair((DhKey*)dh->internal, rng, priv, &privSz, pub, &pubSz) < 0) WOLFSSL_MSG("Bad wc_DhGenerateKeyPair"); else { if (dh->pub_key) wolfSSL_BN_free(dh->pub_key); dh->pub_key = wolfSSL_BN_new(); if (dh->pub_key == NULL) { WOLFSSL_MSG("Bad DH new pub"); } if (dh->priv_key) wolfSSL_BN_free(dh->priv_key); dh->priv_key = wolfSSL_BN_new(); if (dh->priv_key == NULL) { WOLFSSL_MSG("Bad DH new priv"); } if (dh->pub_key && dh->priv_key) { if (wolfSSL_BN_bin2bn(pub, pubSz, dh->pub_key) == NULL) WOLFSSL_MSG("Bad DH bn2bin error pub"); else if (wolfSSL_BN_bin2bn(priv, privSz, dh->priv_key) == NULL) WOLFSSL_MSG("Bad DH bn2bin error priv"); else ret = WOLFSSL_SUCCESS; } } } if (initTmpRng) wc_FreeRng(tmpRNG); #ifdef WOLFSSL_SMALL_STACK XFREE(tmpRNG, NULL, DYNAMIC_TYPE_RNG); XFREE(pub, NULL, DYNAMIC_TYPE_PUBLIC_KEY); XFREE(priv, NULL, DYNAMIC_TYPE_PRIVATE_KEY); #endif return ret; } /* return code compliant with OpenSSL : * size of shared secret if success, -1 if error */ int wolfSSL_DH_compute_key(unsigned char* key, WOLFSSL_BIGNUM* otherPub, WOLFSSL_DH* dh) { int ret = WOLFSSL_FATAL_ERROR; word32 keySz = 0; word32 pubSz = 1024; word32 privSz = 1024; #ifdef WOLFSSL_SMALL_STACK unsigned char* pub = NULL; unsigned char* priv = NULL; #else unsigned char pub [1024]; unsigned char priv[1024]; #endif WOLFSSL_MSG("wolfSSL_DH_compute_key"); #ifdef WOLFSSL_SMALL_STACK pub = (unsigned char*)XMALLOC(pubSz, NULL, DYNAMIC_TYPE_PUBLIC_KEY); if (pub == NULL) return ret; priv = (unsigned char*)XMALLOC(privSz, NULL, DYNAMIC_TYPE_PRIVATE_KEY); if (priv == NULL) { XFREE(pub, NULL, DYNAMIC_TYPE_PUBLIC_KEY); return ret; } #endif if (dh == NULL || dh->priv_key == NULL || otherPub == NULL) WOLFSSL_MSG("Bad function arguments"); else if ((keySz = (word32)DH_size(dh)) == 0) WOLFSSL_MSG("Bad DH_size"); else if (wolfSSL_BN_bn2bin(dh->priv_key, NULL) > (int)privSz) WOLFSSL_MSG("Bad priv internal size"); else if (wolfSSL_BN_bn2bin(otherPub, NULL) > (int)pubSz) WOLFSSL_MSG("Bad otherPub size"); else { privSz = wolfSSL_BN_bn2bin(dh->priv_key, priv); pubSz = wolfSSL_BN_bn2bin(otherPub, pub); if (dh->inSet == 0 && SetDhInternal(dh) != SSL_SUCCESS){ WOLFSSL_MSG("Bad DH set internal"); } if (privSz <= 0 || pubSz <= 0) WOLFSSL_MSG("Bad BN2bin set"); else if (wc_DhAgree((DhKey*)dh->internal, key, &keySz, priv, privSz, pub, pubSz) < 0) WOLFSSL_MSG("wc_DhAgree failed"); else ret = (int)keySz; } #ifdef WOLFSSL_SMALL_STACK XFREE(pub, NULL, DYNAMIC_TYPE_PUBLIC_KEY); XFREE(priv, NULL, DYNAMIC_TYPE_PRIVATE_KEY); #endif return ret; } #endif /* NO_DH */ #ifndef NO_DSA static void InitwolfSSL_DSA(WOLFSSL_DSA* dsa) { if (dsa) { dsa->p = NULL; dsa->q = NULL; dsa->g = NULL; dsa->pub_key = NULL; dsa->priv_key = NULL; dsa->internal = NULL; dsa->inSet = 0; dsa->exSet = 0; } } WOLFSSL_DSA* wolfSSL_DSA_new(void) { WOLFSSL_DSA* external; DsaKey* key; WOLFSSL_MSG("wolfSSL_DSA_new"); key = (DsaKey*) XMALLOC(sizeof(DsaKey), NULL, DYNAMIC_TYPE_DSA); if (key == NULL) { WOLFSSL_MSG("wolfSSL_DSA_new malloc DsaKey failure"); return NULL; } external = (WOLFSSL_DSA*) XMALLOC(sizeof(WOLFSSL_DSA), NULL, DYNAMIC_TYPE_DSA); if (external == NULL) { WOLFSSL_MSG("wolfSSL_DSA_new malloc WOLFSSL_DSA failure"); XFREE(key, NULL, DYNAMIC_TYPE_DSA); return NULL; } InitwolfSSL_DSA(external); if (wc_InitDsaKey(key) != 0) { WOLFSSL_MSG("wolfSSL_DSA_new InitDsaKey failure"); XFREE(key, NULL, DYNAMIC_TYPE_DSA); wolfSSL_DSA_free(external); return NULL; } external->internal = key; return external; } void wolfSSL_DSA_free(WOLFSSL_DSA* dsa) { WOLFSSL_MSG("wolfSSL_DSA_free"); if (dsa) { if (dsa->internal) { FreeDsaKey((DsaKey*)dsa->internal); XFREE(dsa->internal, NULL, DYNAMIC_TYPE_DSA); dsa->internal = NULL; } wolfSSL_BN_free(dsa->priv_key); wolfSSL_BN_free(dsa->pub_key); wolfSSL_BN_free(dsa->g); wolfSSL_BN_free(dsa->q); wolfSSL_BN_free(dsa->p); InitwolfSSL_DSA(dsa); /* set back to NULLs for safety */ XFREE(dsa, NULL, DYNAMIC_TYPE_DSA); dsa = NULL; } } #endif /* NO_DSA */ #endif /* OPENSSL_EXTRA */ #if !defined(NO_RSA) && defined(OPENSSL_EXTRA_X509_SMALL) static void InitwolfSSL_Rsa(WOLFSSL_RSA* rsa) { if (rsa) { XMEMSET(rsa, 0, sizeof(WOLFSSL_RSA)); } } void wolfSSL_RSA_free(WOLFSSL_RSA* rsa) { WOLFSSL_ENTER("wolfSSL_RSA_free"); if (rsa) { if (rsa->internal) { #if !defined(HAVE_FIPS) && !defined(HAVE_USER_RSA) && \ !defined(HAVE_FAST_RSA) && defined(WC_RSA_BLINDING) WC_RNG* rng; /* check if RNG is owned before freeing it */ if (rsa->ownRng) { rng = ((RsaKey*)rsa->internal)->rng; if (rng != NULL && rng != &globalRNG) { wc_FreeRng(rng); XFREE(rng, NULL, DYNAMIC_TYPE_RNG); } } #endif /* WC_RSA_BLINDING */ wc_FreeRsaKey((RsaKey*)rsa->internal); XFREE(rsa->internal, NULL, DYNAMIC_TYPE_RSA); rsa->internal = NULL; } wolfSSL_BN_free(rsa->iqmp); wolfSSL_BN_free(rsa->dmq1); wolfSSL_BN_free(rsa->dmp1); wolfSSL_BN_free(rsa->q); wolfSSL_BN_free(rsa->p); wolfSSL_BN_free(rsa->d); wolfSSL_BN_free(rsa->e); wolfSSL_BN_free(rsa->n); #ifdef WC_RSA_BLINDING if (wc_FreeRng(rsa->rng) != 0) { WOLFSSL_MSG("Issue freeing rng"); } XFREE(rsa->rng, NULL, DYNAMIC_TYPE_RNG); #endif InitwolfSSL_Rsa(rsa); /* set back to NULLs for safety */ XFREE(rsa, NULL, DYNAMIC_TYPE_RSA); rsa = NULL; } } WOLFSSL_RSA* wolfSSL_RSA_new(void) { WOLFSSL_RSA* external; RsaKey* key; WOLFSSL_ENTER("wolfSSL_RSA_new"); key = (RsaKey*) XMALLOC(sizeof(RsaKey), NULL, DYNAMIC_TYPE_RSA); if (key == NULL) { WOLFSSL_MSG("wolfSSL_RSA_new malloc RsaKey failure"); return NULL; } external = (WOLFSSL_RSA*) XMALLOC(sizeof(WOLFSSL_RSA), NULL, DYNAMIC_TYPE_RSA); if (external == NULL) { WOLFSSL_MSG("wolfSSL_RSA_new malloc WOLFSSL_RSA failure"); XFREE(key, NULL, DYNAMIC_TYPE_RSA); return NULL; } InitwolfSSL_Rsa(external); if (wc_InitRsaKey(key, NULL) != 0) { WOLFSSL_MSG("InitRsaKey WOLFSSL_RSA failure"); XFREE(external, NULL, DYNAMIC_TYPE_RSA); XFREE(key, NULL, DYNAMIC_TYPE_RSA); return NULL; } #if !defined(HAVE_FIPS) && !defined(HAVE_USER_RSA) && \ !defined(HAVE_FAST_RSA) && defined(WC_RSA_BLINDING) { WC_RNG* rng = NULL; rng = (WC_RNG*) XMALLOC(sizeof(WC_RNG), NULL, DYNAMIC_TYPE_RNG); if (rng != NULL && wc_InitRng(rng) != 0) { WOLFSSL_MSG("InitRng failure, attempting to use global RNG"); XFREE(rng, NULL, DYNAMIC_TYPE_RNG); rng = NULL; } external->ownRng = 1; if (rng == NULL && initGlobalRNG) { external->ownRng = 0; rng = &globalRNG; } if (rng == NULL) { WOLFSSL_MSG("wolfSSL_RSA_new no WC_RNG for blinding"); XFREE(external, NULL, DYNAMIC_TYPE_RSA); XFREE(key, NULL, DYNAMIC_TYPE_RSA); return NULL; } wc_RsaSetRNG(key, rng); } #endif /* WC_RSA_BLINDING */ external->internal = key; external->inSet = 0; return external; } #endif /* !NO_RSA && OPENSSL_EXTRA_X509_SMALL */ /* these defines are to make sure the functions SetIndividualExternal is not * declared and then not used. */ #if !defined(NO_ASN) || !defined(NO_DSA) || defined(HAVE_ECC) || \ (!defined(NO_RSA) && !defined(HAVE_USER_RSA) && !defined(HAVE_FAST_RSA)) #if defined(OPENSSL_EXTRA) || defined(OPENSSL_EXTRA_X509_SMALL) /* when calling SetIndividualExternal, mpi should be cleared by caller if no * longer used. ie mp_clear(mpi). This is to free data when fastmath is * disabled since a copy of mpi is made by this function and placed into bn. */ static int SetIndividualExternal(WOLFSSL_BIGNUM** bn, mp_int* mpi) { byte dynamic = 0; WOLFSSL_MSG("Entering SetIndividualExternal"); if (mpi == NULL || bn == NULL) { WOLFSSL_MSG("mpi NULL error"); return WOLFSSL_FATAL_ERROR; } if (*bn == NULL) { *bn = wolfSSL_BN_new(); if (*bn == NULL) { WOLFSSL_MSG("SetIndividualExternal alloc failed"); return WOLFSSL_FATAL_ERROR; } dynamic = 1; } if (mp_copy(mpi, (mp_int*)((*bn)->internal)) != MP_OKAY) { WOLFSSL_MSG("mp_copy error"); if (dynamic == 1) { wolfSSL_BN_free(*bn); } return WOLFSSL_FATAL_ERROR; } return WOLFSSL_SUCCESS; } #endif /* OPENSSL_EXTRA || OPENSSL_EXTRA_X509_SMALL */ #ifdef OPENSSL_EXTRA /* only without X509_SMALL */ static int SetIndividualInternal(WOLFSSL_BIGNUM* bn, mp_int* mpi) { WOLFSSL_MSG("Entering SetIndividualInternal"); if (bn == NULL || bn->internal == NULL) { WOLFSSL_MSG("bn NULL error"); return WOLFSSL_FATAL_ERROR; } if (mpi == NULL || (mp_init(mpi) != MP_OKAY)) { WOLFSSL_MSG("mpi NULL error"); return WOLFSSL_FATAL_ERROR; } if (mp_copy((mp_int*)bn->internal, mpi) != MP_OKAY) { WOLFSSL_MSG("mp_copy error"); return WOLFSSL_FATAL_ERROR; } return WOLFSSL_SUCCESS; } #ifndef NO_ASN WOLFSSL_BIGNUM *wolfSSL_ASN1_INTEGER_to_BN(const WOLFSSL_ASN1_INTEGER *ai, WOLFSSL_BIGNUM *bn) { mp_int mpi; word32 idx = 0; int ret; WOLFSSL_ENTER("wolfSSL_ASN1_INTEGER_to_BN"); if (ai == NULL) { return NULL; } if ((ret = GetInt(&mpi, ai->data, &idx, ai->dataMax)) != 0) { /* expecting ASN1 format for INTEGER */ WOLFSSL_LEAVE("wolfSSL_ASN1_INTEGER_to_BN", ret); return NULL; } /* mp_clear needs called because mpi is copied and causes memory leak with * --disable-fastmath */ ret = SetIndividualExternal(&bn, &mpi); mp_clear(&mpi); if (ret != WOLFSSL_SUCCESS) { return NULL; } return bn; } #endif /* !NO_ASN */ #if !defined(NO_DSA) && !defined(NO_DH) WOLFSSL_DH *wolfSSL_DSA_dup_DH(const WOLFSSL_DSA *dsa) { WOLFSSL_DH* dh; DhKey* key; WOLFSSL_ENTER("wolfSSL_DSA_dup_DH"); if (dsa == NULL) { return NULL; } dh = wolfSSL_DH_new(); if (dh == NULL) { return NULL; } key = (DhKey*)dh->internal; if (dsa->p != NULL && SetIndividualInternal(((WOLFSSL_DSA*)dsa)->p, &key->p) != WOLFSSL_SUCCESS) { WOLFSSL_MSG("rsa p key error"); wolfSSL_DH_free(dh); return NULL; } if (dsa->g != NULL && SetIndividualInternal(((WOLFSSL_DSA*)dsa)->g, &key->g) != WOLFSSL_SUCCESS) { WOLFSSL_MSG("rsa g key error"); wolfSSL_DH_free(dh); return NULL; } if (SetIndividualExternal(&dh->p, &key->p) != WOLFSSL_SUCCESS) { WOLFSSL_MSG("dsa p key error"); wolfSSL_DH_free(dh); return NULL; } if (SetIndividualExternal(&dh->g, &key->g) != WOLFSSL_SUCCESS) { WOLFSSL_MSG("dsa g key error"); wolfSSL_DH_free(dh); return NULL; } return dh; } #endif /* !defined(NO_DSA) && !defined(NO_DH) */ #endif /* OPENSSL_EXTRA */ #endif /* !NO_RSA && !NO_DSA */ #ifdef OPENSSL_EXTRA #ifndef NO_DSA /* wolfSSL -> OpenSSL */ static int SetDsaExternal(WOLFSSL_DSA* dsa) { DsaKey* key; WOLFSSL_MSG("Entering SetDsaExternal"); if (dsa == NULL || dsa->internal == NULL) { WOLFSSL_MSG("dsa key NULL error"); return WOLFSSL_FATAL_ERROR; } key = (DsaKey*)dsa->internal; if (SetIndividualExternal(&dsa->p, &key->p) != WOLFSSL_SUCCESS) { WOLFSSL_MSG("dsa p key error"); return WOLFSSL_FATAL_ERROR; } if (SetIndividualExternal(&dsa->q, &key->q) != WOLFSSL_SUCCESS) { WOLFSSL_MSG("dsa q key error"); return WOLFSSL_FATAL_ERROR; } if (SetIndividualExternal(&dsa->g, &key->g) != WOLFSSL_SUCCESS) { WOLFSSL_MSG("dsa g key error"); return WOLFSSL_FATAL_ERROR; } if (SetIndividualExternal(&dsa->pub_key, &key->y) != WOLFSSL_SUCCESS) { WOLFSSL_MSG("dsa y key error"); return WOLFSSL_FATAL_ERROR; } if (SetIndividualExternal(&dsa->priv_key, &key->x) != WOLFSSL_SUCCESS) { WOLFSSL_MSG("dsa x key error"); return WOLFSSL_FATAL_ERROR; } dsa->exSet = 1; return WOLFSSL_SUCCESS; } /* Openssl -> WolfSSL */ static int SetDsaInternal(WOLFSSL_DSA* dsa) { DsaKey* key; WOLFSSL_MSG("Entering SetDsaInternal"); if (dsa == NULL || dsa->internal == NULL) { WOLFSSL_MSG("dsa key NULL error"); return WOLFSSL_FATAL_ERROR; } key = (DsaKey*)dsa->internal; if (dsa->p != NULL && SetIndividualInternal(dsa->p, &key->p) != WOLFSSL_SUCCESS) { WOLFSSL_MSG("rsa p key error"); return WOLFSSL_FATAL_ERROR; } if (dsa->q != NULL && SetIndividualInternal(dsa->q, &key->q) != WOLFSSL_SUCCESS) { WOLFSSL_MSG("rsa q key error"); return WOLFSSL_FATAL_ERROR; } if (dsa->g != NULL && SetIndividualInternal(dsa->g, &key->g) != WOLFSSL_SUCCESS) { WOLFSSL_MSG("rsa g key error"); return WOLFSSL_FATAL_ERROR; } if (dsa->pub_key != NULL) { if (SetIndividualInternal(dsa->pub_key, &key->y) != WOLFSSL_SUCCESS) { WOLFSSL_MSG("rsa pub_key error"); return WOLFSSL_FATAL_ERROR; } /* public key */ key->type = DSA_PUBLIC; } if (dsa->priv_key != NULL) { if (SetIndividualInternal(dsa->priv_key, &key->x) != WOLFSSL_SUCCESS) { WOLFSSL_MSG("rsa priv_key error"); return WOLFSSL_FATAL_ERROR; } /* private key */ key->type = DSA_PRIVATE; } dsa->inSet = 1; return WOLFSSL_SUCCESS; } #endif /* NO_DSA */ #endif /* OPENSSL_EXTRA */ #if !defined(HAVE_USER_RSA) && !defined(HAVE_FAST_RSA) && \ !defined(NO_RSA) && (defined(OPENSSL_EXTRA) || defined(OPENSSL_EXTRA_X509_SMALL)) /* WolfSSL -> OpenSSL */ static int SetRsaExternal(WOLFSSL_RSA* rsa) { RsaKey* key; WOLFSSL_MSG("Entering SetRsaExternal"); if (rsa == NULL || rsa->internal == NULL) { WOLFSSL_MSG("rsa key NULL error"); return WOLFSSL_FATAL_ERROR; } key = (RsaKey*)rsa->internal; if (SetIndividualExternal(&rsa->n, &key->n) != WOLFSSL_SUCCESS) { WOLFSSL_MSG("rsa n key error"); return WOLFSSL_FATAL_ERROR; } if (SetIndividualExternal(&rsa->e, &key->e) != WOLFSSL_SUCCESS) { WOLFSSL_MSG("rsa e key error"); return WOLFSSL_FATAL_ERROR; } if (key->type == RSA_PRIVATE) { if (SetIndividualExternal(&rsa->d, &key->d) != WOLFSSL_SUCCESS) { WOLFSSL_MSG("rsa d key error"); return WOLFSSL_FATAL_ERROR; } if (SetIndividualExternal(&rsa->p, &key->p) != WOLFSSL_SUCCESS) { WOLFSSL_MSG("rsa p key error"); return WOLFSSL_FATAL_ERROR; } if (SetIndividualExternal(&rsa->q, &key->q) != WOLFSSL_SUCCESS) { WOLFSSL_MSG("rsa q key error"); return WOLFSSL_FATAL_ERROR; } #ifndef RSA_LOW_MEM if (SetIndividualExternal(&rsa->dmp1, &key->dP) != WOLFSSL_SUCCESS) { WOLFSSL_MSG("rsa dP key error"); return WOLFSSL_FATAL_ERROR; } if (SetIndividualExternal(&rsa->dmq1, &key->dQ) != WOLFSSL_SUCCESS) { WOLFSSL_MSG("rsa dQ key error"); return WOLFSSL_FATAL_ERROR; } if (SetIndividualExternal(&rsa->iqmp, &key->u) != WOLFSSL_SUCCESS) { WOLFSSL_MSG("rsa u key error"); return WOLFSSL_FATAL_ERROR; } #endif /* !RSA_LOW_MEM */ } rsa->exSet = 1; return WOLFSSL_SUCCESS; } #endif #ifdef OPENSSL_EXTRA #if !defined(NO_RSA) #if !defined(HAVE_USER_RSA) && !defined(HAVE_FAST_RSA) /* Openssl -> WolfSSL */ static int SetRsaInternal(WOLFSSL_RSA* rsa) { RsaKey* key; WOLFSSL_MSG("Entering SetRsaInternal"); if (rsa == NULL || rsa->internal == NULL) { WOLFSSL_MSG("rsa key NULL error"); return WOLFSSL_FATAL_ERROR; } key = (RsaKey*)rsa->internal; if (SetIndividualInternal(rsa->n, &key->n) != WOLFSSL_SUCCESS) { WOLFSSL_MSG("rsa n key error"); return WOLFSSL_FATAL_ERROR; } if (SetIndividualInternal(rsa->e, &key->e) != WOLFSSL_SUCCESS) { WOLFSSL_MSG("rsa e key error"); return WOLFSSL_FATAL_ERROR; } /* public key */ key->type = RSA_PUBLIC; if (rsa->d != NULL) { if (SetIndividualInternal(rsa->d, &key->d) != WOLFSSL_SUCCESS) { WOLFSSL_MSG("rsa d key error"); return WOLFSSL_FATAL_ERROR; } /* private key */ key->type = RSA_PRIVATE; } if (rsa->p != NULL && SetIndividualInternal(rsa->p, &key->p) != WOLFSSL_SUCCESS) { WOLFSSL_MSG("rsa p key error"); return WOLFSSL_FATAL_ERROR; } if (rsa->q != NULL && SetIndividualInternal(rsa->q, &key->q) != WOLFSSL_SUCCESS) { WOLFSSL_MSG("rsa q key error"); return WOLFSSL_FATAL_ERROR; } #ifndef RSA_LOW_MEM if (rsa->dmp1 != NULL && SetIndividualInternal(rsa->dmp1, &key->dP) != WOLFSSL_SUCCESS) { WOLFSSL_MSG("rsa dP key error"); return WOLFSSL_FATAL_ERROR; } if (rsa->dmq1 != NULL && SetIndividualInternal(rsa->dmq1, &key->dQ) != WOLFSSL_SUCCESS) { WOLFSSL_MSG("rsa dQ key error"); return WOLFSSL_FATAL_ERROR; } if (rsa->iqmp != NULL && SetIndividualInternal(rsa->iqmp, &key->u) != WOLFSSL_SUCCESS) { WOLFSSL_MSG("rsa u key error"); return WOLFSSL_FATAL_ERROR; } #endif /* !RSA_LOW_MEM */ rsa->inSet = 1; return WOLFSSL_SUCCESS; } /* SSL_SUCCESS on ok */ #ifndef NO_WOLFSSL_STUB int wolfSSL_RSA_blinding_on(WOLFSSL_RSA* rsa, WOLFSSL_BN_CTX* bn) { (void)rsa; (void)bn; WOLFSSL_STUB("RSA_blinding_on"); WOLFSSL_MSG("wolfSSL_RSA_blinding_on"); return WOLFSSL_SUCCESS; /* on by default */ } #endif /* return compliant with OpenSSL * size of encrypted data if success , -1 if error */ int wolfSSL_RSA_public_encrypt(int len, const unsigned char* fr, unsigned char* to, WOLFSSL_RSA* rsa, int padding) { int initTmpRng = 0; WC_RNG *rng = NULL; int outLen; int ret = 0; #ifdef WOLFSSL_SMALL_STACK WC_RNG* tmpRNG = NULL; #else WC_RNG tmpRNG[1]; #endif #if !defined(HAVE_FIPS) && !defined(HAVE_USER_RSA) && !defined(HAVE_FAST_RSA) int mgf = WC_MGF1NONE; enum wc_HashType hash = WC_HASH_TYPE_NONE; #endif WOLFSSL_MSG("wolfSSL_RSA_public_encrypt"); /* Check and remap the padding to internal values, if needed. */ #if !defined(HAVE_FIPS) && !defined(HAVE_USER_RSA) && !defined(HAVE_FAST_RSA) if (padding == RSA_PKCS1_PADDING) padding = WC_RSA_PKCSV15_PAD; else if (padding == RSA_PKCS1_OAEP_PADDING) { padding = WC_RSA_OAEP_PAD; hash = WC_HASH_TYPE_SHA; mgf = WC_MGF1SHA1; } #else if (padding == RSA_PKCS1_PADDING) ; #endif else { WOLFSSL_MSG("wolfSSL_RSA_public_encrypt unsupported padding"); return 0; } if (rsa->inSet == 0) { if (SetRsaInternal(rsa) != SSL_SUCCESS) { WOLFSSL_MSG("SetRsaInternal failed"); return 0; } } outLen = wolfSSL_RSA_size(rsa); #if !defined(HAVE_FIPS) && !defined(HAVE_USER_RSA) && \ !defined(HAVE_FAST_RSA) && defined(WC_RSA_BLINDING) rng = ((RsaKey*)rsa->internal)->rng; #endif if (rng == NULL) { #ifdef WOLFSSL_SMALL_STACK tmpRNG = (WC_RNG*)XMALLOC(sizeof(WC_RNG), NULL, DYNAMIC_TYPE_TMP_BUFFER); if (tmpRNG == NULL) return 0; #endif if (wc_InitRng(tmpRNG) == 0) { rng = tmpRNG; initTmpRng = 1; } else { WOLFSSL_MSG("Bad RNG Init, trying global"); if (initGlobalRNG == 0) WOLFSSL_MSG("Global RNG no Init"); else rng = &globalRNG; } } if (outLen == 0) { WOLFSSL_MSG("Bad RSA size"); } if (rng) { #if !defined(HAVE_FIPS) && !defined(HAVE_USER_RSA) && !defined(HAVE_FAST_RSA) ret = wc_RsaPublicEncrypt_ex(fr, len, to, outLen, (RsaKey*)rsa->internal, rng, padding, hash, mgf, NULL, 0); #else ret = wc_RsaPublicEncrypt(fr, len, to, outLen, (RsaKey*)rsa->internal, rng); #endif if (ret <= 0) { WOLFSSL_MSG("Bad Rsa Encrypt"); } if (len <= 0) { WOLFSSL_MSG("Bad Rsa Encrypt"); } } if (initTmpRng) wc_FreeRng(tmpRNG); #ifdef WOLFSSL_SMALL_STACK XFREE(tmpRNG, NULL, DYNAMIC_TYPE_TMP_BUFFER); #endif if (ret >= 0) WOLFSSL_MSG("wolfSSL_RSA_public_encrypt success"); else { WOLFSSL_MSG("wolfSSL_RSA_public_encrypt failed"); ret = WOLFSSL_FATAL_ERROR; /* return -1 on error case */ } return ret; } /* return compliant with OpenSSL * size of plain recovered data if success , -1 if error */ int wolfSSL_RSA_private_decrypt(int len, const unsigned char* fr, unsigned char* to, WOLFSSL_RSA* rsa, int padding) { int outLen; int ret = 0; #if !defined(HAVE_FIPS) && !defined(HAVE_USER_RSA) && !defined(HAVE_FAST_RSA) int mgf = WC_MGF1NONE; enum wc_HashType hash = WC_HASH_TYPE_NONE; #endif WOLFSSL_MSG("wolfSSL_RSA_private_decrypt"); #if !defined(HAVE_FIPS) && !defined(HAVE_USER_RSA) && !defined(HAVE_FAST_RSA) if (padding == RSA_PKCS1_PADDING) padding = WC_RSA_PKCSV15_PAD; else if (padding == RSA_PKCS1_OAEP_PADDING) { padding = WC_RSA_OAEP_PAD; hash = WC_HASH_TYPE_SHA; mgf = WC_MGF1SHA1; } #else if (padding == RSA_PKCS1_PADDING) ; #endif else { WOLFSSL_MSG("wolfSSL_RSA_private_decrypt unsupported padding"); return 0; } if (rsa->inSet == 0) { if (SetRsaInternal(rsa) != SSL_SUCCESS) { WOLFSSL_MSG("SetRsaInternal failed"); return 0; } } outLen = wolfSSL_RSA_size(rsa); if (outLen == 0) { WOLFSSL_MSG("Bad RSA size"); } /* size of 'to' buffer must be size of RSA key */ #if !defined(HAVE_FIPS) && !defined(HAVE_USER_RSA) && !defined(HAVE_FAST_RSA) ret = wc_RsaPrivateDecrypt_ex(fr, len, to, outLen, (RsaKey*)rsa->internal, padding, hash, mgf, NULL, 0); #else ret = wc_RsaPrivateDecrypt(fr, len, to, outLen, (RsaKey*)rsa->internal); #endif if (len <= 0) { WOLFSSL_MSG("Bad Rsa Decrypt"); } if (ret > 0) WOLFSSL_MSG("wolfSSL_RSA_private_decrypt success"); else { WOLFSSL_MSG("wolfSSL_RSA_private_decrypt failed"); ret = WOLFSSL_FATAL_ERROR; } return ret; } /* RSA private encrypt calls wc_RsaSSL_Sign. Similar function set up as RSA * public decrypt. * * len Length of input buffer * in Input buffer to sign * out Output buffer (expected to be greater than or equal to RSA key size) * rsa Key to use for encryption * padding Type of RSA padding to use. */ int wolfSSL_RSA_private_encrypt(int len, unsigned char* in, unsigned char* out, WOLFSSL_RSA* rsa, int padding) { int sz = 0; WC_RNG* rng = NULL; RsaKey* key; WOLFSSL_MSG("wolfSSL_RSA_private_encrypt"); if (len < 0 || rsa == NULL || rsa->internal == NULL || in == NULL) { WOLFSSL_MSG("Bad function arguments"); return 0; } if (padding != RSA_PKCS1_PADDING) { WOLFSSL_MSG("wolfSSL_RSA_private_encrypt unsupported padding"); return 0; } if (rsa->inSet == 0) { WOLFSSL_MSG("Setting internal RSA structure"); if (SetRsaInternal(rsa) != SSL_SUCCESS) { WOLFSSL_MSG("SetRsaInternal failed"); return 0; } } key = (RsaKey*)rsa->internal; #if defined(WC_RSA_BLINDING) && !defined(HAVE_USER_RSA) rng = key->rng; #else #ifndef HAVE_FIPS if (wc_InitRng_ex(rng, key->heap, INVALID_DEVID) != 0) { #else if (wc_InitRng(rng) != 0) { #endif WOLFSSL_MSG("Error with random number"); return SSL_FATAL_ERROR; } #endif /* size of output buffer must be size of RSA key */ sz = wc_RsaSSL_Sign(in, (word32)len, out, wolfSSL_RSA_size(rsa), key, rng); #if !defined(WC_RSA_BLINDING) || defined(HAVE_USER_RSA) if (wc_FreeRng(rng) != 0) { WOLFSSL_MSG("Error freeing random number generator"); return SSL_FATAL_ERROR; } #endif if (sz <= 0) { WOLFSSL_LEAVE("wolfSSL_RSA_private_encrypt", sz); return 0; } return sz; } #endif /* HAVE_USER_RSA */ /* return compliant with OpenSSL * RSA modulus size in bytes, -1 if error */ int wolfSSL_RSA_size(const WOLFSSL_RSA* rsa) { WOLFSSL_ENTER("wolfSSL_RSA_size"); if (rsa == NULL) return WOLFSSL_FATAL_ERROR; if (rsa->inSet == 0) { if (SetRsaInternal((WOLFSSL_RSA*)rsa) != SSL_SUCCESS) { WOLFSSL_MSG("SetRsaInternal failed"); return 0; } } return wc_RsaEncryptSize((RsaKey*)rsa->internal); } /* Generates a RSA key of length len * * len length of RSA key i.e. 2048 * e e to use when generating RSA key * f callback function for generation details * data user callback argument * * Note: Because of wc_MakeRsaKey an RSA key size generated can be slightly * rounded down. For example generating a key of size 2999 with e = * 65537 will make a key of size 374 instead of 375. * Returns a new RSA key on success and NULL on failure */ WOLFSSL_RSA* wolfSSL_RSA_generate_key(int len, unsigned long e, void(*f)(int, int, void*), void* data) { WOLFSSL_RSA* rsa = NULL; WOLFSSL_BIGNUM* bn = NULL; WOLFSSL_ENTER("wolfSSL_RSA_generate_key"); (void)f; (void)data; if (len < 0) { WOLFSSL_MSG("Bad argument: length was less than 0"); return NULL; } bn = wolfSSL_BN_new(); if (bn == NULL) { WOLFSSL_MSG("Error creating big number"); return NULL; } if (wolfSSL_BN_set_word(bn, (WOLFSSL_BN_ULONG)e) != SSL_SUCCESS) { WOLFSSL_MSG("Error using e value"); wolfSSL_BN_free(bn); return NULL; } rsa = wolfSSL_RSA_new(); if (rsa == NULL) { WOLFSSL_MSG("memory error"); } else { if (wolfSSL_RSA_generate_key_ex(rsa, len, bn, NULL) != SSL_SUCCESS){ wolfSSL_RSA_free(rsa); rsa = NULL; } } wolfSSL_BN_free(bn); return rsa; } /* return compliant with OpenSSL * 1 if success, 0 if error */ int wolfSSL_RSA_generate_key_ex(WOLFSSL_RSA* rsa, int bits, WOLFSSL_BIGNUM* bn, void* cb) { int ret = WOLFSSL_FAILURE; (void)cb; (void)bn; (void)bits; WOLFSSL_ENTER("wolfSSL_RSA_generate_key_ex"); if (rsa == NULL || rsa->internal == NULL) { /* bit size checked during make key call */ WOLFSSL_MSG("bad arguments"); return WOLFSSL_FAILURE; } #ifdef WOLFSSL_KEY_GEN { #ifdef WOLFSSL_SMALL_STACK WC_RNG* rng = NULL; #else WC_RNG rng[1]; #endif #ifdef WOLFSSL_SMALL_STACK rng = (WC_RNG*)XMALLOC(sizeof(WC_RNG), NULL, DYNAMIC_TYPE_RNG); if (rng == NULL) return WOLFSSL_FAILURE; #endif if (wc_InitRng(rng) < 0) WOLFSSL_MSG("RNG init failed"); else if (wc_MakeRsaKey((RsaKey*)rsa->internal, bits, wolfSSL_BN_get_word(bn), rng) != MP_OKAY) WOLFSSL_MSG("wc_MakeRsaKey failed"); else if (SetRsaExternal(rsa) != WOLFSSL_SUCCESS) WOLFSSL_MSG("SetRsaExternal failed"); else { rsa->inSet = 1; ret = WOLFSSL_SUCCESS; } wc_FreeRng(rng); #ifdef WOLFSSL_SMALL_STACK XFREE(rng, NULL, DYNAMIC_TYPE_RNG); #endif } #else WOLFSSL_MSG("No Key Gen built in"); #endif return ret; } #endif /* NO_RSA */ #ifndef NO_DSA /* return code compliant with OpenSSL : * 1 if success, 0 if error */ int wolfSSL_DSA_generate_key(WOLFSSL_DSA* dsa) { int ret = WOLFSSL_FAILURE; WOLFSSL_ENTER("wolfSSL_DSA_generate_key"); if (dsa == NULL || dsa->internal == NULL) { WOLFSSL_MSG("Bad arguments"); return WOLFSSL_FAILURE; } if (dsa->inSet == 0) { WOLFSSL_MSG("No DSA internal set, do it"); if (SetDsaInternal(dsa) != WOLFSSL_SUCCESS) { WOLFSSL_MSG("SetDsaInternal failed"); return ret; } } #ifdef WOLFSSL_KEY_GEN { int initTmpRng = 0; WC_RNG *rng = NULL; #ifdef WOLFSSL_SMALL_STACK WC_RNG *tmpRNG = NULL; #else WC_RNG tmpRNG[1]; #endif #ifdef WOLFSSL_SMALL_STACK tmpRNG = (WC_RNG*)XMALLOC(sizeof(WC_RNG), NULL, DYNAMIC_TYPE_RNG); if (tmpRNG == NULL) return WOLFSSL_FATAL_ERROR; #endif if (wc_InitRng(tmpRNG) == 0) { rng = tmpRNG; initTmpRng = 1; } else { WOLFSSL_MSG("Bad RNG Init, trying global"); if (initGlobalRNG == 0) WOLFSSL_MSG("Global RNG no Init"); else rng = &globalRNG; } if (rng) { if (wc_MakeDsaKey(rng, (DsaKey*)dsa->internal) != MP_OKAY) WOLFSSL_MSG("wc_MakeDsaKey failed"); else if (SetDsaExternal(dsa) != WOLFSSL_SUCCESS) WOLFSSL_MSG("SetDsaExternal failed"); else ret = WOLFSSL_SUCCESS; } if (initTmpRng) wc_FreeRng(tmpRNG); #ifdef WOLFSSL_SMALL_STACK XFREE(tmpRNG, NULL, DYNAMIC_TYPE_RNG); #endif } #else /* WOLFSSL_KEY_GEN */ WOLFSSL_MSG("No Key Gen built in"); #endif return ret; } /* Returns a pointer to a new WOLFSSL_DSA structure on success and NULL on fail */ WOLFSSL_DSA* wolfSSL_DSA_generate_parameters(int bits, unsigned char* seed, int seedLen, int* counterRet, unsigned long* hRet, WOLFSSL_BN_CB cb, void* CBArg) { WOLFSSL_DSA* dsa; WOLFSSL_ENTER("wolfSSL_DSA_generate_parameters()"); (void)cb; (void)CBArg; dsa = wolfSSL_DSA_new(); if (dsa == NULL) { return NULL; } if (wolfSSL_DSA_generate_parameters_ex(dsa, bits, seed, seedLen, counterRet, hRet, NULL) != SSL_SUCCESS) { wolfSSL_DSA_free(dsa); return NULL; } return dsa; } /* return code compliant with OpenSSL : * 1 if success, 0 if error */ int wolfSSL_DSA_generate_parameters_ex(WOLFSSL_DSA* dsa, int bits, unsigned char* seed, int seedLen, int* counterRet, unsigned long* hRet, void* cb) { int ret = WOLFSSL_FAILURE; (void)bits; (void)seed; (void)seedLen; (void)counterRet; (void)hRet; (void)cb; WOLFSSL_ENTER("wolfSSL_DSA_generate_parameters_ex"); if (dsa == NULL || dsa->internal == NULL) { WOLFSSL_MSG("Bad arguments"); return WOLFSSL_FAILURE; } #ifdef WOLFSSL_KEY_GEN { int initTmpRng = 0; WC_RNG *rng = NULL; #ifdef WOLFSSL_SMALL_STACK WC_RNG *tmpRNG = NULL; #else WC_RNG tmpRNG[1]; #endif #ifdef WOLFSSL_SMALL_STACK tmpRNG = (WC_RNG*)XMALLOC(sizeof(WC_RNG), NULL, DYNAMIC_TYPE_RNG); if (tmpRNG == NULL) return WOLFSSL_FATAL_ERROR; #endif if (wc_InitRng(tmpRNG) == 0) { rng = tmpRNG; initTmpRng = 1; } else { WOLFSSL_MSG("Bad RNG Init, trying global"); if (initGlobalRNG == 0) WOLFSSL_MSG("Global RNG no Init"); else rng = &globalRNG; } if (rng) { if (wc_MakeDsaParameters(rng, bits, (DsaKey*)dsa->internal) != MP_OKAY) WOLFSSL_MSG("wc_MakeDsaParameters failed"); else if (SetDsaExternal(dsa) != WOLFSSL_SUCCESS) WOLFSSL_MSG("SetDsaExternal failed"); else ret = WOLFSSL_SUCCESS; } if (initTmpRng) wc_FreeRng(tmpRNG); #ifdef WOLFSSL_SMALL_STACK XFREE(tmpRNG, NULL, DYNAMIC_TYPE_RNG); #endif } #else /* WOLFSSL_KEY_GEN */ WOLFSSL_MSG("No Key Gen built in"); #endif return ret; } /* return WOLFSSL_SUCCESS on success, < 0 otherwise */ int wolfSSL_DSA_do_sign(const unsigned char* d, unsigned char* sigRet, WOLFSSL_DSA* dsa) { int ret = WOLFSSL_FATAL_ERROR; int initTmpRng = 0; WC_RNG* rng = NULL; #ifdef WOLFSSL_SMALL_STACK WC_RNG* tmpRNG = NULL; #else WC_RNG tmpRNG[1]; #endif WOLFSSL_ENTER("wolfSSL_DSA_do_sign"); if (d == NULL || sigRet == NULL || dsa == NULL) { WOLFSSL_MSG("Bad function arguments"); return ret; } if (dsa->inSet == 0) { WOLFSSL_MSG("No DSA internal set, do it"); if (SetDsaInternal(dsa) != WOLFSSL_SUCCESS) { WOLFSSL_MSG("SetDsaInternal failed"); return ret; } } #ifdef WOLFSSL_SMALL_STACK tmpRNG = (WC_RNG*)XMALLOC(sizeof(WC_RNG), NULL, DYNAMIC_TYPE_RNG); if (tmpRNG == NULL) return WOLFSSL_FATAL_ERROR; #endif if (wc_InitRng(tmpRNG) == 0) { rng = tmpRNG; initTmpRng = 1; } else { WOLFSSL_MSG("Bad RNG Init, trying global"); if (initGlobalRNG == 0) WOLFSSL_MSG("Global RNG no Init"); else rng = &globalRNG; } if (rng) { if (DsaSign(d, sigRet, (DsaKey*)dsa->internal, rng) < 0) WOLFSSL_MSG("DsaSign failed"); else ret = WOLFSSL_SUCCESS; } if (initTmpRng) wc_FreeRng(tmpRNG); #ifdef WOLFSSL_SMALL_STACK XFREE(tmpRNG, NULL, DYNAMIC_TYPE_RNG); #endif return ret; } int wolfSSL_DSA_do_verify(const unsigned char* d, unsigned char* sig, WOLFSSL_DSA* dsa, int *dsacheck) { int ret = WOLFSSL_FATAL_ERROR; WOLFSSL_ENTER("wolfSSL_DSA_do_verify"); if (d == NULL || sig == NULL || dsa == NULL) { WOLFSSL_MSG("Bad function arguments"); return WOLFSSL_FATAL_ERROR; } if (dsa->inSet == 0) { WOLFSSL_MSG("No DSA internal set, do it"); if (SetDsaInternal(dsa) != WOLFSSL_SUCCESS) { WOLFSSL_MSG("SetDsaInternal failed"); return WOLFSSL_FATAL_ERROR; } } ret = DsaVerify(d, sig, (DsaKey*)dsa->internal, dsacheck); if (ret != 0 || *dsacheck != 1) { WOLFSSL_MSG("DsaVerify failed"); return ret; } return WOLFSSL_SUCCESS; } #endif /* NO_DSA */ #if !defined(NO_RSA) && !defined(HAVE_USER_RSA) #ifdef DEBUG_SIGN static void show(const char *title, const unsigned char *out, unsigned int outlen) { const unsigned char *pt; printf("%s[%d] = \n", title, (int)outlen); outlen = outlen>100?100:outlen; for (pt = out; pt < out + outlen; printf("%c", ((*pt)&0x6f)>='A'?((*pt)&0x6f):'.'), pt++); printf("\n"); } #else #define show(a,b,c) #endif /* return SSL_SUCCES on ok, 0 otherwise */ int wolfSSL_RSA_sign(int type, const unsigned char* m, unsigned int mLen, unsigned char* sigRet, unsigned int* sigLen, WOLFSSL_RSA* rsa) { return wolfSSL_RSA_sign_ex(type, m, mLen, sigRet, sigLen, rsa, 1); } int wolfSSL_RSA_sign_ex(int type, const unsigned char* m, unsigned int mLen, unsigned char* sigRet, unsigned int* sigLen, WOLFSSL_RSA* rsa, int flag) { word32 outLen; word32 signSz; int initTmpRng = 0; WC_RNG* rng = NULL; int ret = 0; #ifdef WOLFSSL_SMALL_STACK WC_RNG* tmpRNG = NULL; byte* encodedSig = NULL; #else WC_RNG tmpRNG[1]; byte encodedSig[MAX_ENCODED_SIG_SZ]; #endif WOLFSSL_ENTER("wolfSSL_RSA_sign"); if (m == NULL || sigRet == NULL || sigLen == NULL || rsa == NULL) { WOLFSSL_MSG("Bad function arguments"); return 0; } show("Message to Sign", m, mLen); switch (type) { #ifdef WOLFSSL_MD2 case NID_md2: type = MD2h; break; #endif #ifndef NO_MD5 case NID_md5: type = MD5h; break; #endif #ifndef NO_SHA case NID_sha1: type = SHAh; break; #endif #ifndef NO_SHA256 case NID_sha256: type = SHA256h; break; #endif #ifdef WOLFSSL_SHA384 case NID_sha384: type = SHA384h; break; #endif #ifdef WOLFSSL_SHA512 case NID_sha512: type = SHA512h; break; #endif default: WOLFSSL_MSG("This NID (md type) not configured or not implemented"); return 0; } if (rsa->inSet == 0) { WOLFSSL_MSG("No RSA internal set, do it"); if (SetRsaInternal(rsa) != WOLFSSL_SUCCESS) { WOLFSSL_MSG("SetRsaInternal failed"); return 0; } } outLen = (word32)wolfSSL_BN_num_bytes(rsa->n); #ifdef WOLFSSL_SMALL_STACK tmpRNG = (WC_RNG*)XMALLOC(sizeof(WC_RNG), NULL, DYNAMIC_TYPE_RNG); if (tmpRNG == NULL) return 0; encodedSig = (byte*)XMALLOC(MAX_ENCODED_SIG_SZ, NULL, DYNAMIC_TYPE_SIGNATURE); if (encodedSig == NULL) { XFREE(tmpRNG, NULL, DYNAMIC_TYPE_RNG); return 0; } #endif if (outLen == 0) WOLFSSL_MSG("Bad RSA size"); else if (wc_InitRng(tmpRNG) == 0) { rng = tmpRNG; initTmpRng = 1; } else { WOLFSSL_MSG("Bad RNG Init, trying global"); if (initGlobalRNG == 0) WOLFSSL_MSG("Global RNG no Init"); else rng = &globalRNG; } if (rng) { signSz = wc_EncodeSignature(encodedSig, m, mLen, type); if (signSz == 0) { WOLFSSL_MSG("Bad Encode Signature"); } else { show("Encoded Message", encodedSig, signSz); if (flag != 0) { ret = wc_RsaSSL_Sign(encodedSig, signSz, sigRet, outLen, (RsaKey*)rsa->internal, rng); if (ret <= 0) { WOLFSSL_MSG("Bad Rsa Sign"); ret = 0; } else { *sigLen = (unsigned int)ret; ret = SSL_SUCCESS; show("Signature", sigRet, *sigLen); } } else { ret = SSL_SUCCESS; XMEMCPY(sigRet, encodedSig, signSz); *sigLen = signSz; } } } if (initTmpRng) wc_FreeRng(tmpRNG); #ifdef WOLFSSL_SMALL_STACK XFREE(tmpRNG, NULL, DYNAMIC_TYPE_RNG); XFREE(encodedSig, NULL, DYNAMIC_TYPE_SIGNATURE); #endif if (ret == WOLFSSL_SUCCESS) WOLFSSL_MSG("wolfSSL_RSA_sign success"); else { WOLFSSL_MSG("wolfSSL_RSA_sign failed"); } return ret; } /* returns WOLFSSL_SUCCESS on successful verify and WOLFSSL_FAILURE on fail */ int wolfSSL_RSA_verify(int type, const unsigned char* m, unsigned int mLen, const unsigned char* sig, unsigned int sigLen, WOLFSSL_RSA* rsa) { int ret; unsigned char *sigRet ; unsigned char *sigDec ; unsigned int len; WOLFSSL_ENTER("wolfSSL_RSA_verify"); if ((m == NULL) || (sig == NULL)) { WOLFSSL_MSG("Bad function arguments"); return WOLFSSL_FAILURE; } sigRet = (unsigned char *)XMALLOC(sigLen, NULL, DYNAMIC_TYPE_TMP_BUFFER); if (sigRet == NULL) { WOLFSSL_MSG("Memory failure"); return WOLFSSL_FAILURE; } sigDec = (unsigned char *)XMALLOC(sigLen, NULL, DYNAMIC_TYPE_TMP_BUFFER); if (sigDec == NULL) { WOLFSSL_MSG("Memory failure"); XFREE(sigRet, NULL, DYNAMIC_TYPE_TMP_BUFFER); return WOLFSSL_FAILURE; } /* get non-encrypted signature to be compared with decrypted sugnature*/ ret = wolfSSL_RSA_sign_ex(type, m, mLen, sigRet, &len, rsa, 0); if (ret <= 0) { WOLFSSL_MSG("Message Digest Error"); XFREE(sigRet, NULL, DYNAMIC_TYPE_TMP_BUFFER); XFREE(sigDec, NULL, DYNAMIC_TYPE_TMP_BUFFER); return WOLFSSL_FAILURE; } show("Encoded Message", sigRet, len); /* decrypt signature */ ret = wc_RsaSSL_Verify(sig, sigLen, (unsigned char *)sigDec, sigLen, (RsaKey*)rsa->internal); if (ret <= 0) { WOLFSSL_MSG("RSA Decrypt error"); XFREE(sigRet, NULL, DYNAMIC_TYPE_TMP_BUFFER); XFREE(sigDec, NULL, DYNAMIC_TYPE_TMP_BUFFER); return WOLFSSL_FAILURE; } show("Decrypted Signature", sigDec, ret); if ((int)len == ret && XMEMCMP(sigRet, sigDec, ret) == 0) { WOLFSSL_MSG("wolfSSL_RSA_verify success"); XFREE(sigRet, NULL, DYNAMIC_TYPE_TMP_BUFFER); XFREE(sigDec, NULL, DYNAMIC_TYPE_TMP_BUFFER); return WOLFSSL_SUCCESS; } else { WOLFSSL_MSG("wolfSSL_RSA_verify failed"); XFREE(sigRet, NULL, DYNAMIC_TYPE_TMP_BUFFER); XFREE(sigDec, NULL, DYNAMIC_TYPE_TMP_BUFFER); return WOLFSSL_FAILURE; } } int wolfSSL_RSA_public_decrypt(int flen, const unsigned char* from, unsigned char* to, WOLFSSL_RSA* rsa, int padding) { int tlen = 0; WOLFSSL_ENTER("wolfSSL_RSA_public_decrypt"); if (rsa == NULL || rsa->internal == NULL || from == NULL) { WOLFSSL_MSG("Bad function arguments"); return 0; } if (padding != RSA_PKCS1_PADDING) { WOLFSSL_MSG("wolfSSL_RSA_public_decrypt unsupported padding"); return 0; } if (rsa->inSet == 0) { WOLFSSL_MSG("No RSA internal set, do it"); if (SetRsaInternal(rsa) != WOLFSSL_SUCCESS) { WOLFSSL_MSG("SetRsaInternal failed"); return 0; } } /* size of 'to' buffer must be size of RSA key */ tlen = wc_RsaSSL_Verify(from, flen, to, wolfSSL_RSA_size(rsa), (RsaKey*)rsa->internal); if (tlen <= 0) WOLFSSL_MSG("wolfSSL_RSA_public_decrypt failed"); else { WOLFSSL_MSG("wolfSSL_RSA_public_decrypt success"); } return tlen; } /* generate p-1 and q-1, WOLFSSL_SUCCESS on ok */ int wolfSSL_RSA_GenAdd(WOLFSSL_RSA* rsa) { int err; mp_int tmp; WOLFSSL_MSG("wolfSSL_RsaGenAdd"); if (rsa == NULL || rsa->p == NULL || rsa->q == NULL || rsa->d == NULL || rsa->dmp1 == NULL || rsa->dmq1 == NULL) { WOLFSSL_MSG("rsa no init error"); return WOLFSSL_FATAL_ERROR; } if (mp_init(&tmp) != MP_OKAY) { WOLFSSL_MSG("mp_init error"); return WOLFSSL_FATAL_ERROR; } err = mp_sub_d((mp_int*)rsa->p->internal, 1, &tmp); if (err != MP_OKAY) { WOLFSSL_MSG("mp_sub_d error"); } else err = mp_mod((mp_int*)rsa->d->internal, &tmp, (mp_int*)rsa->dmp1->internal); if (err != MP_OKAY) { WOLFSSL_MSG("mp_mod error"); } else err = mp_sub_d((mp_int*)rsa->q->internal, 1, &tmp); if (err != MP_OKAY) { WOLFSSL_MSG("mp_sub_d error"); } else err = mp_mod((mp_int*)rsa->d->internal, &tmp, (mp_int*)rsa->dmq1->internal); mp_clear(&tmp); if (err == MP_OKAY) return WOLFSSL_SUCCESS; else return WOLFSSL_FATAL_ERROR; } #endif /* NO_RSA */ int wolfSSL_HMAC_CTX_Init(WOLFSSL_HMAC_CTX* ctx) { WOLFSSL_MSG("wolfSSL_HMAC_CTX_Init"); if (ctx != NULL) { /* wc_HmacSetKey sets up ctx->hmac */ XMEMSET(ctx, 0, sizeof(WOLFSSL_HMAC_CTX)); } return WOLFSSL_SUCCESS; } int wolfSSL_HMAC_Init_ex(WOLFSSL_HMAC_CTX* ctx, const void* key, int keylen, const EVP_MD* type, WOLFSSL_ENGINE* e) { WOLFSSL_ENTER("wolfSSL_HMAC_Init_ex"); /* WOLFSSL_ENGINE not used, call wolfSSL_HMAC_Init */ (void)e; return wolfSSL_HMAC_Init(ctx, key, keylen, type); } /* Deep copy of information from src to des structure * * des destination to copy information to * src structure to get infromation from * * Returns SSL_SUCCESS on success and SSL_FAILURE on error */ int wolfSSL_HMAC_CTX_copy(WOLFSSL_HMAC_CTX* des, WOLFSSL_HMAC_CTX* src) { void* heap = NULL; WOLFSSL_ENTER("wolfSSL_HMAC_CTX_copy"); if (des == NULL || src == NULL) { return SSL_FAILURE; } #ifndef HAVE_FIPS heap = src->hmac.heap; #endif if (wc_HmacInit(&des->hmac, heap, 0) != 0) { WOLFSSL_MSG("Error initializing HMAC"); return SSL_FAILURE; } des->type = src->type; /* requires that hash structures have no dynamic parts to them */ switch (src->hmac.macType) { #ifndef NO_MD5 case WC_MD5: XMEMCPY(&des->hmac.hash.md5, &src->hmac.hash.md5, sizeof(wc_Md5)); break; #endif /* !NO_MD5 */ #ifndef NO_SHA case WC_SHA: XMEMCPY(&des->hmac.hash.sha, &src->hmac.hash.sha, sizeof(wc_Sha)); break; #endif /* !NO_SHA */ #ifdef WOLFSSL_SHA224 case WC_SHA224: XMEMCPY(&des->hmac.hash.sha224, &src->hmac.hash.sha224, sizeof(wc_Sha224)); break; #endif /* WOLFSSL_SHA224 */ #ifndef NO_SHA256 case WC_SHA256: XMEMCPY(&des->hmac.hash.sha256, &src->hmac.hash.sha256, sizeof(wc_Sha256)); break; #endif /* !NO_SHA256 */ #ifdef WOLFSSL_SHA384 case WC_SHA384: XMEMCPY(&des->hmac.hash.sha384, &src->hmac.hash.sha384, sizeof(wc_Sha384)); break; #endif /* WOLFSSL_SHA384 */ #ifdef WOLFSSL_SHA512 case WC_SHA512: XMEMCPY(&des->hmac.hash.sha512, &src->hmac.hash.sha512, sizeof(wc_Sha512)); break; #endif /* WOLFSSL_SHA512 */ default: WOLFSSL_MSG("Unknown or unsupported hash type"); return WOLFSSL_FAILURE; } XMEMCPY((byte*)des->hmac.ipad, (byte*)src->hmac.ipad, WC_HMAC_BLOCK_SIZE); XMEMCPY((byte*)des->hmac.opad, (byte*)src->hmac.opad, WC_HMAC_BLOCK_SIZE); XMEMCPY((byte*)des->hmac.innerHash, (byte*)src->hmac.innerHash, WC_MAX_DIGEST_SIZE); #ifndef HAVE_FIPS des->hmac.heap = heap; #endif des->hmac.macType = src->hmac.macType; des->hmac.innerHashKeyed = src->hmac.innerHashKeyed; XMEMCPY((byte *)&des->save_ipad, (byte *)&src->hmac.ipad, WC_HMAC_BLOCK_SIZE); XMEMCPY((byte *)&des->save_opad, (byte *)&src->hmac.opad, WC_HMAC_BLOCK_SIZE); #ifdef WOLFSSL_ASYNC_CRYPT XMEMCPY(&des->hmac.asyncDev, &src->hmac.asyncDev, sizeof(WC_ASYNC_DEV)); des->hmac.keyLen = src->hmac.keyLen; #ifdef HAVE_CAVIUM des->hmac.data = (byte*)XMALLOC(src->hmac.dataLen, des->hmac.heap, DYNAMIC_TYPE_HMAC); if (des->hmac.data == NULL) { return BUFFER_E; } XMEMCPY(des->hmac.data, src->hmac.data, src->hmac.dataLen); des->hmac.dataLen = src->hmac.dataLen; #endif /* HAVE_CAVIUM */ #endif /* WOLFSSL_ASYNC_CRYPT */ return WOLFSSL_SUCCESS; } #if defined(HAVE_FIPS) && \ (!defined(HAVE_FIPS_VERSION) || (HAVE_FIPS_VERSION < 2)) static int _HMAC_Init(Hmac* hmac, int type, void* heap) { int ret = 0; switch (type) { #ifndef NO_MD5 case WC_MD5: ret = wc_InitMd5(&hmac->hash.md5); break; #endif /* !NO_MD5 */ #ifndef NO_SHA case WC_SHA: ret = wc_InitSha(&hmac->hash.sha); break; #endif /* !NO_SHA */ #ifdef WOLFSSL_SHA224 case WC_SHA224: ret = wc_InitSha224(&hmac->hash.sha224); break; #endif /* WOLFSSL_SHA224 */ #ifndef NO_SHA256 case WC_SHA256: ret = wc_InitSha256(&hmac->hash.sha256); break; #endif /* !NO_SHA256 */ #ifdef WOLFSSL_SHA384 case WC_SHA384: ret = wc_InitSha384(&hmac->hash.sha384); break; #endif /* WOLFSSL_SHA384 */ #ifdef WOLFSSL_SHA512 case WC_SHA512: ret = wc_InitSha512(&hmac->hash.sha512); break; #endif /* WOLFSSL_SHA512 */ #ifdef HAVE_BLAKE2 case BLAKE2B_ID: ret = wc_InitBlake2b(&hmac->hash.blake2b, BLAKE2B_256); break; #endif /* HAVE_BLAKE2 */ #ifdef WOLFSSL_SHA3 case WC_SHA3_224: ret = wc_InitSha3_224(&hmac->hash.sha3, heap, INVALID_DEVID); break; case WC_SHA3_256: ret = wc_InitSha3_256(&hmac->hash.sha3, heap, INVALID_DEVID); break; case WC_SHA3_384: ret = wc_InitSha3_384(&hmac->hash.sha3, heap, INVALID_DEVID); break; case WC_SHA3_512: ret = wc_InitSha3_512(&hmac->hash.sha3, heap, INVALID_DEVID); break; #endif default: ret = BAD_FUNC_ARG; break; } (void)heap; return ret; } #else #define _HMAC_Init _InitHmac #endif int wolfSSL_HMAC_Init(WOLFSSL_HMAC_CTX* ctx, const void* key, int keylen, const EVP_MD* type) { int hmac_error = 0; void* heap = NULL; WOLFSSL_MSG("wolfSSL_HMAC_Init"); if (ctx == NULL) { WOLFSSL_MSG("no ctx on init"); return WOLFSSL_FAILURE; } #ifndef HAVE_FIPS heap = ctx->hmac.heap; #endif if (type) { WOLFSSL_MSG("init has type"); #ifndef NO_MD5 if (XSTRNCMP(type, "MD5", 3) == 0) { WOLFSSL_MSG("md5 hmac"); ctx->type = WC_MD5; } else #endif #ifdef WOLFSSL_SHA224 if (XSTRNCMP(type, "SHA224", 6) == 0) { WOLFSSL_MSG("sha224 hmac"); ctx->type = WC_SHA224; } else #endif #ifndef NO_SHA256 if (XSTRNCMP(type, "SHA256", 6) == 0) { WOLFSSL_MSG("sha256 hmac"); ctx->type = WC_SHA256; } else #endif #ifdef WOLFSSL_SHA384 if (XSTRNCMP(type, "SHA384", 6) == 0) { WOLFSSL_MSG("sha384 hmac"); ctx->type = WC_SHA384; } else #endif #ifdef WOLFSSL_SHA512 if (XSTRNCMP(type, "SHA512", 6) == 0) { WOLFSSL_MSG("sha512 hmac"); ctx->type = WC_SHA512; } else #endif #ifndef NO_SHA /* has to be last since would pick or 256, 384, or 512 too */ if (XSTRNCMP(type, "SHA", 3) == 0) { WOLFSSL_MSG("sha hmac"); ctx->type = WC_SHA; } else #endif { WOLFSSL_MSG("bad init type"); return WOLFSSL_FAILURE; } } if (key && keylen) { WOLFSSL_MSG("keying hmac"); if (wc_HmacInit(&ctx->hmac, NULL, INVALID_DEVID) == 0) { hmac_error = wc_HmacSetKey(&ctx->hmac, ctx->type, (const byte*)key, (word32)keylen); if (hmac_error < 0){ wc_HmacFree(&ctx->hmac); return WOLFSSL_FAILURE; } XMEMCPY((byte *)&ctx->save_ipad, (byte *)&ctx->hmac.ipad, WC_HMAC_BLOCK_SIZE); XMEMCPY((byte *)&ctx->save_opad, (byte *)&ctx->hmac.opad, WC_HMAC_BLOCK_SIZE); } /* OpenSSL compat, no error */ } else if(ctx->type >= 0) { /* MD5 == 0 */ WOLFSSL_MSG("recover hmac"); if (wc_HmacInit(&ctx->hmac, NULL, INVALID_DEVID) == 0) { ctx->hmac.macType = (byte)ctx->type; ctx->hmac.innerHashKeyed = 0; XMEMCPY((byte *)&ctx->hmac.ipad, (byte *)&ctx->save_ipad, WC_HMAC_BLOCK_SIZE); XMEMCPY((byte *)&ctx->hmac.opad, (byte *)&ctx->save_opad, WC_HMAC_BLOCK_SIZE); if ((hmac_error = _HMAC_Init(&ctx->hmac, ctx->hmac.macType, heap)) !=0) { return hmac_error; } } } (void)hmac_error; return WOLFSSL_SUCCESS; } int wolfSSL_HMAC_Update(WOLFSSL_HMAC_CTX* ctx, const unsigned char* data, int len) { int hmac_error = 0; WOLFSSL_MSG("wolfSSL_HMAC_Update"); if (ctx == NULL) { WOLFSSL_MSG("no ctx"); return WOLFSSL_FAILURE; } if (data) { WOLFSSL_MSG("updating hmac"); hmac_error = wc_HmacUpdate(&ctx->hmac, data, (word32)len); if (hmac_error < 0){ WOLFSSL_MSG("hmac update error"); return WOLFSSL_FAILURE; } } return WOLFSSL_SUCCESS; } int wolfSSL_HMAC_Final(WOLFSSL_HMAC_CTX* ctx, unsigned char* hash, unsigned int* len) { int hmac_error; WOLFSSL_MSG("wolfSSL_HMAC_Final"); /* "len" parameter is optional. */ if (ctx == NULL || hash == NULL) { WOLFSSL_MSG("invalid parameter"); return WOLFSSL_FAILURE; } WOLFSSL_MSG("final hmac"); hmac_error = wc_HmacFinal(&ctx->hmac, hash); if (hmac_error < 0){ WOLFSSL_MSG("final hmac error"); return WOLFSSL_FAILURE; } if (len) { WOLFSSL_MSG("setting output len"); switch (ctx->type) { #ifndef NO_MD5 case WC_MD5: *len = WC_MD5_DIGEST_SIZE; break; #endif #ifndef NO_SHA case WC_SHA: *len = WC_SHA_DIGEST_SIZE; break; #endif #ifdef WOLFSSL_SHA224 case WC_SHA224: *len = WC_SHA224_DIGEST_SIZE; break; #endif #ifndef NO_SHA256 case WC_SHA256: *len = WC_SHA256_DIGEST_SIZE; break; #endif #ifdef WOLFSSL_SHA384 case WC_SHA384: *len = WC_SHA384_DIGEST_SIZE; break; #endif #ifdef WOLFSSL_SHA512 case WC_SHA512: *len = WC_SHA512_DIGEST_SIZE; break; #endif default: WOLFSSL_MSG("bad hmac type"); return WOLFSSL_FAILURE; } } return WOLFSSL_SUCCESS; } int wolfSSL_HMAC_cleanup(WOLFSSL_HMAC_CTX* ctx) { WOLFSSL_MSG("wolfSSL_HMAC_cleanup"); if (ctx) wc_HmacFree(&ctx->hmac); return SSL_SUCCESS; } const WOLFSSL_EVP_MD* wolfSSL_EVP_get_digestbynid(int id) { WOLFSSL_MSG("wolfSSL_get_digestbynid"); switch(id) { #ifndef NO_MD5 case NID_md5: return wolfSSL_EVP_md5(); #endif #ifndef NO_SHA case NID_sha1: return wolfSSL_EVP_sha1(); #endif default: WOLFSSL_MSG("Bad digest id value"); } return NULL; } #ifndef NO_RSA WOLFSSL_RSA* wolfSSL_EVP_PKEY_get1_RSA(WOLFSSL_EVP_PKEY* key) { WOLFSSL_RSA* local; WOLFSSL_MSG("wolfSSL_EVP_PKEY_get1_RSA"); if (key == NULL) { return NULL; } local = wolfSSL_RSA_new(); if (local == NULL) { WOLFSSL_MSG("Error creating a new WOLFSSL_RSA structure"); return NULL; } if (key->type == EVP_PKEY_RSA) { if (wolfSSL_RSA_LoadDer(local, (const unsigned char*)key->pkey.ptr, key->pkey_sz) != SSL_SUCCESS) { /* now try public key */ if (wolfSSL_RSA_LoadDer_ex(local, (const unsigned char*)key->pkey.ptr, key->pkey_sz, WOLFSSL_RSA_LOAD_PUBLIC) != SSL_SUCCESS) { wolfSSL_RSA_free(local); local = NULL; } } } else { WOLFSSL_MSG("WOLFSSL_EVP_PKEY does not hold an RSA key"); wolfSSL_RSA_free(local); local = NULL; } return local; } /* with set1 functions the pkey struct does not own the RSA structure * * returns WOLFSSL_SUCCESS on success and WOLFSSL_FAILURE on failure */ int wolfSSL_EVP_PKEY_set1_RSA(WOLFSSL_EVP_PKEY *pkey, WOLFSSL_RSA *key) { if((pkey == NULL) || (key ==NULL))return WOLFSSL_FAILURE; WOLFSSL_ENTER("wolfSSL_EVP_PKEY_set1_RSA"); if (pkey->rsa != NULL && pkey->ownRsa == 1) { wolfSSL_RSA_free(pkey->rsa); } pkey->rsa = key; pkey->ownRsa = 0; /* pkey does not own RSA */ pkey->type = EVP_PKEY_RSA; #ifdef WC_RSA_BLINDING if (key->ownRng == 0) { if (wc_RsaSetRNG((RsaKey*)(pkey->rsa->internal), &(pkey->rng)) != 0) { WOLFSSL_MSG("Error setting RSA rng"); return SSL_FAILURE; } } #endif return WOLFSSL_SUCCESS; } #endif /* NO_RSA */ #ifndef NO_WOLFSSL_STUB WOLFSSL_DSA* wolfSSL_EVP_PKEY_get1_DSA(WOLFSSL_EVP_PKEY* key) { (void)key; WOLFSSL_MSG("wolfSSL_EVP_PKEY_get1_DSA not implemented"); WOLFSSL_STUB("EVP_PKEY_get1_DSA"); return NULL; } #endif #ifndef NO_WOLFSSL_STUB WOLFSSL_EC_KEY* wolfSSL_EVP_PKEY_get1_EC_KEY(WOLFSSL_EVP_PKEY* key) { (void)key; WOLFSSL_STUB("EVP_PKEY_get1_EC_KEY"); WOLFSSL_MSG("wolfSSL_EVP_PKEY_get1_EC_KEY not implemented"); return NULL; } #endif void* wolfSSL_EVP_X_STATE(const WOLFSSL_EVP_CIPHER_CTX* ctx) { WOLFSSL_MSG("wolfSSL_EVP_X_STATE"); if (ctx) { switch (ctx->cipherType) { case ARC4_TYPE: WOLFSSL_MSG("returning arc4 state"); return (void*)&ctx->cipher.arc4.x; default: WOLFSSL_MSG("bad x state type"); return 0; } } return NULL; } int wolfSSL_EVP_X_STATE_LEN(const WOLFSSL_EVP_CIPHER_CTX* ctx) { WOLFSSL_MSG("wolfSSL_EVP_X_STATE_LEN"); if (ctx) { switch (ctx->cipherType) { case ARC4_TYPE: WOLFSSL_MSG("returning arc4 state size"); return sizeof(Arc4); default: WOLFSSL_MSG("bad x state type"); return 0; } } return 0; } #ifndef NO_DES3 void wolfSSL_3des_iv(WOLFSSL_EVP_CIPHER_CTX* ctx, int doset, unsigned char* iv, int len) { (void)len; WOLFSSL_MSG("wolfSSL_3des_iv"); if (ctx == NULL || iv == NULL) { WOLFSSL_MSG("Bad function argument"); return; } if (doset) wc_Des3_SetIV(&ctx->cipher.des3, iv); /* OpenSSL compat, no ret */ else XMEMCPY(iv, &ctx->cipher.des3.reg, DES_BLOCK_SIZE); } #endif /* NO_DES3 */ #ifndef NO_AES void wolfSSL_aes_ctr_iv(WOLFSSL_EVP_CIPHER_CTX* ctx, int doset, unsigned char* iv, int len) { (void)len; WOLFSSL_MSG("wolfSSL_aes_ctr_iv"); if (ctx == NULL || iv == NULL) { WOLFSSL_MSG("Bad function argument"); return; } if (doset) (void)wc_AesSetIV(&ctx->cipher.aes, iv); /* OpenSSL compat, no ret */ else XMEMCPY(iv, &ctx->cipher.aes.reg, AES_BLOCK_SIZE); } #endif /* NO_AES */ #ifndef NO_WOLFSSL_STUB const WOLFSSL_EVP_MD* wolfSSL_EVP_ripemd160(void) { WOLFSSL_MSG("wolfSSL_ripemd160"); WOLFSSL_STUB("EVP_ripemd160"); return NULL; } #endif int wolfSSL_EVP_MD_size(const WOLFSSL_EVP_MD* type) { WOLFSSL_MSG("wolfSSL_EVP_MD_size"); if (type == NULL) { WOLFSSL_MSG("No md type arg"); return BAD_FUNC_ARG; } if (XSTRNCMP(type, "SHA256", 6) == 0) { return WC_SHA256_DIGEST_SIZE; } #ifndef NO_MD5 else if (XSTRNCMP(type, "MD5", 3) == 0) { return WC_MD5_DIGEST_SIZE; } #endif #ifdef WOLFSSL_SHA224 else if (XSTRNCMP(type, "SHA224", 6) == 0) { return WC_SHA224_DIGEST_SIZE; } #endif #ifdef WOLFSSL_SHA384 else if (XSTRNCMP(type, "SHA384", 6) == 0) { return WC_SHA384_DIGEST_SIZE; } #endif #ifdef WOLFSSL_SHA512 else if (XSTRNCMP(type, "SHA512", 6) == 0) { return WC_SHA512_DIGEST_SIZE; } #endif #ifndef NO_SHA /* has to be last since would pick or 256, 384, or 512 too */ else if (XSTRNCMP(type, "SHA", 3) == 0) { return WC_SHA_DIGEST_SIZE; } #endif return BAD_FUNC_ARG; } int wolfSSL_EVP_CIPHER_CTX_iv_length(const WOLFSSL_EVP_CIPHER_CTX* ctx) { WOLFSSL_MSG("wolfSSL_EVP_CIPHER_CTX_iv_length"); switch (ctx->cipherType) { #ifdef HAVE_AES_CBC case AES_128_CBC_TYPE : case AES_192_CBC_TYPE : case AES_256_CBC_TYPE : WOLFSSL_MSG("AES CBC"); return AES_BLOCK_SIZE; #endif #ifdef WOLFSSL_AES_COUNTER case AES_128_CTR_TYPE : case AES_192_CTR_TYPE : case AES_256_CTR_TYPE : WOLFSSL_MSG("AES CTR"); return AES_BLOCK_SIZE; #endif #ifndef NO_DES3 case DES_CBC_TYPE : WOLFSSL_MSG("DES CBC"); return DES_BLOCK_SIZE; case DES_EDE3_CBC_TYPE : WOLFSSL_MSG("DES EDE3 CBC"); return DES_BLOCK_SIZE; #endif #ifdef HAVE_IDEA case IDEA_CBC_TYPE : WOLFSSL_MSG("IDEA CBC"); return IDEA_BLOCK_SIZE; #endif #ifndef NO_RC4 case ARC4_TYPE : WOLFSSL_MSG("ARC4"); return 0; #endif case NULL_CIPHER_TYPE : WOLFSSL_MSG("NULL"); return 0; default: { WOLFSSL_MSG("bad type"); } } return 0; } int wolfSSL_EVP_CIPHER_iv_length(const WOLFSSL_EVP_CIPHER* cipher) { const char *name = (const char *)cipher; WOLFSSL_MSG("wolfSSL_EVP_CIPHER_iv_length"); #ifndef NO_AES #ifdef WOLFSSL_AES_128 if (XSTRNCMP(name, EVP_AES_128_CBC, XSTRLEN(EVP_AES_128_CBC)) == 0) return AES_BLOCK_SIZE; #endif #ifdef WOLFSSL_AES_192 if (XSTRNCMP(name, EVP_AES_192_CBC, XSTRLEN(EVP_AES_192_CBC)) == 0) return AES_BLOCK_SIZE; #endif #ifdef WOLFSSL_AES_256 if (XSTRNCMP(name, EVP_AES_256_CBC, XSTRLEN(EVP_AES_256_CBC)) == 0) return AES_BLOCK_SIZE; #endif #ifdef WOLFSSL_AES_COUNTER #ifdef WOLFSSL_AES_128 if (XSTRNCMP(name, EVP_AES_128_CTR, XSTRLEN(EVP_AES_128_CTR)) == 0) return AES_BLOCK_SIZE; #endif #ifdef WOLFSSL_AES_192 if (XSTRNCMP(name, EVP_AES_192_CTR, XSTRLEN(EVP_AES_192_CTR)) == 0) return AES_BLOCK_SIZE; #endif #ifdef WOLFSSL_AES_256 if (XSTRNCMP(name, EVP_AES_256_CTR, XSTRLEN(EVP_AES_256_CTR)) == 0) return AES_BLOCK_SIZE; #endif #endif #endif #ifndef NO_DES3 if ((XSTRNCMP(name, EVP_DES_CBC, XSTRLEN(EVP_DES_CBC)) == 0) || (XSTRNCMP(name, EVP_DES_EDE3_CBC, XSTRLEN(EVP_DES_EDE3_CBC)) == 0)) { return DES_BLOCK_SIZE; } #endif #ifdef HAVE_IDEA if (XSTRNCMP(name, EVP_IDEA_CBC, XSTRLEN(EVP_IDEA_CBC)) == 0) return IDEA_BLOCK_SIZE; #endif (void)name; return 0; } /* Free the dynamically allocated data. * * p Pointer to dynamically allocated memory. */ void wolfSSL_OPENSSL_free(void* p) { WOLFSSL_MSG("wolfSSL_OPENSSL_free"); XFREE(p, NULL, DYNAMIC_TYPE_OPENSSL); } void *wolfSSL_OPENSSL_malloc(size_t a) { return XMALLOC(a, NULL, DYNAMIC_TYPE_OPENSSL); } #if defined(WOLFSSL_KEY_GEN) && defined(WOLFSSL_PEM_TO_DER) static int EncryptDerKey(byte *der, int *derSz, const EVP_CIPHER* cipher, unsigned char* passwd, int passwdSz, byte **cipherInfo) { int ret, paddingSz; word32 idx, cipherInfoSz; #ifdef WOLFSSL_SMALL_STACK EncryptedInfo* info = NULL; #else EncryptedInfo info[1]; #endif WOLFSSL_ENTER("EncryptDerKey"); if (der == NULL || derSz == NULL || cipher == NULL || passwd == NULL || cipherInfo == NULL) return BAD_FUNC_ARG; #ifdef WOLFSSL_SMALL_STACK info = (EncryptedInfo*)XMALLOC(sizeof(EncryptedInfo), NULL, DYNAMIC_TYPE_ENCRYPTEDINFO); if (info == NULL) { WOLFSSL_MSG("malloc failed"); return WOLFSSL_FAILURE; } #endif XMEMSET(info, 0, sizeof(EncryptedInfo)); /* set the cipher name on info */ XSTRNCPY(info->name, cipher, NAME_SZ-1); info->name[NAME_SZ-1] = '\0'; /* null term */ ret = wc_EncryptedInfoGet(info, info->name); if (ret != 0) { WOLFSSL_MSG("unsupported cipher"); #ifdef WOLFSSL_SMALL_STACK XFREE(info, NULL, DYNAMIC_TYPE_ENCRYPTEDINFO); #endif return WOLFSSL_FAILURE; } /* Generate a random salt */ if (wolfSSL_RAND_bytes(info->iv, info->ivSz) != WOLFSSL_SUCCESS) { WOLFSSL_MSG("generate iv failed"); #ifdef WOLFSSL_SMALL_STACK XFREE(info, NULL, DYNAMIC_TYPE_ENCRYPTEDINFO); #endif return WOLFSSL_FAILURE; } /* add the padding before encryption */ paddingSz = ((*derSz)/info->ivSz + 1) * info->ivSz - (*derSz); if (paddingSz == 0) paddingSz = info->ivSz; XMEMSET(der+(*derSz), (byte)paddingSz, paddingSz); (*derSz) += paddingSz; /* encrypt buffer */ if (wc_BufferKeyEncrypt(info, der, *derSz, passwd, passwdSz, WC_MD5) != 0) { WOLFSSL_MSG("encrypt key failed"); #ifdef WOLFSSL_SMALL_STACK XFREE(info, NULL, DYNAMIC_TYPE_ENCRYPTEDINFO); #endif return WOLFSSL_FAILURE; } /* create cipher info : 'cipher_name,Salt(hex)' */ cipherInfoSz = (word32)(2*info->ivSz + XSTRLEN(info->name) + 2); *cipherInfo = (byte*)XMALLOC(cipherInfoSz, NULL, DYNAMIC_TYPE_STRING); if (*cipherInfo == NULL) { WOLFSSL_MSG("malloc failed"); #ifdef WOLFSSL_SMALL_STACK XFREE(info, NULL, DYNAMIC_TYPE_ENCRYPTEDINFO); #endif return WOLFSSL_FAILURE; } XSTRNCPY((char*)*cipherInfo, info->name, cipherInfoSz); XSTRNCAT((char*)*cipherInfo, ",", 1); idx = (word32)XSTRLEN((char*)*cipherInfo); cipherInfoSz -= idx; ret = Base16_Encode(info->iv, info->ivSz, *cipherInfo+idx, &cipherInfoSz); #ifdef WOLFSSL_SMALL_STACK XFREE(info, NULL, DYNAMIC_TYPE_ENCRYPTEDINFO); #endif if (ret != 0) { WOLFSSL_MSG("Base16_Encode failed"); XFREE(*cipherInfo, NULL, DYNAMIC_TYPE_STRING); return WOLFSSL_FAILURE; } return WOLFSSL_SUCCESS; } #endif /* WOLFSSL_KEY_GEN || WOLFSSL_PEM_TO_DER */ #if defined(WOLFSSL_KEY_GEN) || defined(WOLFSSL_CERT_GEN) /* Takes a WOLFSSL_RSA key and writes it out to a WOLFSSL_BIO * * bio the WOLFSSL_BIO to write to * key the WOLFSSL_RSA key to write out * cipher cipher used * passwd password string if used * len length of password string * cb password callback to use * arg null terminated string for passphrase */ int wolfSSL_PEM_write_bio_RSAPrivateKey(WOLFSSL_BIO* bio, WOLFSSL_RSA* key, const WOLFSSL_EVP_CIPHER* cipher, unsigned char* passwd, int len, pem_password_cb* cb, void* arg) { int ret; WOLFSSL_EVP_PKEY* pkey; WOLFSSL_ENTER("wolfSSL_PEM_write_bio_RSAPrivateKey"); pkey = wolfSSL_PKEY_new_ex(bio->heap); if (pkey == NULL) { WOLFSSL_MSG("wolfSSL_PKEY_new_ex failed"); return SSL_FAILURE; } pkey->type = EVP_PKEY_RSA; pkey->rsa = key; pkey->ownRsa = 0; #ifdef WOLFSSL_KEY_GEN /* similar to how wolfSSL_PEM_write_mem_RSAPrivateKey finds DER of key */ { int derMax; int derSz; byte* derBuf; /* 5 > size of n, d, p, q, d%(p-1), d(q-1), 1/q%p, e + ASN.1 additional * informations */ derMax = 5 * wolfSSL_RSA_size(key) + AES_BLOCK_SIZE; derBuf = (byte*)XMALLOC(derMax, bio->heap, DYNAMIC_TYPE_TMP_BUFFER); if (derBuf == NULL) { WOLFSSL_MSG("malloc failed"); wolfSSL_EVP_PKEY_free(pkey); return SSL_FAILURE; } /* Key to DER */ derSz = wc_RsaKeyToDer((RsaKey*)key->internal, derBuf, derMax); if (derSz < 0) { WOLFSSL_MSG("wc_RsaKeyToDer failed"); XFREE(derBuf, bio->heap, DYNAMIC_TYPE_TMP_BUFFER); wolfSSL_EVP_PKEY_free(pkey); return SSL_FAILURE; } pkey->pkey.ptr = (char*)XMALLOC(derSz, bio->heap, DYNAMIC_TYPE_TMP_BUFFER); if (pkey->pkey.ptr == NULL) { WOLFSSL_MSG("key malloc failed"); XFREE(derBuf, bio->heap, DYNAMIC_TYPE_TMP_BUFFER); wolfSSL_EVP_PKEY_free(pkey); return SSL_FAILURE; } pkey->pkey_sz = derSz; XMEMCPY(pkey->pkey.ptr, derBuf, derSz); XFREE(derBuf, bio->heap, DYNAMIC_TYPE_TMP_BUFFER); } #endif ret = wolfSSL_PEM_write_bio_PrivateKey(bio, pkey, cipher, passwd, len, cb, arg); wolfSSL_EVP_PKEY_free(pkey); return ret; } int wolfSSL_PEM_write_bio_PrivateKey(WOLFSSL_BIO* bio, WOLFSSL_EVP_PKEY* key, const WOLFSSL_EVP_CIPHER* cipher, unsigned char* passwd, int len, pem_password_cb* cb, void* arg) { byte* keyDer; int pemSz; int type; int ret; byte* tmp; (void)cipher; (void)passwd; (void)len; (void)cb; (void)arg; WOLFSSL_ENTER("wolfSSL_PEM_write_bio_PrivateKey"); if (bio == NULL || key == NULL) { return WOLFSSL_FAILURE; } keyDer = (byte*)key->pkey.ptr; switch (key->type) { case EVP_PKEY_RSA: type = PRIVATEKEY_TYPE; break; #ifndef NO_DSA case EVP_PKEY_DSA: type = DSA_PRIVATEKEY_TYPE; break; #endif case EVP_PKEY_EC: type = ECC_PRIVATEKEY_TYPE; break; default: WOLFSSL_MSG("Unknown Key type!"); type = PRIVATEKEY_TYPE; } pemSz = wc_DerToPem(keyDer, key->pkey_sz, NULL, 0, type); if (pemSz < 0) { WOLFSSL_LEAVE("wolfSSL_PEM_write_bio_PrivateKey", pemSz); return WOLFSSL_FAILURE; } tmp = (byte*)XMALLOC(pemSz, bio->heap, DYNAMIC_TYPE_OPENSSL); if (tmp == NULL) { return MEMORY_E; } ret = wc_DerToPemEx(keyDer, key->pkey_sz, tmp, pemSz, NULL, type); if (ret < 0) { WOLFSSL_LEAVE("wolfSSL_PEM_write_bio_PrivateKey", ret); XFREE(tmp, bio->heap, DYNAMIC_TYPE_OPENSSL); return SSL_FAILURE; } ret = wolfSSL_BIO_write(bio, tmp, pemSz); XFREE(tmp, bio->heap, DYNAMIC_TYPE_OPENSSL); if (ret != pemSz) { WOLFSSL_MSG("Unable to write full PEM to BIO"); return SSL_FAILURE; } return SSL_SUCCESS; } #endif /* defined(WOLFSSL_KEY_GEN) || defined(WOLFSSL_CERT_GEN) */ #if defined(WOLFSSL_KEY_GEN) && !defined(NO_RSA) && !defined(HAVE_USER_RSA) && \ (defined(WOLFSSL_PEM_TO_DER) || defined(WOLFSSL_DER_TO_PEM)) /* return code compliant with OpenSSL : * 1 if success, 0 if error */ int wolfSSL_PEM_write_mem_RSAPrivateKey(RSA* rsa, const EVP_CIPHER* cipher, unsigned char* passwd, int passwdSz, unsigned char **pem, int *plen) { byte *derBuf, *tmp, *cipherInfo = NULL; int der_max_len = 0, derSz = 0; const int type = PRIVATEKEY_TYPE; const char* header = NULL; const char* footer = NULL; WOLFSSL_ENTER("wolfSSL_PEM_write_mem_RSAPrivateKey"); if (pem == NULL || plen == NULL || rsa == NULL || rsa->internal == NULL) { WOLFSSL_MSG("Bad function arguments"); return WOLFSSL_FAILURE; } if (wc_PemGetHeaderFooter(type, &header, &footer) != 0) return WOLFSSL_FAILURE; if (rsa->inSet == 0) { WOLFSSL_MSG("No RSA internal set, do it"); if (SetRsaInternal(rsa) != WOLFSSL_SUCCESS) { WOLFSSL_MSG("SetRsaInternal failed"); return WOLFSSL_FAILURE; } } /* 5 > size of n, d, p, q, d%(p-1), d(q-1), 1/q%p, e + ASN.1 additional * informations */ der_max_len = 5 * wolfSSL_RSA_size(rsa) + AES_BLOCK_SIZE; derBuf = (byte*)XMALLOC(der_max_len, NULL, DYNAMIC_TYPE_DER); if (derBuf == NULL) { WOLFSSL_MSG("malloc failed"); return WOLFSSL_FAILURE; } /* Key to DER */ derSz = wc_RsaKeyToDer((RsaKey*)rsa->internal, derBuf, der_max_len); if (derSz < 0) { WOLFSSL_MSG("wc_RsaKeyToDer failed"); XFREE(derBuf, NULL, DYNAMIC_TYPE_DER); return WOLFSSL_FAILURE; } /* encrypt DER buffer if required */ if (passwd != NULL && passwdSz > 0 && cipher != NULL) { int ret; ret = EncryptDerKey(derBuf, &derSz, cipher, passwd, passwdSz, &cipherInfo); if (ret != WOLFSSL_SUCCESS) { WOLFSSL_MSG("EncryptDerKey failed"); XFREE(derBuf, NULL, DYNAMIC_TYPE_DER); return ret; } /* tmp buffer with a max size */ *plen = (derSz * 2) + (int)XSTRLEN(header) + 1 + (int)XSTRLEN(footer) + 1 + HEADER_ENCRYPTED_KEY_SIZE; } else { /* tmp buffer with a max size */ *plen = (derSz * 2) + (int)XSTRLEN(header) + 1 + (int)XSTRLEN(footer) + 1; } tmp = (byte*)XMALLOC(*plen, NULL, DYNAMIC_TYPE_PEM); if (tmp == NULL) { WOLFSSL_MSG("malloc failed"); XFREE(derBuf, NULL, DYNAMIC_TYPE_DER); if (cipherInfo != NULL) XFREE(cipherInfo, NULL, DYNAMIC_TYPE_STRING); return WOLFSSL_FAILURE; } /* DER to PEM */ *plen = wc_DerToPemEx(derBuf, derSz, tmp, *plen, cipherInfo, type); if (*plen <= 0) { WOLFSSL_MSG("wc_DerToPemEx failed"); XFREE(derBuf, NULL, DYNAMIC_TYPE_DER); XFREE(tmp, NULL, DYNAMIC_TYPE_PEM); if (cipherInfo != NULL) XFREE(cipherInfo, NULL, DYNAMIC_TYPE_STRING); return WOLFSSL_FAILURE; } XFREE(derBuf, NULL, DYNAMIC_TYPE_DER); if (cipherInfo != NULL) XFREE(cipherInfo, NULL, DYNAMIC_TYPE_STRING); *pem = (byte*)XMALLOC((*plen)+1, NULL, DYNAMIC_TYPE_KEY); if (*pem == NULL) { WOLFSSL_MSG("malloc failed"); XFREE(tmp, NULL, DYNAMIC_TYPE_PEM); return WOLFSSL_FAILURE; } XMEMSET(*pem, 0, (*plen)+1); if (XMEMCPY(*pem, tmp, *plen) == NULL) { WOLFSSL_MSG("XMEMCPY failed"); XFREE(pem, NULL, DYNAMIC_TYPE_KEY); XFREE(tmp, NULL, DYNAMIC_TYPE_PEM); return WOLFSSL_FAILURE; } XFREE(tmp, NULL, DYNAMIC_TYPE_PEM); return WOLFSSL_SUCCESS; } #ifndef NO_FILESYSTEM /* return code compliant with OpenSSL : * 1 if success, 0 if error */ int wolfSSL_PEM_write_RSAPrivateKey(FILE *fp, WOLFSSL_RSA *rsa, const EVP_CIPHER *enc, unsigned char *kstr, int klen, pem_password_cb *cb, void *u) { byte *pem; int plen, ret; (void)cb; (void)u; WOLFSSL_MSG("wolfSSL_PEM_write_RSAPrivateKey"); if (fp == NULL || rsa == NULL || rsa->internal == NULL) { WOLFSSL_MSG("Bad function arguments"); return WOLFSSL_FAILURE; } ret = wolfSSL_PEM_write_mem_RSAPrivateKey(rsa, enc, kstr, klen, &pem, &plen); if (ret != WOLFSSL_SUCCESS) { WOLFSSL_MSG("wolfSSL_PEM_write_mem_RSAPrivateKey failed"); return WOLFSSL_FAILURE; } ret = (int)XFWRITE(pem, plen, 1, fp); if (ret != 1) { WOLFSSL_MSG("RSA private key file write failed"); return WOLFSSL_FAILURE; } XFREE(pem, NULL, DYNAMIC_TYPE_KEY); return WOLFSSL_SUCCESS; } #endif /* NO_FILESYSTEM */ #endif /* WOLFSSL_KEY_GEN && !NO_RSA && !HAVE_USER_RSA && WOLFSSL_PEM_TO_DER */ #ifdef HAVE_ECC /* EC_POINT Openssl -> WolfSSL */ static int SetECPointInternal(WOLFSSL_EC_POINT *p) { ecc_point* point; WOLFSSL_ENTER("SetECPointInternal"); if (p == NULL || p->internal == NULL) { WOLFSSL_MSG("ECPoint NULL error"); return WOLFSSL_FATAL_ERROR; } point = (ecc_point*)p->internal; if (p->X != NULL && SetIndividualInternal(p->X, point->x) != WOLFSSL_SUCCESS) { WOLFSSL_MSG("ecc point X error"); return WOLFSSL_FATAL_ERROR; } if (p->Y != NULL && SetIndividualInternal(p->Y, point->y) != WOLFSSL_SUCCESS) { WOLFSSL_MSG("ecc point Y error"); return WOLFSSL_FATAL_ERROR; } if (p->Z != NULL && SetIndividualInternal(p->Z, point->z) != WOLFSSL_SUCCESS) { WOLFSSL_MSG("ecc point Z error"); return WOLFSSL_FATAL_ERROR; } p->inSet = 1; return WOLFSSL_SUCCESS; } #endif /* HAVE_ECC */ #endif /* OPENSSL_EXTRA */ #if defined(HAVE_ECC) && defined(OPENSSL_EXTRA_X509_SMALL) /* EC_POINT WolfSSL -> OpenSSL */ static int SetECPointExternal(WOLFSSL_EC_POINT *p) { ecc_point* point; WOLFSSL_ENTER("SetECPointExternal"); if (p == NULL || p->internal == NULL) { WOLFSSL_MSG("ECPoint NULL error"); return WOLFSSL_FATAL_ERROR; } point = (ecc_point*)p->internal; if (SetIndividualExternal(&p->X, point->x) != WOLFSSL_SUCCESS) { WOLFSSL_MSG("ecc point X error"); return WOLFSSL_FATAL_ERROR; } if (SetIndividualExternal(&p->Y, point->y) != WOLFSSL_SUCCESS) { WOLFSSL_MSG("ecc point Y error"); return WOLFSSL_FATAL_ERROR; } if (SetIndividualExternal(&p->Z, point->z) != WOLFSSL_SUCCESS) { WOLFSSL_MSG("ecc point Z error"); return WOLFSSL_FATAL_ERROR; } p->exSet = 1; return WOLFSSL_SUCCESS; } /* EC_KEY wolfSSL -> OpenSSL */ static int SetECKeyExternal(WOLFSSL_EC_KEY* eckey) { ecc_key* key; WOLFSSL_ENTER("SetECKeyExternal"); if (eckey == NULL || eckey->internal == NULL) { WOLFSSL_MSG("ec key NULL error"); return WOLFSSL_FATAL_ERROR; } key = (ecc_key*)eckey->internal; /* set group (OID, nid and idx) */ eckey->group->curve_oid = ecc_sets[key->idx].oidSum; eckey->group->curve_nid = ecc_sets[key->idx].id; eckey->group->curve_idx = key->idx; if (eckey->pub_key->internal != NULL) { /* set the internal public key */ if (wc_ecc_copy_point(&key->pubkey, (ecc_point*)eckey->pub_key->internal) != MP_OKAY) { WOLFSSL_MSG("SetECKeyExternal ecc_copy_point failed"); return WOLFSSL_FATAL_ERROR; } /* set the external pubkey (point) */ if (SetECPointExternal(eckey->pub_key) != WOLFSSL_SUCCESS) { WOLFSSL_MSG("SetECKeyExternal SetECPointExternal failed"); return WOLFSSL_FATAL_ERROR; } } /* set the external privkey */ if (key->type == ECC_PRIVATEKEY) { if (SetIndividualExternal(&eckey->priv_key, &key->k) != WOLFSSL_SUCCESS) { WOLFSSL_MSG("ec priv key error"); return WOLFSSL_FATAL_ERROR; } } eckey->exSet = 1; return WOLFSSL_SUCCESS; } #endif /* HAVE_ECC && OPENSSL_EXTRA_X509_SMALL */ #ifdef OPENSSL_EXTRA #ifdef HAVE_ECC /* EC_KEY Openssl -> WolfSSL */ static int SetECKeyInternal(WOLFSSL_EC_KEY* eckey) { ecc_key* key; WOLFSSL_ENTER("SetECKeyInternal"); if (eckey == NULL || eckey->internal == NULL) { WOLFSSL_MSG("ec key NULL error"); return WOLFSSL_FATAL_ERROR; } key = (ecc_key*)eckey->internal; /* validate group */ if ((eckey->group->curve_idx < 0) || (wc_ecc_is_valid_idx(eckey->group->curve_idx) == 0)) { WOLFSSL_MSG("invalid curve idx"); return WOLFSSL_FATAL_ERROR; } /* set group (idx of curve and corresponding domain parameters) */ key->idx = eckey->group->curve_idx; key->dp = &ecc_sets[key->idx]; /* set pubkey (point) */ if (eckey->pub_key != NULL) { if (SetECPointInternal(eckey->pub_key) != WOLFSSL_SUCCESS) { WOLFSSL_MSG("ec key pub error"); return WOLFSSL_FATAL_ERROR; } /* public key */ key->type = ECC_PUBLICKEY; } /* set privkey */ if (eckey->priv_key != NULL) { if (SetIndividualInternal(eckey->priv_key, &key->k) != WOLFSSL_SUCCESS) { WOLFSSL_MSG("ec key priv error"); return WOLFSSL_FATAL_ERROR; } /* private key */ key->type = ECC_PRIVATEKEY; } eckey->inSet = 1; return WOLFSSL_SUCCESS; } WOLFSSL_EC_POINT *wolfSSL_EC_KEY_get0_public_key(const WOLFSSL_EC_KEY *key) { WOLFSSL_ENTER("wolfSSL_EC_KEY_get0_public_key"); if (key == NULL) { WOLFSSL_MSG("wolfSSL_EC_KEY_get0_group Bad arguments"); return NULL; } return key->pub_key; } const WOLFSSL_EC_GROUP *wolfSSL_EC_KEY_get0_group(const WOLFSSL_EC_KEY *key) { WOLFSSL_ENTER("wolfSSL_EC_KEY_get0_group"); if (key == NULL) { WOLFSSL_MSG("wolfSSL_EC_KEY_get0_group Bad arguments"); return NULL; } return key->group; } /* return code compliant with OpenSSL : * 1 if success, 0 if error */ int wolfSSL_EC_KEY_set_private_key(WOLFSSL_EC_KEY *key, const WOLFSSL_BIGNUM *priv_key) { WOLFSSL_ENTER("wolfSSL_EC_KEY_set_private_key"); if (key == NULL || priv_key == NULL) { WOLFSSL_MSG("Bad arguments"); return WOLFSSL_FAILURE; } /* free key if previously set */ if (key->priv_key != NULL) wolfSSL_BN_free(key->priv_key); key->priv_key = wolfSSL_BN_dup(priv_key); if (key->priv_key == NULL) { WOLFSSL_MSG("key ecc priv key NULL"); return WOLFSSL_FAILURE; } if (SetECKeyInternal(key) != WOLFSSL_SUCCESS) { WOLFSSL_MSG("SetECKeyInternal failed"); wolfSSL_BN_free(key->priv_key); return WOLFSSL_FAILURE; } return WOLFSSL_SUCCESS; } WOLFSSL_BIGNUM *wolfSSL_EC_KEY_get0_private_key(const WOLFSSL_EC_KEY *key) { WOLFSSL_ENTER("wolfSSL_EC_KEY_get0_private_key"); if (key == NULL) { WOLFSSL_MSG("wolfSSL_EC_KEY_get0_private_key Bad arguments"); return NULL; } return key->priv_key; } WOLFSSL_EC_KEY *wolfSSL_EC_KEY_new_by_curve_name(int nid) { WOLFSSL_EC_KEY *key; int x; WOLFSSL_ENTER("wolfSSL_EC_KEY_new_by_curve_name"); key = wolfSSL_EC_KEY_new(); if (key == NULL) { WOLFSSL_MSG("wolfSSL_EC_KEY_new failure"); return NULL; } /* set the nid of the curve */ key->group->curve_nid = nid; /* search and set the corresponding internal curve idx */ for (x = 0; ecc_sets[x].size != 0; x++) if (ecc_sets[x].id == key->group->curve_nid) { key->group->curve_idx = x; key->group->curve_oid = ecc_sets[x].oidSum; break; } return key; } #endif /* HAVE_ECC */ #endif /* OPENSSL_EXTRA */ #if defined(HAVE_ECC) && (defined(OPENSSL_EXTRA) || defined(OPENSSL_EXTRA_X509_SMALL)) static void InitwolfSSL_ECKey(WOLFSSL_EC_KEY* key) { if (key) { key->group = NULL; key->pub_key = NULL; key->priv_key = NULL; key->internal = NULL; key->inSet = 0; key->exSet = 0; } } WOLFSSL_EC_KEY *wolfSSL_EC_KEY_new(void) { WOLFSSL_EC_KEY *external; ecc_key* key; WOLFSSL_ENTER("wolfSSL_EC_KEY_new"); external = (WOLFSSL_EC_KEY*)XMALLOC(sizeof(WOLFSSL_EC_KEY), NULL, DYNAMIC_TYPE_ECC); if (external == NULL) { WOLFSSL_MSG("wolfSSL_EC_KEY_new malloc WOLFSSL_EC_KEY failure"); return NULL; } XMEMSET(external, 0, sizeof(WOLFSSL_EC_KEY)); InitwolfSSL_ECKey(external); external->internal = (ecc_key*)XMALLOC(sizeof(ecc_key), NULL, DYNAMIC_TYPE_ECC); if (external->internal == NULL) { WOLFSSL_MSG("wolfSSL_EC_KEY_new malloc ecc key failure"); wolfSSL_EC_KEY_free(external); return NULL; } XMEMSET(external->internal, 0, sizeof(ecc_key)); wc_ecc_init((ecc_key*)external->internal); /* public key */ external->pub_key = (WOLFSSL_EC_POINT*)XMALLOC(sizeof(WOLFSSL_EC_POINT), NULL, DYNAMIC_TYPE_ECC); if (external->pub_key == NULL) { WOLFSSL_MSG("wolfSSL_EC_KEY_new malloc WOLFSSL_EC_POINT failure"); wolfSSL_EC_KEY_free(external); return NULL; } XMEMSET(external->pub_key, 0, sizeof(WOLFSSL_EC_POINT)); key = (ecc_key*)external->internal; external->pub_key->internal = wc_ecc_new_point(); if (wc_ecc_copy_point((ecc_point*)&key->pubkey, (ecc_point*)external->pub_key->internal) != MP_OKAY) { WOLFSSL_MSG("wc_ecc_copy_point failure"); wolfSSL_EC_KEY_free(external); return NULL; } /* curve group */ external->group = (WOLFSSL_EC_GROUP*)XMALLOC(sizeof(WOLFSSL_EC_GROUP), NULL, DYNAMIC_TYPE_ECC); if (external->group == NULL) { WOLFSSL_MSG("wolfSSL_EC_KEY_new malloc WOLFSSL_EC_GROUP failure"); wolfSSL_EC_KEY_free(external); return NULL; } XMEMSET(external->group, 0, sizeof(WOLFSSL_EC_GROUP)); /* private key */ external->priv_key = wolfSSL_BN_new(); if (external->priv_key == NULL) { WOLFSSL_MSG("wolfSSL_BN_new failure"); wolfSSL_EC_KEY_free(external); return NULL; } return external; } void wolfSSL_EC_KEY_free(WOLFSSL_EC_KEY *key) { WOLFSSL_ENTER("wolfSSL_EC_KEY_free"); if (key != NULL) { if (key->internal != NULL) { wc_ecc_free((ecc_key*)key->internal); XFREE(key->internal, NULL, DYNAMIC_TYPE_ECC); } wolfSSL_BN_free(key->priv_key); wolfSSL_EC_POINT_free(key->pub_key); wolfSSL_EC_GROUP_free(key->group); InitwolfSSL_ECKey(key); /* set back to NULLs for safety */ XFREE(key, NULL, DYNAMIC_TYPE_ECC); key = NULL; } } #endif /* HAVE_ECC && (OPENSSL_EXTRA || OPENSSL_EXTRA_X509_SMALL) */ #ifdef OPENSSL_EXTRA #ifdef HAVE_ECC #ifndef NO_WOLFSSL_STUB int wolfSSL_EC_KEY_set_group(WOLFSSL_EC_KEY *key, WOLFSSL_EC_GROUP *group) { (void)key; (void)group; WOLFSSL_ENTER("wolfSSL_EC_KEY_set_group"); WOLFSSL_STUB("EC_KEY_set_group"); return -1; } #endif int wolfSSL_EC_KEY_generate_key(WOLFSSL_EC_KEY *key) { int initTmpRng = 0; WC_RNG* rng = NULL; #ifdef WOLFSSL_SMALL_STACK WC_RNG* tmpRNG = NULL; #else WC_RNG tmpRNG[1]; #endif WOLFSSL_ENTER("wolfSSL_EC_KEY_generate_key"); if (key == NULL || key->internal == NULL || key->group == NULL || key->group->curve_idx < 0) { WOLFSSL_MSG("wolfSSL_EC_KEY_generate_key Bad arguments"); return 0; } #ifdef WOLFSSL_SMALL_STACK tmpRNG = (WC_RNG*)XMALLOC(sizeof(WC_RNG), NULL, DYNAMIC_TYPE_RNG); if (tmpRNG == NULL) return 0; #endif if (wc_InitRng(tmpRNG) == 0) { rng = tmpRNG; initTmpRng = 1; } else { WOLFSSL_MSG("Bad RNG Init, trying global"); if (initGlobalRNG == 0) WOLFSSL_MSG("Global RNG no Init"); else rng = &globalRNG; } if (rng == NULL) { WOLFSSL_MSG("wolfSSL_EC_KEY_generate_key failed to set RNG"); #ifdef WOLFSSL_SMALL_STACK XFREE(tmpRNG, NULL, DYNAMIC_TYPE_RNG); #endif return 0; } if (wc_ecc_make_key_ex(rng, 0, (ecc_key*)key->internal, key->group->curve_nid) != MP_OKAY) { WOLFSSL_MSG("wolfSSL_EC_KEY_generate_key wc_ecc_make_key failed"); #ifdef WOLFSSL_SMALL_STACK XFREE(tmpRNG, NULL, DYNAMIC_TYPE_RNG); #endif return 0; } if (initTmpRng) wc_FreeRng(tmpRNG); #ifdef WOLFSSL_SMALL_STACK XFREE(tmpRNG, NULL, DYNAMIC_TYPE_RNG); #endif if (SetECKeyExternal(key) != WOLFSSL_SUCCESS) { WOLFSSL_MSG("wolfSSL_EC_KEY_generate_key SetECKeyExternal failed"); return 0; } return 1; } #ifndef NO_WOLFSSL_STUB void wolfSSL_EC_KEY_set_asn1_flag(WOLFSSL_EC_KEY *key, int asn1_flag) { (void)key; (void)asn1_flag; WOLFSSL_ENTER("wolfSSL_EC_KEY_set_asn1_flag"); WOLFSSL_STUB("EC_KEY_set_asn1_flag"); } #endif /* return code compliant with OpenSSL : * 1 if success, 0 if error */ int wolfSSL_EC_KEY_set_public_key(WOLFSSL_EC_KEY *key, const WOLFSSL_EC_POINT *pub) { ecc_point *pub_p, *key_p; WOLFSSL_ENTER("wolfSSL_EC_KEY_set_public_key"); if (key == NULL || key->internal == NULL || pub == NULL || pub->internal == NULL) { WOLFSSL_MSG("wolfSSL_EC_GROUP_get_order Bad arguments"); return WOLFSSL_FAILURE; } if (key->inSet == 0) { if (SetECKeyInternal(key) != WOLFSSL_SUCCESS) { WOLFSSL_MSG("SetECKeyInternal failed"); return WOLFSSL_FAILURE; } } if (pub->inSet == 0) { if (SetECPointInternal((WOLFSSL_EC_POINT *)pub) != WOLFSSL_SUCCESS) { WOLFSSL_MSG("SetECPointInternal failed"); return WOLFSSL_FAILURE; } } pub_p = (ecc_point*)pub->internal; key_p = (ecc_point*)key->pub_key->internal; /* create new point if required */ if (key_p == NULL) key_p = wc_ecc_new_point(); if (key_p == NULL) { WOLFSSL_MSG("key ecc point NULL"); return WOLFSSL_FAILURE; } if (wc_ecc_copy_point(pub_p, key_p) != MP_OKAY) { WOLFSSL_MSG("ecc_copy_point failure"); return WOLFSSL_FAILURE; } if (SetECKeyExternal(key) != WOLFSSL_SUCCESS) { WOLFSSL_MSG("SetECKeyInternal failed"); return WOLFSSL_FAILURE; } wolfSSL_EC_POINT_dump("pub", pub); wolfSSL_EC_POINT_dump("key->pub_key", key->pub_key); return WOLFSSL_SUCCESS; } /* End EC_KEY */ void wolfSSL_EC_POINT_dump(const char *msg, const WOLFSSL_EC_POINT *p) { #if defined(DEBUG_WOLFSSL) char *num; WOLFSSL_ENTER("wolfSSL_EC_POINT_dump"); if (p == NULL) { printf("%s = NULL", msg); return; } printf("%s:\n\tinSet=%d, exSet=%d\n", msg, p->inSet, p->exSet); num = wolfSSL_BN_bn2hex(p->X); printf("\tX = %s\n", num); XFREE(num, NULL, DYNAMIC_TYPE_ECC); num = wolfSSL_BN_bn2hex(p->Y); printf("\tY = %s\n", num); XFREE(num, NULL, DYNAMIC_TYPE_ECC); num = wolfSSL_BN_bn2hex(p->Z); printf("\tZ = %s\n", num); XFREE(num, NULL, DYNAMIC_TYPE_ECC); #else (void)msg; (void)p; #endif } /* Start EC_GROUP */ /* return code compliant with OpenSSL : * 0 if equal, 1 if not and -1 in case of error */ int wolfSSL_EC_GROUP_cmp(const WOLFSSL_EC_GROUP *a, const WOLFSSL_EC_GROUP *b, WOLFSSL_BN_CTX *ctx) { (void)ctx; WOLFSSL_ENTER("wolfSSL_EC_GROUP_cmp"); if (a == NULL || b == NULL) { WOLFSSL_MSG("wolfSSL_EC_GROUP_cmp Bad arguments"); return WOLFSSL_FATAL_ERROR; } /* ok */ if ((a->curve_idx == b->curve_idx) && (a->curve_nid == b->curve_nid)) return 0; /* ko */ return 1; } #endif /* HAVE_ECC */ #endif /* OPENSSL_EXTRA */ #if defined(HAVE_ECC) && (defined(OPENSSL_EXTRA) || defined(OPENSSL_EXTRA_X509_SMALL)) void wolfSSL_EC_GROUP_free(WOLFSSL_EC_GROUP *group) { WOLFSSL_ENTER("wolfSSL_EC_GROUP_free"); XFREE(group, NULL, DYNAMIC_TYPE_ECC); group = NULL; } #endif #ifdef OPENSSL_EXTRA #ifdef HAVE_ECC #ifndef NO_WOLFSSL_STUB void wolfSSL_EC_GROUP_set_asn1_flag(WOLFSSL_EC_GROUP *group, int flag) { (void)group; (void)flag; WOLFSSL_ENTER("wolfSSL_EC_GROUP_set_asn1_flag"); WOLFSSL_STUB("EC_GROUP_set_asn1_flag"); } #endif WOLFSSL_EC_GROUP *wolfSSL_EC_GROUP_new_by_curve_name(int nid) { WOLFSSL_EC_GROUP *g; int x; WOLFSSL_ENTER("wolfSSL_EC_GROUP_new_by_curve_name"); /* curve group */ g = (WOLFSSL_EC_GROUP*) XMALLOC(sizeof(WOLFSSL_EC_GROUP), NULL, DYNAMIC_TYPE_ECC); if (g == NULL) { WOLFSSL_MSG("wolfSSL_EC_GROUP_new_by_curve_name malloc failure"); return NULL; } XMEMSET(g, 0, sizeof(WOLFSSL_EC_GROUP)); /* set the nid of the curve */ g->curve_nid = nid; /* search and set the corresponding internal curve idx */ for (x = 0; ecc_sets[x].size != 0; x++) if (ecc_sets[x].id == g->curve_nid) { g->curve_idx = x; g->curve_oid = ecc_sets[x].oidSum; break; } return g; } /* return code compliant with OpenSSL : * the curve nid if success, 0 if error */ int wolfSSL_EC_GROUP_get_curve_name(const WOLFSSL_EC_GROUP *group) { WOLFSSL_ENTER("wolfSSL_EC_GROUP_get_curve_name"); if (group == NULL) { WOLFSSL_MSG("wolfSSL_EC_GROUP_get_curve_name Bad arguments"); return WOLFSSL_FAILURE; } return group->curve_nid; } /* return code compliant with OpenSSL : * the degree of the curve if success, 0 if error */ int wolfSSL_EC_GROUP_get_degree(const WOLFSSL_EC_GROUP *group) { WOLFSSL_ENTER("wolfSSL_EC_GROUP_get_degree"); if (group == NULL || group->curve_idx < 0) { WOLFSSL_MSG("wolfSSL_EC_GROUP_get_degree Bad arguments"); return WOLFSSL_FAILURE; } switch(group->curve_nid) { case NID_secp112r1: case NID_secp112r2: return 112; case NID_secp128r1: case NID_secp128r2: return 128; case NID_secp160k1: case NID_secp160r1: case NID_secp160r2: case NID_brainpoolP160r1: return 160; case NID_secp192k1: case NID_brainpoolP192r1: case NID_X9_62_prime192v1: return 192; case NID_secp224k1: case NID_secp224r1: case NID_brainpoolP224r1: return 224; case NID_secp256k1: case NID_brainpoolP256r1: case NID_X9_62_prime256v1: return 256; case NID_brainpoolP320r1: return 320; case NID_secp384r1: case NID_brainpoolP384r1: return 384; case NID_secp521r1: case NID_brainpoolP512r1: return 521; default: return WOLFSSL_FAILURE; } } /* return code compliant with OpenSSL : * 1 if success, 0 if error */ int wolfSSL_EC_GROUP_get_order(const WOLFSSL_EC_GROUP *group, WOLFSSL_BIGNUM *order, WOLFSSL_BN_CTX *ctx) { (void)ctx; if (group == NULL || order == NULL || order->internal == NULL) { WOLFSSL_MSG("wolfSSL_EC_GROUP_get_order NULL error"); return WOLFSSL_FAILURE; } if (mp_init((mp_int*)order->internal) != MP_OKAY) { WOLFSSL_MSG("wolfSSL_EC_GROUP_get_order mp_init failure"); return WOLFSSL_FAILURE; } if (mp_read_radix((mp_int*)order->internal, ecc_sets[group->curve_idx].order, MP_RADIX_HEX) != MP_OKAY) { WOLFSSL_MSG("wolfSSL_EC_GROUP_get_order mp_read order failure"); mp_clear((mp_int*)order->internal); return WOLFSSL_FAILURE; } return WOLFSSL_SUCCESS; } /* End EC_GROUP */ /* Start EC_POINT */ /* return code compliant with OpenSSL : * 1 if success, 0 if error */ int wolfSSL_ECPoint_i2d(const WOLFSSL_EC_GROUP *group, const WOLFSSL_EC_POINT *p, unsigned char *out, unsigned int *len) { int err; WOLFSSL_ENTER("wolfSSL_ECPoint_i2d"); if (group == NULL || p == NULL || len == NULL) { WOLFSSL_MSG("wolfSSL_ECPoint_i2d NULL error"); return WOLFSSL_FAILURE; } if (p->inSet == 0) { WOLFSSL_MSG("No ECPoint internal set, do it"); if (SetECPointInternal((WOLFSSL_EC_POINT *)p) != WOLFSSL_SUCCESS) { WOLFSSL_MSG("SetECPointInternal SetECPointInternal failed"); return WOLFSSL_FAILURE; } } if (out != NULL) { wolfSSL_EC_POINT_dump("i2d p", p); } err = wc_ecc_export_point_der(group->curve_idx, (ecc_point*)p->internal, out, len); if (err != MP_OKAY && !(out == NULL && err == LENGTH_ONLY_E)) { WOLFSSL_MSG("wolfSSL_ECPoint_i2d wc_ecc_export_point_der failed"); return WOLFSSL_FAILURE; } return WOLFSSL_SUCCESS; } /* return code compliant with OpenSSL : * 1 if success, 0 if error */ int wolfSSL_ECPoint_d2i(unsigned char *in, unsigned int len, const WOLFSSL_EC_GROUP *group, WOLFSSL_EC_POINT *p) { WOLFSSL_ENTER("wolfSSL_ECPoint_d2i"); if (group == NULL || p == NULL || p->internal == NULL || in == NULL) { WOLFSSL_MSG("wolfSSL_ECPoint_d2i NULL error"); return WOLFSSL_FAILURE; } if (wc_ecc_import_point_der(in, len, group->curve_idx, (ecc_point*)p->internal) != MP_OKAY) { WOLFSSL_MSG("wc_ecc_import_point_der failed"); return WOLFSSL_FAILURE; } if (p->exSet == 0) { WOLFSSL_MSG("No ECPoint external set, do it"); if (SetECPointExternal(p) != WOLFSSL_SUCCESS) { WOLFSSL_MSG("SetECPointExternal failed"); return WOLFSSL_FAILURE; } } wolfSSL_EC_POINT_dump("d2i p", p); return WOLFSSL_SUCCESS; } WOLFSSL_EC_POINT *wolfSSL_EC_POINT_new(const WOLFSSL_EC_GROUP *group) { WOLFSSL_EC_POINT *p; WOLFSSL_ENTER("wolfSSL_EC_POINT_new"); if (group == NULL) { WOLFSSL_MSG("wolfSSL_EC_POINT_new NULL error"); return NULL; } p = (WOLFSSL_EC_POINT *)XMALLOC(sizeof(WOLFSSL_EC_POINT), NULL, DYNAMIC_TYPE_ECC); if (p == NULL) { WOLFSSL_MSG("wolfSSL_EC_POINT_new malloc ecc point failure"); return NULL; } XMEMSET(p, 0, sizeof(WOLFSSL_EC_POINT)); p->internal = wc_ecc_new_point(); if (p->internal == NULL) { WOLFSSL_MSG("ecc_new_point failure"); XFREE(p, NULL, DYNAMIC_TYPE_ECC); return NULL; } return p; } /* return code compliant with OpenSSL : * 1 if success, 0 if error */ int wolfSSL_EC_POINT_get_affine_coordinates_GFp(const WOLFSSL_EC_GROUP *group, const WOLFSSL_EC_POINT *point, WOLFSSL_BIGNUM *x, WOLFSSL_BIGNUM *y, WOLFSSL_BN_CTX *ctx) { (void)ctx; WOLFSSL_ENTER("wolfSSL_EC_POINT_get_affine_coordinates_GFp"); if (group == NULL || point == NULL || point->internal == NULL || x == NULL || y == NULL) { WOLFSSL_MSG("wolfSSL_EC_POINT_get_affine_coordinates_GFp NULL error"); return WOLFSSL_FAILURE; } if (point->inSet == 0) { WOLFSSL_MSG("No ECPoint internal set, do it"); if (SetECPointInternal((WOLFSSL_EC_POINT *)point) != WOLFSSL_SUCCESS) { WOLFSSL_MSG("SetECPointInternal failed"); return WOLFSSL_FAILURE; } } BN_copy(x, point->X); BN_copy(y, point->Y); return WOLFSSL_SUCCESS; } #ifndef WOLFSSL_ATECC508A /* return code compliant with OpenSSL : * 1 if success, 0 if error */ int wolfSSL_EC_POINT_mul(const WOLFSSL_EC_GROUP *group, WOLFSSL_EC_POINT *r, const WOLFSSL_BIGNUM *n, const WOLFSSL_EC_POINT *q, const WOLFSSL_BIGNUM *m, WOLFSSL_BN_CTX *ctx) { mp_int a, prime; int ret; (void)ctx; (void)n; WOLFSSL_ENTER("wolfSSL_EC_POINT_mul"); if (group == NULL || r == NULL || r->internal == NULL || q == NULL || q->internal == NULL || m == NULL) { WOLFSSL_MSG("wolfSSL_EC_POINT_mul NULL error"); return WOLFSSL_FAILURE; } if (q->inSet == 0) { WOLFSSL_MSG("No ECPoint internal set, do it"); if (SetECPointInternal((WOLFSSL_EC_POINT *)q) != WOLFSSL_SUCCESS) { WOLFSSL_MSG("SetECPointInternal q failed"); return WOLFSSL_FAILURE; } } /* read the curve prime and a */ if (mp_init_multi(&prime, &a, NULL, NULL, NULL, NULL) != MP_OKAY) { return WOLFSSL_FAILURE; } ret = mp_read_radix(&prime, ecc_sets[group->curve_idx].prime, MP_RADIX_HEX); if (ret == MP_OKAY) { ret = mp_read_radix(&a, ecc_sets[group->curve_idx].Af, MP_RADIX_HEX); } /* r = q * m % prime */ if (ret == MP_OKAY) { ret = wc_ecc_mulmod((mp_int*)m->internal, (ecc_point*)q->internal, (ecc_point*)r->internal, &a, &prime, 1); } mp_clear(&a); mp_clear(&prime); if (ret == MP_OKAY) { r->inSet = 1; /* mark internal set */ /* set the external value for the computed point */ ret = SetECPointExternal(r); if (ret != WOLFSSL_SUCCESS) { WOLFSSL_MSG("SetECPointInternal r failed"); } } else { ret = WOLFSSL_FAILURE; } return ret; } #endif void wolfSSL_EC_POINT_clear_free(WOLFSSL_EC_POINT *p) { WOLFSSL_ENTER("wolfSSL_EC_POINT_clear_free"); wolfSSL_EC_POINT_free(p); } /* return code compliant with OpenSSL : * 0 if equal, 1 if not and -1 in case of error */ int wolfSSL_EC_POINT_cmp(const WOLFSSL_EC_GROUP *group, const WOLFSSL_EC_POINT *a, const WOLFSSL_EC_POINT *b, WOLFSSL_BN_CTX *ctx) { int ret; (void)ctx; WOLFSSL_ENTER("wolfSSL_EC_POINT_cmp"); if (group == NULL || a == NULL || a->internal == NULL || b == NULL || b->internal == NULL) { WOLFSSL_MSG("wolfSSL_EC_POINT_cmp Bad arguments"); return WOLFSSL_FATAL_ERROR; } ret = wc_ecc_cmp_point((ecc_point*)a->internal, (ecc_point*)b->internal); if (ret == MP_EQ) return 0; else if (ret == MP_LT || ret == MP_GT) return 1; return WOLFSSL_FATAL_ERROR; } #endif /* HAVE_ECC */ #endif /* OPENSSL_EXTRA */ #if defined(HAVE_ECC) && (defined(OPENSSL_EXTRA) || defined(OPENSSL_EXTRA_X509_SMALL)) void wolfSSL_EC_POINT_free(WOLFSSL_EC_POINT *p) { WOLFSSL_ENTER("wolfSSL_EC_POINT_free"); if (p != NULL) { if (p->internal != NULL) { wc_ecc_del_point((ecc_point*)p->internal); p->internal = NULL; } wolfSSL_BN_free(p->X); wolfSSL_BN_free(p->Y); wolfSSL_BN_free(p->Z); p->X = NULL; p->Y = NULL; p->Z = NULL; p->inSet = p->exSet = 0; XFREE(p, NULL, DYNAMIC_TYPE_ECC); p = NULL; } } #endif #ifdef OPENSSL_EXTRA #ifdef HAVE_ECC /* return code compliant with OpenSSL : * 1 if point at infinity, 0 else */ int wolfSSL_EC_POINT_is_at_infinity(const WOLFSSL_EC_GROUP *group, const WOLFSSL_EC_POINT *point) { int ret; WOLFSSL_ENTER("wolfSSL_EC_POINT_is_at_infinity"); if (group == NULL || point == NULL || point->internal == NULL) { WOLFSSL_MSG("wolfSSL_EC_POINT_is_at_infinity NULL error"); return WOLFSSL_FAILURE; } if (point->inSet == 0) { WOLFSSL_MSG("No ECPoint internal set, do it"); if (SetECPointInternal((WOLFSSL_EC_POINT *)point) != WOLFSSL_SUCCESS) { WOLFSSL_MSG("SetECPointInternal failed"); return WOLFSSL_FAILURE; } } ret = wc_ecc_point_is_at_infinity((ecc_point*)point->internal); if (ret <= 0) { WOLFSSL_MSG("ecc_point_is_at_infinity failure"); return WOLFSSL_FAILURE; } return WOLFSSL_SUCCESS; } /* End EC_POINT */ /* Start ECDSA_SIG */ void wolfSSL_ECDSA_SIG_free(WOLFSSL_ECDSA_SIG *sig) { WOLFSSL_ENTER("wolfSSL_ECDSA_SIG_free"); if (sig) { wolfSSL_BN_free(sig->r); wolfSSL_BN_free(sig->s); XFREE(sig, NULL, DYNAMIC_TYPE_ECC); } } WOLFSSL_ECDSA_SIG *wolfSSL_ECDSA_SIG_new(void) { WOLFSSL_ECDSA_SIG *sig; WOLFSSL_ENTER("wolfSSL_ECDSA_SIG_new"); sig = (WOLFSSL_ECDSA_SIG*) XMALLOC(sizeof(WOLFSSL_ECDSA_SIG), NULL, DYNAMIC_TYPE_ECC); if (sig == NULL) { WOLFSSL_MSG("wolfSSL_ECDSA_SIG_new malloc ECDSA signature failure"); return NULL; } sig->s = NULL; sig->r = wolfSSL_BN_new(); if (sig->r == NULL) { WOLFSSL_MSG("wolfSSL_ECDSA_SIG_new malloc ECDSA r failure"); wolfSSL_ECDSA_SIG_free(sig); return NULL; } sig->s = wolfSSL_BN_new(); if (sig->s == NULL) { WOLFSSL_MSG("wolfSSL_ECDSA_SIG_new malloc ECDSA s failure"); wolfSSL_ECDSA_SIG_free(sig); return NULL; } return sig; } /* return signature structure on success, NULL otherwise */ WOLFSSL_ECDSA_SIG *wolfSSL_ECDSA_do_sign(const unsigned char *d, int dlen, WOLFSSL_EC_KEY *key) { WOLFSSL_ECDSA_SIG *sig = NULL; int initTmpRng = 0; WC_RNG* rng = NULL; #ifdef WOLFSSL_SMALL_STACK WC_RNG* tmpRNG = NULL; #else WC_RNG tmpRNG[1]; #endif WOLFSSL_ENTER("wolfSSL_ECDSA_do_sign"); if (d == NULL || key == NULL || key->internal == NULL) { WOLFSSL_MSG("wolfSSL_ECDSA_do_sign Bad arguments"); return NULL; } /* set internal key if not done */ if (key->inSet == 0) { WOLFSSL_MSG("wolfSSL_ECDSA_do_sign No EC key internal set, do it"); if (SetECKeyInternal(key) != WOLFSSL_SUCCESS) { WOLFSSL_MSG("wolfSSL_ECDSA_do_sign SetECKeyInternal failed"); return NULL; } } #ifdef WOLFSSL_SMALL_STACK tmpRNG = (WC_RNG*)XMALLOC(sizeof(WC_RNG), NULL, DYNAMIC_TYPE_RNG); if (tmpRNG == NULL) return NULL; #endif if (wc_InitRng(tmpRNG) == 0) { rng = tmpRNG; initTmpRng = 1; } else { WOLFSSL_MSG("wolfSSL_ECDSA_do_sign Bad RNG Init, trying global"); if (initGlobalRNG == 0) WOLFSSL_MSG("wolfSSL_ECDSA_do_sign Global RNG no Init"); else rng = &globalRNG; } if (rng) { mp_int sig_r, sig_s; if (mp_init_multi(&sig_r, &sig_s, NULL, NULL, NULL, NULL) == MP_OKAY) { if (wc_ecc_sign_hash_ex(d, dlen, rng, (ecc_key*)key->internal, &sig_r, &sig_s) != MP_OKAY) { WOLFSSL_MSG("wc_ecc_sign_hash_ex failed"); } else { /* put signature blob in ECDSA structure */ sig = wolfSSL_ECDSA_SIG_new(); if (sig == NULL) WOLFSSL_MSG("wolfSSL_ECDSA_SIG_new failed"); else if (SetIndividualExternal(&(sig->r), &sig_r)!=WOLFSSL_SUCCESS){ WOLFSSL_MSG("ecdsa r key error"); wolfSSL_ECDSA_SIG_free(sig); sig = NULL; } else if (SetIndividualExternal(&(sig->s), &sig_s)!=WOLFSSL_SUCCESS){ WOLFSSL_MSG("ecdsa s key error"); wolfSSL_ECDSA_SIG_free(sig); sig = NULL; } } mp_free(&sig_r); mp_free(&sig_s); } } if (initTmpRng) wc_FreeRng(tmpRNG); #ifdef WOLFSSL_SMALL_STACK XFREE(tmpRNG, NULL, DYNAMIC_TYPE_RNG); #endif return sig; } /* return code compliant with OpenSSL : * 1 for a valid signature, 0 for an invalid signature and -1 on error */ int wolfSSL_ECDSA_do_verify(const unsigned char *d, int dlen, const WOLFSSL_ECDSA_SIG *sig, WOLFSSL_EC_KEY *key) { int check_sign = 0; WOLFSSL_ENTER("wolfSSL_ECDSA_do_verify"); if (d == NULL || sig == NULL || key == NULL || key->internal == NULL) { WOLFSSL_MSG("wolfSSL_ECDSA_do_verify Bad arguments"); return WOLFSSL_FATAL_ERROR; } /* set internal key if not done */ if (key->inSet == 0) { WOLFSSL_MSG("No EC key internal set, do it"); if (SetECKeyInternal(key) != WOLFSSL_SUCCESS) { WOLFSSL_MSG("SetECKeyInternal failed"); return WOLFSSL_FATAL_ERROR; } } if (wc_ecc_verify_hash_ex((mp_int*)sig->r->internal, (mp_int*)sig->s->internal, d, dlen, &check_sign, (ecc_key *)key->internal) != MP_OKAY) { WOLFSSL_MSG("wc_ecc_verify_hash failed"); return WOLFSSL_FATAL_ERROR; } else if (check_sign == 0) { WOLFSSL_MSG("wc_ecc_verify_hash incorrect signature detected"); return WOLFSSL_FAILURE; } return WOLFSSL_SUCCESS; } /* End ECDSA_SIG */ /* Start ECDH */ /* return code compliant with OpenSSL : * length of computed key if success, -1 if error */ int wolfSSL_ECDH_compute_key(void *out, size_t outlen, const WOLFSSL_EC_POINT *pub_key, WOLFSSL_EC_KEY *ecdh, void *(*KDF) (const void *in, size_t inlen, void *out, size_t *outlen)) { word32 len; (void)KDF; (void)KDF; WOLFSSL_ENTER("wolfSSL_ECDH_compute_key"); if (out == NULL || pub_key == NULL || pub_key->internal == NULL || ecdh == NULL || ecdh->internal == NULL) { WOLFSSL_MSG("Bad function arguments"); return WOLFSSL_FATAL_ERROR; } /* set internal key if not done */ if (ecdh->inSet == 0) { WOLFSSL_MSG("No EC key internal set, do it"); if (SetECKeyInternal(ecdh) != WOLFSSL_SUCCESS) { WOLFSSL_MSG("SetECKeyInternal failed"); return WOLFSSL_FATAL_ERROR; } } len = (word32)outlen; if (wc_ecc_shared_secret_ssh((ecc_key*)ecdh->internal, (ecc_point*)pub_key->internal, (byte *)out, &len) != MP_OKAY) { WOLFSSL_MSG("wc_ecc_shared_secret failed"); return WOLFSSL_FATAL_ERROR; } return len; } /* End ECDH */ #if !defined(NO_FILESYSTEM) /* return code compliant with OpenSSL : * 1 if success, 0 if error */ #ifndef NO_WOLFSSL_STUB int wolfSSL_PEM_write_EC_PUBKEY(FILE *fp, WOLFSSL_EC_KEY *x) { (void)fp; (void)x; WOLFSSL_STUB("PEM_write_EC_PUBKEY"); WOLFSSL_MSG("wolfSSL_PEM_write_EC_PUBKEY not implemented"); return WOLFSSL_FAILURE; } #endif #endif /* NO_FILESYSTEM */ #if defined(WOLFSSL_KEY_GEN) /* return code compliant with OpenSSL : * 1 if success, 0 if error */ #ifndef NO_WOLFSSL_STUB int wolfSSL_PEM_write_bio_ECPrivateKey(WOLFSSL_BIO* bio, WOLFSSL_EC_KEY* ecc, const EVP_CIPHER* cipher, unsigned char* passwd, int len, pem_password_cb* cb, void* arg) { (void)bio; (void)ecc; (void)cipher; (void)passwd; (void)len; (void)cb; (void)arg; WOLFSSL_STUB("PEM_write_bio_ECPrivateKey"); WOLFSSL_MSG("wolfSSL_PEM_write_bio_ECPrivateKey not implemented"); return WOLFSSL_FAILURE; } #endif /* return code compliant with OpenSSL : * 1 if success, 0 if error */ int wolfSSL_PEM_write_mem_ECPrivateKey(WOLFSSL_EC_KEY* ecc, const EVP_CIPHER* cipher, unsigned char* passwd, int passwdSz, unsigned char **pem, int *plen) { #if defined(WOLFSSL_PEM_TO_DER) || defined(WOLFSSL_DER_TO_PEM) byte *derBuf, *tmp, *cipherInfo = NULL; int der_max_len = 0, derSz = 0; const int type = ECC_PRIVATEKEY_TYPE; const char* header = NULL; const char* footer = NULL; WOLFSSL_MSG("wolfSSL_PEM_write_mem_ECPrivateKey"); if (pem == NULL || plen == NULL || ecc == NULL || ecc->internal == NULL) { WOLFSSL_MSG("Bad function arguments"); return WOLFSSL_FAILURE; } if (wc_PemGetHeaderFooter(type, &header, &footer) != 0) return WOLFSSL_FAILURE; if (ecc->inSet == 0) { WOLFSSL_MSG("No ECC internal set, do it"); if (SetECKeyInternal(ecc) != WOLFSSL_SUCCESS) { WOLFSSL_MSG("SetDsaInternal failed"); return WOLFSSL_FAILURE; } } /* 4 > size of pub, priv + ASN.1 additional informations */ der_max_len = 4 * wc_ecc_size((ecc_key*)ecc->internal) + AES_BLOCK_SIZE; derBuf = (byte*)XMALLOC(der_max_len, NULL, DYNAMIC_TYPE_DER); if (derBuf == NULL) { WOLFSSL_MSG("malloc failed"); return WOLFSSL_FAILURE; } /* Key to DER */ derSz = wc_EccKeyToDer((ecc_key*)ecc->internal, derBuf, der_max_len); if (derSz < 0) { WOLFSSL_MSG("wc_DsaKeyToDer failed"); XFREE(derBuf, NULL, DYNAMIC_TYPE_DER); return WOLFSSL_FAILURE; } /* encrypt DER buffer if required */ if (passwd != NULL && passwdSz > 0 && cipher != NULL) { int ret; ret = EncryptDerKey(derBuf, &derSz, cipher, passwd, passwdSz, &cipherInfo); if (ret != WOLFSSL_SUCCESS) { WOLFSSL_MSG("EncryptDerKey failed"); XFREE(derBuf, NULL, DYNAMIC_TYPE_DER); return ret; } /* tmp buffer with a max size */ *plen = (derSz * 2) + (int)XSTRLEN(header) + 1 + (int)XSTRLEN(footer) + 1 + HEADER_ENCRYPTED_KEY_SIZE; } else { /* tmp buffer with a max size */ *plen = (derSz * 2) + (int)XSTRLEN(header) + 1 + (int)XSTRLEN(footer) + 1; } tmp = (byte*)XMALLOC(*plen, NULL, DYNAMIC_TYPE_PEM); if (tmp == NULL) { WOLFSSL_MSG("malloc failed"); XFREE(derBuf, NULL, DYNAMIC_TYPE_DER); if (cipherInfo != NULL) XFREE(cipherInfo, NULL, DYNAMIC_TYPE_STRING); return WOLFSSL_FAILURE; } /* DER to PEM */ *plen = wc_DerToPemEx(derBuf, derSz, tmp, *plen, cipherInfo, type); if (*plen <= 0) { WOLFSSL_MSG("wc_DerToPemEx failed"); XFREE(derBuf, NULL, DYNAMIC_TYPE_DER); XFREE(tmp, NULL, DYNAMIC_TYPE_PEM); if (cipherInfo != NULL) XFREE(cipherInfo, NULL, DYNAMIC_TYPE_STRING); return WOLFSSL_FAILURE; } XFREE(derBuf, NULL, DYNAMIC_TYPE_DER); if (cipherInfo != NULL) XFREE(cipherInfo, NULL, DYNAMIC_TYPE_STRING); *pem = (byte*)XMALLOC((*plen)+1, NULL, DYNAMIC_TYPE_KEY); if (*pem == NULL) { WOLFSSL_MSG("malloc failed"); XFREE(tmp, NULL, DYNAMIC_TYPE_PEM); return WOLFSSL_FAILURE; } XMEMSET(*pem, 0, (*plen)+1); if (XMEMCPY(*pem, tmp, *plen) == NULL) { WOLFSSL_MSG("XMEMCPY failed"); XFREE(pem, NULL, DYNAMIC_TYPE_KEY); XFREE(tmp, NULL, DYNAMIC_TYPE_PEM); return WOLFSSL_FAILURE; } XFREE(tmp, NULL, DYNAMIC_TYPE_PEM); return WOLFSSL_SUCCESS; #else (void)ecc; (void)cipher; (void)passwd; (void)passwdSz; (void)pem; (void)plen; return WOLFSSL_FAILURE; #endif /* WOLFSSL_PEM_TO_DER || WOLFSSL_DER_TO_PEM */ } #ifndef NO_FILESYSTEM /* return code compliant with OpenSSL : * 1 if success, 0 if error */ int wolfSSL_PEM_write_ECPrivateKey(FILE *fp, WOLFSSL_EC_KEY *ecc, const EVP_CIPHER *enc, unsigned char *kstr, int klen, pem_password_cb *cb, void *u) { byte *pem; int plen, ret; (void)cb; (void)u; WOLFSSL_MSG("wolfSSL_PEM_write_ECPrivateKey"); if (fp == NULL || ecc == NULL || ecc->internal == NULL) { WOLFSSL_MSG("Bad function arguments"); return WOLFSSL_FAILURE; } ret = wolfSSL_PEM_write_mem_ECPrivateKey(ecc, enc, kstr, klen, &pem, &plen); if (ret != WOLFSSL_SUCCESS) { WOLFSSL_MSG("wolfSSL_PEM_write_mem_ECPrivateKey failed"); return WOLFSSL_FAILURE; } ret = (int)XFWRITE(pem, plen, 1, fp); if (ret != 1) { WOLFSSL_MSG("ECC private key file write failed"); return WOLFSSL_FAILURE; } XFREE(pem, NULL, DYNAMIC_TYPE_KEY); return WOLFSSL_SUCCESS; } #endif /* NO_FILESYSTEM */ #endif /* defined(WOLFSSL_KEY_GEN) */ #endif /* HAVE_ECC */ #ifndef NO_DSA #if defined(WOLFSSL_KEY_GEN) /* return code compliant with OpenSSL : * 1 if success, 0 if error */ int wolfSSL_PEM_write_bio_DSAPrivateKey(WOLFSSL_BIO* bio, WOLFSSL_DSA* dsa, const EVP_CIPHER* cipher, unsigned char* passwd, int len, pem_password_cb* cb, void* arg) { (void)bio; (void)dsa; (void)cipher; (void)passwd; (void)len; (void)cb; (void)arg; WOLFSSL_MSG("wolfSSL_PEM_write_bio_DSAPrivateKey not implemented"); return WOLFSSL_FAILURE; } /* return code compliant with OpenSSL : * 1 if success, 0 if error */ int wolfSSL_PEM_write_mem_DSAPrivateKey(WOLFSSL_DSA* dsa, const EVP_CIPHER* cipher, unsigned char* passwd, int passwdSz, unsigned char **pem, int *plen) { #if defined(WOLFSSL_PEM_TO_DER) || defined(WOLFSSL_DER_TO_PEM) byte *derBuf, *tmp, *cipherInfo = NULL; int der_max_len = 0, derSz = 0; const int type = DSA_PRIVATEKEY_TYPE; const char* header = NULL; const char* footer = NULL; WOLFSSL_MSG("wolfSSL_PEM_write_mem_DSAPrivateKey"); if (pem == NULL || plen == NULL || dsa == NULL || dsa->internal == NULL) { WOLFSSL_MSG("Bad function arguments"); return WOLFSSL_FAILURE; } if (wc_PemGetHeaderFooter(type, &header, &footer) != 0) return WOLFSSL_FAILURE; if (dsa->inSet == 0) { WOLFSSL_MSG("No DSA internal set, do it"); if (SetDsaInternal(dsa) != WOLFSSL_SUCCESS) { WOLFSSL_MSG("SetDsaInternal failed"); return WOLFSSL_FAILURE; } } /* 4 > size of pub, priv, p, q, g + ASN.1 additional informations */ der_max_len = 4 * wolfSSL_BN_num_bytes(dsa->g) + AES_BLOCK_SIZE; derBuf = (byte*)XMALLOC(der_max_len, NULL, DYNAMIC_TYPE_DER); if (derBuf == NULL) { WOLFSSL_MSG("malloc failed"); return WOLFSSL_FAILURE; } /* Key to DER */ derSz = wc_DsaKeyToDer((DsaKey*)dsa->internal, derBuf, der_max_len); if (derSz < 0) { WOLFSSL_MSG("wc_DsaKeyToDer failed"); XFREE(derBuf, NULL, DYNAMIC_TYPE_DER); return WOLFSSL_FAILURE; } /* encrypt DER buffer if required */ if (passwd != NULL && passwdSz > 0 && cipher != NULL) { int ret; ret = EncryptDerKey(derBuf, &derSz, cipher, passwd, passwdSz, &cipherInfo); if (ret != WOLFSSL_SUCCESS) { WOLFSSL_MSG("EncryptDerKey failed"); XFREE(derBuf, NULL, DYNAMIC_TYPE_DER); return ret; } /* tmp buffer with a max size */ *plen = (derSz * 2) + (int)XSTRLEN(header) + 1 + (int)XSTRLEN(footer) + 1 + HEADER_ENCRYPTED_KEY_SIZE; } else { /* tmp buffer with a max size */ *plen = (derSz * 2) + (int)XSTRLEN(header) + 1 + (int)XSTRLEN(footer) + 1; } tmp = (byte*)XMALLOC(*plen, NULL, DYNAMIC_TYPE_PEM); if (tmp == NULL) { WOLFSSL_MSG("malloc failed"); XFREE(derBuf, NULL, DYNAMIC_TYPE_DER); if (cipherInfo != NULL) XFREE(cipherInfo, NULL, DYNAMIC_TYPE_STRING); return WOLFSSL_FAILURE; } /* DER to PEM */ *plen = wc_DerToPemEx(derBuf, derSz, tmp, *plen, cipherInfo, type); if (*plen <= 0) { WOLFSSL_MSG("wc_DerToPemEx failed"); XFREE(derBuf, NULL, DYNAMIC_TYPE_DER); XFREE(tmp, NULL, DYNAMIC_TYPE_PEM); if (cipherInfo != NULL) XFREE(cipherInfo, NULL, DYNAMIC_TYPE_STRING); return WOLFSSL_FAILURE; } XFREE(derBuf, NULL, DYNAMIC_TYPE_DER); if (cipherInfo != NULL) XFREE(cipherInfo, NULL, DYNAMIC_TYPE_STRING); *pem = (byte*)XMALLOC((*plen)+1, NULL, DYNAMIC_TYPE_KEY); if (*pem == NULL) { WOLFSSL_MSG("malloc failed"); XFREE(tmp, NULL, DYNAMIC_TYPE_PEM); return WOLFSSL_FAILURE; } XMEMSET(*pem, 0, (*plen)+1); if (XMEMCPY(*pem, tmp, *plen) == NULL) { WOLFSSL_MSG("XMEMCPY failed"); XFREE(pem, NULL, DYNAMIC_TYPE_KEY); XFREE(tmp, NULL, DYNAMIC_TYPE_PEM); return WOLFSSL_FAILURE; } XFREE(tmp, NULL, DYNAMIC_TYPE_PEM); return WOLFSSL_SUCCESS; #else (void)dsa; (void)cipher; (void)passwd; (void)passwdSz; (void)pem; (void)plen; return WOLFSSL_FAILURE; #endif /* WOLFSSL_PEM_TO_DER || WOLFSSL_DER_TO_PEM */ } #ifndef NO_FILESYSTEM /* return code compliant with OpenSSL : * 1 if success, 0 if error */ int wolfSSL_PEM_write_DSAPrivateKey(FILE *fp, WOLFSSL_DSA *dsa, const EVP_CIPHER *enc, unsigned char *kstr, int klen, pem_password_cb *cb, void *u) { byte *pem; int plen, ret; (void)cb; (void)u; WOLFSSL_MSG("wolfSSL_PEM_write_DSAPrivateKey"); if (fp == NULL || dsa == NULL || dsa->internal == NULL) { WOLFSSL_MSG("Bad function arguments"); return WOLFSSL_FAILURE; } ret = wolfSSL_PEM_write_mem_DSAPrivateKey(dsa, enc, kstr, klen, &pem, &plen); if (ret != WOLFSSL_SUCCESS) { WOLFSSL_MSG("wolfSSL_PEM_write_mem_DSAPrivateKey failed"); return WOLFSSL_FAILURE; } ret = (int)XFWRITE(pem, plen, 1, fp); if (ret != 1) { WOLFSSL_MSG("DSA private key file write failed"); return WOLFSSL_FAILURE; } XFREE(pem, NULL, DYNAMIC_TYPE_KEY); return WOLFSSL_SUCCESS; } #endif /* NO_FILESYSTEM */ #endif /* defined(WOLFSSL_KEY_GEN) */ #ifndef NO_FILESYSTEM /* return code compliant with OpenSSL : * 1 if success, 0 if error */ #ifndef NO_WOLFSSL_STUB int wolfSSL_PEM_write_DSA_PUBKEY(FILE *fp, WOLFSSL_DSA *x) { (void)fp; (void)x; WOLFSSL_STUB("PEM_write_DSA_PUBKEY"); WOLFSSL_MSG("wolfSSL_PEM_write_DSA_PUBKEY not implemented"); return WOLFSSL_FAILURE; } #endif #endif /* NO_FILESYSTEM */ #endif /* #ifndef NO_DSA */ WOLFSSL_EVP_PKEY* wolfSSL_PEM_read_bio_PrivateKey(WOLFSSL_BIO* bio, WOLFSSL_EVP_PKEY** key, pem_password_cb* cb, void* pass) { WOLFSSL_EVP_PKEY* pkey = NULL; #ifdef WOLFSSL_SMALL_STACK EncryptedInfo* info; #else EncryptedInfo info[1]; #endif /* WOLFSSL_SMALL_STACK */ pem_password_cb* localCb = cb; DerBuffer* der = NULL; char* mem = NULL; int memSz; int ret; int eccFlag = 0; WOLFSSL_ENTER("wolfSSL_PEM_read_bio_PrivateKey"); if (bio == NULL) { return pkey; } if ((ret = wolfSSL_BIO_pending(bio)) > 0) { memSz = ret; mem = (char*)XMALLOC(memSz, bio->heap, DYNAMIC_TYPE_OPENSSL); if (mem == NULL) { WOLFSSL_MSG("Memory error"); return NULL; } if ((ret = wolfSSL_BIO_read(bio, mem, memSz)) <= 0) { WOLFSSL_LEAVE("wolfSSL_PEM_read_bio_PrivateKey", ret); XFREE(mem, bio->heap, DYNAMIC_TYPE_OPENSSL); return NULL; } } else if (bio->type == WOLFSSL_BIO_FILE) { int sz = 100; /* read from file by 100 byte chuncks */ int idx = 0; char* tmp = (char*)XMALLOC(sz, bio->heap, DYNAMIC_TYPE_OPENSSL); memSz = 0; if (tmp == NULL) { WOLFSSL_MSG("Memory error"); return NULL; } while ((sz = wolfSSL_BIO_read(bio, tmp, sz)) > 0) { if (memSz + sz < 0) { /* sanity check */ break; } mem = (char*)XREALLOC(mem, memSz + sz, bio->heap, DYNAMIC_TYPE_OPENSSL); if (mem == NULL) { WOLFSSL_MSG("Memory error"); XFREE(tmp, bio->heap, DYNAMIC_TYPE_OPENSSL); return NULL; } XMEMCPY(mem + idx, tmp, sz); memSz += sz; idx += sz; sz = 100; /* read another 100 byte chunck from file */ } XFREE(tmp, bio->heap, DYNAMIC_TYPE_OPENSSL); if (memSz <= 0) { WOLFSSL_MSG("No data to read from bio"); if (mem != NULL) { XFREE(mem, bio->heap, DYNAMIC_TYPE_OPENSSL); } return NULL; } } else { WOLFSSL_MSG("No data to read from bio"); return NULL; } #ifdef WOLFSSL_SMALL_STACK info = (EncryptedInfo*)XMALLOC(sizeof(EncryptedInfo), NULL, DYNAMIC_TYPE_TMP_BUFFER); if (info == NULL) { WOLFSSL_MSG("Error getting memory for EncryptedInfo structure"); XFREE(mem, bio->heap, DYNAMIC_TYPE_OPENSSL); return NULL; } #endif XMEMSET(info, 0, sizeof(EncryptedInfo)); info->passwd_cb = localCb; info->passwd_userdata = pass; ret = PemToDer((const unsigned char*)mem, memSz, PRIVATEKEY_TYPE, &der, NULL, info, &eccFlag); if (ret < 0) { WOLFSSL_MSG("Bad Pem To Der"); } else { int type; const unsigned char* ptr = der->buffer; /* write left over data back to bio */ if ((memSz - (int)info->consumed) > 0 && bio->type != WOLFSSL_BIO_FILE) { if (wolfSSL_BIO_write(bio, mem + (int)info->consumed, memSz - (int)info->consumed) <= 0) { WOLFSSL_MSG("Unable to advance bio read pointer"); } } if (eccFlag) { type = EVP_PKEY_EC; } else { type = EVP_PKEY_RSA; } /* handle case where reuse is attempted */ if (key != NULL && *key != NULL) { pkey = *key; } wolfSSL_d2i_PrivateKey(type, &pkey, &ptr, der->length); if (pkey == NULL) { WOLFSSL_MSG("Error loading DER buffer into WOLFSSL_EVP_PKEY"); } } #ifdef WOLFSSL_SMALL_STACK XFREE(info, NULL, DYNAMIC_TYPE_TMP_BUFFER); #endif XFREE(mem, bio->heap, DYNAMIC_TYPE_OPENSSL); FreeDer(&der); if (key != NULL) { *key = pkey; } return pkey; } #ifndef NO_RSA /* Uses the same format of input as wolfSSL_PEM_read_bio_PrivateKey but expects * the results to be an RSA key. * * bio structure to read RSA private key from * rsa if not null is then set to the result * cb password callback for reading PEM * pass password string * * returns a pointer to a new WOLFSSL_RSA structure on success and NULL on fail */ WOLFSSL_RSA* wolfSSL_PEM_read_bio_RSAPrivateKey(WOLFSSL_BIO* bio, WOLFSSL_RSA** rsa, pem_password_cb* cb, void* pass) { WOLFSSL_EVP_PKEY* pkey; WOLFSSL_RSA* local; pkey = wolfSSL_PEM_read_bio_PrivateKey(bio, NULL, cb, pass); if (pkey == NULL) { return NULL; } /* Since the WOLFSSL_RSA structure is being taken from WOLFSSL_EVP_PEKY the * flag indicating that the WOLFSSL_RSA structure is owned should be FALSE * to avoid having it free'd */ pkey->ownRsa = 0; local = pkey->rsa; if (rsa != NULL) { *rsa = local; } wolfSSL_EVP_PKEY_free(pkey); return local; } #endif /* !NO_RSA */ /* return of pkey->type which will be EVP_PKEY_RSA for example. * * type type of EVP_PKEY * * returns type or if type is not found then NID_undef */ int wolfSSL_EVP_PKEY_type(int type) { WOLFSSL_MSG("wolfSSL_EVP_PKEY_type"); switch (type) { #ifdef OPENSSL_EXTRA case EVP_PKEY_RSA: return EVP_PKEY_RSA; case EVP_PKEY_DSA: return EVP_PKEY_DSA; case EVP_PKEY_EC: return EVP_PKEY_EC; #endif default: return NID_undef; } } int wolfSSL_EVP_PKEY_base_id(const EVP_PKEY *pkey) { return EVP_PKEY_type(pkey->type); } #if !defined(NO_FILESYSTEM) WOLFSSL_EVP_PKEY *wolfSSL_PEM_read_PUBKEY(FILE *fp, EVP_PKEY **x, pem_password_cb *cb, void *u) { (void)fp; (void)x; (void)cb; (void)u; WOLFSSL_MSG("wolfSSL_PEM_read_PUBKEY not implemented"); return NULL; } #endif /* NO_FILESYSTEM */ #ifndef NO_RSA #if !defined(NO_FILESYSTEM) #ifndef NO_WOLFSSL_STUB WOLFSSL_RSA *wolfSSL_PEM_read_RSAPublicKey(FILE *fp, WOLFSSL_RSA **x, pem_password_cb *cb, void *u) { (void)fp; (void)x; (void)cb; (void)u; WOLFSSL_STUB("PEM_read_RSAPublicKey"); WOLFSSL_MSG("wolfSSL_PEM_read_RSAPublicKey not implemented"); return NULL; } #endif /* return code compliant with OpenSSL : * 1 if success, 0 if error */ #ifndef NO_WOLFSSL_STUB int wolfSSL_PEM_write_RSAPublicKey(FILE *fp, WOLFSSL_RSA *x) { (void)fp; (void)x; WOLFSSL_STUB("PEM_write_RSAPublicKey"); WOLFSSL_MSG("wolfSSL_PEM_write_RSAPublicKey not implemented"); return WOLFSSL_FAILURE; } #endif /* return code compliant with OpenSSL : * 1 if success, 0 if error */ #ifndef NO_WOLFSSL_STUB int wolfSSL_PEM_write_RSA_PUBKEY(FILE *fp, WOLFSSL_RSA *x) { (void)fp; (void)x; WOLFSSL_STUB("PEM_write_RSA_PUBKEY"); WOLFSSL_MSG("wolfSSL_PEM_write_RSA_PUBKEY not implemented"); return WOLFSSL_FAILURE; } #endif #endif /* NO_FILESYSTEM */ WOLFSSL_RSA *wolfSSL_d2i_RSAPublicKey(WOLFSSL_RSA **r, const unsigned char **pp, long len) { WOLFSSL_RSA *rsa = NULL; WOLFSSL_ENTER("d2i_RSAPublicKey"); if(pp == NULL){ WOLFSSL_MSG("Bad argument"); return NULL; } if((rsa = wolfSSL_RSA_new()) == NULL){ WOLFSSL_MSG("RSA_new failed"); return NULL; } if(wolfSSL_RSA_LoadDer_ex(rsa, *pp, (int)len, WOLFSSL_RSA_LOAD_PUBLIC) != WOLFSSL_SUCCESS){ WOLFSSL_MSG("RSA_LoadDer failed"); wolfSSL_RSA_free(rsa); rsa = NULL; return NULL; } if(r != NULL) *r = rsa; return rsa; } /* Converts an rsa private key from der format to an rsa structure. Returns pointer to the rsa structure on succcess and NULL if error. */ WOLFSSL_RSA *wolfSSL_d2i_RSAPrivateKey(WOLFSSL_RSA **r, const unsigned char **derBuf, long derSz) { WOLFSSL_RSA *rsa = NULL; WOLFSSL_ENTER("wolfSSL_d2i_RSAPrivateKey"); /* check for bad functions arguments */ if (derBuf == NULL) { WOLFSSL_MSG("Bad argument"); return NULL; } if ((rsa = wolfSSL_RSA_new()) == NULL) { WOLFSSL_MSG("RSA_new failed"); return NULL; } if (wolfSSL_RSA_LoadDer_ex(rsa, *derBuf, (int)derSz, WOLFSSL_RSA_LOAD_PRIVATE) != WOLFSSL_SUCCESS) { WOLFSSL_MSG("RSA_LoadDer failed"); wolfSSL_RSA_free(rsa); rsa = NULL; return NULL; } if(r != NULL) *r = rsa; return rsa; } #if !defined(HAVE_FAST_RSA) #if defined(WOLFSSL_KEY_GEN) /* Converts an internal rsa structure to der format. Returns size of der on success and WOLFSSL_FAILURE if error */ int wolfSSL_i2d_RSAPrivateKey(WOLFSSL_RSA *rsa, unsigned char **pp) { byte* der = NULL; int derMax; int ret; int i; WOLFSSL_ENTER("wolfSSL_i2d_RSAPrivateKey"); /* check for bad functions arguments */ if ((rsa == NULL) || (pp == NULL)) { WOLFSSL_MSG("Bad Function Arguments"); return BAD_FUNC_ARG; } if (rsa->inSet == 0) { if ((ret = SetRsaInternal(rsa)) != WOLFSSL_SUCCESS) { WOLFSSL_MSG("SetRsaInternal() Failed"); return ret; } } /* 5 > size of n, d, p, q, d%(p-1), d(q-1), 1/q%p, e + ASN.1 additional * informations */ derMax = 5 * wolfSSL_RSA_size(rsa) + AES_BLOCK_SIZE; der = (byte*)XMALLOC(derMax, NULL, DYNAMIC_TYPE_TMP_BUFFER); if (der == NULL) { WOLFSSL_MSG("Malloc failed"); return WOLFSSL_FAILURE; } /* RSA key to DER */ if ((ret = wc_RsaKeyToDer((RsaKey *)rsa->internal, der, derMax)) < 0) { WOLFSSL_MSG("wc_RsaKeyToDer() failed"); XFREE(der, NULL, DYNAMIC_TYPE_TMP_BUFFER); der = NULL; return ret; } /* ret is the size of the der buffer */ for (i = 0; i < ret; i++) { *(*pp + i) = *(der + i); } *pp += ret; XFREE(der, NULL, DYNAMIC_TYPE_TMP_BUFFER); return ret; /* returns size of der if successful */ } #endif /* WOLFSSL_KEY_GEN */ int wolfSSL_i2d_RSAPublicKey(WOLFSSL_RSA *rsa, const unsigned char **pp) { byte *der; int derLen; int ret; WOLFSSL_ENTER("i2d_RSAPublicKey"); if ((rsa == NULL) || (pp == NULL)) return WOLFSSL_FATAL_ERROR; if ((ret = SetRsaInternal(rsa)) != WOLFSSL_SUCCESS) { WOLFSSL_MSG("SetRsaInternal Failed"); return ret; } if ((derLen = RsaPublicKeyDerSize((RsaKey *)rsa->internal, 1)) < 0) return WOLFSSL_FATAL_ERROR; der = (byte*)XMALLOC(derLen, NULL, DYNAMIC_TYPE_TMP_BUFFER); if (der == NULL) { return WOLFSSL_FATAL_ERROR; } if ((ret = wc_RsaKeyToPublicDer((RsaKey *)rsa->internal, der, derLen)) < 0){ WOLFSSL_MSG("RsaKeyToPublicDer failed"); XFREE(der, NULL, DYNAMIC_TYPE_TMP_BUFFER); return ret; } *pp = der; return ret; } #endif /* #if !defined(HAVE_FAST_RSA) */ #endif /* !NO_RSA */ #endif /* OPENSSL_EXTRA */ #if !defined(NO_RSA) && (defined(OPENSSL_EXTRA) || defined(OPENSSL_EXTRA_X509_SMALL)) /* return WOLFSSL_SUCCESS if success, WOLFSSL_FATAL_ERROR if error */ int wolfSSL_RSA_LoadDer(WOLFSSL_RSA* rsa, const unsigned char* derBuf, int derSz) { return wolfSSL_RSA_LoadDer_ex(rsa, derBuf, derSz, WOLFSSL_RSA_LOAD_PRIVATE); } int wolfSSL_RSA_LoadDer_ex(WOLFSSL_RSA* rsa, const unsigned char* derBuf, int derSz, int opt) { word32 idx = 0; int ret; WOLFSSL_ENTER("wolfSSL_RSA_LoadDer"); if (rsa == NULL || rsa->internal == NULL || derBuf == NULL || derSz <= 0) { WOLFSSL_MSG("Bad function arguments"); return WOLFSSL_FATAL_ERROR; } if (opt == WOLFSSL_RSA_LOAD_PRIVATE) { ret = wc_RsaPrivateKeyDecode(derBuf, &idx, (RsaKey*)rsa->internal, derSz); } else { ret = wc_RsaPublicKeyDecode(derBuf, &idx, (RsaKey*)rsa->internal, derSz); } if (ret < 0) { if (opt == WOLFSSL_RSA_LOAD_PRIVATE) { WOLFSSL_MSG("RsaPrivateKeyDecode failed"); } else { WOLFSSL_MSG("RsaPublicKeyDecode failed"); } return SSL_FATAL_ERROR; } if (SetRsaExternal(rsa) != WOLFSSL_SUCCESS) { WOLFSSL_MSG("SetRsaExternal failed"); return WOLFSSL_FATAL_ERROR; } rsa->inSet = 1; return WOLFSSL_SUCCESS; } #endif /* NO_RSA */ #ifdef OPENSSL_EXTRA #ifndef NO_DSA /* return WOLFSSL_SUCCESS if success, WOLFSSL_FATAL_ERROR if error */ int wolfSSL_DSA_LoadDer(WOLFSSL_DSA* dsa, const unsigned char* derBuf, int derSz) { word32 idx = 0; int ret; WOLFSSL_ENTER("wolfSSL_DSA_LoadDer"); if (dsa == NULL || dsa->internal == NULL || derBuf == NULL || derSz <= 0) { WOLFSSL_MSG("Bad function arguments"); return WOLFSSL_FATAL_ERROR; } ret = DsaPrivateKeyDecode(derBuf, &idx, (DsaKey*)dsa->internal, derSz); if (ret < 0) { WOLFSSL_MSG("DsaPrivateKeyDecode failed"); return WOLFSSL_FATAL_ERROR; } if (SetDsaExternal(dsa) != WOLFSSL_SUCCESS) { WOLFSSL_MSG("SetDsaExternal failed"); return WOLFSSL_FATAL_ERROR; } dsa->inSet = 1; return WOLFSSL_SUCCESS; } #endif /* NO_DSA */ #ifdef HAVE_ECC /* return WOLFSSL_SUCCESS if success, WOLFSSL_FATAL_ERROR if error */ int wolfSSL_EC_KEY_LoadDer(WOLFSSL_EC_KEY* key, const unsigned char* derBuf, int derSz) { word32 idx = 0; int ret; WOLFSSL_ENTER("wolfSSL_EC_KEY_LoadDer"); if (key == NULL || key->internal == NULL || derBuf == NULL || derSz <= 0) { WOLFSSL_MSG("Bad function arguments"); return WOLFSSL_FATAL_ERROR; } ret = wc_EccPrivateKeyDecode(derBuf, &idx, (ecc_key*)key->internal, derSz); if (ret < 0) { WOLFSSL_MSG("wc_EccPrivateKeyDecode failed"); return WOLFSSL_FATAL_ERROR; } if (SetECKeyExternal(key) != WOLFSSL_SUCCESS) { WOLFSSL_MSG("SetECKeyExternal failed"); return WOLFSSL_FATAL_ERROR; } key->inSet = 1; return WOLFSSL_SUCCESS; } #endif /* HAVE_ECC */ #endif /* OPENSSL_EXTRA */ #ifdef WOLFSSL_ALT_CERT_CHAINS int wolfSSL_is_peer_alt_cert_chain(const WOLFSSL* ssl) { int isUsing = 0; if (ssl) isUsing = ssl->options.usingAltCertChain; return isUsing; } #endif /* WOLFSSL_ALT_CERT_CHAINS */ #ifdef SESSION_CERTS #ifdef WOLFSSL_ALT_CERT_CHAINS /* Get peer's alternate certificate chain */ WOLFSSL_X509_CHAIN* wolfSSL_get_peer_alt_chain(WOLFSSL* ssl) { WOLFSSL_ENTER("wolfSSL_get_peer_alt_chain"); if (ssl) return &ssl->session.altChain; return 0; } #endif /* WOLFSSL_ALT_CERT_CHAINS */ /* Get peer's certificate chain */ WOLFSSL_X509_CHAIN* wolfSSL_get_peer_chain(WOLFSSL* ssl) { WOLFSSL_ENTER("wolfSSL_get_peer_chain"); if (ssl) return &ssl->session.chain; return 0; } /* Get peer's certificate chain total count */ int wolfSSL_get_chain_count(WOLFSSL_X509_CHAIN* chain) { WOLFSSL_ENTER("wolfSSL_get_chain_count"); if (chain) return chain->count; return 0; } /* Get peer's ASN.1 DER certificate at index (idx) length in bytes */ int wolfSSL_get_chain_length(WOLFSSL_X509_CHAIN* chain, int idx) { WOLFSSL_ENTER("wolfSSL_get_chain_length"); if (chain) return chain->certs[idx].length; return 0; } /* Get peer's ASN.1 DER certificate at index (idx) */ byte* wolfSSL_get_chain_cert(WOLFSSL_X509_CHAIN* chain, int idx) { WOLFSSL_ENTER("wolfSSL_get_chain_cert"); if (chain) return chain->certs[idx].buffer; return 0; } /* Get peer's wolfSSL X509 certificate at index (idx) */ WOLFSSL_X509* wolfSSL_get_chain_X509(WOLFSSL_X509_CHAIN* chain, int idx) { int ret; WOLFSSL_X509* x509 = NULL; #ifdef WOLFSSL_SMALL_STACK DecodedCert* cert = NULL; #else DecodedCert cert[1]; #endif WOLFSSL_ENTER("wolfSSL_get_chain_X509"); if (chain != NULL) { #ifdef WOLFSSL_SMALL_STACK cert = (DecodedCert*)XMALLOC(sizeof(DecodedCert), NULL, DYNAMIC_TYPE_DCERT); if (cert != NULL) #endif { InitDecodedCert(cert, chain->certs[idx].buffer, chain->certs[idx].length, NULL); if ((ret = ParseCertRelative(cert, CERT_TYPE, 0, NULL)) != 0) { WOLFSSL_MSG("Failed to parse cert"); } else { x509 = (WOLFSSL_X509*)XMALLOC(sizeof(WOLFSSL_X509), NULL, DYNAMIC_TYPE_X509); if (x509 == NULL) { WOLFSSL_MSG("Failed alloc X509"); } else { InitX509(x509, 1, NULL); if ((ret = CopyDecodedToX509(x509, cert)) != 0) { WOLFSSL_MSG("Failed to copy decoded"); XFREE(x509, NULL, DYNAMIC_TYPE_X509); x509 = NULL; } } } FreeDecodedCert(cert); #ifdef WOLFSSL_SMALL_STACK XFREE(cert, NULL, DYNAMIC_TYPE_DCERT); #endif } } (void)ret; return x509; } /* Get peer's PEM certificate at index (idx), output to buffer if inLen big enough else return error (-1). If buffer is NULL only calculate outLen. Output length is in *outLen WOLFSSL_SUCCESS on ok */ int wolfSSL_get_chain_cert_pem(WOLFSSL_X509_CHAIN* chain, int idx, unsigned char* buf, int inLen, int* outLen) { #if defined(WOLFSSL_PEM_TO_DER) || defined(WOLFSSL_DER_TO_PEM) const char* header = NULL; const char* footer = NULL; int headerLen; int footerLen; int i; int err; word32 szNeeded = 0; WOLFSSL_ENTER("wolfSSL_get_chain_cert_pem"); if (!chain || !outLen || idx < 0 || idx >= wolfSSL_get_chain_count(chain)) return BAD_FUNC_ARG; err = wc_PemGetHeaderFooter(CERT_TYPE, &header, &footer); if (err != 0) return err; headerLen = (int)XSTRLEN(header); footerLen = (int)XSTRLEN(footer); /* Null output buffer return size needed in outLen */ if(!buf) { if(Base64_Encode(chain->certs[idx].buffer, chain->certs[idx].length, NULL, &szNeeded) != LENGTH_ONLY_E) return WOLFSSL_FAILURE; *outLen = szNeeded + headerLen + footerLen; return LENGTH_ONLY_E; } /* don't even try if inLen too short */ if (inLen < headerLen + footerLen + chain->certs[idx].length) return BAD_FUNC_ARG; /* header */ if (XMEMCPY(buf, header, headerLen) == NULL) return WOLFSSL_FATAL_ERROR; i = headerLen; /* body */ *outLen = inLen; /* input to Base64_Encode */ if ( (err = Base64_Encode(chain->certs[idx].buffer, chain->certs[idx].length, buf + i, (word32*)outLen)) < 0) return err; i += *outLen; /* footer */ if ( (i + footerLen) > inLen) return BAD_FUNC_ARG; if (XMEMCPY(buf + i, footer, footerLen) == NULL) return WOLFSSL_FATAL_ERROR; *outLen += headerLen + footerLen; return WOLFSSL_SUCCESS; #else (void)chain; (void)idx; (void)buf; (void)inLen; (void)outLen; return WOLFSSL_FAILURE; #endif /* WOLFSSL_PEM_TO_DER || WOLFSSL_DER_TO_PEM */ } /* get session ID */ const byte* wolfSSL_get_sessionID(const WOLFSSL_SESSION* session) { WOLFSSL_ENTER("wolfSSL_get_sessionID"); if (session) return session->sessionID; return NULL; } #endif /* SESSION_CERTS */ #ifdef HAVE_FUZZER void wolfSSL_SetFuzzerCb(WOLFSSL* ssl, CallbackFuzzer cbf, void* fCtx) { if (ssl) { ssl->fuzzerCb = cbf; ssl->fuzzerCtx = fCtx; } } #endif #ifndef NO_CERTS #ifdef HAVE_PK_CALLBACKS #ifdef HAVE_ECC void wolfSSL_CTX_SetEccKeyGenCb(WOLFSSL_CTX* ctx, CallbackEccKeyGen cb) { if (ctx) ctx->EccKeyGenCb = cb; } void wolfSSL_SetEccKeyGenCtx(WOLFSSL* ssl, void *ctx) { if (ssl) ssl->EccKeyGenCtx = ctx; } void* wolfSSL_GetEccKeyGenCtx(WOLFSSL* ssl) { if (ssl) return ssl->EccKeyGenCtx; return NULL; } void wolfSSL_CTX_SetEccSignCb(WOLFSSL_CTX* ctx, CallbackEccSign cb) { if (ctx) ctx->EccSignCb = cb; } void wolfSSL_SetEccSignCtx(WOLFSSL* ssl, void *ctx) { if (ssl) ssl->EccSignCtx = ctx; } void* wolfSSL_GetEccSignCtx(WOLFSSL* ssl) { if (ssl) return ssl->EccSignCtx; return NULL; } void wolfSSL_CTX_SetEccVerifyCb(WOLFSSL_CTX* ctx, CallbackEccVerify cb) { if (ctx) ctx->EccVerifyCb = cb; } void wolfSSL_SetEccVerifyCtx(WOLFSSL* ssl, void *ctx) { if (ssl) ssl->EccVerifyCtx = ctx; } void* wolfSSL_GetEccVerifyCtx(WOLFSSL* ssl) { if (ssl) return ssl->EccVerifyCtx; return NULL; } void wolfSSL_CTX_SetEccSharedSecretCb(WOLFSSL_CTX* ctx, CallbackEccSharedSecret cb) { if (ctx) ctx->EccSharedSecretCb = cb; } void wolfSSL_SetEccSharedSecretCtx(WOLFSSL* ssl, void *ctx) { if (ssl) ssl->EccSharedSecretCtx = ctx; } void* wolfSSL_GetEccSharedSecretCtx(WOLFSSL* ssl) { if (ssl) return ssl->EccSharedSecretCtx; return NULL; } #endif /* HAVE_ECC */ #ifdef HAVE_ED25519 void wolfSSL_CTX_SetEd25519SignCb(WOLFSSL_CTX* ctx, CallbackEd25519Sign cb) { if (ctx) ctx->Ed25519SignCb = cb; } void wolfSSL_SetEd25519SignCtx(WOLFSSL* ssl, void *ctx) { if (ssl) ssl->Ed25519SignCtx = ctx; } void* wolfSSL_GetEd25519SignCtx(WOLFSSL* ssl) { if (ssl) return ssl->Ed25519SignCtx; return NULL; } void wolfSSL_CTX_SetEd25519VerifyCb(WOLFSSL_CTX* ctx, CallbackEd25519Verify cb) { if (ctx) ctx->Ed25519VerifyCb = cb; } void wolfSSL_SetEd25519VerifyCtx(WOLFSSL* ssl, void *ctx) { if (ssl) ssl->Ed25519VerifyCtx = ctx; } void* wolfSSL_GetEd25519VerifyCtx(WOLFSSL* ssl) { if (ssl) return ssl->Ed25519VerifyCtx; return NULL; } #endif /* HAVE_ED25519 */ #ifdef HAVE_CURVE25519 void wolfSSL_CTX_SetX25519KeyGenCb(WOLFSSL_CTX* ctx, CallbackX25519KeyGen cb) { if (ctx) ctx->X25519KeyGenCb = cb; } void wolfSSL_SetX25519KeyGenCtx(WOLFSSL* ssl, void *ctx) { if (ssl) ssl->X25519KeyGenCtx = ctx; } void* wolfSSL_GetX25519KeyGenCtx(WOLFSSL* ssl) { if (ssl) return ssl->X25519KeyGenCtx; return NULL; } void wolfSSL_CTX_SetX25519SharedSecretCb(WOLFSSL_CTX* ctx, CallbackX25519SharedSecret cb) { if (ctx) ctx->X25519SharedSecretCb = cb; } void wolfSSL_SetX25519SharedSecretCtx(WOLFSSL* ssl, void *ctx) { if (ssl) ssl->X25519SharedSecretCtx = ctx; } void* wolfSSL_GetX25519SharedSecretCtx(WOLFSSL* ssl) { if (ssl) return ssl->X25519SharedSecretCtx; return NULL; } #endif /* HAVE_CURVE25519 */ #ifndef NO_RSA void wolfSSL_CTX_SetRsaSignCb(WOLFSSL_CTX* ctx, CallbackRsaSign cb) { if (ctx) ctx->RsaSignCb = cb; } void wolfSSL_CTX_SetRsaSignCheckCb(WOLFSSL_CTX* ctx, CallbackRsaVerify cb) { if (ctx) ctx->RsaSignCheckCb = cb; } void wolfSSL_SetRsaSignCtx(WOLFSSL* ssl, void *ctx) { if (ssl) ssl->RsaSignCtx = ctx; } void* wolfSSL_GetRsaSignCtx(WOLFSSL* ssl) { if (ssl) return ssl->RsaSignCtx; return NULL; } void wolfSSL_CTX_SetRsaVerifyCb(WOLFSSL_CTX* ctx, CallbackRsaVerify cb) { if (ctx) ctx->RsaVerifyCb = cb; } void wolfSSL_SetRsaVerifyCtx(WOLFSSL* ssl, void *ctx) { if (ssl) ssl->RsaVerifyCtx = ctx; } void* wolfSSL_GetRsaVerifyCtx(WOLFSSL* ssl) { if (ssl) return ssl->RsaVerifyCtx; return NULL; } #ifdef WC_RSA_PSS void wolfSSL_CTX_SetRsaPssSignCb(WOLFSSL_CTX* ctx, CallbackRsaPssSign cb) { if (ctx) ctx->RsaPssSignCb = cb; } void wolfSSL_CTX_SetRsaPssSignCheckCb(WOLFSSL_CTX* ctx, CallbackRsaPssVerify cb) { if (ctx) ctx->RsaPssSignCheckCb = cb; } void wolfSSL_SetRsaPssSignCtx(WOLFSSL* ssl, void *ctx) { if (ssl) ssl->RsaPssSignCtx = ctx; } void* wolfSSL_GetRsaPssSignCtx(WOLFSSL* ssl) { if (ssl) return ssl->RsaPssSignCtx; return NULL; } void wolfSSL_CTX_SetRsaPssVerifyCb(WOLFSSL_CTX* ctx, CallbackRsaPssVerify cb) { if (ctx) ctx->RsaPssVerifyCb = cb; } void wolfSSL_SetRsaPssVerifyCtx(WOLFSSL* ssl, void *ctx) { if (ssl) ssl->RsaPssVerifyCtx = ctx; } void* wolfSSL_GetRsaPssVerifyCtx(WOLFSSL* ssl) { if (ssl) return ssl->RsaPssVerifyCtx; return NULL; } #endif /* WC_RSA_PSS */ void wolfSSL_CTX_SetRsaEncCb(WOLFSSL_CTX* ctx, CallbackRsaEnc cb) { if (ctx) ctx->RsaEncCb = cb; } void wolfSSL_SetRsaEncCtx(WOLFSSL* ssl, void *ctx) { if (ssl) ssl->RsaEncCtx = ctx; } void* wolfSSL_GetRsaEncCtx(WOLFSSL* ssl) { if (ssl) return ssl->RsaEncCtx; return NULL; } void wolfSSL_CTX_SetRsaDecCb(WOLFSSL_CTX* ctx, CallbackRsaDec cb) { if (ctx) ctx->RsaDecCb = cb; } void wolfSSL_SetRsaDecCtx(WOLFSSL* ssl, void *ctx) { if (ssl) ssl->RsaDecCtx = ctx; } void* wolfSSL_GetRsaDecCtx(WOLFSSL* ssl) { if (ssl) return ssl->RsaDecCtx; return NULL; } #endif /* NO_RSA */ #endif /* HAVE_PK_CALLBACKS */ #endif /* NO_CERTS */ #if defined(HAVE_PK_CALLBACKS) && !defined(NO_DH) void wolfSSL_CTX_SetDhAgreeCb(WOLFSSL_CTX* ctx, CallbackDhAgree cb) { if (ctx) ctx->DhAgreeCb = cb; } void wolfSSL_SetDhAgreeCtx(WOLFSSL* ssl, void *ctx) { if (ssl) ssl->DhAgreeCtx = ctx; } void* wolfSSL_GetDhAgreeCtx(WOLFSSL* ssl) { if (ssl) return ssl->DhAgreeCtx; return NULL; } #endif /* HAVE_PK_CALLBACKS && !NO_DH */ #ifdef WOLFSSL_HAVE_WOLFSCEP /* Used by autoconf to see if wolfSCEP is available */ void wolfSSL_wolfSCEP(void) {} #endif #ifdef WOLFSSL_HAVE_CERT_SERVICE /* Used by autoconf to see if cert service is available */ void wolfSSL_cert_service(void) {} #endif #ifdef OPENSSL_EXTRA /*Lighttp compatibility*/ #ifndef NO_CERTS void wolfSSL_X509_NAME_free(WOLFSSL_X509_NAME *name){ WOLFSSL_ENTER("wolfSSL_X509_NAME_free"); FreeX509Name(name, NULL); XFREE(name, NULL, DYNAMIC_TYPE_X509); } /* Malloc's a new WOLFSSL_X509_NAME structure * * returns NULL on failure, otherwise returns a new structure. */ WOLFSSL_X509_NAME* wolfSSL_X509_NAME_new() { WOLFSSL_X509_NAME* name; WOLFSSL_ENTER("wolfSSL_X509_NAME_new"); name = (WOLFSSL_X509_NAME*)XMALLOC(sizeof(WOLFSSL_X509_NAME), NULL, DYNAMIC_TYPE_X509); if (name != NULL) { InitX509Name(name, 1); } return name; } #if defined(WOLFSSL_CERT_GEN) && !defined(NO_RSA) /* needed SetName function from asn.c is wrapped by NO_RSA */ /* helper function for CopyX509NameToCertName() * * returns WOLFSSL_SUCCESS on success */ static int CopyX509NameEntry(char* out, int mx, char* in, int inLen) { if (inLen > mx) { WOLFSSL_MSG("Name too long"); XMEMCPY(out, in, mx); } else { XMEMCPY(out, in, inLen); out[inLen] = '\0'; } /* make sure is null terminated */ out[mx-1] = '\0'; return WOLFSSL_SUCCESS; } /* Helper function to copy cert name from a WOLFSSL_X509_NAME structure to * a CertName structure. * * returns WOLFSSL_SUCCESS on success and a negative error value on failure */ static int CopyX509NameToCertName(WOLFSSL_X509_NAME* n, CertName* cName) { DecodedName* dn = NULL; if (n == NULL || cName == NULL) { return BAD_FUNC_ARG; } dn = &(n->fullName); /* initialize cert name */ cName->country[0] = '\0'; cName->countryEnc = CTC_PRINTABLE; cName->state[0] = '\0'; cName->stateEnc = CTC_UTF8; cName->locality[0] = '\0'; cName->localityEnc = CTC_UTF8; cName->sur[0] = '\0'; cName->surEnc = CTC_UTF8; cName->org[0] = '\0'; cName->orgEnc = CTC_UTF8; cName->unit[0] = '\0'; cName->unitEnc = CTC_UTF8; cName->commonName[0] = '\0'; cName->commonNameEnc = CTC_UTF8; cName->email[0] = '\0'; /* ASN_COUNTRY_NAME */ WOLFSSL_MSG("Copy Country Name"); if (CopyX509NameEntry(cName->country, CTC_NAME_SIZE, dn->fullName + dn->cIdx, dn->cLen) != SSL_SUCCESS) { return BUFFER_E; } /* ASN_ORGUNIT_NAME */ WOLFSSL_MSG("Copy Org Unit Name"); if (CopyX509NameEntry(cName->unit, CTC_NAME_SIZE, dn->fullName + dn->ouIdx, dn->ouLen) != SSL_SUCCESS) { return BUFFER_E; } /* ASN_ORG_NAME */ WOLFSSL_MSG("Copy Org Name"); if (CopyX509NameEntry(cName->org, CTC_NAME_SIZE, dn->fullName + dn->oIdx, dn->oLen) != SSL_SUCCESS) { return BUFFER_E; } /* ASN_STATE_NAME */ WOLFSSL_MSG("Copy State Name"); if (CopyX509NameEntry(cName->state, CTC_NAME_SIZE, dn->fullName + dn->stIdx, dn->stLen) != SSL_SUCCESS) { return BUFFER_E; } /* ASN_LOCALITY_NAME */ WOLFSSL_MSG("Copy Locality Name"); if (CopyX509NameEntry(cName->locality, CTC_NAME_SIZE, dn->fullName + dn->lIdx, dn->lLen) != SSL_SUCCESS) { return BUFFER_E; } /* ASN_SUR_NAME */ WOLFSSL_MSG("Copy Sur Name"); if (CopyX509NameEntry(cName->sur, CTC_NAME_SIZE, dn->fullName + dn->snIdx, dn->snLen) != SSL_SUCCESS) { return BUFFER_E; } /* ASN_COMMON_NAME */ WOLFSSL_MSG("Copy Common Name"); if (CopyX509NameEntry(cName->commonName, CTC_NAME_SIZE, dn->fullName + dn->cnIdx, dn->cnLen) != SSL_SUCCESS) { return BUFFER_E; } WOLFSSL_MSG("Copy Email"); if (CopyX509NameEntry(cName->email, CTC_NAME_SIZE, dn->fullName + dn->emailIdx, dn->emailLen) != SSL_SUCCESS) { return BUFFER_E; } return WOLFSSL_SUCCESS; } /* Converts the x509 name structure into DER format. * * out pointer to either a pre setup buffer or a pointer to null for * creating a dynamic buffer. In the case that a pre-existing buffer is * used out will be incremented the size of the DER buffer on success. * * returns the size of the buffer on success, or negative value with failure */ int wolfSSL_i2d_X509_NAME(WOLFSSL_X509_NAME* name, unsigned char** out) { CertName cName; unsigned char buf[256]; /* ASN_MAX_NAME */ int sz; if (out == NULL || name == NULL) { return BAD_FUNC_ARG; } if (CopyX509NameToCertName(name, &cName) != SSL_SUCCESS) { WOLFSSL_MSG("Error converting x509 name to internal CertName"); return SSL_FATAL_ERROR; } sz = SetName(buf, sizeof(buf), &cName); if (sz < 0) { return sz; } /* using buffer passed in */ if (*out != NULL) { XMEMCPY(*out, buf, sz); *out += sz; } else { *out = (unsigned char*)XMALLOC(sz, NULL, DYNAMIC_TYPE_OPENSSL); if (*out == NULL) { return MEMORY_E; } XMEMCPY(*out, buf, sz); } return sz; } #endif /* WOLFSSL_CERT_GEN */ /* Compares the two X509 names. If the size of x is larger then y then a * positive value is returned if x is smaller a negative value is returned. * In the case that the sizes are equal a the value of memcmp between the * two names is returned. * * x First name for comparision * y Second name to compare with x */ int wolfSSL_X509_NAME_cmp(const WOLFSSL_X509_NAME* x, const WOLFSSL_X509_NAME* y) { WOLFSSL_STUB("wolfSSL_X509_NAME_cmp"); if (x == NULL || y == NULL) { WOLFSSL_MSG("Bad argument passed in"); return -2; } if ((x->sz - y->sz) != 0) { return x->sz - y->sz; } else { return XMEMCMP(x->name, y->name, x->sz); /* y sz is the same */ } } WOLFSSL_X509 *wolfSSL_PEM_read_bio_X509(WOLFSSL_BIO *bp, WOLFSSL_X509 **x, pem_password_cb *cb, void *u) { WOLFSSL_X509* x509 = NULL; #if defined(WOLFSSL_PEM_TO_DER) || defined(WOLFSSL_DER_TO_PEM) unsigned char* pem = NULL; int pemSz; long i = 0, l; const char* footer = NULL; WOLFSSL_ENTER("wolfSSL_PEM_read_bio_X509"); if (bp == NULL) { WOLFSSL_LEAVE("wolfSSL_PEM_read_bio_X509", BAD_FUNC_ARG); return NULL; } if (bp->type == WOLFSSL_BIO_MEMORY) { l = (long)wolfSSL_BIO_ctrl_pending(bp); if (l <= 0) { WOLFSSL_MSG("No pending data in WOLFSSL_BIO"); return NULL; } } else if (bp->type == WOLFSSL_BIO_FILE) { #ifndef NO_FILESYSTEM /* Read in next certificate from file but no more. */ i = XFTELL(bp->file); if (i < 0) return NULL; if (XFSEEK(bp->file, 0, SEEK_END) != 0) return NULL; l = XFTELL(bp->file); if (l < 0) return NULL; if (XFSEEK(bp->file, i, SEEK_SET) != 0) return NULL; /* check calculated length */ if (l - i < 0) return NULL; l -= i; #else WOLFSSL_MSG("Unable to read file with NO_FILESYSTEM defined"); return NULL; #endif /* !NO_FILESYSTEM */ } else return NULL; pem = (unsigned char*)XMALLOC(l, 0, DYNAMIC_TYPE_PEM); if (pem == NULL) return NULL; i = 0; if (wc_PemGetHeaderFooter(CERT_TYPE, NULL, &footer) != 0) { XFREE(pem, 0, DYNAMIC_TYPE_PEM); return NULL; } /* TODO: Inefficient * reading in one byte at a time until see "END CERTIFICATE" */ while ((l = wolfSSL_BIO_read(bp, (char *)&pem[i], 1)) == 1) { i++; if (i > 26 && XMEMCMP((char *)&pem[i-26], footer, 25) == 0) { if (pem[i-1] == '\r') { /* found \r , Windows line ending is \r\n so try to read one * more byte for \n, ignoring return value */ (void)wolfSSL_BIO_read(bp, (char *)&pem[i++], 1); } break; } } #if defined(OPENSSL_ALL) || defined(WOLFSSL_NGINX) if (l == 0) WOLFSSL_ERROR(ASN_NO_PEM_HEADER); #endif pemSz = (int)i; x509 = wolfSSL_X509_load_certificate_buffer(pem, pemSz, WOLFSSL_FILETYPE_PEM); if (x != NULL) { *x = x509; } XFREE(pem, NULL, DYNAMIC_TYPE_PEM); #endif /* WOLFSSL_PEM_TO_DER || WOLFSSL_DER_TO_PEM */ (void)bp; (void)x; (void)cb; (void)u; return x509; } #if defined(HAVE_CRL) && !defined(NO_FILESYSTEM) WOLFSSL_API WOLFSSL_X509_CRL* wolfSSL_PEM_read_X509_CRL(XFILE fp, WOLFSSL_X509_CRL **crl, pem_password_cb *cb, void *u) { #if defined(WOLFSSL_PEM_TO_DER) || defined(WOLFSSL_DER_TO_PEM) unsigned char* pem = NULL; DerBuffer* der = NULL; int pemSz; int derSz; long i = 0, l; WOLFSSL_X509_CRL* newcrl; WOLFSSL_ENTER("wolfSSL_PEM_read_X509_CRL"); if (fp == NULL) { WOLFSSL_LEAVE("wolfSSL_PEM_read_X509_CRL", BAD_FUNC_ARG); return NULL; } /* Read in CRL from file */ i = XFTELL(fp); if (i < 0) { WOLFSSL_LEAVE("wolfSSL_PEM_read_X509_CRL", BAD_FUNC_ARG); return NULL; } if (XFSEEK(fp, 0, SEEK_END) != 0) return NULL; l = XFTELL(fp); if (l < 0) return NULL; if (XFSEEK(fp, i, SEEK_SET) != 0) return NULL; pemSz = (int)(l - i); /* check calculated length */ if (pemSz < 0) return NULL; if((pem = (unsigned char*)XMALLOC(pemSz, 0, DYNAMIC_TYPE_PEM)) == NULL) return NULL; if((int)XFREAD((char *)pem, 1, pemSz, fp) != pemSz) goto err_exit; if((PemToDer(pem, pemSz, CRL_TYPE, &der, NULL, NULL, NULL)) < 0) goto err_exit; XFREE(pem, 0, DYNAMIC_TYPE_PEM); derSz = der->length; if((newcrl = wolfSSL_d2i_X509_CRL(crl, (const unsigned char *)der->buffer, derSz)) == NULL) goto err_exit; FreeDer(&der); return newcrl; err_exit: if(pem != NULL) XFREE(pem, 0, DYNAMIC_TYPE_PEM); if(der != NULL) FreeDer(&der); return NULL; (void)cb; (void)u; #endif } #endif /* * bp : bio to read X509 from * x : x509 to write to * cb : password call back for reading PEM * u : password * _AUX is for working with a trusted X509 certificate */ WOLFSSL_X509 *wolfSSL_PEM_read_bio_X509_AUX(WOLFSSL_BIO *bp, WOLFSSL_X509 **x, pem_password_cb *cb, void *u) { WOLFSSL_ENTER("wolfSSL_PEM_read_bio_X509"); /* AUX info is; trusted/rejected uses, friendly name, private key id, * and potentially a stack of "other" info. wolfSSL does not store * friendly name or private key id yet in WOLFSSL_X509 for human * readibility and does not support extra trusted/rejected uses for * root CA. */ return wolfSSL_PEM_read_bio_X509(bp, x, cb, u); } void wolfSSL_X509_NAME_ENTRY_free(WOLFSSL_X509_NAME_ENTRY* ne) { if (ne != NULL) { if (ne->value != NULL && ne->value != &(ne->data)) { wolfSSL_ASN1_STRING_free(ne->value); } XFREE(ne, NULL, DYNAMIC_TYPE_NAME_ENTRY); } } WOLFSSL_X509_NAME_ENTRY* wolfSSL_X509_NAME_ENTRY_new(void) { WOLFSSL_X509_NAME_ENTRY* ne = NULL; ne = (WOLFSSL_X509_NAME_ENTRY*)XMALLOC(sizeof(WOLFSSL_X509_NAME_ENTRY), NULL, DYNAMIC_TYPE_NAME_ENTRY); if (ne != NULL) { XMEMSET(ne, 0, sizeof(WOLFSSL_X509_NAME_ENTRY)); ne->value = &(ne->data); } return ne; } WOLFSSL_X509_NAME_ENTRY* wolfSSL_X509_NAME_ENTRY_create_by_NID( WOLFSSL_X509_NAME_ENTRY** out, int nid, int type, unsigned char* data, int dataSz) { WOLFSSL_X509_NAME_ENTRY* ne = NULL; WOLFSSL_ENTER("wolfSSL_X509_NAME_ENTRY_create_by_NID()"); ne = wolfSSL_X509_NAME_ENTRY_new(); if (ne == NULL) { return NULL; } ne->nid = nid; ne->value = wolfSSL_ASN1_STRING_type_new(type); wolfSSL_ASN1_STRING_set(ne->value, (const void*)data, dataSz); ne->set = 1; if (out != NULL) { *out = ne; } return ne; } /* Copies entry into name. With it being copied freeing entry becomes the * callers responsibility. * returns 1 for success and 0 for error */ int wolfSSL_X509_NAME_add_entry(WOLFSSL_X509_NAME* name, WOLFSSL_X509_NAME_ENTRY* entry, int idx, int set) { int i; WOLFSSL_ENTER("wolfSSL_X509_NAME_add_entry()"); for (i = 0; i < MAX_NAME_ENTRIES; i++) { if (name->extra[i].set != 1) { /* not set so overwrited */ WOLFSSL_X509_NAME_ENTRY* current = &(name->extra[i]); WOLFSSL_ASN1_STRING* str; WOLFSSL_MSG("Found place for name entry"); XMEMCPY(current, entry, sizeof(WOLFSSL_X509_NAME_ENTRY)); str = entry->value; XMEMCPY(&(current->data), str, sizeof(WOLFSSL_ASN1_STRING)); current->value = &(current->data); current->data.data = (char*)XMALLOC(str->length, name->x509->heap, DYNAMIC_TYPE_OPENSSL); if (current->data.data == NULL) { return SSL_FAILURE; } XMEMCPY(current->data.data, str->data, str->length); /* make sure is null terminated */ current->data.data[str->length - 1] = '\0'; current->set = 1; /* make sure now listed as set */ break; } } if (i == MAX_NAME_ENTRIES) { WOLFSSL_MSG("No spot found for name entry"); return SSL_FAILURE; } (void)idx; (void)set; return SSL_SUCCESS; } #endif /* ifndef NO_CERTS */ /* NID variables are dependent on compatibility header files currently * * returns a pointer to a new WOLFSSL_ASN1_OBJECT struct on success and NULL * on fail */ WOLFSSL_ASN1_OBJECT* wolfSSL_OBJ_nid2obj(int id) { word32 oidSz = 0; const byte* oid; word32 type = 0; WOLFSSL_ASN1_OBJECT* obj; byte objBuf[MAX_OID_SZ + MAX_LENGTH_SZ + 1]; /* +1 for object tag */ word32 objSz = 0; const char* sName; WOLFSSL_ENTER("wolfSSL_OBJ_nid2obj()"); /* get OID type */ switch (id) { /* oidHashType */ #ifdef WOLFSSL_MD2 case NID_md2: id = MD2h; type = oidHashType; sName = "md2"; break; #endif #ifndef NO_MD5 case NID_md5: id = MD5h; type = oidHashType; sName = "md5"; break; #endif #ifndef NO_SHA case NID_sha1: id = SHAh; type = oidHashType; sName = "sha"; break; #endif case NID_sha224: id = SHA224h; type = oidHashType; sName = "sha224"; break; #ifndef NO_SHA256 case NID_sha256: id = SHA256h; type = oidHashType; sName = "sha256"; break; #endif #ifdef WOLFSSL_SHA384 case NID_sha384: id = SHA384h; type = oidHashType; sName = "sha384"; break; #endif #ifdef WOLFSSL_SHA512 case NID_sha512: id = SHA512h; type = oidHashType; sName = "sha512"; break; #endif /* oidSigType */ #ifndef NO_DSA case CTC_SHAwDSA: sName = "shaWithDSA"; type = oidSigType; break; #endif /* NO_DSA */ #ifndef NO_RSA case CTC_MD2wRSA: sName = "md2WithRSA"; type = oidSigType; break; #ifndef NO_MD5 case CTC_MD5wRSA: sName = "md5WithRSA"; type = oidSigType; break; #endif case CTC_SHAwRSA: sName = "shaWithRSA"; type = oidSigType; break; #ifdef WOLFSSL_SHA224 case CTC_SHA224wRSA: sName = "sha224WithRSA"; type = oidSigType; break; #endif #ifndef NO_SHA256 case CTC_SHA256wRSA: sName = "sha256WithRSA"; type = oidSigType; break; #endif #ifdef WOLFSSL_SHA384 case CTC_SHA384wRSA: sName = "sha384WithRSA"; type = oidSigType; break; #endif #ifdef WOLFSSL_SHA512 case CTC_SHA512wRSA: sName = "sha512WithRSA"; type = oidSigType; break; #endif #endif /* NO_RSA */ #ifdef HAVE_ECC case CTC_SHAwECDSA: sName = "shaWithECDSA"; type = oidSigType; break; case CTC_SHA224wECDSA: sName = "sha224WithECDSA"; type = oidSigType; break; case CTC_SHA256wECDSA: sName = "sha256WithECDSA"; type = oidSigType; break; case CTC_SHA384wECDSA: sName = "sha384WithECDSA"; type = oidSigType; break; case CTC_SHA512wECDSA: sName = "sha512WithECDSA"; type = oidSigType; break; #endif /* HAVE_ECC */ /* oidKeyType */ #ifndef NO_DSA case DSAk: sName = "DSA key"; type = oidKeyType; break; #endif /* NO_DSA */ #ifndef NO_RSA case RSAk: sName = "RSA key"; type = oidKeyType; break; #endif /* NO_RSA */ #ifdef HAVE_NTRU case NTRUk: sName = "NTRU key"; type = oidKeyType; break; #endif /* HAVE_NTRU */ #ifdef HAVE_ECC case ECDSAk: sName = "ECDSA key"; type = oidKeyType; break; #endif /* HAVE_ECC */ /* oidBlkType */ #ifdef WOLFSSL_AES_128 case AES128CBCb: sName = "AES-128-CBC"; type = oidBlkType; break; #endif #ifdef WOLFSSL_AES_192 case AES192CBCb: sName = "AES-192-CBC"; type = oidBlkType; break; #endif #ifdef WOLFSSL_AES_256 case AES256CBCb: sName = "AES-256-CBC"; type = oidBlkType; break; #endif #ifndef NO_DES3 case NID_des: id = DESb; sName = "DES-CBC"; type = oidBlkType; break; case NID_des3: id = DES3b; sName = "DES3-CBC"; type = oidBlkType; break; #endif /* !NO_DES3 */ #ifdef HAVE_OCSP case NID_id_pkix_OCSP_basic: id = OCSP_BASIC_OID; sName = "OCSP_basic"; type = oidOcspType; break; case OCSP_NONCE_OID: sName = "OCSP_nonce"; type = oidOcspType; break; #endif /* HAVE_OCSP */ /* oidCertExtType */ case BASIC_CA_OID: sName = "X509 basic ca"; type = oidCertExtType; break; case ALT_NAMES_OID: sName = "X509 alt names"; type = oidCertExtType; break; case CRL_DIST_OID: sName = "X509 crl"; type = oidCertExtType; break; case AUTH_INFO_OID: sName = "X509 auth info"; type = oidCertExtType; break; case AUTH_KEY_OID: sName = "X509 auth key"; type = oidCertExtType; break; case SUBJ_KEY_OID: sName = "X509 subject key"; type = oidCertExtType; break; case KEY_USAGE_OID: sName = "X509 key usage"; type = oidCertExtType; break; case INHIBIT_ANY_OID: id = INHIBIT_ANY_OID; sName = "X509 inhibit any"; type = oidCertExtType; break; case NID_ext_key_usage: id = KEY_USAGE_OID; sName = "X509 ext key usage"; type = oidCertExtType; break; case NID_name_constraints: id = NAME_CONS_OID; sName = "X509 name constraints"; type = oidCertExtType; break; case NID_certificate_policies: id = CERT_POLICY_OID; sName = "X509 certificate policies"; type = oidCertExtType; break; /* oidCertAuthInfoType */ case AIA_OCSP_OID: sName = "Cert Auth OCSP"; type = oidCertAuthInfoType; break; case AIA_CA_ISSUER_OID: sName = "Cert Auth CA Issuer"; type = oidCertAuthInfoType; break; /* oidCertPolicyType */ case NID_any_policy: id = CP_ANY_OID; sName = "Cert any policy"; type = oidCertPolicyType; break; /* oidCertAltNameType */ case NID_hw_name_oid: id = HW_NAME_OID; sName = "Hardware name"; type = oidCertAltNameType; break; /* oidCertKeyUseType */ case NID_anyExtendedKeyUsage: id = EKU_ANY_OID; sName = "Cert any extended key"; type = oidCertKeyUseType; break; case EKU_SERVER_AUTH_OID: sName = "Cert server auth key"; type = oidCertKeyUseType; break; case EKU_CLIENT_AUTH_OID: sName = "Cert client auth key"; type = oidCertKeyUseType; break; case EKU_OCSP_SIGN_OID: sName = "Cert OCSP sign key"; type = oidCertKeyUseType; break; /* oidKdfType */ case PBKDF2_OID: sName = "PBKDFv2"; type = oidKdfType; break; /* oidPBEType */ case PBE_SHA1_RC4_128: sName = "PBE shaWithRC4-128"; type = oidPBEType; break; case PBE_SHA1_DES: sName = "PBE shaWithDES"; type = oidPBEType; break; case PBE_SHA1_DES3: sName = "PBE shaWithDES3"; type = oidPBEType; break; /* oidKeyWrapType */ #ifdef WOLFSSL_AES_128 case AES128_WRAP: sName = "AES-128 wrap"; type = oidKeyWrapType; break; #endif #ifdef WOLFSSL_AES_192 case AES192_WRAP: sName = "AES-192 wrap"; type = oidKeyWrapType; break; #endif #ifdef WOLFSSL_AES_256 case AES256_WRAP: sName = "AES-256 wrap"; type = oidKeyWrapType; break; #endif /* oidCmsKeyAgreeType */ #ifndef NO_SHA case dhSinglePass_stdDH_sha1kdf_scheme: sName = "DH-SHA kdf"; type = oidCmsKeyAgreeType; break; #endif #ifdef WOLFSSL_SHA224 case dhSinglePass_stdDH_sha224kdf_scheme: sName = "DH-SHA224 kdf"; type = oidCmsKeyAgreeType; break; #endif #ifndef NO_SHA256 case dhSinglePass_stdDH_sha256kdf_scheme: sName = "DH-SHA256 kdf"; type = oidCmsKeyAgreeType; break; #endif #ifdef WOLFSSL_SHA384 case dhSinglePass_stdDH_sha384kdf_scheme: sName = "DH-SHA384 kdf"; type = oidCmsKeyAgreeType; break; #endif #ifdef WOLFSSL_SHA512 case dhSinglePass_stdDH_sha512kdf_scheme: sName = "DH-SHA512 kdf"; type = oidCmsKeyAgreeType; break; #endif default: WOLFSSL_MSG("NID not in table"); return NULL; } #ifdef HAVE_ECC if (type == 0 && wc_ecc_get_oid(id, &oid, &oidSz) > 0) { type = oidCurveType; } #endif /* HAVE_ECC */ if (XSTRLEN(sName) > WOLFSSL_MAX_SNAME - 1) { WOLFSSL_MSG("Attempted short name is too large"); return NULL; } oid = OidFromId(id, type, &oidSz); /* set object ID to buffer */ obj = wolfSSL_ASN1_OBJECT_new(); if (obj == NULL) { WOLFSSL_MSG("Issue creating WOLFSSL_ASN1_OBJECT struct"); return NULL; } obj->type = id; obj->grp = type; obj->dynamic = 1; XMEMCPY(obj->sName, (char*)sName, XSTRLEN((char*)sName)); objBuf[0] = ASN_OBJECT_ID; objSz++; objSz += SetLength(oidSz, objBuf + 1); XMEMCPY(objBuf + objSz, oid, oidSz); objSz += oidSz; obj->objSz = objSz; obj->obj = (byte*)XMALLOC(obj->objSz, NULL, DYNAMIC_TYPE_ASN1); if (obj->obj == NULL) { wolfSSL_ASN1_OBJECT_free(obj); return NULL; } XMEMCPY(obj->obj, objBuf, obj->objSz); (void)type; return obj; } /* if no_name is one than use numerical form otherwise can be short name. * * returns the buffer size on success */ int wolfSSL_OBJ_obj2txt(char *buf, int bufLen, WOLFSSL_ASN1_OBJECT *a, int no_name) { int bufSz; WOLFSSL_ENTER("wolfSSL_OBJ_obj2txt()"); if (buf == NULL || bufLen <= 1 || a == NULL) { WOLFSSL_MSG("Bad input argument"); return WOLFSSL_FAILURE; } if (no_name == 1) { int length; word32 idx = 0; if (a->obj[idx++] != ASN_OBJECT_ID) { WOLFSSL_MSG("Bad ASN1 Object"); return WOLFSSL_FAILURE; } if (GetLength((const byte*)a->obj, &idx, &length, a->objSz) < 0 || length < 0) { return ASN_PARSE_E; } if (bufLen < MAX_OID_STRING_SZ) { bufSz = bufLen - 1; } else { bufSz = MAX_OID_STRING_SZ; } if ((bufSz = DecodePolicyOID(buf, (word32)bufSz, a->obj + idx, (word32)length)) <= 0) { WOLFSSL_MSG("Error decoding OID"); return WOLFSSL_FAILURE; } } else { /* return short name */ if (XSTRLEN(a->sName) + 1 < (word32)bufLen - 1) { bufSz = (int)XSTRLEN(a->sName); } else { bufSz = bufLen - 1; } XMEMCPY(buf, a->sName, bufSz); } buf[bufSz] = '\0'; return bufSz; } #if defined(OPENSSL_EXTRA) || defined(HAVE_LIGHTY) || \ defined(WOLFSSL_MYSQL_COMPATIBLE) || defined(HAVE_STUNNEL) || \ defined(WOLFSSL_NGINX) || defined(HAVE_POCO_LIB) || \ defined(WOLFSSL_HAPROXY) #ifndef NO_SHA /* One shot SHA1 hash of message. * * d message to hash * n size of d buffer * md buffer to hold digest. Should be SHA_DIGEST_SIZE. * * Note: if md is null then a static buffer of SHA_DIGEST_SIZE is used. * When the static buffer is used this function is not thread safe. * * Returns a pointer to the message digest on success and NULL on failure. */ unsigned char *wolfSSL_SHA1(const unsigned char *d, size_t n, unsigned char *md) { static byte dig[WC_SHA_DIGEST_SIZE]; wc_Sha sha; WOLFSSL_ENTER("wolfSSL_SHA1"); if (wc_InitSha_ex(&sha, NULL, 0) != 0) { WOLFSSL_MSG("SHA1 Init failed"); return NULL; } if (wc_ShaUpdate(&sha, (const byte*)d, (word32)n) != 0) { WOLFSSL_MSG("SHA1 Update failed"); return NULL; } if (wc_ShaFinal(&sha, dig) != 0) { WOLFSSL_MSG("SHA1 Final failed"); return NULL; } wc_ShaFree(&sha); if (md != NULL) { XMEMCPY(md, dig, WC_SHA_DIGEST_SIZE); return md; } else { return (unsigned char*)dig; } } #endif /* ! NO_SHA */ #ifndef NO_SHA256 /* One shot SHA256 hash of message. * * d message to hash * n size of d buffer * md buffer to hold digest. Should be WC_SHA256_DIGEST_SIZE. * * Note: if md is null then a static buffer of WC_SHA256_DIGEST_SIZE is used. * When the static buffer is used this function is not thread safe. * * Returns a pointer to the message digest on success and NULL on failure. */ unsigned char *wolfSSL_SHA256(const unsigned char *d, size_t n, unsigned char *md) { static byte dig[WC_SHA256_DIGEST_SIZE]; wc_Sha256 sha; WOLFSSL_ENTER("wolfSSL_SHA256"); if (wc_InitSha256_ex(&sha, NULL, 0) != 0) { WOLFSSL_MSG("SHA256 Init failed"); return NULL; } if (wc_Sha256Update(&sha, (const byte*)d, (word32)n) != 0) { WOLFSSL_MSG("SHA256 Update failed"); return NULL; } if (wc_Sha256Final(&sha, dig) != 0) { WOLFSSL_MSG("SHA256 Final failed"); return NULL; } wc_Sha256Free(&sha); if (md != NULL) { XMEMCPY(md, dig, WC_SHA256_DIGEST_SIZE); return md; } else { return (unsigned char*)dig; } } #endif /* ! NO_SHA256 */ #ifdef WOLFSSL_SHA384 /* One shot SHA384 hash of message. * * d message to hash * n size of d buffer * md buffer to hold digest. Should be WC_SHA256_DIGEST_SIZE. * * Note: if md is null then a static buffer of WC_SHA256_DIGEST_SIZE is used. * When the static buffer is used this function is not thread safe. * * Returns a pointer to the message digest on success and NULL on failure. */ unsigned char *wolfSSL_SHA384(const unsigned char *d, size_t n, unsigned char *md) { static byte dig[WC_SHA384_DIGEST_SIZE]; wc_Sha384 sha; WOLFSSL_ENTER("wolfSSL_SHA384"); if (wc_InitSha384_ex(&sha, NULL, 0) != 0) { WOLFSSL_MSG("SHA384 Init failed"); return NULL; } if (wc_Sha384Update(&sha, (const byte*)d, (word32)n) != 0) { WOLFSSL_MSG("SHA384 Update failed"); return NULL; } if (wc_Sha384Final(&sha, dig) != 0) { WOLFSSL_MSG("SHA384 Final failed"); return NULL; } wc_Sha384Free(&sha); if (md != NULL) { XMEMCPY(md, dig, WC_SHA384_DIGEST_SIZE); return md; } else { return (unsigned char*)dig; } } #endif /* WOLFSSL_SHA384 */ #if defined(WOLFSSL_SHA512) /* One shot SHA512 hash of message. * * d message to hash * n size of d buffer * md buffer to hold digest. Should be WC_SHA256_DIGEST_SIZE. * * Note: if md is null then a static buffer of WC_SHA256_DIGEST_SIZE is used. * When the static buffer is used this function is not thread safe. * * Returns a pointer to the message digest on success and NULL on failure. */ unsigned char *wolfSSL_SHA512(const unsigned char *d, size_t n, unsigned char *md) { static byte dig[WC_SHA512_DIGEST_SIZE]; wc_Sha512 sha; WOLFSSL_ENTER("wolfSSL_SHA512"); if (wc_InitSha512_ex(&sha, NULL, 0) != 0) { WOLFSSL_MSG("SHA512 Init failed"); return NULL; } if (wc_Sha512Update(&sha, (const byte*)d, (word32)n) != 0) { WOLFSSL_MSG("SHA512 Update failed"); return NULL; } if (wc_Sha512Final(&sha, dig) != 0) { WOLFSSL_MSG("SHA512 Final failed"); return NULL; } wc_Sha512Free(&sha); if (md != NULL) { XMEMCPY(md, dig, WC_SHA512_DIGEST_SIZE); return md; } else { return (unsigned char*)dig; } } #endif /* defined(WOLFSSL_SHA512) */ char wolfSSL_CTX_use_certificate(WOLFSSL_CTX *ctx, WOLFSSL_X509 *x) { int ret; WOLFSSL_ENTER("wolfSSL_CTX_use_certificate"); FreeDer(&ctx->certificate); /* Make sure previous is free'd */ ret = AllocDer(&ctx->certificate, x->derCert->length, CERT_TYPE, ctx->heap); if (ret != 0) return 0; XMEMCPY(ctx->certificate->buffer, x->derCert->buffer, x->derCert->length); #ifdef KEEP_OUR_CERT if (ctx->ourCert != NULL && ctx->ownOurCert) { FreeX509(ctx->ourCert); XFREE(ctx->ourCert, ctx->heap, DYNAMIC_TYPE_X509); } ctx->ourCert = x; ctx->ownOurCert = 0; #endif /* Update the available options with public keys. */ switch (x->pubKeyOID) { case RSAk: ctx->haveRSA = 1; break; #ifdef HAVE_ED25519 case ED25519k: #endif case ECDSAk: ctx->haveECC = 1; #if defined(HAVE_ECC) || defined(HAVE_ED25519) ctx->pkCurveOID = x->pkCurveOID; #endif break; } return WOLFSSL_SUCCESS; } #ifndef NO_WOLFSSL_STUB int wolfSSL_BIO_read_filename(WOLFSSL_BIO *b, const char *name) { #ifndef NO_FILESYSTEM XFILE fp; WOLFSSL_ENTER("wolfSSL_BIO_new_file"); if ((wolfSSL_BIO_get_fp(b, &fp) == WOLFSSL_SUCCESS) && (fp != NULL)) { XFCLOSE(fp); } fp = XFOPEN(name, "r"); if (fp == NULL) return WOLFSSL_BAD_FILE; if (wolfSSL_BIO_set_fp(b, fp, BIO_CLOSE) != WOLFSSL_SUCCESS) { XFCLOSE(fp); return WOLFSSL_BAD_FILE; } /* file is closed when bio is free'd */ return WOLFSSL_SUCCESS; #else (void)name; (void)b; return WOLFSSL_NOT_IMPLEMENTED; #endif } #endif #ifdef HAVE_ECC const char * wolfSSL_OBJ_nid2sn(int n) { int i; WOLFSSL_ENTER("wolfSSL_OBJ_nid2sn"); /* find based on NID and return name */ for (i = 0; i < ecc_sets[i].size; i++) { if (n == ecc_sets[i].id) { return ecc_sets[i].name; } } return NULL; } int wolfSSL_OBJ_sn2nid(const char *sn) { int i; WOLFSSL_ENTER("wolfSSL_OBJ_osn2nid"); /* Nginx uses this OpenSSL string. */ if (XSTRNCMP(sn, "prime256v1", 10) == 0) sn = "SECP256R1"; if (XSTRNCMP(sn, "secp384r1", 10) == 0) sn = "SECP384R1"; /* find based on name and return NID */ for (i = 0; i < ecc_sets[i].size; i++) { if (XSTRNCMP(sn, ecc_sets[i].name, ECC_MAXNAME) == 0) { return ecc_sets[i].id; } } return -1; } #endif /* HAVE_ECC */ /* Gets the NID value that corresponds with the ASN1 object. * * o ASN1 object to get NID of * * Return NID on success and a negative value on failure */ int wolfSSL_OBJ_obj2nid(const WOLFSSL_ASN1_OBJECT *o) { word32 oid = 0; word32 idx = 0; int id; WOLFSSL_ENTER("wolfSSL_OBJ_obj2nid"); if (o == NULL) { return -1; } if ((id = GetObjectId(o->obj, &idx, &oid, o->grp, o->objSz)) < 0) { WOLFSSL_MSG("Issue getting OID of object"); return -1; } /* get OID type */ switch (o->grp) { /* oidHashType */ case oidHashType: switch (oid) { #ifdef WOLFSSL_MD2 case MD2h: return NID_md2; #endif #ifndef NO_MD5 case MD5h: return NID_md5; #endif #ifndef NO_SHA case SHAh: return NID_sha1; #endif case SHA224h: return NID_sha224; #ifndef NO_SHA256 case SHA256h: return NID_sha256; #endif #ifdef WOLFSSL_SHA384 case SHA384h: return NID_sha384; #endif #ifdef WOLFSSL_SHA512 case SHA512h: return NID_sha512; #endif } break; /* oidSigType */ case oidSigType: switch (oid) { #ifndef NO_DSA case CTC_SHAwDSA: return CTC_SHAwDSA; #endif /* NO_DSA */ #ifndef NO_RSA case CTC_MD2wRSA: return CTC_MD2wRSA; case CTC_MD5wRSA: return CTC_MD5wRSA; case CTC_SHAwRSA: return CTC_SHAwRSA; case CTC_SHA224wRSA: return CTC_SHA224wRSA; case CTC_SHA256wRSA: return CTC_SHA256wRSA; case CTC_SHA384wRSA: return CTC_SHA384wRSA; case CTC_SHA512wRSA: return CTC_SHA512wRSA; #endif /* NO_RSA */ #ifdef HAVE_ECC case CTC_SHAwECDSA: return CTC_SHAwECDSA; case CTC_SHA224wECDSA: return CTC_SHA224wECDSA; case CTC_SHA256wECDSA: return CTC_SHA256wECDSA; case CTC_SHA384wECDSA: return CTC_SHA384wECDSA; case CTC_SHA512wECDSA: return CTC_SHA512wECDSA; #endif /* HAVE_ECC */ } break; /* oidKeyType */ case oidKeyType: switch (oid) { #ifndef NO_DSA case DSAk: return DSAk; #endif /* NO_DSA */ #ifndef NO_RSA case RSAk: return RSAk; #endif /* NO_RSA */ #ifdef HAVE_NTRU case NTRUk: return NTRUk; #endif /* HAVE_NTRU */ #ifdef HAVE_ECC case ECDSAk: return ECDSAk; #endif /* HAVE_ECC */ } break; /* oidBlkType */ case oidBlkType: switch (oid) { #ifdef WOLFSSL_AES_128 case AES128CBCb: return AES128CBCb; #endif #ifdef WOLFSSL_AES_192 case AES192CBCb: return AES192CBCb; #endif #ifdef WOLFSSL_AES_256 case AES256CBCb: return AES256CBCb; #endif #ifndef NO_DES3 case DESb: return NID_des; case DES3b: return NID_des3; #endif } break; #ifdef HAVE_OCSP case oidOcspType: switch (oid) { case OCSP_BASIC_OID: return NID_id_pkix_OCSP_basic; case OCSP_NONCE_OID: return OCSP_NONCE_OID; } break; #endif /* HAVE_OCSP */ /* oidCertExtType */ case oidCertExtType: switch (oid) { case BASIC_CA_OID: return BASIC_CA_OID; case ALT_NAMES_OID: return ALT_NAMES_OID; case CRL_DIST_OID: return CRL_DIST_OID; case AUTH_INFO_OID: return AUTH_INFO_OID; case AUTH_KEY_OID: return AUTH_KEY_OID; case SUBJ_KEY_OID: return SUBJ_KEY_OID; case INHIBIT_ANY_OID: return INHIBIT_ANY_OID; case KEY_USAGE_OID: return NID_ext_key_usage; case NAME_CONS_OID: return NID_name_constraints; case CERT_POLICY_OID: return NID_certificate_policies; } break; /* oidCertAuthInfoType */ case oidCertAuthInfoType: switch (oid) { case AIA_OCSP_OID: return AIA_OCSP_OID; case AIA_CA_ISSUER_OID: return AIA_CA_ISSUER_OID; } break; /* oidCertPolicyType */ case oidCertPolicyType: switch (oid) { case CP_ANY_OID: return NID_any_policy; } break; /* oidCertAltNameType */ case oidCertAltNameType: switch (oid) { case HW_NAME_OID: return NID_hw_name_oid; } break; /* oidCertKeyUseType */ case oidCertKeyUseType: switch (oid) { case EKU_ANY_OID: return NID_anyExtendedKeyUsage; case EKU_SERVER_AUTH_OID: return EKU_SERVER_AUTH_OID; case EKU_CLIENT_AUTH_OID: return EKU_CLIENT_AUTH_OID; case EKU_OCSP_SIGN_OID: return EKU_OCSP_SIGN_OID; } break; /* oidKdfType */ case oidKdfType: switch (oid) { case PBKDF2_OID: return PBKDF2_OID; } break; /* oidPBEType */ case oidPBEType: switch (oid) { case PBE_SHA1_RC4_128: return PBE_SHA1_RC4_128; case PBE_SHA1_DES: return PBE_SHA1_DES; case PBE_SHA1_DES3: return PBE_SHA1_DES3; } break; /* oidKeyWrapType */ case oidKeyWrapType: switch (oid) { #ifdef WOLFSSL_AES_128 case AES128_WRAP: return AES128_WRAP; #endif #ifdef WOLFSSL_AES_192 case AES192_WRAP: return AES192_WRAP; #endif #ifdef WOLFSSL_AES_256 case AES256_WRAP: return AES256_WRAP; #endif } break; /* oidCmsKeyAgreeType */ case oidCmsKeyAgreeType: switch (oid) { #ifndef NO_SHA case dhSinglePass_stdDH_sha1kdf_scheme: return dhSinglePass_stdDH_sha1kdf_scheme; #endif #ifdef WOLFSSL_SHA224 case dhSinglePass_stdDH_sha224kdf_scheme: return dhSinglePass_stdDH_sha224kdf_scheme; #endif #ifndef NO_SHA256 case dhSinglePass_stdDH_sha256kdf_scheme: return dhSinglePass_stdDH_sha256kdf_scheme; #endif #ifdef WOLFSSL_SHA384 case dhSinglePass_stdDH_sha384kdf_scheme: return dhSinglePass_stdDH_sha384kdf_scheme; #endif #ifdef WOLFSSL_SHA512 case dhSinglePass_stdDH_sha512kdf_scheme: return dhSinglePass_stdDH_sha512kdf_scheme; #endif } break; default: WOLFSSL_MSG("NID not in table"); return -1; } return -1; } #ifndef NO_WOLFSSL_STUB char * wolfSSL_OBJ_nid2ln(int n) { (void)n; WOLFSSL_ENTER("wolfSSL_OBJ_nid2ln"); WOLFSSL_STUB("OBJ_nid2ln"); return NULL; } #endif #ifndef NO_WOLFSSL_STUB int wolfSSL_OBJ_txt2nid(const char* s) { (void)s; WOLFSSL_STUB("OBJ_txt2nid"); return 0; } #endif /* compatibility function. It's intended use is to remove OID's from an * internal table that have been added with OBJ_create. wolfSSL manages it's * own interenal OID values and does not currently support OBJ_create. */ void wolfSSL_OBJ_cleanup(void) { WOLFSSL_ENTER("wolfSSL_OBJ_cleanup()"); } #ifndef NO_WOLFSSL_STUB void wolfSSL_set_verify_depth(WOLFSSL *ssl, int depth) { WOLFSSL_ENTER("wolfSSL_set_verify_depth"); #ifndef OPENSSL_EXTRA (void)ssl; (void)depth; WOLFSSL_STUB("wolfSSL_set_verify_depth"); #else ssl->options.verifyDepth = (byte)depth; #endif } #endif #ifndef NO_WOLFSSL_STUB WOLFSSL_ASN1_OBJECT * wolfSSL_X509_NAME_ENTRY_get_object(WOLFSSL_X509_NAME_ENTRY *ne) { (void)ne; WOLFSSL_ENTER("wolfSSL_X509_NAME_ENTRY_get_object"); WOLFSSL_STUB("X509_NAME_ENTRY_get_object"); return NULL; } #endif WOLFSSL_X509_NAME_ENTRY *wolfSSL_X509_NAME_get_entry( WOLFSSL_X509_NAME *name, int loc) { int maxLoc = name->fullName.fullNameLen; WOLFSSL_ENTER("wolfSSL_X509_NAME_get_entry"); if (loc < 0 || loc > maxLoc) { WOLFSSL_MSG("Bad argument"); return NULL; } /* DC component */ if (name->fullName.dcMode){ if (name->fullName.fullName != NULL){ if (loc == name->fullName.dcNum){ name->cnEntry.data.data = &name->fullName.fullName[name->fullName.cIdx]; name->cnEntry.data.length = name->fullName.cLen; name->cnEntry.nid = ASN_COUNTRY_NAME; } else { name->cnEntry.data.data = &name->fullName.fullName[name->fullName.dcIdx[loc]]; name->cnEntry.data.length = name->fullName.dcLen[loc]; name->cnEntry.nid = ASN_DOMAIN_COMPONENT; } } name->cnEntry.data.type = CTC_UTF8; name->cnEntry.set = 1; return &(name->cnEntry); /* common name index case */ } else if (loc == name->fullName.cnIdx) { /* get CN shortcut from x509 since it has null terminator */ name->cnEntry.data.data = name->x509->subjectCN; name->cnEntry.data.length = name->fullName.cnLen; name->cnEntry.data.type = CTC_UTF8; name->cnEntry.nid = ASN_COMMON_NAME; name->cnEntry.set = 1; return &(name->cnEntry); } /* additionall cases to check for go here */ WOLFSSL_MSG("Entry not found or implemented"); (void)name; (void)loc; return NULL; } #ifndef NO_WOLFSSL_STUB void wolfSSL_sk_X509_NAME_pop_free(WOLF_STACK_OF(WOLFSSL_X509_NAME)* sk, void f (WOLFSSL_X509_NAME*)){ (void) sk; (void) f; WOLFSSL_ENTER("wolfSSL_sk_X509_NAME_pop_free"); WOLFSSL_STUB("sk_X509_NAME_pop_free"); } #endif #ifndef NO_WOLFSSL_STUB int wolfSSL_X509_check_private_key(WOLFSSL_X509 *x509, WOLFSSL_EVP_PKEY *key){ (void) x509; (void) key; WOLFSSL_ENTER("wolfSSL_X509_check_private_key"); WOLFSSL_STUB("X509_check_private_key"); return WOLFSSL_SUCCESS; } WOLF_STACK_OF(WOLFSSL_X509_NAME) *wolfSSL_dup_CA_list( WOLF_STACK_OF(WOLFSSL_X509_NAME) *sk ){ (void) sk; WOLFSSL_ENTER("wolfSSL_dup_CA_list"); WOLFSSL_STUB("SSL_dup_CA_list"); return NULL; } #endif #endif /* OPENSSL_ALL || HAVE_LIGHTY || WOLFSSL_MYSQL_COMPATIBLE || HAVE_STUNNEL || WOLFSSL_NGINX || HAVE_POCO_LIB || WOLFSSL_HAPROXY */ #endif /* OPENSSL_EXTRA */ #ifdef OPENSSL_EXTRA /* wolfSSL uses negative values for error states. This function returns an * unsigned type so the value returned is the absolute value of the error. */ unsigned long wolfSSL_ERR_peek_last_error_line(const char **file, int *line) { WOLFSSL_ENTER("wolfSSL_ERR_peek_last_error"); (void)line; (void)file; #if defined(OPENSSL_ALL) || defined(WOLFSSL_NGINX) || defined(DEBUG_WOLFSSL) || defined(WOLFSSL_HAPROXY) { int ret; if ((ret = wc_PeekErrorNode(-1, file, NULL, line)) < 0) { WOLFSSL_MSG("Issue peeking at error node in queue"); return 0; } #if defined(OPENSSL_ALL) || defined(WOLFSSL_NGINX) if (ret == -ASN_NO_PEM_HEADER) return (ERR_LIB_PEM << 24) | PEM_R_NO_START_LINE; #endif return (unsigned long)ret; } #else return (unsigned long)(0 - NOT_COMPILED_IN); #endif } #ifndef NO_CERTS int wolfSSL_CTX_use_PrivateKey(WOLFSSL_CTX *ctx, WOLFSSL_EVP_PKEY *pkey) { WOLFSSL_ENTER("wolfSSL_CTX_use_PrivateKey"); if (ctx == NULL || pkey == NULL) { return WOLFSSL_FAILURE; } if (pkey->pkey.ptr != NULL) { /* ptr for WOLFSSL_EVP_PKEY struct is expected to be DER format */ return wolfSSL_CTX_use_PrivateKey_buffer(ctx, (const unsigned char*)pkey->pkey.ptr, pkey->pkey_sz, SSL_FILETYPE_ASN1); } WOLFSSL_MSG("wolfSSL private key not set"); return BAD_FUNC_ARG; } #endif /* !NO_CERTS */ void* wolfSSL_CTX_get_ex_data(const WOLFSSL_CTX* ctx, int idx) { WOLFSSL_ENTER("wolfSSL_CTX_get_ex_data"); #ifdef HAVE_EX_DATA if(ctx != NULL && idx < MAX_EX_DATA && idx >= 0) { return ctx->ex_data[idx]; } #else (void)ctx; (void)idx; #endif return NULL; } int wolfSSL_CTX_get_ex_new_index(long idx, void* arg, void* a, void* b, void* c) { static int ctx_idx = 0; WOLFSSL_ENTER("wolfSSL_CTX_get_ex_new_index"); (void)idx; (void)arg; (void)a; (void)b; (void)c; return ctx_idx++; } /* Return the index that can be used for the WOLFSSL structure to store * application data. * */ int wolfSSL_get_ex_new_index(long argValue, void* arg, WOLFSSL_CRYPTO_EX_new* cb1, WOLFSSL_CRYPTO_EX_dup* cb2, WOLFSSL_CRYPTO_EX_free* cb3) { static int ssl_idx = 0; WOLFSSL_ENTER("wolfSSL_get_ex_new_index"); (void)argValue; (void)arg; (void)cb1; (void)cb2; (void)cb3; return ssl_idx++; } int wolfSSL_CTX_set_ex_data(WOLFSSL_CTX* ctx, int idx, void* data) { WOLFSSL_ENTER("wolfSSL_CTX_set_ex_data"); #ifdef HAVE_EX_DATA if (ctx != NULL && idx < MAX_EX_DATA) { ctx->ex_data[idx] = data; return WOLFSSL_SUCCESS; } #else (void)ctx; (void)idx; (void)data; #endif return WOLFSSL_FAILURE; } /* Returns char* to app data stored in ex[0]. * * ssl WOLFSSL structure to get app data from */ void* wolfSSL_get_app_data(const WOLFSSL *ssl) { /* checkout exdata stuff... */ WOLFSSL_ENTER("wolfSSL_get_app_data"); return wolfSSL_get_ex_data(ssl, 0); } /* Set ex array 0 to have app data * * ssl WOLFSSL struct to set app data in * arg data to be stored * * Returns SSL_SUCCESS on sucess and SSL_FAILURE on failure */ int wolfSSL_set_app_data(WOLFSSL *ssl, void* arg) { WOLFSSL_ENTER("wolfSSL_set_app_data"); return wolfSSL_set_ex_data(ssl, 0, arg); } int wolfSSL_set_ex_data(WOLFSSL* ssl, int idx, void* data) { WOLFSSL_ENTER("wolfSSL_set_ex_data"); #if defined(HAVE_EX_DATA) || defined(FORTRESS) if (ssl != NULL && idx < MAX_EX_DATA) { ssl->ex_data[idx] = data; return WOLFSSL_SUCCESS; } #else WOLFSSL_MSG("HAVE_EX_DATA macro is not defined"); (void)ssl; (void)idx; (void)data; #endif return WOLFSSL_FAILURE; } void* wolfSSL_get_ex_data(const WOLFSSL* ssl, int idx) { WOLFSSL_ENTER("wolfSSL_get_ex_data"); #if defined(HAVE_EX_DATA) || defined(FORTRESS) if (ssl != NULL && idx < MAX_EX_DATA && idx >= 0) return ssl->ex_data[idx]; #else WOLFSSL_MSG("HAVE_EX_DATA macro is not defined"); (void)ssl; (void)idx; #endif return 0; } #ifndef NO_DSA WOLFSSL_DSA *wolfSSL_PEM_read_bio_DSAparams(WOLFSSL_BIO *bp, WOLFSSL_DSA **x, pem_password_cb *cb, void *u) { WOLFSSL_DSA* dsa; DsaKey* key; int length; unsigned char* buf; word32 bufSz; int ret; word32 idx = 0; DerBuffer* pDer; WOLFSSL_ENTER("wolfSSL_PEM_read_bio_DSAparams"); ret = wolfSSL_BIO_get_mem_data(bp, &buf); if (ret <= 0) { WOLFSSL_LEAVE("wolfSSL_PEM_read_bio_DSAparams", ret); return NULL; } bufSz = (word32)ret; if (cb != NULL || u != NULL) { /* * cb is for a call back when encountering encrypted PEM files * if cb == NULL and u != NULL then u = null terminated password string */ WOLFSSL_MSG("Not yet supporting call back or password for encrypted PEM"); } if ((ret = PemToDer(buf, (long)bufSz, DSA_PARAM_TYPE, &pDer, NULL, NULL, NULL)) < 0 ) { WOLFSSL_MSG("Issue converting from PEM to DER"); return NULL; } if ((ret = GetSequence(pDer->buffer, &idx, &length, pDer->length)) < 0) { WOLFSSL_LEAVE("wolfSSL_PEM_read_bio_DSAparams", ret); FreeDer(&pDer); return NULL; } dsa = wolfSSL_DSA_new(); if (dsa == NULL) { FreeDer(&pDer); WOLFSSL_MSG("Error creating DSA struct"); return NULL; } key = (DsaKey*)dsa->internal; if (key == NULL) { FreeDer(&pDer); wolfSSL_DSA_free(dsa); WOLFSSL_MSG("Error finding DSA key struct"); return NULL; } if (GetInt(&key->p, pDer->buffer, &idx, pDer->length) < 0 || GetInt(&key->q, pDer->buffer, &idx, pDer->length) < 0 || GetInt(&key->g, pDer->buffer, &idx, pDer->length) < 0 ) { WOLFSSL_MSG("dsa key error"); FreeDer(&pDer); wolfSSL_DSA_free(dsa); return NULL; } if (SetIndividualExternal(&dsa->p, &key->p) != WOLFSSL_SUCCESS) { WOLFSSL_MSG("dsa p key error"); FreeDer(&pDer); wolfSSL_DSA_free(dsa); return NULL; } if (SetIndividualExternal(&dsa->q, &key->q) != WOLFSSL_SUCCESS) { WOLFSSL_MSG("dsa q key error"); FreeDer(&pDer); wolfSSL_DSA_free(dsa); return NULL; } if (SetIndividualExternal(&dsa->g, &key->g) != WOLFSSL_SUCCESS) { WOLFSSL_MSG("dsa g key error"); FreeDer(&pDer); wolfSSL_DSA_free(dsa); return NULL; } if (x != NULL) { *x = dsa; } FreeDer(&pDer); return dsa; } #endif /* NO_DSA */ #define WOLFSSL_BIO_INCLUDED #include "src/bio.c" /* Begin functions for openssl/buffer.h */ WOLFSSL_BUF_MEM* wolfSSL_BUF_MEM_new(void) { WOLFSSL_BUF_MEM* buf; buf = (WOLFSSL_BUF_MEM*)XMALLOC(sizeof(WOLFSSL_BUF_MEM), NULL, DYNAMIC_TYPE_OPENSSL); if (buf) { XMEMSET(buf, 0, sizeof(WOLFSSL_BUF_MEM)); } return buf; } /* returns length of buffer on success */ int wolfSSL_BUF_MEM_grow(WOLFSSL_BUF_MEM* buf, size_t len) { int len_int = (int)len; int mx; /* verify provided arguments */ if (buf == NULL || len_int < 0) { return 0; /* BAD_FUNC_ARG; */ } /* check to see if fits in existing length */ if (buf->length > len) { buf->length = len; return len_int; } /* check to see if fits in max buffer */ if (buf->max >= len) { if (buf->data != NULL) { XMEMSET(&buf->data[buf->length], 0, len - buf->length); } buf->length = len; return len_int; } /* expand size, to handle growth */ mx = (len_int + 3) / 3 * 4; /* use realloc */ buf->data = (char*)XREALLOC(buf->data, mx, NULL, DYNAMIC_TYPE_TMP_BUFFER); if (buf->data == NULL) { return 0; /* ERR_R_MALLOC_FAILURE; */ } buf->max = mx; XMEMSET(&buf->data[buf->length], 0, len - buf->length); buf->length = len; return len_int; } void wolfSSL_BUF_MEM_free(WOLFSSL_BUF_MEM* buf) { if (buf) { if (buf->data) { XFREE(buf->data, NULL, DYNAMIC_TYPE_TMP_BUFFER); buf->data = NULL; } buf->max = 0; buf->length = 0; XFREE(buf, NULL, DYNAMIC_TYPE_OPENSSL); } } /* End Functions for openssl/buffer.h */ #endif /* OPENSSL_EXTRA */ #if defined(HAVE_LIGHTY) || defined(HAVE_STUNNEL) \ || defined(WOLFSSL_MYSQL_COMPATIBLE) || defined(OPENSSL_EXTRA) WOLFSSL_BIO *wolfSSL_BIO_new_file(const char *filename, const char *mode) { #ifndef NO_FILESYSTEM WOLFSSL_BIO* bio; XFILE fp; WOLFSSL_ENTER("wolfSSL_BIO_new_file"); fp = XFOPEN(filename, mode); if (fp == NULL) return NULL; bio = wolfSSL_BIO_new(wolfSSL_BIO_s_file()); if (bio == NULL) { XFCLOSE(fp); return bio; } if (wolfSSL_BIO_set_fp(bio, fp, BIO_CLOSE) != WOLFSSL_SUCCESS) { XFCLOSE(fp); wolfSSL_BIO_free(bio); bio = NULL; } /* file is closed when BIO is free'd */ return bio; #else (void)filename; (void)mode; return NULL; #endif /* NO_FILESYSTEM */ } #ifndef NO_DH WOLFSSL_DH *wolfSSL_PEM_read_bio_DHparams(WOLFSSL_BIO *bio, WOLFSSL_DH **x, pem_password_cb *cb, void *u) { #ifndef NO_FILESYSTEM WOLFSSL_DH* localDh = NULL; unsigned char* mem = NULL; word32 size; long sz; int ret; DerBuffer *der = NULL; byte* p = NULL; byte* g = NULL; word32 pSz = MAX_DH_SIZE; word32 gSz = MAX_DH_SIZE; int memAlloced = 0; WOLFSSL_ENTER("wolfSSL_PEM_read_bio_DHparams"); (void)cb; (void)u; if (bio == NULL) { WOLFSSL_MSG("Bad Function Argument bio is NULL"); return NULL; } if (bio->type == WOLFSSL_BIO_MEMORY) { /* Use the buffer directly. */ ret = wolfSSL_BIO_get_mem_data(bio, &mem); if (mem == NULL || ret <= 0) { WOLFSSL_MSG("Failed to get data from bio struct"); goto end; } size = ret; } else if (bio->type == WOLFSSL_BIO_FILE) { /* Read whole file into a new buffer. */ XFSEEK(bio->file, 0, SEEK_END); sz = XFTELL(bio->file); XFSEEK(bio->file, 0, SEEK_SET); if (sz <= 0L) goto end; mem = (unsigned char*)XMALLOC(sz, NULL, DYNAMIC_TYPE_PEM); if (mem == NULL) goto end; memAlloced = 1; if (wolfSSL_BIO_read(bio, (char *)mem, (int)sz) <= 0) goto end; size = (word32)sz; } else { WOLFSSL_MSG("BIO type not supported for reading DH parameters"); goto end; } ret = PemToDer(mem, size, DH_PARAM_TYPE, &der, NULL, NULL, NULL); if (ret != 0) goto end; /* Use the object passed in, otherwise allocate a new object */ if (x != NULL) localDh = *x; if (localDh == NULL) { localDh = (WOLFSSL_DH*)XMALLOC(sizeof(WOLFSSL_DH), NULL, DYNAMIC_TYPE_OPENSSL); if (localDh == NULL) goto end; XMEMSET(localDh, 0, sizeof(WOLFSSL_DH)); } /* Load data in manually */ p = (byte*)XMALLOC(pSz, NULL, DYNAMIC_TYPE_PUBLIC_KEY); g = (byte*)XMALLOC(gSz, NULL, DYNAMIC_TYPE_PUBLIC_KEY); if (p == NULL || g == NULL) goto end; /* Extract the p and g as data from the DER encoded DH parameters. */ ret = wc_DhParamsLoad(der->buffer, der->length, p, &pSz, g, &gSz); if (ret != 0) { if (x != NULL && localDh != *x) XFREE(localDh, NULL, DYNAMIC_TYPE_OPENSSL); localDh = NULL; goto end; } if (x != NULL) *x = localDh; /* Put p and g in as big numbers. */ if (localDh->p != NULL) { wolfSSL_BN_free(localDh->p); localDh->p = NULL; } if (localDh->g != NULL) { wolfSSL_BN_free(localDh->g); localDh->g = NULL; } localDh->p = wolfSSL_BN_bin2bn(p, pSz, NULL); localDh->g = wolfSSL_BN_bin2bn(g, gSz, NULL); if (localDh->p == NULL || localDh->g == NULL) { if (x != NULL && localDh != *x) wolfSSL_DH_free(localDh); localDh = NULL; } end: if (memAlloced) XFREE(mem, NULL, DYNAMIC_TYPE_PEM); if (der != NULL) FreeDer(&der); XFREE(p, NULL, DYNAMIC_TYPE_PUBLIC_KEY); XFREE(g, NULL, DYNAMIC_TYPE_PUBLIC_KEY); return localDh; #else (void)bio; (void)x; (void)cb; (void)u; return NULL; #endif } #endif #ifdef WOLFSSL_CERT_GEN #ifdef WOLFSSL_CERT_REQ /* writes the x509 from x to the WOLFSSL_BIO bp * * returns WOLFSSL_SUCCESS on success and WOLFSSL_FAILURE on fail */ int wolfSSL_PEM_write_bio_X509_REQ(WOLFSSL_BIO *bp, WOLFSSL_X509 *x) { byte* pem; int pemSz = 0; const unsigned char* der; int derSz; int ret; WOLFSSL_ENTER("wolfSSL_PEM_write_bio_X509_REQ()"); if (x == NULL || bp == NULL) { return WOLFSSL_FAILURE; } der = wolfSSL_X509_get_der(x, &derSz); if (der == NULL) { return WOLFSSL_FAILURE; } /* get PEM size */ pemSz = wc_DerToPemEx(der, derSz, NULL, 0, NULL, CERTREQ_TYPE); if (pemSz < 0) { return WOLFSSL_FAILURE; } /* create PEM buffer and convert from DER */ pem = (byte*)XMALLOC(pemSz, NULL, DYNAMIC_TYPE_TMP_BUFFER); if (pem == NULL) { return WOLFSSL_FAILURE; } if (wc_DerToPemEx(der, derSz, pem, pemSz, NULL, CERTREQ_TYPE) < 0) { XFREE(pem, NULL, DYNAMIC_TYPE_TMP_BUFFER); return WOLFSSL_FAILURE; } /* write the PEM to BIO */ ret = wolfSSL_BIO_write(bp, pem, pemSz); XFREE(pem, NULL, DYNAMIC_TYPE_TMP_BUFFER); if (ret <= 0) return WOLFSSL_FAILURE; return WOLFSSL_SUCCESS; } #endif /* WOLFSSL_CERT_REQ */ /* writes the x509 from x to the WOLFSSL_BIO bp * * returns WOLFSSL_SUCCESS on success and WOLFSSL_FAILURE on fail */ int wolfSSL_PEM_write_bio_X509_AUX(WOLFSSL_BIO *bp, WOLFSSL_X509 *x) { byte* pem; int pemSz = 0; const unsigned char* der; int derSz; int ret; WOLFSSL_ENTER("wolfSSL_PEM_write_bio_X509_AUX()"); if (bp == NULL || x == NULL) { WOLFSSL_MSG("NULL argument passed in"); return WOLFSSL_FAILURE; } der = wolfSSL_X509_get_der(x, &derSz); if (der == NULL) { return WOLFSSL_FAILURE; } /* get PEM size */ pemSz = wc_DerToPemEx(der, derSz, NULL, 0, NULL, CERT_TYPE); if (pemSz < 0) { return WOLFSSL_FAILURE; } /* create PEM buffer and convert from DER */ pem = (byte*)XMALLOC(pemSz, NULL, DYNAMIC_TYPE_TMP_BUFFER); if (pem == NULL) { return WOLFSSL_FAILURE; } if (wc_DerToPemEx(der, derSz, pem, pemSz, NULL, CERT_TYPE) < 0) { XFREE(pem, NULL, DYNAMIC_TYPE_TMP_BUFFER); return WOLFSSL_FAILURE; } /* write the PEM to BIO */ ret = wolfSSL_BIO_write(bp, pem, pemSz); XFREE(pem, NULL, DYNAMIC_TYPE_TMP_BUFFER); if (ret <= 0) return WOLFSSL_FAILURE; return WOLFSSL_SUCCESS; } #endif /* WOLFSSL_CERT_GEN */ int wolfSSL_PEM_write_bio_X509(WOLFSSL_BIO *bio, WOLFSSL_X509 *cert) { byte* pem; int pemSz = 0; const unsigned char* der; int derSz; int ret; WOLFSSL_ENTER("wolfSSL_PEM_write_bio_X509_AUX()"); if (bio == NULL || cert == NULL) { WOLFSSL_MSG("NULL argument passed in"); return WOLFSSL_FAILURE; } der = wolfSSL_X509_get_der(cert, &derSz); if (der == NULL) { return WOLFSSL_FAILURE; } /* get PEM size */ pemSz = wc_DerToPemEx(der, derSz, NULL, 0, NULL, CERT_TYPE); if (pemSz < 0) { return WOLFSSL_FAILURE; } /* create PEM buffer and convert from DER */ pem = (byte*)XMALLOC(pemSz, NULL, DYNAMIC_TYPE_TMP_BUFFER); if (pem == NULL) { return WOLFSSL_FAILURE; } if (wc_DerToPemEx(der, derSz, pem, pemSz, NULL, CERT_TYPE) < 0) { XFREE(pem, NULL, DYNAMIC_TYPE_TMP_BUFFER); return WOLFSSL_FAILURE; } /* write the PEM to BIO */ ret = wolfSSL_BIO_write(bio, pem, pemSz); XFREE(pem, NULL, DYNAMIC_TYPE_TMP_BUFFER); if (ret <= 0) return WOLFSSL_FAILURE; return WOLFSSL_SUCCESS; } #if defined(OPENSSL_EXTRA) && !defined(NO_DH) /* Intialize ctx->dh with dh's params. Return WOLFSSL_SUCCESS on ok */ long wolfSSL_CTX_set_tmp_dh(WOLFSSL_CTX* ctx, WOLFSSL_DH* dh) { int pSz, gSz; byte *p, *g; int ret=0; WOLFSSL_ENTER("wolfSSL_CTX_set_tmp_dh"); if(!ctx || !dh) return BAD_FUNC_ARG; /* Get needed size for p and g */ pSz = wolfSSL_BN_bn2bin(dh->p, NULL); gSz = wolfSSL_BN_bn2bin(dh->g, NULL); if(pSz <= 0 || gSz <= 0) return WOLFSSL_FATAL_ERROR; p = (byte*)XMALLOC(pSz, ctx->heap, DYNAMIC_TYPE_PUBLIC_KEY); if(!p) return MEMORY_E; g = (byte*)XMALLOC(gSz, ctx->heap, DYNAMIC_TYPE_PUBLIC_KEY); if(!g) { XFREE(p, ctx->heap, DYNAMIC_TYPE_PUBLIC_KEY); return MEMORY_E; } pSz = wolfSSL_BN_bn2bin(dh->p, p); gSz = wolfSSL_BN_bn2bin(dh->g, g); if(pSz >= 0 && gSz >= 0) /* Conversion successful */ ret = wolfSSL_CTX_SetTmpDH(ctx, p, pSz, g, gSz); XFREE(p, ctx->heap, DYNAMIC_TYPE_PUBLIC_KEY); XFREE(g, ctx->heap, DYNAMIC_TYPE_PUBLIC_KEY); return pSz > 0 && gSz > 0 ? ret : WOLFSSL_FATAL_ERROR; } #endif /* OPENSSL_EXTRA && !NO_DH */ /* returns the enum value associated with handshake state * * ssl the WOLFSSL structure to get state of */ int wolfSSL_get_state(const WOLFSSL* ssl) { WOLFSSL_ENTER("wolfSSL_get_state"); if (ssl == NULL) { WOLFSSL_MSG("Null argument passed in"); return SSL_FAILURE; } return ssl->options.handShakeState; } #endif /* HAVE_LIGHTY || HAVE_STUNNEL || WOLFSSL_MYSQL_COMPATIBLE */ #if defined(OPENSSL_ALL) || defined(WOLFSSL_ASIO) /* Returns the verifyCallback from the ssl structure if successful. Returns NULL otherwise. */ VerifyCallback wolfSSL_get_verify_callback(WOLFSSL* ssl) { WOLFSSL_ENTER("wolfSSL_get_verify_callback()"); if (ssl) { return ssl->verifyCallback; } return NULL; } /* Creates a new bio pair. Returns WOLFSSL_SUCCESS if no error, WOLFSSL_FAILURE otherwise.*/ int wolfSSL_BIO_new_bio_pair(WOLFSSL_BIO **bio1_p, size_t writebuf1, WOLFSSL_BIO **bio2_p, size_t writebuf2) { WOLFSSL_BIO *bio1 = NULL, *bio2 = NULL; int ret = 1; WOLFSSL_ENTER("wolfSSL_BIO_new_bio_pair()"); if (bio1_p == NULL || bio2_p == NULL) { WOLFSSL_MSG("Bad Function Argument"); return BAD_FUNC_ARG; } /* set up the new bio structures and write buf sizes */ if ((bio1 = wolfSSL_BIO_new(wolfSSL_BIO_s_bio())) == NULL) { WOLFSSL_MSG("Bio allocation failed"); ret = WOLFSSL_FAILURE; } if (ret) { if ((bio2 = wolfSSL_BIO_new(wolfSSL_BIO_s_bio())) == NULL) { WOLFSSL_MSG("Bio allocation failed"); ret = WOLFSSL_FAILURE; } } if (ret && writebuf1) { if (!(ret = wolfSSL_BIO_set_write_buf_size(bio1, writebuf1))) { WOLFSSL_MSG("wolfSSL_BIO_set_write_buf() failure"); } } if (ret && writebuf2) { if (!(ret = wolfSSL_BIO_set_write_buf_size(bio2, writebuf2))) { WOLFSSL_MSG("wolfSSL_BIO_set_write_buf() failure"); } } if (ret) { if ((ret = wolfSSL_BIO_make_bio_pair(bio1, bio2))) { *bio1_p = bio1; *bio2_p = bio2; } } if (!ret) { wolfSSL_BIO_free(bio1); bio1 = NULL; wolfSSL_BIO_free(bio2); bio2 = NULL; } return ret; } #if !defined(NO_RSA) /* Converts an rsa key from a bio buffer into an internal rsa structure. Returns a pointer to the new WOLFSSL_RSA structure. */ WOLFSSL_RSA* wolfSSL_d2i_RSAPrivateKey_bio(WOLFSSL_BIO *bio, WOLFSSL_RSA **out) { const unsigned char* bioMem = NULL; int bioMemSz = 0; WOLFSSL_RSA* key = NULL; unsigned char maxKeyBuf[4096]; unsigned char* bufPtr = NULL; unsigned char* extraBioMem = NULL; int extraBioMemSz = 0; int derLength = 0; int j = 0, i = 0; WOLFSSL_ENTER("wolfSSL_d2i_RSAPrivateKey_bio()"); if (bio == NULL) { WOLFSSL_MSG("Bad Function Argument"); return NULL; } (void)out; bioMemSz = wolfSSL_BIO_pending(bio); if (bioMemSz <= 0) { WOLFSSL_MSG("wolfSSL_BIO_pending() failure"); return NULL; } bioMem = (unsigned char*)XMALLOC(bioMemSz, bio->heap, DYNAMIC_TYPE_TMP_BUFFER); if (bioMem == NULL) { WOLFSSL_MSG("Malloc failure"); return NULL; } bufPtr = maxKeyBuf; if (wolfSSL_BIO_read(bio, (unsigned char*)bioMem, (int)bioMemSz) == bioMemSz) { if ((key = wolfSSL_d2i_RSAPrivateKey(NULL, &bioMem, bioMemSz)) == NULL) { XFREE((unsigned char*)bioMem, bio->heap, DYNAMIC_TYPE_TMP_BUFFER); return NULL; } /* This function is used to get the total length of the rsa key. */ derLength = wolfSSL_i2d_RSAPrivateKey(key, &bufPtr); /* Write extra data back into bio object if necessary. */ extraBioMemSz = (bioMemSz - derLength); if (extraBioMemSz > 0) { extraBioMem = (unsigned char *)XMALLOC(extraBioMemSz, NULL, DYNAMIC_TYPE_TMP_BUFFER); if (extraBioMem == NULL) { WOLFSSL_MSG("Malloc failure");; XFREE((unsigned char*)extraBioMem, bio->heap, DYNAMIC_TYPE_TMP_BUFFER); XFREE((unsigned char*)bioMem, bio->heap, DYNAMIC_TYPE_TMP_BUFFER); return NULL; } for (i = derLength; i < bioMemSz; i++) { *(extraBioMem + j) = *(bioMem + i); j++; } wolfSSL_BIO_write(bio, extraBioMem, extraBioMemSz); if (wolfSSL_BIO_pending(bio) <= 0) { WOLFSSL_MSG("Failed to write memory to bio"); XFREE((unsigned char*)extraBioMem, bio->heap, DYNAMIC_TYPE_TMP_BUFFER); XFREE((unsigned char*)bioMem, bio->heap, DYNAMIC_TYPE_TMP_BUFFER); return NULL; } XFREE((unsigned char*)extraBioMem, bio->heap, DYNAMIC_TYPE_TMP_BUFFER); } if (out != NULL && key != NULL) { *out = key; } } XFREE((unsigned char*)bioMem, bio->heap, DYNAMIC_TYPE_TMP_BUFFER); return key; } #endif /* Adds the ASN1 certificate to the user ctx. Returns WOLFSSL_SUCCESS if no error, returns WOLFSSL_FAILURE otherwise.*/ int wolfSSL_CTX_use_certificate_ASN1(WOLFSSL_CTX *ctx, int derSz, const unsigned char *der) { WOLFSSL_ENTER("wolfSSL_CTX_use_certificate_ASN1()"); if (der != NULL && ctx != NULL) { if (wolfSSL_CTX_use_certificate_buffer(ctx, der, derSz, WOLFSSL_FILETYPE_ASN1) == WOLFSSL_SUCCESS) { return WOLFSSL_SUCCESS; } } return WOLFSSL_FAILURE; } #if !defined(NO_RSA) && !defined(HAVE_FAST_RSA) /* Adds the rsa private key to the user ctx. Returns WOLFSSL_SUCCESS if no error, returns WOLFSSL_FAILURE otherwise.*/ int wolfSSL_CTX_use_RSAPrivateKey(WOLFSSL_CTX* ctx, WOLFSSL_RSA* rsa) { int ret; int derSize; unsigned char maxDerBuf[4096]; unsigned char* key = NULL; WOLFSSL_ENTER("wolfSSL_CTX_use_RSAPrivateKey()"); if (ctx == NULL || rsa == NULL) { WOLFSSL_MSG("one or more inputs were NULL"); return BAD_FUNC_ARG; } key = maxDerBuf; /* convert RSA struct to der encoded buffer and get the size */ if ((derSize = wolfSSL_i2d_RSAPrivateKey(rsa, &key)) <= 0) { WOLFSSL_MSG("wolfSSL_i2d_RSAPrivateKey() failure"); return WOLFSSL_FAILURE; } ret = wolfSSL_CTX_use_PrivateKey_buffer(ctx, (const unsigned char*)maxDerBuf, derSize, SSL_FILETYPE_ASN1); if (ret != WOLFSSL_SUCCESS) { WOLFSSL_MSG("wolfSSL_CTX_USE_PrivateKey_buffer() failure"); return WOLFSSL_FAILURE; } return ret; } #endif /* NO_RSA && !HAVE_FAST_RSA */ /* Converts EVP_PKEY data from a bio buffer to a WOLFSSL_EVP_PKEY structure. Returns pointer to private EVP_PKEY struct upon success, NULL if there is a failure.*/ WOLFSSL_EVP_PKEY* wolfSSL_d2i_PrivateKey_bio(WOLFSSL_BIO* bio, WOLFSSL_EVP_PKEY** out) { unsigned char* mem = NULL; int memSz = 0; WOLFSSL_EVP_PKEY* key = NULL; int i = 0, j = 0; unsigned char* extraBioMem = NULL; int extraBioMemSz = 0; int derLength = 0; WOLFSSL_ENTER("wolfSSL_d2i_PrivateKey_bio()"); if (bio == NULL) { return NULL; } (void)out; memSz = wolfSSL_BIO_pending(bio); if (memSz <= 0) { WOLFSSL_MSG("wolfSSL_BIO_pending() failure"); return NULL; } mem = (unsigned char*)XMALLOC(memSz, bio->heap, DYNAMIC_TYPE_TMP_BUFFER); if (mem == NULL) { WOLFSSL_MSG("Malloc failure"); return NULL; } if (wolfSSL_BIO_read(bio, (unsigned char*)mem, memSz) == memSz) { /* Determines key type and returns the new private EVP_PKEY object */ if ((key = wolfSSL_d2i_PrivateKey_EVP(NULL, &mem, (long)memSz)) == NULL) { WOLFSSL_MSG("wolfSSL_d2i_PrivateKey_EVP() failure"); XFREE(mem, bio->heap, DYNAMIC_TYPE_TMP_BUFFER); return NULL; } /* Write extra data back into bio object if necessary. */ derLength = key->pkey_sz; extraBioMemSz = (memSz - derLength); if (extraBioMemSz > 0) { extraBioMem = (unsigned char *)XMALLOC(extraBioMemSz, NULL, DYNAMIC_TYPE_TMP_BUFFER); if (extraBioMem == NULL) { WOLFSSL_MSG("Malloc failure"); XFREE((unsigned char*)extraBioMem, bio->heap, DYNAMIC_TYPE_TMP_BUFFER); XFREE(mem, bio->heap, DYNAMIC_TYPE_TMP_BUFFER); return NULL; } for (i = derLength; i < memSz; i++) { *(extraBioMem + j) = *(mem + i); j++; } wolfSSL_BIO_write(bio, extraBioMem, extraBioMemSz); if (wolfSSL_BIO_pending(bio) <= 0) { WOLFSSL_MSG("Failed to write memory to bio"); XFREE((unsigned char*)extraBioMem, bio->heap, DYNAMIC_TYPE_TMP_BUFFER); XFREE(mem, bio->heap, DYNAMIC_TYPE_TMP_BUFFER); return NULL; } XFREE((unsigned char*)extraBioMem, bio->heap, DYNAMIC_TYPE_TMP_BUFFER); } if (out != NULL && key != NULL) { *out = key; } } XFREE(mem, bio->heap, DYNAMIC_TYPE_TMP_BUFFER); return key; } /* Converts a DER encoded private key to a WOLFSSL_EVP_PKEY structure. * returns a pointer to a new WOLFSSL_EVP_PKEY structure on success and NULL * on fail */ WOLFSSL_EVP_PKEY* wolfSSL_d2i_PrivateKey_EVP(WOLFSSL_EVP_PKEY** out, unsigned char** in, long inSz) { WOLFSSL_EVP_PKEY* pkey = NULL; const unsigned char* mem; long memSz = inSz; WOLFSSL_ENTER("wolfSSL_d2i_PrivateKey_EVP()"); if (in == NULL || inSz < 0) { WOLFSSL_MSG("Bad argument"); return NULL; } mem = *in; #if !defined(NO_RSA) { RsaKey rsa; word32 keyIdx = 0; /* test if RSA key */ if (wc_InitRsaKey(&rsa, NULL) == 0 && wc_RsaPrivateKeyDecode(mem, &keyIdx, &rsa, (word32)memSz) == 0) { wc_FreeRsaKey(&rsa); pkey = wolfSSL_PKEY_new(); if (pkey != NULL) { pkey->pkey_sz = keyIdx; pkey->pkey.ptr = (char*)XMALLOC(memSz, NULL, DYNAMIC_TYPE_PRIVATE_KEY); if (pkey->pkey.ptr == NULL) { wolfSSL_EVP_PKEY_free(pkey); return NULL; } XMEMCPY(pkey->pkey.ptr, mem, keyIdx); pkey->type = EVP_PKEY_RSA; if (out != NULL) { *out = pkey; } pkey->ownRsa = 1; pkey->rsa = wolfSSL_RSA_new(); if (pkey->rsa == NULL) { wolfSSL_EVP_PKEY_free(pkey); return NULL; } if (wolfSSL_RSA_LoadDer_ex(pkey->rsa, (const unsigned char*)pkey->pkey.ptr, pkey->pkey_sz, WOLFSSL_RSA_LOAD_PRIVATE) != 1) { wolfSSL_EVP_PKEY_free(pkey); return NULL; } return pkey; } } wc_FreeRsaKey(&rsa); } #endif /* NO_RSA */ #ifdef HAVE_ECC { word32 keyIdx = 0; ecc_key ecc; /* test if ecc key */ if (wc_ecc_init(&ecc) == 0 && wc_EccPrivateKeyDecode(mem, &keyIdx, &ecc, (word32)memSz) == 0) { wc_ecc_free(&ecc); pkey = wolfSSL_PKEY_new(); if (pkey != NULL) { pkey->pkey_sz = keyIdx; pkey->pkey.ptr = (char*)XMALLOC(keyIdx, NULL, DYNAMIC_TYPE_PRIVATE_KEY); if (pkey->pkey.ptr == NULL) { wolfSSL_EVP_PKEY_free(pkey); return NULL; } XMEMCPY(pkey->pkey.ptr, mem, keyIdx); pkey->type = EVP_PKEY_EC; if (out != NULL) { *out = pkey; } return pkey; } } wc_ecc_free(&ecc); } #endif /* HAVE_ECC */ return pkey; } #endif /* OPENSSL_ALL || WOLFSSL_ASIO */ /* stunnel compatibility functions*/ #if defined(OPENSSL_ALL) || (defined(OPENSSL_EXTRA) && (defined(HAVE_STUNNEL) \ || defined(WOLFSSL_NGINX) || defined(HAVE_LIGHTY))) void wolfSSL_ERR_remove_thread_state(void* pid) { (void) pid; return; } #ifndef NO_FILESYSTEM /***TBD ***/ void wolfSSL_print_all_errors_fp(XFILE *fp) { (void)fp; } #endif int wolfSSL_SESSION_set_ex_data(WOLFSSL_SESSION* session, int idx, void* data) { WOLFSSL_ENTER("wolfSSL_SESSION_set_ex_data"); #ifdef HAVE_EX_DATA if(session != NULL && idx < MAX_EX_DATA) { session->ex_data[idx] = data; return WOLFSSL_SUCCESS; } #else (void)session; (void)idx; (void)data; #endif return WOLFSSL_FAILURE; } int wolfSSL_SESSION_get_ex_new_index(long idx, void* data, void* cb1, void* cb2, CRYPTO_free_func* cb3) { WOLFSSL_ENTER("wolfSSL_SESSION_get_ex_new_index"); (void)idx; (void)cb1; (void)cb2; (void)cb3; if (XSTRNCMP((const char*)data, "redirect index", 14) == 0) { return 0; } else if (XSTRNCMP((const char*)data, "addr index", 10) == 0) { return 1; } return WOLFSSL_FAILURE; } void* wolfSSL_SESSION_get_ex_data(const WOLFSSL_SESSION* session, int idx) { WOLFSSL_ENTER("wolfSSL_SESSION_get_ex_data"); #ifdef HAVE_EX_DATA if (session != NULL && idx < MAX_EX_DATA && idx >= 0) return session->ex_data[idx]; #else (void)session; (void)idx; #endif return NULL; } #ifndef NO_WOLFSSL_STUB int wolfSSL_CRYPTO_set_mem_ex_functions(void *(*m) (size_t, const char *, int), void *(*r) (void *, size_t, const char *, int), void (*f) (void *)) { (void) m; (void) r; (void) f; WOLFSSL_ENTER("wolfSSL_CRYPTO_set_mem_ex_functions"); WOLFSSL_STUB("CRYPTO_set_mem_ex_functions"); return WOLFSSL_FAILURE; } #endif void wolfSSL_CRYPTO_cleanup_all_ex_data(void){ WOLFSSL_ENTER("CRYPTO_cleanup_all_ex_data"); } #ifndef NO_WOLFSSL_STUB WOLFSSL_DH *wolfSSL_DH_generate_parameters(int prime_len, int generator, void (*callback) (int, int, void *), void *cb_arg) { (void)prime_len; (void)generator; (void)callback; (void)cb_arg; WOLFSSL_ENTER("wolfSSL_DH_generate_parameters"); WOLFSSL_STUB("DH_generate_parameters"); return NULL; } #endif #ifndef NO_WOLFSSL_STUB int wolfSSL_DH_generate_parameters_ex(WOLFSSL_DH* dh, int prime_len, int generator, void (*callback) (int, int, void *)) { (void)prime_len; (void)generator; (void)callback; (void)dh; WOLFSSL_ENTER("wolfSSL_DH_generate_parameters_ex"); WOLFSSL_STUB("DH_generate_parameters_ex"); return -1; } #endif void wolfSSL_ERR_load_crypto_strings(void) { WOLFSSL_ENTER("wolfSSL_ERR_load_crypto_strings"); /* Do nothing */ return; } #ifndef NO_WOLFSSL_STUB unsigned long wolfSSL_ERR_peek_last_error(void) { WOLFSSL_ENTER("wolfSSL_ERR_peek_last_error"); #if defined(OPENSSL_ALL) || defined(WOLFSSL_NGINX) { int ret; if ((ret = wc_PeekErrorNode(-1, NULL, NULL, NULL)) < 0) { WOLFSSL_MSG("Issue peeking at error node in queue"); return 0; } if (ret == -ASN_NO_PEM_HEADER) return (ERR_LIB_PEM << 24) | PEM_R_NO_START_LINE; return (unsigned long)ret; } #else return (unsigned long)(0 - NOT_COMPILED_IN); #endif } #endif #ifndef NO_WOLFSSL_STUB int wolfSSL_FIPS_mode(void) { WOLFSSL_ENTER("wolfSSL_FIPS_mode"); WOLFSSL_STUB("FIPS_mode"); return WOLFSSL_FAILURE; } #endif #ifndef NO_WOLFSSL_STUB int wolfSSL_FIPS_mode_set(int r) { (void)r; WOLFSSL_ENTER("wolfSSL_FIPS_mode_set"); WOLFSSL_STUB("FIPS_mode_set"); return WOLFSSL_FAILURE; } #endif #ifndef NO_WOLFSSL_STUB int wolfSSL_RAND_set_rand_method(const void *meth) { (void) meth; WOLFSSL_ENTER("wolfSSL_RAND_set_rand_method"); WOLFSSL_STUB("RAND_set_rand_method"); /* if implemented RAND_bytes and RAND_pseudo_bytes need updated * those two functions will call the respective functions from meth */ return SSL_FAILURE; } #endif int wolfSSL_CIPHER_get_bits(const WOLFSSL_CIPHER *c, int *alg_bits) { int ret = WOLFSSL_FAILURE; WOLFSSL_ENTER("wolfSSL_CIPHER_get_bits"); if(c != NULL && c->ssl != NULL) { ret = 8 * c->ssl->specs.key_size; if(alg_bits != NULL) { *alg_bits = ret; } } return ret; } int wolfSSL_sk_X509_NAME_num(const WOLF_STACK_OF(WOLFSSL_X509_NAME) *s) { WOLFSSL_ENTER("wolfSSL_sk_X509_NAME_num"); if (s == NULL) return -1; return (int)s->num; } int wolfSSL_sk_X509_num(const WOLF_STACK_OF(WOLFSSL_X509) *s) { WOLFSSL_ENTER("wolfSSL_sk_X509_num"); if (s == NULL) return -1; return (int)s->num; } int wolfSSL_X509_NAME_print_ex(WOLFSSL_BIO* bio, WOLFSSL_X509_NAME* name, int indent, unsigned long flags) { int i; (void)flags; WOLFSSL_ENTER("wolfSSL_X509_NAME_print_ex"); for (i = 0; i < indent; i++) { if (wolfSSL_BIO_write(bio, " ", 1) != 1) return WOLFSSL_FAILURE; } if (flags == XN_FLAG_RFC2253) { if (wolfSSL_BIO_write(bio, name->name + 1, name->sz - 2) != name->sz - 2) return WOLFSSL_FAILURE; } else if (wolfSSL_BIO_write(bio, name->name, name->sz) != name->sz) return WOLFSSL_FAILURE; return WOLFSSL_SUCCESS; } #ifndef NO_WOLFSSL_STUB WOLFSSL_ASN1_BIT_STRING* wolfSSL_X509_get0_pubkey_bitstr(const WOLFSSL_X509* x) { (void)x; WOLFSSL_ENTER("wolfSSL_X509_get0_pubkey_bitstr"); WOLFSSL_STUB("X509_get0_pubkey_bitstr"); return NULL; } #endif #ifndef NO_WOLFSSL_STUB int wolfSSL_CTX_add_session(WOLFSSL_CTX* ctx, WOLFSSL_SESSION* session) { (void)ctx; (void)session; WOLFSSL_ENTER("wolfSSL_CTX_add_session"); WOLFSSL_STUB("SSL_CTX_add_session"); return WOLFSSL_SUCCESS; } #endif int wolfSSL_version(WOLFSSL* ssl) { WOLFSSL_ENTER("wolfSSL_version"); if (ssl->version.major == SSLv3_MAJOR) { switch (ssl->version.minor) { case SSLv3_MINOR : return SSL3_VERSION; case TLSv1_MINOR : case TLSv1_1_MINOR : case TLSv1_2_MINOR : case TLSv1_3_MINOR : return TLS1_VERSION; default: return WOLFSSL_FAILURE; } } else if (ssl->version.major == DTLS_MAJOR) { switch (ssl->version.minor) { case DTLS_MINOR : case DTLSv1_2_MINOR : return DTLS1_VERSION; default: return WOLFSSL_FAILURE; } } return WOLFSSL_FAILURE; } WOLFSSL_CTX* wolfSSL_get_SSL_CTX(WOLFSSL* ssl) { WOLFSSL_ENTER("wolfSSL_get_SSL_CTX"); return ssl->ctx; } int wolfSSL_X509_NAME_get_sz(WOLFSSL_X509_NAME* name) { WOLFSSL_ENTER("wolfSSL_X509_NAME_get_sz"); if(!name) return -1; return name->sz; } #ifdef HAVE_SNI int wolfSSL_set_tlsext_host_name(WOLFSSL* ssl, const char* host_name) { int ret; WOLFSSL_ENTER("wolfSSL_set_tlsext_host_name"); ret = wolfSSL_UseSNI(ssl, WOLFSSL_SNI_HOST_NAME, host_name, (word16)XSTRLEN(host_name)); WOLFSSL_LEAVE("wolfSSL_set_tlsext_host_name", ret); return ret; } #ifndef NO_WOLFSSL_SERVER const char * wolfSSL_get_servername(WOLFSSL* ssl, byte type) { void * serverName = NULL; if (ssl == NULL) return NULL; TLSX_SNI_GetRequest(ssl->extensions, type, &serverName); return (const char *)serverName; } #endif /* NO_WOLFSSL_SERVER */ #endif /* HAVE_SNI */ WOLFSSL_CTX* wolfSSL_set_SSL_CTX(WOLFSSL* ssl, WOLFSSL_CTX* ctx) { if (ssl && ctx && SetSSL_CTX(ssl, ctx, 0) == WOLFSSL_SUCCESS) return ssl->ctx; return NULL; } VerifyCallback wolfSSL_CTX_get_verify_callback(WOLFSSL_CTX* ctx) { WOLFSSL_ENTER("wolfSSL_CTX_get_verify_callback"); if(ctx) return ctx->verifyCallback; return NULL; } void wolfSSL_CTX_set_servername_callback(WOLFSSL_CTX* ctx, CallbackSniRecv cb) { WOLFSSL_ENTER("wolfSSL_CTX_set_servername_callback"); if (ctx) ctx->sniRecvCb = cb; } int wolfSSL_CTX_set_tlsext_servername_callback(WOLFSSL_CTX* ctx, CallbackSniRecv cb) { WOLFSSL_ENTER("wolfSSL_CTX_set_tlsext_servername_callback"); if (ctx) { ctx->sniRecvCb = cb; return 1; } return 0; } void wolfSSL_CTX_set_servername_arg(WOLFSSL_CTX* ctx, void* arg) { WOLFSSL_ENTER("wolfSSL_CTX_set_servername_arg"); if (ctx) ctx->sniRecvCbArg = arg; } void wolfSSL_ERR_load_BIO_strings(void) { WOLFSSL_ENTER("ERR_load_BIO_strings"); /* do nothing */ } #ifndef NO_WOLFSSL_STUB void wolfSSL_THREADID_set_callback(void(*threadid_func)(void*)) { WOLFSSL_ENTER("wolfSSL_THREADID_set_callback"); WOLFSSL_STUB("CRYPTO_THREADID_set_callback"); (void)threadid_func; return; } #endif #ifndef NO_WOLFSSL_STUB void wolfSSL_THREADID_set_numeric(void* id, unsigned long val) { WOLFSSL_ENTER("wolfSSL_THREADID_set_numeric"); WOLFSSL_STUB("CRYPTO_THREADID_set_numeric"); (void)id; (void)val; return; } #endif #ifndef NO_WOLFSSL_STUB WOLF_STACK_OF(WOLFSSL_X509)* wolfSSL_X509_STORE_get1_certs(WOLFSSL_X509_STORE_CTX* ctx, WOLFSSL_X509_NAME* name) { WOLFSSL_ENTER("wolfSSL_X509_STORE_get1_certs"); WOLFSSL_STUB("X509_STORE_get1_certs"); (void)ctx; (void)name; return NULL; } #endif #endif /* OPENSSL_ALL || (OPENSSL_EXTRA && (HAVE_STUNNEL || WOLFSSL_NGINX || HAVE_LIGHTY)) */ #if defined(OPENSSL_ALL) || \ (defined(OPENSSL_EXTRA) && (defined(HAVE_STUNNEL) || \ defined(WOLFSSL_NGINX)) || defined(WOLFSSL_HAPROXY)) const byte* wolfSSL_SESSION_get_id(WOLFSSL_SESSION* sess, unsigned int* idLen) { WOLFSSL_ENTER("wolfSSL_SESSION_get_id"); if(!sess || !idLen) { WOLFSSL_MSG("Bad func args. Please provide idLen"); return NULL; } *idLen = sess->sessionIDSz; return sess->sessionID; } #endif #if defined(OPENSSL_ALL) || (defined(OPENSSL_EXTRA) && defined(HAVE_STUNNEL)) \ || defined(WOLFSSL_MYSQL_COMPATIBLE) || defined(WOLFSSL_NGINX) int wolfSSL_CTX_get_verify_mode(WOLFSSL_CTX* ctx) { int mode = 0; WOLFSSL_ENTER("wolfSSL_CTX_get_verify_mode"); if(!ctx) return WOLFSSL_FATAL_ERROR; if (ctx->verifyPeer) mode |= WOLFSSL_VERIFY_PEER; else if (ctx->verifyNone) mode |= WOLFSSL_VERIFY_NONE; if (ctx->failNoCert) mode |= WOLFSSL_VERIFY_FAIL_IF_NO_PEER_CERT; if (ctx->failNoCertxPSK) mode |= WOLFSSL_VERIFY_FAIL_EXCEPT_PSK; WOLFSSL_LEAVE("wolfSSL_CTX_get_verify_mode", mode); return mode; } #endif #if defined(OPENSSL_EXTRA) && defined(HAVE_CURVE25519) /* return 1 if success, 0 if error * output keys are little endian format */ int wolfSSL_EC25519_generate_key(unsigned char *priv, unsigned int *privSz, unsigned char *pub, unsigned int *pubSz) { #ifndef WOLFSSL_KEY_GEN WOLFSSL_MSG("No Key Gen built in"); (void) priv; (void) privSz; (void) pub; (void) pubSz; return WOLFSSL_FAILURE; #else /* WOLFSSL_KEY_GEN */ int ret = WOLFSSL_FAILURE; int initTmpRng = 0; WC_RNG *rng = NULL; #ifdef WOLFSSL_SMALL_STACK WC_RNG *tmpRNG = NULL; #else WC_RNG tmpRNG[1]; #endif WOLFSSL_ENTER("wolfSSL_EC25519_generate_key"); if (priv == NULL || privSz == NULL || *privSz < CURVE25519_KEYSIZE || pub == NULL || pubSz == NULL || *pubSz < CURVE25519_KEYSIZE) { WOLFSSL_MSG("Bad arguments"); return WOLFSSL_FAILURE; } #ifdef WOLFSSL_SMALL_STACK tmpRNG = (WC_RNG*)XMALLOC(sizeof(WC_RNG), NULL, DYNAMIC_TYPE_RNG); if (tmpRNG == NULL) return WOLFSSL_FAILURE; #endif if (wc_InitRng(tmpRNG) == 0) { rng = tmpRNG; initTmpRng = 1; } else { WOLFSSL_MSG("Bad RNG Init, trying global"); if (initGlobalRNG == 0) WOLFSSL_MSG("Global RNG no Init"); else rng = &globalRNG; } if (rng) { curve25519_key key; if (wc_curve25519_init(&key) != MP_OKAY) WOLFSSL_MSG("wc_curve25519_init failed"); else if (wc_curve25519_make_key(rng, CURVE25519_KEYSIZE, &key)!=MP_OKAY) WOLFSSL_MSG("wc_curve25519_make_key failed"); /* export key pair */ else if (wc_curve25519_export_key_raw_ex(&key, priv, privSz, pub, pubSz, EC25519_LITTLE_ENDIAN) != MP_OKAY) WOLFSSL_MSG("wc_curve25519_export_key_raw_ex failed"); else ret = WOLFSSL_SUCCESS; wc_curve25519_free(&key); } if (initTmpRng) wc_FreeRng(tmpRNG); #ifdef WOLFSSL_SMALL_STACK XFREE(tmpRNG, NULL, DYNAMIC_TYPE_RNG); #endif return ret; #endif /* WOLFSSL_KEY_GEN */ } /* return 1 if success, 0 if error * input and output keys are little endian format */ int wolfSSL_EC25519_shared_key(unsigned char *shared, unsigned int *sharedSz, const unsigned char *priv, unsigned int privSz, const unsigned char *pub, unsigned int pubSz) { #ifndef WOLFSSL_KEY_GEN WOLFSSL_MSG("No Key Gen built in"); (void) shared; (void) sharedSz; (void) priv; (void) privSz; (void) pub; (void) pubSz; return WOLFSSL_FAILURE; #else /* WOLFSSL_KEY_GEN */ int ret = WOLFSSL_FAILURE; curve25519_key privkey, pubkey; WOLFSSL_ENTER("wolfSSL_EC25519_shared_key"); if (shared == NULL || sharedSz == NULL || *sharedSz < CURVE25519_KEYSIZE || priv == NULL || privSz < CURVE25519_KEYSIZE || pub == NULL || pubSz < CURVE25519_KEYSIZE) { WOLFSSL_MSG("Bad arguments"); return WOLFSSL_FAILURE; } /* import private key */ if (wc_curve25519_init(&privkey) != MP_OKAY) { WOLFSSL_MSG("wc_curve25519_init privkey failed"); return ret; } if (wc_curve25519_import_private_ex(priv, privSz, &privkey, EC25519_LITTLE_ENDIAN) != MP_OKAY) { WOLFSSL_MSG("wc_curve25519_import_private_ex failed"); wc_curve25519_free(&privkey); return ret; } /* import public key */ if (wc_curve25519_init(&pubkey) != MP_OKAY) { WOLFSSL_MSG("wc_curve25519_init pubkey failed"); wc_curve25519_free(&privkey); return ret; } if (wc_curve25519_import_public_ex(pub, pubSz, &pubkey, EC25519_LITTLE_ENDIAN) != MP_OKAY) { WOLFSSL_MSG("wc_curve25519_import_public_ex failed"); wc_curve25519_free(&privkey); wc_curve25519_free(&pubkey); return ret; } if (wc_curve25519_shared_secret_ex(&privkey, &pubkey, shared, sharedSz, EC25519_LITTLE_ENDIAN) != MP_OKAY) WOLFSSL_MSG("wc_curve25519_shared_secret_ex failed"); else ret = WOLFSSL_SUCCESS; wc_curve25519_free(&privkey); wc_curve25519_free(&pubkey); return ret; #endif /* WOLFSSL_KEY_GEN */ } #endif /* OPENSSL_EXTRA && HAVE_CURVE25519 */ #if defined(OPENSSL_EXTRA) && defined(HAVE_ED25519) /* return 1 if success, 0 if error * output keys are little endian format */ int wolfSSL_ED25519_generate_key(unsigned char *priv, unsigned int *privSz, unsigned char *pub, unsigned int *pubSz) { #ifndef WOLFSSL_KEY_GEN WOLFSSL_MSG("No Key Gen built in"); (void) priv; (void) privSz; (void) pub; (void) pubSz; return WOLFSSL_FAILURE; #else /* WOLFSSL_KEY_GEN */ int ret = WOLFSSL_FAILURE; int initTmpRng = 0; WC_RNG *rng = NULL; #ifdef WOLFSSL_SMALL_STACK WC_RNG *tmpRNG = NULL; #else WC_RNG tmpRNG[1]; #endif WOLFSSL_ENTER("wolfSSL_ED25519_generate_key"); if (priv == NULL || privSz == NULL || *privSz < ED25519_PRV_KEY_SIZE || pub == NULL || pubSz == NULL || *pubSz < ED25519_PUB_KEY_SIZE) { WOLFSSL_MSG("Bad arguments"); return WOLFSSL_FAILURE; } #ifdef WOLFSSL_SMALL_STACK tmpRNG = (WC_RNG*)XMALLOC(sizeof(WC_RNG), NULL, DYNAMIC_TYPE_RNG); if (tmpRNG == NULL) return WOLFSSL_FATAL_ERROR; #endif if (wc_InitRng(tmpRNG) == 0) { rng = tmpRNG; initTmpRng = 1; } else { WOLFSSL_MSG("Bad RNG Init, trying global"); if (initGlobalRNG == 0) WOLFSSL_MSG("Global RNG no Init"); else rng = &globalRNG; } if (rng) { ed25519_key key; if (wc_ed25519_init(&key) != MP_OKAY) WOLFSSL_MSG("wc_ed25519_init failed"); else if (wc_ed25519_make_key(rng, ED25519_KEY_SIZE, &key)!=MP_OKAY) WOLFSSL_MSG("wc_ed25519_make_key failed"); /* export private key */ else if (wc_ed25519_export_key(&key, priv, privSz, pub, pubSz)!=MP_OKAY) WOLFSSL_MSG("wc_ed25519_export_key failed"); else ret = WOLFSSL_SUCCESS; wc_ed25519_free(&key); } if (initTmpRng) wc_FreeRng(tmpRNG); #ifdef WOLFSSL_SMALL_STACK XFREE(tmpRNG, NULL, DYNAMIC_TYPE_RNG); #endif return ret; #endif /* WOLFSSL_KEY_GEN */ } /* return 1 if success, 0 if error * input and output keys are little endian format * priv is a buffer containing private and public part of key */ int wolfSSL_ED25519_sign(const unsigned char *msg, unsigned int msgSz, const unsigned char *priv, unsigned int privSz, unsigned char *sig, unsigned int *sigSz) { #ifndef WOLFSSL_KEY_GEN WOLFSSL_MSG("No Key Gen built in"); (void) msg; (void) msgSz; (void) priv; (void) privSz; (void) sig; (void) sigSz; return WOLFSSL_FAILURE; #else /* WOLFSSL_KEY_GEN */ ed25519_key key; int ret = WOLFSSL_FAILURE; WOLFSSL_ENTER("wolfSSL_ED25519_sign"); if (priv == NULL || privSz != ED25519_PRV_KEY_SIZE || msg == NULL || sig == NULL || *sigSz < ED25519_SIG_SIZE) { WOLFSSL_MSG("Bad arguments"); return WOLFSSL_FAILURE; } /* import key */ if (wc_ed25519_init(&key) != MP_OKAY) { WOLFSSL_MSG("wc_curve25519_init failed"); return ret; } if (wc_ed25519_import_private_key(priv, privSz/2, priv+(privSz/2), ED25519_PUB_KEY_SIZE, &key) != MP_OKAY){ WOLFSSL_MSG("wc_ed25519_import_private failed"); wc_ed25519_free(&key); return ret; } if (wc_ed25519_sign_msg(msg, msgSz, sig, sigSz, &key) != MP_OKAY) WOLFSSL_MSG("wc_curve25519_shared_secret_ex failed"); else ret = WOLFSSL_SUCCESS; wc_ed25519_free(&key); return ret; #endif /* WOLFSSL_KEY_GEN */ } /* return 1 if success, 0 if error * input and output keys are little endian format * pub is a buffer containing public part of key */ int wolfSSL_ED25519_verify(const unsigned char *msg, unsigned int msgSz, const unsigned char *pub, unsigned int pubSz, const unsigned char *sig, unsigned int sigSz) { #ifndef WOLFSSL_KEY_GEN WOLFSSL_MSG("No Key Gen built in"); (void) msg; (void) msgSz; (void) pub; (void) pubSz; (void) sig; (void) sigSz; return WOLFSSL_FAILURE; #else /* WOLFSSL_KEY_GEN */ ed25519_key key; int ret = WOLFSSL_FAILURE, check = 0; WOLFSSL_ENTER("wolfSSL_ED25519_verify"); if (pub == NULL || pubSz != ED25519_PUB_KEY_SIZE || msg == NULL || sig == NULL || sigSz != ED25519_SIG_SIZE) { WOLFSSL_MSG("Bad arguments"); return WOLFSSL_FAILURE; } /* import key */ if (wc_ed25519_init(&key) != MP_OKAY) { WOLFSSL_MSG("wc_curve25519_init failed"); return ret; } if (wc_ed25519_import_public(pub, pubSz, &key) != MP_OKAY){ WOLFSSL_MSG("wc_ed25519_import_public failed"); wc_ed25519_free(&key); return ret; } if ((ret = wc_ed25519_verify_msg((byte*)sig, sigSz, msg, msgSz, &check, &key)) != MP_OKAY) { WOLFSSL_MSG("wc_ed25519_verify_msg failed"); } else if (!check) WOLFSSL_MSG("wc_ed25519_verify_msg failed (signature invalid)"); else ret = WOLFSSL_SUCCESS; wc_ed25519_free(&key); return ret; #endif /* WOLFSSL_KEY_GEN */ } #endif /* OPENSSL_EXTRA && HAVE_ED25519 */ #ifdef WOLFSSL_JNI int wolfSSL_set_jobject(WOLFSSL* ssl, void* objPtr) { WOLFSSL_ENTER("wolfSSL_set_jobject"); if (ssl != NULL) { ssl->jObjectRef = objPtr; return WOLFSSL_SUCCESS; } return WOLFSSL_FAILURE; } void* wolfSSL_get_jobject(WOLFSSL* ssl) { WOLFSSL_ENTER("wolfSSL_get_jobject"); if (ssl != NULL) return ssl->jObjectRef; return NULL; } #endif /* WOLFSSL_JNI */ #ifdef WOLFSSL_ASYNC_CRYPT int wolfSSL_CTX_AsyncPoll(WOLFSSL_CTX* ctx, WOLF_EVENT** events, int maxEvents, WOLF_EVENT_FLAG flags, int* eventCount) { if (ctx == NULL) { return BAD_FUNC_ARG; } return wolfAsync_EventQueuePoll(&ctx->event_queue, NULL, events, maxEvents, flags, eventCount); } int wolfSSL_AsyncPoll(WOLFSSL* ssl, WOLF_EVENT_FLAG flags) { int ret, eventCount = 0; WOLF_EVENT* events[1]; if (ssl == NULL) { return BAD_FUNC_ARG; } ret = wolfAsync_EventQueuePoll(&ssl->ctx->event_queue, ssl, events, sizeof(events)/sizeof(events), flags, &eventCount); if (ret == 0) { ret = eventCount; } return ret; } #endif /* WOLFSSL_ASYNC_CRYPT */ #ifdef OPENSSL_EXTRA unsigned long wolfSSL_ERR_peek_error_line_data(const char **file, int *line, const char **data, int *flags) { WOLFSSL_ENTER("wolfSSL_ERR_peek_error_line_data"); (void)line; (void)file; /* No data or flags stored - error display only in Nginx. */ if (data != NULL) { *data = ""; } if (flags != NULL) { *flags = 0; } #if defined(OPENSSL_ALL) || defined(WOLFSSL_NGINX) || \ defined(WOLFSSL_HAPROXY) || defined(WOLFSSL_MYSQL_COMPATIBLE) { int ret = 0; while (1) { if ((ret = wc_PeekErrorNode(-1, file, NULL, line)) < 0) { WOLFSSL_MSG("Issue peeking at error node in queue"); return 0; } ret = -ret; if (ret == ASN_NO_PEM_HEADER) return (ERR_LIB_PEM << 24) | PEM_R_NO_START_LINE; if (ret != WANT_READ && ret != WANT_WRITE && ret != ZERO_RETURN && ret != WOLFSSL_ERROR_ZERO_RETURN && ret != SOCKET_PEER_CLOSED_E && ret != SOCKET_ERROR_E) break; wc_RemoveErrorNode(-1); } return (unsigned long)ret; } #else return (unsigned long)(0 - NOT_COMPILED_IN); #endif } #endif #if defined(OPENSSL_ALL) || defined(WOLFSSL_NGINX) || defined(WOLFSSL_HAPROXY) #ifndef NO_WOLFSSL_STUB WOLF_STACK_OF(WOLFSSL_CIPHER) *wolfSSL_get_ciphers_compat(const WOLFSSL *ssl) { (void)ssl; WOLFSSL_STUB("wolfSSL_get_ciphers_compat"); return NULL; } #endif #ifndef NO_WOLFSSL_STUB void wolfSSL_OPENSSL_config(char *config_name) { (void)config_name; WOLFSSL_STUB("OPENSSL_config"); } #endif #endif #if defined(OPENSSL_ALL) || defined(WOLFSSL_NGINX) || defined(WOLFSSL_HAPROXY) \ || defined(OPENSSL_EXTRA) || defined(HAVE_LIGHTY) int wolfSSL_X509_get_ex_new_index(int idx, void *arg, void *a, void *b, void *c) { static int x509_idx = 0; WOLFSSL_ENTER("wolfSSL_X509_get_ex_new_index"); (void)idx; (void)arg; (void)a; (void)b; (void)c; return x509_idx++; } void *wolfSSL_X509_get_ex_data(X509 *x509, int idx) { WOLFSSL_ENTER("wolfSSL_X509_get_ex_data"); #ifdef HAVE_EX_DATA if (x509 != NULL && idx < MAX_EX_DATA && idx >= 0) { return x509->ex_data[idx]; } #else (void)x509; (void)idx; #endif return NULL; } int wolfSSL_X509_set_ex_data(X509 *x509, int idx, void *data) { WOLFSSL_ENTER("wolfSSL_X509_set_ex_data"); #ifdef HAVE_EX_DATA if (x509 != NULL && idx < MAX_EX_DATA) { x509->ex_data[idx] = data; return WOLFSSL_SUCCESS; } #else (void)x509; (void)idx; (void)data; #endif return WOLFSSL_FAILURE; } int wolfSSL_X509_NAME_digest(const WOLFSSL_X509_NAME *name, const WOLFSSL_EVP_MD *type, unsigned char *md, unsigned int *len) { WOLFSSL_ENTER("wolfSSL_X509_NAME_digest"); if (name == NULL || type == NULL) return WOLFSSL_FAILURE; #ifndef NO_FILESYSTEM return wolfSSL_EVP_Digest((unsigned char*)name->fullName.fullName, name->fullName.fullNameLen, md, len, type, NULL); #else (void)md; (void)len; return NOT_COMPILED_IN; #endif } long wolfSSL_SSL_CTX_get_timeout(const WOLFSSL_CTX *ctx) { WOLFSSL_ENTER("wolfSSL_SSL_CTX_get_timeout"); if (ctx == NULL) return 0; return ctx->timeout; } #ifdef HAVE_ECC int wolfSSL_SSL_CTX_set_tmp_ecdh(WOLFSSL_CTX *ctx, WOLFSSL_EC_KEY *ecdh) { WOLFSSL_ENTER("wolfSSL_SSL_CTX_set_tmp_ecdh"); if (ctx == NULL || ecdh == NULL) return BAD_FUNC_ARG; ctx->ecdhCurveOID = ecdh->group->curve_oid; return WOLFSSL_SUCCESS; } #endif /* Assumes that the session passed in is from the cache. */ int wolfSSL_SSL_CTX_remove_session(WOLFSSL_CTX *ctx, WOLFSSL_SESSION *s) { WOLFSSL_ENTER("wolfSSL_SSL_CTX_remove_session"); if (ctx == NULL || s == NULL) return BAD_FUNC_ARG; #ifdef HAVE_EXT_CACHE if (!ctx->internalCacheOff) #endif { /* Don't remove session just timeout session. */ s->timeout = 0; } #ifdef HAVE_EXT_CACHE if (ctx->rem_sess_cb != NULL) ctx->rem_sess_cb(ctx, s); #endif return 0; } BIO *wolfSSL_SSL_get_rbio(const WOLFSSL *s) { WOLFSSL_ENTER("wolfSSL_SSL_get_rbio"); (void)s; /* Nginx sets the buffer size if the read BIO is different to write BIO. * The setting buffer size doesn't do anything so return NULL for both. */ return NULL; } BIO *wolfSSL_SSL_get_wbio(const WOLFSSL *s) { WOLFSSL_ENTER("wolfSSL_SSL_get_wbio"); (void)s; /* Nginx sets the buffer size if the read BIO is different to write BIO. * The setting buffer size doesn't do anything so return NULL for both. */ return NULL; } int wolfSSL_SSL_do_handshake(WOLFSSL *s) { WOLFSSL_ENTER("wolfSSL_SSL_do_handshake"); if (s == NULL) return WOLFSSL_FAILURE; if (s->options.side == WOLFSSL_CLIENT_END) { #ifndef NO_WOLFSSL_CLIENT return wolfSSL_connect(s); #else WOLFSSL_MSG("Client not compiled in"); return WOLFSSL_FAILURE; #endif } #ifndef NO_WOLFSSL_SERVER return wolfSSL_accept(s); #else WOLFSSL_MSG("Server not compiled in"); return WOLFSSL_FAILURE; #endif } int wolfSSL_SSL_in_init(WOLFSSL *s) { WOLFSSL_ENTER("wolfSSL_SSL_in_init"); if (s == NULL) return WOLFSSL_FAILURE; if (s->options.side == WOLFSSL_CLIENT_END) return s->options.connectState < SECOND_REPLY_DONE; return s->options.acceptState < ACCEPT_THIRD_REPLY_DONE; } #ifndef NO_SESSION_CACHE WOLFSSL_SESSION *wolfSSL_SSL_get0_session(const WOLFSSL *ssl) { WOLFSSL_SESSION *session; WOLFSSL_ENTER("wolfSSL_SSL_get0_session"); if (ssl == NULL) { return NULL; } session = wolfSSL_get_session((WOLFSSL*)ssl); #ifdef HAVE_EXT_CACHE ((WOLFSSL*)ssl)->extSession = session; #endif return session; } #endif /* NO_SESSION_CACHE */ int wolfSSL_X509_check_host(X509 *x, const char *chk, size_t chklen, unsigned int flags, char **peername) { int ret; DecodedCert dCert; WOLFSSL_ENTER("wolfSSL_X509_check_host"); /* flags and peername not needed for Nginx. */ (void)flags; (void)peername; if (flags == WOLFSSL_NO_WILDCARDS) { WOLFSSL_MSG("X509_CHECK_FLAG_NO_WILDCARDS not yet implemented"); return WOLFSSL_FAILURE; } InitDecodedCert(&dCert, x->derCert->buffer, x->derCert->length, NULL); ret = ParseCertRelative(&dCert, CERT_TYPE, 0, NULL); if (ret != 0) return WOLFSSL_FAILURE; ret = CheckHostName(&dCert, (char *)chk, chklen); FreeDecodedCert(&dCert); if (ret != 0) return WOLFSSL_FAILURE; return WOLFSSL_SUCCESS; } int wolfSSL_i2a_ASN1_INTEGER(BIO *bp, const WOLFSSL_ASN1_INTEGER *a) { static char num[16] = { '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e', 'f' }; int i; word32 j; word32 len = 0; WOLFSSL_ENTER("wolfSSL_i2a_ASN1_INTEGER"); if (bp == NULL || a == NULL) return WOLFSSL_FAILURE; /* Skip ASN.1 INTEGER (type) byte. */ i = 1; /* When indefinte length, can't determine length with data available. */ if (a->data[i] == 0x80) return 0; /* One length byte if less than 0x80. */ if (a->data[i] < 0x80) len = a->data[i++]; /* Multiple length byte if greater than 0x80. */ else if (a->data[i] > 0x80) { switch (a->data[i++] - 0x80) { case 4: len |= a->data[i++] << 24; FALL_THROUGH; case 3: len |= a->data[i++] << 16; FALL_THROUGH; case 2: len |= a->data[i++] << 8; FALL_THROUGH; case 1: len |= a->data[i++]; break; default: /* Not supporting greater than 4 bytes of length. */ return 0; } } /* Zero length integer is the value zero. */ if (len == 0) { wolfSSL_BIO_write(bp, "00", 2); return 2; } /* Don't do negative - just write out every byte. */ for (j = 0; j < len; i++,j++) { wolfSSL_BIO_write(bp, &num[a->data[i] >> 4], 1); wolfSSL_BIO_write(bp, &num[a->data[i] & 0xf], 1); } /* Two nibbles written for each byte. */ return len * 2; } #if defined(HAVE_SESSION_TICKET) && !defined(NO_WOLFSSL_SERVER) /* Expected return values from implementations of OpenSSL ticket key callback. */ #define TICKET_KEY_CB_RET_FAILURE -1 #define TICKET_KEY_CB_RET_NOT_FOUND 0 #define TICKET_KEY_CB_RET_OK 1 #define TICKET_KEY_CB_RET_RENEW 2 /* The ticket key callback as used in OpenSSL is stored here. */ static int (*ticketKeyCb)(WOLFSSL *ssl, unsigned char *name, unsigned char *iv, WOLFSSL_EVP_CIPHER_CTX *ectx, WOLFSSL_HMAC_CTX *hctx, int enc) = NULL; /* Implementation of session ticket encryption/decryption using OpenSSL * callback to initialize the cipher and HMAC. * * ssl The SSL/TLS object. * keyName The key name - used to identify the key to be used. * iv The IV to use. * mac The MAC of the encrypted data. * enc Encrypt ticket. * encTicket The ticket data. * encTicketLen The length of the ticket data. * encLen The encrypted/decrypted ticket length - output length. * ctx Ignored. Application specific data. * returns WOLFSSL_TICKET_RET_OK to indicate success, * WOLFSSL_TICKET_RET_CREATE if a new ticket is required and * WOLFSSL_TICKET_RET_FATAL on error. */ static int wolfSSL_TicketKeyCb(WOLFSSL* ssl, unsigned char keyName[WOLFSSL_TICKET_NAME_SZ], unsigned char iv[WOLFSSL_TICKET_IV_SZ], unsigned char mac[WOLFSSL_TICKET_MAC_SZ], int enc, unsigned char* encTicket, int encTicketLen, int* encLen, void* ctx) { byte digest[WC_MAX_DIGEST_SIZE]; WOLFSSL_EVP_CIPHER_CTX evpCtx; WOLFSSL_HMAC_CTX hmacCtx; unsigned int mdSz = 0; int len = 0; int ret = WOLFSSL_TICKET_RET_FATAL; int res; (void)ctx; if (ticketKeyCb == NULL) return WOLFSSL_TICKET_RET_FATAL; wolfSSL_EVP_CIPHER_CTX_init(&evpCtx); /* Initialize the cipher and HMAC. */ res = ticketKeyCb(ssl, keyName, iv, &evpCtx, &hmacCtx, enc); if (res != TICKET_KEY_CB_RET_OK && res != TICKET_KEY_CB_RET_RENEW) return WOLFSSL_TICKET_RET_FATAL; if (enc) { /* Encrypt in place. */ if (!wolfSSL_EVP_CipherUpdate(&evpCtx, encTicket, &len, encTicket, encTicketLen)) goto end; encTicketLen = len; if (!wolfSSL_EVP_EncryptFinal(&evpCtx, &encTicket[encTicketLen], &len)) goto end; /* Total length of encrypted data. */ encTicketLen += len; *encLen = encTicketLen; /* HMAC the encrypted data into the parameter 'mac'. */ if (!wolfSSL_HMAC_Update(&hmacCtx, encTicket, encTicketLen)) goto end; #ifdef WOLFSSL_SHA512 /* Check for SHA512, which would overrun the mac buffer */ if (hmacCtx.hmac.macType == WC_SHA512) goto end; #endif if (!wolfSSL_HMAC_Final(&hmacCtx, mac, &mdSz)) goto end; } else { /* HMAC the encrypted data and compare it to the passed in data. */ if (!wolfSSL_HMAC_Update(&hmacCtx, encTicket, encTicketLen)) goto end; if (!wolfSSL_HMAC_Final(&hmacCtx, digest, &mdSz)) goto end; if (XMEMCMP(mac, digest, mdSz) != 0) goto end; /* Decrypt the ticket data in place. */ if (!wolfSSL_EVP_CipherUpdate(&evpCtx, encTicket, &len, encTicket, encTicketLen)) goto end; encTicketLen = len; if (!wolfSSL_EVP_DecryptFinal(&evpCtx, &encTicket[encTicketLen], &len)) goto end; /* Total length of decrypted data. */ *encLen = encTicketLen + len; } ret = (res == TICKET_KEY_CB_RET_RENEW) ? WOLFSSL_TICKET_RET_CREATE : WOLFSSL_TICKET_RET_OK; end: return ret; } /* Set the callback to use when encrypting/decrypting tickets. * * ctx The SSL/TLS context object. * cb The OpenSSL session ticket callback. * returns WOLFSSL_SUCCESS to indicate success. */ int wolfSSL_CTX_set_tlsext_ticket_key_cb(WOLFSSL_CTX *ctx, int (*cb)( WOLFSSL *ssl, unsigned char *name, unsigned char *iv, WOLFSSL_EVP_CIPHER_CTX *ectx, WOLFSSL_HMAC_CTX *hctx, int enc)) { /* Store callback in a global. */ ticketKeyCb = cb; /* Set the ticket encryption callback to be a wrapper around OpenSSL * callback. */ ctx->ticketEncCb = wolfSSL_TicketKeyCb; return WOLFSSL_SUCCESS; } #endif /* HAVE_SESSION_TICKET */ #endif /* OPENSSL_ALL || WOLFSSL_NGINX || WOLFSSL_HAPROXY || OPENSSL_EXTRA || HAVE_LIGHTY */ #if defined(OPENSSL_ALL) || defined(WOLFSSL_NGINX) || defined(WOLFSSL_HAPROXY) #ifdef HAVE_OCSP /* Not an OpenSSL API. */ int wolfSSL_get_ocsp_response(WOLFSSL* ssl, byte** response) { *response = ssl->ocspResp; return ssl->ocspRespSz; } /* Not an OpenSSL API. */ char* wolfSSL_get_ocsp_url(WOLFSSL* ssl) { return ssl->url; } /* Not an OpenSSL API. */ int wolfSSL_set_ocsp_url(WOLFSSL* ssl, char* url) { if (ssl == NULL) return WOLFSSL_FAILURE; ssl->url = url; return WOLFSSL_SUCCESS; } #endif /* OCSP */ #endif /* OPENSSL_ALL / WOLFSSL_NGINX / WOLFSSL_HAPROXY */ #if defined(WOLFSSL_NGINX) || defined(WOLFSSL_HAPROXY) || \ defined(OPENSSL_EXTRA) || defined(OPENSSL_ALL) int wolfSSL_CTX_get_extra_chain_certs(WOLFSSL_CTX* ctx, WOLF_STACK_OF(X509)** chain) { word32 idx; word32 length; WOLFSSL_STACK* node; WOLFSSL_STACK* last = NULL; if (ctx == NULL || chain == NULL) { chain = NULL; return WOLFSSL_FAILURE; } if (ctx->x509Chain != NULL) { *chain = ctx->x509Chain; return WOLFSSL_SUCCESS; } /* If there are no chains then success! */ *chain = NULL; if (ctx->certChain == NULL || ctx->certChain->length == 0) { return WOLFSSL_SUCCESS; } /* Create a new stack of WOLFSSL_X509 object from chain buffer. */ for (idx = 0; idx < ctx->certChain->length; ) { node = (WOLFSSL_STACK*)XMALLOC(sizeof(WOLFSSL_STACK), NULL, DYNAMIC_TYPE_OPENSSL); if (node == NULL) return WOLFSSL_FAILURE; node->next = NULL; /* 3 byte length | X509 DER data */ ato24(ctx->certChain->buffer + idx, &length); idx += 3; /* Create a new X509 from DER encoded data. */ node->data.x509 = wolfSSL_X509_d2i(NULL, ctx->certChain->buffer + idx, length); if (node->data.x509 == NULL) { XFREE(node, NULL, DYNAMIC_TYPE_OPENSSL); /* Return as much of the chain as we created. */ ctx->x509Chain = *chain; return WOLFSSL_FAILURE; } idx += length; /* Add object to the end of the stack. */ if (last == NULL) { node->num = 1; *chain = node; } else { (*chain)->num++; last->next = node; } last = node; } ctx->x509Chain = *chain; return WOLFSSL_SUCCESS; } int wolfSSL_CTX_set_tlsext_status_cb(WOLFSSL_CTX* ctx, int(*cb)(WOLFSSL*, void*)) { if (ctx == NULL || ctx->cm == NULL) return WOLFSSL_FAILURE; #if defined(HAVE_CERTIFICATE_STATUS_REQUEST) \ || defined(HAVE_CERTIFICATE_STATUS_REQUEST_V2) /* Ensure stapling is on for callback to be used. */ wolfSSL_CTX_EnableOCSPStapling(ctx); if (ctx->cm->ocsp_stapling == NULL) return WOLFSSL_FAILURE; ctx->cm->ocsp_stapling->statusCb = cb; #else (void)cb; #endif return WOLFSSL_SUCCESS; } int wolfSSL_X509_STORE_CTX_get1_issuer(WOLFSSL_X509 **issuer, WOLFSSL_X509_STORE_CTX *ctx, WOLFSSL_X509 *x) { WOLFSSL_STACK* node; Signer* ca = NULL; #ifdef WOLFSSL_SMALL_STACK DecodedCert* cert = NULL; #else DecodedCert cert[1]; #endif if (issuer == NULL || ctx == NULL || x == NULL) return WOLFSSL_FATAL_ERROR; if (ctx->chain != NULL) { for (node = ctx->chain; node != NULL; node = node->next) { if (wolfSSL_X509_check_issued(node->data.x509, x) == X509_V_OK) { *issuer = x; return WOLFSSL_SUCCESS; } } } #ifdef WOLFSSL_SMALL_STACK cert = (DecodedCert*)XMALLOC(sizeof(DecodedCert), NULL, DYNAMIC_TYPE_DCERT); if (cert == NULL) return WOLFSSL_FAILURE; #endif /* Use existing CA retrieval APIs that use DecodedCert. */ InitDecodedCert(cert, x->derCert->buffer, x->derCert->length, NULL); if (ParseCertRelative(cert, CERT_TYPE, 0, NULL) == 0) { #ifndef NO_SKID if (cert->extAuthKeyIdSet) ca = GetCA(ctx->store->cm, cert->extAuthKeyId); if (ca == NULL) ca = GetCAByName(ctx->store->cm, cert->issuerHash); #else /* NO_SKID */ ca = GetCA(ctx->store->cm, cert->issuerHash); #endif /* NO SKID */ } FreeDecodedCert(cert); #ifdef WOLFSSL_SMALL_STACK XFREE(cert, NULL, DYNAMIC_TYPE_DCERT); #endif if (ca == NULL) return WOLFSSL_FAILURE; *issuer = (WOLFSSL_X509 *)XMALLOC(sizeof(WOLFSSL_X509), 0, DYNAMIC_TYPE_OPENSSL); if (*issuer == NULL) return WOLFSSL_FAILURE; /* Create an empty certificate as CA doesn't have a certificate. */ XMEMSET(*issuer, 0, sizeof(WOLFSSL_X509)); (*issuer)->dynamicMemory = 1; #ifdef WOLFSSL_SIGNER_DER_CERT if (AllocDer(&(*issuer)->derCert, ca->derCert->length, ca->derCert->type, NULL) == 0) { XMEMCPY((*issuer)->derCert->buffer, ca->derCert->buffer, ca->derCert->length); } else { XFREE(*issuer, 0, DYNAMIC_TYPE_OPENSSL); return WOLFSSL_FAILURE; } #endif /* Result is ignored when passed to wolfSSL_OCSP_cert_to_id(). */ return WOLFSSL_SUCCESS; } void wolfSSL_X509_email_free(WOLF_STACK_OF(WOLFSSL_STRING) *sk) { WOLFSSL_STACK *curr; while (sk != NULL) { curr = sk; sk = sk->next; XFREE(curr, NULL, DYNAMIC_TYPE_OPENSSL); } } WOLF_STACK_OF(WOLFSSL_STRING) *wolfSSL_X509_get1_ocsp(WOLFSSL_X509 *x) { WOLFSSL_STACK* list = NULL; char* url; if (x->authInfoSz == 0) return NULL; list = (WOLFSSL_STACK*)XMALLOC(sizeof(WOLFSSL_STACK) + x->authInfoSz + 1, NULL, DYNAMIC_TYPE_OPENSSL); if (list == NULL) return NULL; url = (char*)list; url += sizeof(WOLFSSL_STACK); XMEMCPY(url, x->authInfo, x->authInfoSz); url[x->authInfoSz] = '\0'; list->data.string = url; list->next = NULL; return list; } int wolfSSL_X509_check_issued(WOLFSSL_X509 *issuer, WOLFSSL_X509 *subject) { WOLFSSL_X509_NAME *issuerName = wolfSSL_X509_get_issuer_name(subject); WOLFSSL_X509_NAME *subjectName = wolfSSL_X509_get_subject_name(issuer); if (issuerName == NULL || subjectName == NULL) return X509_V_ERR_SUBJECT_ISSUER_MISMATCH; /* Literal matching of encoded names and key ids. */ if (issuerName->sz != subjectName->sz || XMEMCMP(issuerName->name, subjectName->name, subjectName->sz) != 0) { return X509_V_ERR_SUBJECT_ISSUER_MISMATCH; } if (subject->authKeyId != NULL && issuer->subjKeyId != NULL) { if (subject->authKeyIdSz != issuer->subjKeyIdSz || XMEMCMP(subject->authKeyId, issuer->subjKeyId, issuer->subjKeyIdSz) != 0) { return X509_V_ERR_SUBJECT_ISSUER_MISMATCH; } } return X509_V_OK; } WOLFSSL_X509* wolfSSL_X509_dup(WOLFSSL_X509 *x) { return wolfSSL_X509_d2i(NULL, x->derCert->buffer, x->derCert->length); } char* wolfSSL_sk_WOLFSSL_STRING_value(WOLF_STACK_OF(WOLFSSL_STRING)* strings, int idx) { for (; idx > 0 && strings != NULL; idx--) strings = strings->next; if (strings == NULL) return NULL; return strings->data.string; } #endif /* WOLFSSL_NGINX || WOLFSSL_HAPROXY || OPENSSL_EXTRA || OPENSSL_ALL */ #if defined(OPENSSL_ALL) || defined(WOLFSSL_NGINX) || defined(WOLFSSL_HAPROXY) #ifdef HAVE_ALPN void wolfSSL_get0_alpn_selected(const WOLFSSL *ssl, const unsigned char **data, unsigned int *len) { word16 nameLen; if (ssl != NULL && data != NULL && len != NULL) { TLSX_ALPN_GetRequest(ssl->extensions, (void **)data, &nameLen); *len = nameLen; } } int wolfSSL_select_next_proto(unsigned char **out, unsigned char *outLen, const unsigned char *in, unsigned int inLen, const unsigned char *clientNames, unsigned int clientLen) { unsigned int i, j; byte lenIn, lenClient; if (out == NULL || outLen == NULL || in == NULL || clientNames == NULL) return OPENSSL_NPN_UNSUPPORTED; for (i = 0; i < inLen; i += lenIn) { lenIn = in[i++]; for (j = 0; j < clientLen; j += lenClient) { lenClient = clientNames[j++]; if (lenIn != lenClient) continue; if (XMEMCMP(in + i, clientNames + j, lenIn) == 0) { *out = (unsigned char *)(in + i); *outLen = lenIn; return OPENSSL_NPN_NEGOTIATED; } } } *out = (unsigned char *)clientNames + 1; *outLen = clientNames[0]; return OPENSSL_NPN_NO_OVERLAP; } void wolfSSL_CTX_set_alpn_select_cb(WOLFSSL_CTX *ctx, int (*cb) (WOLFSSL *ssl, const unsigned char **out, unsigned char *outlen, const unsigned char *in, unsigned int inlen, void *arg), void *arg) { if (ctx != NULL) { ctx->alpnSelect = cb; ctx->alpnSelectArg = arg; } } void wolfSSL_CTX_set_next_protos_advertised_cb(WOLFSSL_CTX *s, int (*cb) (WOLFSSL *ssl, const unsigned char **out, unsigned int *outlen, void *arg), void *arg) { (void)s; (void)cb; (void)arg; WOLFSSL_STUB("wolfSSL_CTX_set_next_protos_advertised_cb"); } void wolfSSL_CTX_set_next_proto_select_cb(WOLFSSL_CTX *s, int (*cb) (WOLFSSL *ssl, unsigned char **out, unsigned char *outlen, const unsigned char *in, unsigned int inlen, void *arg), void *arg) { (void)s; (void)cb; (void)arg; WOLFSSL_STUB("wolfSSL_CTX_set_next_proto_select_cb"); } void wolfSSL_get0_next_proto_negotiated(const WOLFSSL *s, const unsigned char **data, unsigned *len) { (void)s; (void)data; (void)len; WOLFSSL_STUB("wolfSSL_get0_next_proto_negotiated"); } #endif /* HAVE_ALPN */ #endif /* WOLFSSL_NGINX / WOLFSSL_HAPROXY */ #if defined(OPENSSL_EXTRA) && defined(HAVE_ECC) WOLFSSL_API int wolfSSL_CTX_set1_curves_list(WOLFSSL_CTX* ctx, char* names) { int idx, start = 0, len; int curve; char name[MAX_CURVE_NAME_SZ]; /* Disable all curves so that only the ones the user wants are enabled. */ ctx->disabledCurves = (word32)-1; for (idx = 1; names[idx-1] != '\0'; idx++) { if (names[idx] != ':' && names[idx] != '\0') continue; len = idx - 1 - start; if (len > MAX_CURVE_NAME_SZ - 1) return WOLFSSL_FAILURE; XMEMCPY(name, names + start, len); name[len] = 0; if ((XSTRNCMP(name, "prime256v1", len) == 0) || (XSTRNCMP(name, "secp256r1", len) == 0) || (XSTRNCMP(name, "P-256", len) == 0)) { curve = WOLFSSL_ECC_SECP256R1; } else if ((XSTRNCMP(name, "secp384r1", len) == 0) || (XSTRNCMP(name, "P-384", len) == 0)) { curve = WOLFSSL_ECC_SECP384R1; } else if ((XSTRNCMP(name, "secp521r1", len) == 0) || (XSTRNCMP(name, "P-521", len) == 0)) { curve = WOLFSSL_ECC_SECP521R1; } else if (XSTRNCMP(name, "X25519", len) == 0) curve = WOLFSSL_ECC_X25519; else if ((curve = wc_ecc_get_curve_id_from_name(name)) < 0) return WOLFSSL_FAILURE; /* Switch the bit to off and therefore is enabled. */ ctx->disabledCurves &= ~(1 << curve); start = idx + 1; } return WOLFSSL_SUCCESS; } #endif #ifdef OPENSSL_EXTRA #ifndef NO_WOLFSSL_STUB int wolfSSL_CTX_set_msg_callback(WOLFSSL_CTX *ctx, SSL_Msg_Cb cb) { WOLFSSL_STUB("SSL_CTX_set_msg_callback"); (void)ctx; (void)cb; return WOLFSSL_FAILURE; } #endif /* Sets a callback for when sending and receiving protocol messages. * * ssl WOLFSSL structure to set callback in * cb callback to use * * return SSL_SUCCESS on success and SSL_FAILURE with error case */ int wolfSSL_set_msg_callback(WOLFSSL *ssl, SSL_Msg_Cb cb) { WOLFSSL_ENTER("wolfSSL_set_msg_callback"); if (ssl == NULL) { return SSL_FAILURE; } if (cb != NULL) { ssl->toInfoOn = 1; } ssl->protoMsgCb = cb; return SSL_SUCCESS; } #ifndef NO_WOLFSSL_STUB int wolfSSL_CTX_set_msg_callback_arg(WOLFSSL_CTX *ctx, void* arg) { WOLFSSL_STUB("SSL_CTX_set_msg_callback_arg"); (void)ctx; (void)arg; return WOLFSSL_FAILURE; } #endif int wolfSSL_set_msg_callback_arg(WOLFSSL *ssl, void* arg) { WOLFSSL_ENTER("wolfSSL_set_msg_callback_arg"); ssl->protoMsgCtx = arg; return WOLFSSL_SUCCESS; } void *wolfSSL_OPENSSL_memdup(const void *data, size_t siz, const char* file, int line) { void *ret; (void)file; (void)line; if (data == NULL || siz >= INT_MAX) return NULL; ret = OPENSSL_malloc(siz); if (ret == NULL) { return NULL; } return XMEMCPY(ret, data, siz); } int wolfSSL_CTX_set_alpn_protos(WOLFSSL_CTX *ctx, const unsigned char *p, unsigned int p_len) { WOLFSSL_ENTER("wolfSSL_CTX_set_alpn_protos"); if(ctx == NULL) return BAD_FUNC_ARG; if((void *)ctx->alpn_cli_protos != NULL) wolfSSL_OPENSSL_free((void *)ctx->alpn_cli_protos); ctx->alpn_cli_protos = (const unsigned char *)wolfSSL_OPENSSL_memdup(p, p_len, NULL, 0); if (ctx->alpn_cli_protos == NULL) { return SSL_FAILURE; } ctx->alpn_cli_protos_len = p_len; return SSL_SUCCESS; } #endif #endif /* WOLFCRYPT_ONLY */ #if defined(OPENSSL_EXTRA) int wolfSSL_X509_check_ca(WOLFSSL_X509 *x509) { WOLFSSL_ENTER("X509_check_ca"); if (x509 == NULL) return WOLFSSL_FAILURE; if (x509->isCa) return 1; if (x509->extKeyUsageCrit) return 4; return 0; } const char *wolfSSL_ASN1_tag2str(int tag) { static const char *const tag_label[31] = { "EOC", "BOOLEAN", "INTEGER", "BIT STRING", "OCTET STRING", "NULL", "OBJECT", "OBJECT DESCRIPTOR", "EXTERNAL", "REAL", "ENUMERATED", "<ASN1 11>", "UTF8STRING", "<ASN1 13>", "<ASN1 14>", "<ASN1 15>", "SEQUENCE", "SET", "NUMERICSTRING", "PRINTABLESTRING", "T61STRING", "VIDEOTEXTSTRING", "IA5STRING", "UTCTIME", "GENERALIZEDTIME", "GRAPHICSTRING", "VISIBLESTRING", "GENERALSTRING", "UNIVERSALSTRING", "<ASN1 29>", "BMPSTRING" }; if ((tag == V_ASN1_NEG_INTEGER) || (tag == V_ASN1_NEG_ENUMERATED)) tag &= ~0x100; if (tag < 0 || tag > 30) return "(unknown)"; return tag_label[tag]; } static int check_esc_char(char c, char *esc) { char *ptr = NULL; ptr = esc; while(*ptr != 0){ if (c == *ptr) return 1; ptr++; } return 0; } int wolfSSL_ASN1_STRING_print_ex(WOLFSSL_BIO *out, WOLFSSL_ASN1_STRING *str, unsigned long flags) { size_t str_len = 0, type_len = 0; unsigned char *typebuf = NULL; const char *hash="#"; WOLFSSL_ENTER("wolfSSL_ASN1_STRING_PRINT_ex"); if (out == NULL || str == NULL) return WOLFSSL_FAILURE; /* add ASN1 type tag */ if (flags & ASN1_STRFLGS_SHOW_TYPE){ const char *tag = wolfSSL_ASN1_tag2str(str->type); /* colon len + tag len + null*/ type_len = XSTRLEN(tag) + 2; typebuf = (unsigned char *)XMALLOC(type_len , NULL, DYNAMIC_TYPE_TMP_BUFFER); if (typebuf == NULL){ WOLFSSL_MSG("memory alloc failed."); return WOLFSSL_FAILURE; } XMEMSET(typebuf, 0, type_len); XSNPRINTF((char*)typebuf, (size_t)type_len , "%s:", tag); type_len--; } /* dump hex */ if (flags & ASN1_STRFLGS_DUMP_ALL){ static const char hex_char[] = { '0', '1', '2', '3', '4', '5', '6', '7','8', '9', 'A', 'B', 'C', 'D', 'E', 'F' }; char hex_tmp[4]; char *str_ptr, *str_end; if (type_len > 0){ if (wolfSSL_BIO_write(out, typebuf, (int)type_len) != (int)type_len){ XFREE(typebuf, NULL, DYNAMIC_TYPE_TMP_BUFFER); return WOLFSSL_FAILURE; } str_len += type_len; } if (wolfSSL_BIO_write(out, hash, 1) != 1){ goto err_exit; } str_len++; if (flags & ASN1_STRFLGS_DUMP_DER){ hex_tmp[0] = hex_char[str->type >> 4]; hex_tmp[1] = hex_char[str->type & 0xf]; hex_tmp[2] = hex_char[str->length >> 4]; hex_tmp[3] = hex_char[str->length & 0xf]; if (wolfSSL_BIO_write(out, hex_tmp, 4) != 4){ goto err_exit; } str_len += 4; XMEMSET(hex_tmp, 0, 4); } str_ptr = str->data; str_end = str->data + str->length; while (str_ptr < str_end){ hex_tmp[0] = hex_char[*str_ptr >> 4]; hex_tmp[1] = hex_char[*str_ptr & 0xf]; if (wolfSSL_BIO_write(out, hex_tmp, 2) != 2){ goto err_exit; } str_ptr++; str_len += 2; } if (type_len > 0) XFREE(typebuf, NULL, DYNAMIC_TYPE_TMP_BUFFER); return (int)str_len; } if (type_len > 0){ if (wolfSSL_BIO_write(out, typebuf, (int)type_len) != (int)type_len){ XFREE(typebuf, NULL, DYNAMIC_TYPE_TMP_BUFFER); return WOLFSSL_FAILURE; } str_len += type_len; } if (flags & ASN1_STRFLGS_ESC_2253){ char esc_ch[] = "+;<>\\"; char* esc_ptr = NULL; esc_ptr = str->data; while (*esc_ptr != 0){ if (check_esc_char(*esc_ptr, esc_ch)){ if (wolfSSL_BIO_write(out,"\\", 1) != 1) goto err_exit; str_len++; } if (wolfSSL_BIO_write(out, esc_ptr, 1) != 1) goto err_exit; str_len++; esc_ptr++; } if (type_len > 0) XFREE(typebuf, NULL, DYNAMIC_TYPE_TMP_BUFFER); return (int)str_len; } if (wolfSSL_BIO_write(out, str->data, str->length) != str->length){ goto err_exit; } str_len += str->length; if (type_len > 0) XFREE(typebuf, NULL, DYNAMIC_TYPE_TMP_BUFFER); return (int)str_len; err_exit: if (type_len > 0) XFREE(typebuf, NULL, DYNAMIC_TYPE_TMP_BUFFER); return WOLFSSL_FAILURE; } #ifndef NO_ASN_TIME WOLFSSL_ASN1_TIME *wolfSSL_ASN1_TIME_to_generalizedtime(WOLFSSL_ASN1_TIME *t, WOLFSSL_ASN1_TIME **out) { unsigned char time_type; WOLFSSL_ASN1_TIME *ret = NULL; unsigned char *data_ptr = NULL; WOLFSSL_ENTER("wolfSSL_ASN1_TIME_to_generalizedtime"); if (t == NULL) return NULL; time_type = t->data[0]; if (time_type != ASN_UTC_TIME && time_type != ASN_GENERALIZED_TIME){ WOLFSSL_MSG("Invalid ASN_TIME type."); return NULL; } if (out == NULL || *out == NULL){ ret = (WOLFSSL_ASN1_TIME*)XMALLOC(sizeof(WOLFSSL_ASN1_TIME), NULL, DYNAMIC_TYPE_TMP_BUFFER); if (ret == NULL){ WOLFSSL_MSG("memory alloc failed."); return NULL; } XMEMSET(ret, 0, sizeof(WOLFSSL_ASN1_TIME)); } else ret = *out; if (time_type == ASN_GENERALIZED_TIME){ XMEMCPY(ret->data, t->data, ASN_GENERALIZED_TIME_SIZE); return ret; } else if (time_type == ASN_UTC_TIME){ ret->data[0] = ASN_GENERALIZED_TIME; ret->data[1] = ASN_GENERALIZED_TIME_SIZE; data_ptr = ret->data + 2; if (t->data[2] >= '5') XSNPRINTF((char*)data_ptr, ASN_UTC_TIME_SIZE + 2, "19%s", t->data + 2); else XSNPRINTF((char*)data_ptr, ASN_UTC_TIME_SIZE + 2, "20%s", t->data + 2); return ret; } WOLFSSL_MSG("Invalid ASN_TIME value"); return NULL; } #endif /* !NO_ASN_TIME */ #ifndef NO_ASN int wolfSSL_i2c_ASN1_INTEGER(WOLFSSL_ASN1_INTEGER *a, unsigned char **pp) { unsigned char *pptr = NULL; char pad = 0 ; unsigned char pad_val = 0; int ret_size = 0; unsigned char data1 = 0; unsigned char neg = 0; int i = 0; WOLFSSL_ENTER("wolfSSL_i2c_ASN1_INTEGER"); if (a == NULL) return WOLFSSL_FAILURE; ret_size = a->intData[1]; if (ret_size == 0) ret_size = 1; else{ ret_size = (int)a->intData[1]; neg = a->negative; data1 = a->intData[2]; if (ret_size == 1 && data1 == 0) neg = 0; /* 0x80 or greater positive number in first byte */ if (!neg && (data1 > 127)){ pad = 1; pad_val = 0; } else if (neg){ /* negative number */ if (data1 > 128){ pad = 1; pad_val = 0xff; } else if (data1 == 128){ for (i = 3; i < a->intData[1] + 2; i++){ if (a->intData[i]){ pad = 1; pad_val = 0xff; break; } } } } ret_size += (int)pad; } if (pp == NULL) return ret_size; pptr = *pp; if (pad) *(pptr++) = pad_val; if (a->intData[1] == 0) *(pptr++) = 0; else if (!neg){ /* positive number */ for (i=0; i < a->intData[1]; i++){ *pptr = a->intData[i+2]; pptr++; } } else { /* negative number */ int str_len = 0; /* 0 padding from end of buffer */ str_len = (int)a->intData[1]; pptr += a->intData[1] - 1; while (!a->intData[str_len + 2] && str_len > 1){ *(pptr--) = 0; str_len--; } /* 2's complement next octet */ *(pptr--) = ((a->intData[str_len + 1]) ^ 0xff) + 1; str_len--; /* Complement any octets left */ while (str_len > 0){ *(pptr--) = a->intData[str_len + 1] ^ 0xff; str_len--; } } *pp += ret_size; return ret_size; } #endif /* !NO_ASN */ #endif /* OPENSSLEXTRA */