Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
wolfcrypt/src/sp_c64.c
- Committer:
- sPymbed
- Date:
- 2019-11-19
- Revision:
- 16:048e5e270a58
- Parent:
- 14:167253f4e170
File content as of revision 16:048e5e270a58:
/* sp.c * * Copyright (C) 2006-2018 wolfSSL Inc. * * This file is part of wolfSSL. * * wolfSSL is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * wolfSSL is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335, USA */ /* Implementation by Sean Parkinson. */ #ifdef HAVE_CONFIG_H #include <config.h> #endif #include <wolfssl/wolfcrypt/settings.h> #include <wolfssl/wolfcrypt/error-crypt.h> #include <wolfssl/wolfcrypt/cpuid.h> #ifdef NO_INLINE #include <wolfssl/wolfcrypt/misc.h> #else #define WOLFSSL_MISC_INCLUDED #include <wolfcrypt/src/misc.c> #endif #if defined(WOLFSSL_HAVE_SP_RSA) || defined(WOLFSSL_HAVE_SP_DH) || \ defined(WOLFSSL_HAVE_SP_ECC) #ifdef RSA_LOW_MEM #define SP_RSA_PRIVATE_EXP_D #ifndef WOLFSSL_SP_SMALL #define WOLFSSL_SP_SMALL #endif #endif #include <wolfssl/wolfcrypt/sp.h> #ifndef WOLFSSL_SP_ASM #if SP_WORD_SIZE == 64 #if defined(WOLFSSL_SP_CACHE_RESISTANT) || defined(WOLFSSL_SP_SMALL) /* Mask for address to obfuscate which of the two address will be used. */ static const size_t addr_mask[2] = { 0, (size_t)-1 }; #endif #if defined(WOLFSSL_HAVE_SP_RSA) || defined(WOLFSSL_HAVE_SP_DH) #ifndef WOLFSSL_SP_NO_2048 /* Read big endian unsigned byte aray into r. * * r A single precision integer. * a Byte array. * n Number of bytes in array to read. */ static void sp_2048_from_bin(sp_digit* r, int max, const byte* a, int n) { int i, j = 0, s = 0; r[0] = 0; for (i = n-1; i >= 0; i--) { r[j] |= ((sp_digit)a[i]) << s; if (s >= 49) { r[j] &= 0x1ffffffffffffffl; s = 57 - s; if (j + 1 >= max) break; r[++j] = a[i] >> s; s = 8 - s; } else s += 8; } for (j++; j < max; j++) r[j] = 0; } /* Convert an mp_int to an array of sp_digit. * * r A single precision integer. * a A multi-precision integer. */ static void sp_2048_from_mp(sp_digit* r, int max, mp_int* a) { #if DIGIT_BIT == 57 int j; XMEMCPY(r, a->dp, sizeof(sp_digit) * a->used); for (j = a->used; j < max; j++) r[j] = 0; #elif DIGIT_BIT > 57 int i, j = 0, s = 0; r[0] = 0; for (i = 0; i < a->used && j < max; i++) { r[j] |= a->dp[i] << s; r[j] &= 0x1ffffffffffffffl; s = 57 - s; if (j + 1 >= max) break; r[++j] = a->dp[i] >> s; while (s + 57 <= DIGIT_BIT) { s += 57; r[j] &= 0x1ffffffffffffffl; if (j + 1 >= max) break; if (s < DIGIT_BIT) r[++j] = a->dp[i] >> s; else r[++j] = 0; } s = DIGIT_BIT - s; } for (j++; j < max; j++) r[j] = 0; #else int i, j = 0, s = 0; r[0] = 0; for (i = 0; i < a->used && j < max; i++) { r[j] |= ((sp_digit)a->dp[i]) << s; if (s + DIGIT_BIT >= 57) { r[j] &= 0x1ffffffffffffffl; if (j + 1 >= max) break; s = 57 - s; if (s == DIGIT_BIT) { r[++j] = 0; s = 0; } else { r[++j] = a->dp[i] >> s; s = DIGIT_BIT - s; } } else s += DIGIT_BIT; } for (j++; j < max; j++) r[j] = 0; #endif } /* Write r as big endian to byte aray. * Fixed length number of bytes written: 256 * * r A single precision integer. * a Byte array. */ static void sp_2048_to_bin(sp_digit* r, byte* a) { int i, j, s = 0, b; for (i=0; i<35; i++) { r[i+1] += r[i] >> 57; r[i] &= 0x1ffffffffffffffl; } j = 2048 / 8 - 1; a[j] = 0; for (i=0; i<36 && j>=0; i++) { b = 0; a[j--] |= r[i] << s; b += 8 - s; if (j < 0) break; while (b < 57) { a[j--] = r[i] >> b; b += 8; if (j < 0) break; } s = 8 - (b - 57); if (j >= 0) a[j] = 0; if (s != 0) j++; } } #ifndef WOLFSSL_SP_SMALL /* Multiply a and b into r. (r = a * b) * * r A single precision integer. * a A single precision integer. * b A single precision integer. */ SP_NOINLINE static void sp_2048_mul_9(sp_digit* r, const sp_digit* a, const sp_digit* b) { int128_t t0 = ((int128_t)a[ 0]) * b[ 0]; int128_t t1 = ((int128_t)a[ 0]) * b[ 1] + ((int128_t)a[ 1]) * b[ 0]; int128_t t2 = ((int128_t)a[ 0]) * b[ 2] + ((int128_t)a[ 1]) * b[ 1] + ((int128_t)a[ 2]) * b[ 0]; int128_t t3 = ((int128_t)a[ 0]) * b[ 3] + ((int128_t)a[ 1]) * b[ 2] + ((int128_t)a[ 2]) * b[ 1] + ((int128_t)a[ 3]) * b[ 0]; int128_t t4 = ((int128_t)a[ 0]) * b[ 4] + ((int128_t)a[ 1]) * b[ 3] + ((int128_t)a[ 2]) * b[ 2] + ((int128_t)a[ 3]) * b[ 1] + ((int128_t)a[ 4]) * b[ 0]; int128_t t5 = ((int128_t)a[ 0]) * b[ 5] + ((int128_t)a[ 1]) * b[ 4] + ((int128_t)a[ 2]) * b[ 3] + ((int128_t)a[ 3]) * b[ 2] + ((int128_t)a[ 4]) * b[ 1] + ((int128_t)a[ 5]) * b[ 0]; int128_t t6 = ((int128_t)a[ 0]) * b[ 6] + ((int128_t)a[ 1]) * b[ 5] + ((int128_t)a[ 2]) * b[ 4] + ((int128_t)a[ 3]) * b[ 3] + ((int128_t)a[ 4]) * b[ 2] + ((int128_t)a[ 5]) * b[ 1] + ((int128_t)a[ 6]) * b[ 0]; int128_t t7 = ((int128_t)a[ 0]) * b[ 7] + ((int128_t)a[ 1]) * b[ 6] + ((int128_t)a[ 2]) * b[ 5] + ((int128_t)a[ 3]) * b[ 4] + ((int128_t)a[ 4]) * b[ 3] + ((int128_t)a[ 5]) * b[ 2] + ((int128_t)a[ 6]) * b[ 1] + ((int128_t)a[ 7]) * b[ 0]; int128_t t8 = ((int128_t)a[ 0]) * b[ 8] + ((int128_t)a[ 1]) * b[ 7] + ((int128_t)a[ 2]) * b[ 6] + ((int128_t)a[ 3]) * b[ 5] + ((int128_t)a[ 4]) * b[ 4] + ((int128_t)a[ 5]) * b[ 3] + ((int128_t)a[ 6]) * b[ 2] + ((int128_t)a[ 7]) * b[ 1] + ((int128_t)a[ 8]) * b[ 0]; int128_t t9 = ((int128_t)a[ 1]) * b[ 8] + ((int128_t)a[ 2]) * b[ 7] + ((int128_t)a[ 3]) * b[ 6] + ((int128_t)a[ 4]) * b[ 5] + ((int128_t)a[ 5]) * b[ 4] + ((int128_t)a[ 6]) * b[ 3] + ((int128_t)a[ 7]) * b[ 2] + ((int128_t)a[ 8]) * b[ 1]; int128_t t10 = ((int128_t)a[ 2]) * b[ 8] + ((int128_t)a[ 3]) * b[ 7] + ((int128_t)a[ 4]) * b[ 6] + ((int128_t)a[ 5]) * b[ 5] + ((int128_t)a[ 6]) * b[ 4] + ((int128_t)a[ 7]) * b[ 3] + ((int128_t)a[ 8]) * b[ 2]; int128_t t11 = ((int128_t)a[ 3]) * b[ 8] + ((int128_t)a[ 4]) * b[ 7] + ((int128_t)a[ 5]) * b[ 6] + ((int128_t)a[ 6]) * b[ 5] + ((int128_t)a[ 7]) * b[ 4] + ((int128_t)a[ 8]) * b[ 3]; int128_t t12 = ((int128_t)a[ 4]) * b[ 8] + ((int128_t)a[ 5]) * b[ 7] + ((int128_t)a[ 6]) * b[ 6] + ((int128_t)a[ 7]) * b[ 5] + ((int128_t)a[ 8]) * b[ 4]; int128_t t13 = ((int128_t)a[ 5]) * b[ 8] + ((int128_t)a[ 6]) * b[ 7] + ((int128_t)a[ 7]) * b[ 6] + ((int128_t)a[ 8]) * b[ 5]; int128_t t14 = ((int128_t)a[ 6]) * b[ 8] + ((int128_t)a[ 7]) * b[ 7] + ((int128_t)a[ 8]) * b[ 6]; int128_t t15 = ((int128_t)a[ 7]) * b[ 8] + ((int128_t)a[ 8]) * b[ 7]; int128_t t16 = ((int128_t)a[ 8]) * b[ 8]; t1 += t0 >> 57; r[ 0] = t0 & 0x1ffffffffffffffl; t2 += t1 >> 57; r[ 1] = t1 & 0x1ffffffffffffffl; t3 += t2 >> 57; r[ 2] = t2 & 0x1ffffffffffffffl; t4 += t3 >> 57; r[ 3] = t3 & 0x1ffffffffffffffl; t5 += t4 >> 57; r[ 4] = t4 & 0x1ffffffffffffffl; t6 += t5 >> 57; r[ 5] = t5 & 0x1ffffffffffffffl; t7 += t6 >> 57; r[ 6] = t6 & 0x1ffffffffffffffl; t8 += t7 >> 57; r[ 7] = t7 & 0x1ffffffffffffffl; t9 += t8 >> 57; r[ 8] = t8 & 0x1ffffffffffffffl; t10 += t9 >> 57; r[ 9] = t9 & 0x1ffffffffffffffl; t11 += t10 >> 57; r[10] = t10 & 0x1ffffffffffffffl; t12 += t11 >> 57; r[11] = t11 & 0x1ffffffffffffffl; t13 += t12 >> 57; r[12] = t12 & 0x1ffffffffffffffl; t14 += t13 >> 57; r[13] = t13 & 0x1ffffffffffffffl; t15 += t14 >> 57; r[14] = t14 & 0x1ffffffffffffffl; t16 += t15 >> 57; r[15] = t15 & 0x1ffffffffffffffl; r[17] = (sp_digit)(t16 >> 57); r[16] = t16 & 0x1ffffffffffffffl; } /* Square a and put result in r. (r = a * a) * * r A single precision integer. * a A single precision integer. */ SP_NOINLINE static void sp_2048_sqr_9(sp_digit* r, const sp_digit* a) { int128_t t0 = ((int128_t)a[ 0]) * a[ 0]; int128_t t1 = (((int128_t)a[ 0]) * a[ 1]) * 2; int128_t t2 = (((int128_t)a[ 0]) * a[ 2]) * 2 + ((int128_t)a[ 1]) * a[ 1]; int128_t t3 = (((int128_t)a[ 0]) * a[ 3] + ((int128_t)a[ 1]) * a[ 2]) * 2; int128_t t4 = (((int128_t)a[ 0]) * a[ 4] + ((int128_t)a[ 1]) * a[ 3]) * 2 + ((int128_t)a[ 2]) * a[ 2]; int128_t t5 = (((int128_t)a[ 0]) * a[ 5] + ((int128_t)a[ 1]) * a[ 4] + ((int128_t)a[ 2]) * a[ 3]) * 2; int128_t t6 = (((int128_t)a[ 0]) * a[ 6] + ((int128_t)a[ 1]) * a[ 5] + ((int128_t)a[ 2]) * a[ 4]) * 2 + ((int128_t)a[ 3]) * a[ 3]; int128_t t7 = (((int128_t)a[ 0]) * a[ 7] + ((int128_t)a[ 1]) * a[ 6] + ((int128_t)a[ 2]) * a[ 5] + ((int128_t)a[ 3]) * a[ 4]) * 2; int128_t t8 = (((int128_t)a[ 0]) * a[ 8] + ((int128_t)a[ 1]) * a[ 7] + ((int128_t)a[ 2]) * a[ 6] + ((int128_t)a[ 3]) * a[ 5]) * 2 + ((int128_t)a[ 4]) * a[ 4]; int128_t t9 = (((int128_t)a[ 1]) * a[ 8] + ((int128_t)a[ 2]) * a[ 7] + ((int128_t)a[ 3]) * a[ 6] + ((int128_t)a[ 4]) * a[ 5]) * 2; int128_t t10 = (((int128_t)a[ 2]) * a[ 8] + ((int128_t)a[ 3]) * a[ 7] + ((int128_t)a[ 4]) * a[ 6]) * 2 + ((int128_t)a[ 5]) * a[ 5]; int128_t t11 = (((int128_t)a[ 3]) * a[ 8] + ((int128_t)a[ 4]) * a[ 7] + ((int128_t)a[ 5]) * a[ 6]) * 2; int128_t t12 = (((int128_t)a[ 4]) * a[ 8] + ((int128_t)a[ 5]) * a[ 7]) * 2 + ((int128_t)a[ 6]) * a[ 6]; int128_t t13 = (((int128_t)a[ 5]) * a[ 8] + ((int128_t)a[ 6]) * a[ 7]) * 2; int128_t t14 = (((int128_t)a[ 6]) * a[ 8]) * 2 + ((int128_t)a[ 7]) * a[ 7]; int128_t t15 = (((int128_t)a[ 7]) * a[ 8]) * 2; int128_t t16 = ((int128_t)a[ 8]) * a[ 8]; t1 += t0 >> 57; r[ 0] = t0 & 0x1ffffffffffffffl; t2 += t1 >> 57; r[ 1] = t1 & 0x1ffffffffffffffl; t3 += t2 >> 57; r[ 2] = t2 & 0x1ffffffffffffffl; t4 += t3 >> 57; r[ 3] = t3 & 0x1ffffffffffffffl; t5 += t4 >> 57; r[ 4] = t4 & 0x1ffffffffffffffl; t6 += t5 >> 57; r[ 5] = t5 & 0x1ffffffffffffffl; t7 += t6 >> 57; r[ 6] = t6 & 0x1ffffffffffffffl; t8 += t7 >> 57; r[ 7] = t7 & 0x1ffffffffffffffl; t9 += t8 >> 57; r[ 8] = t8 & 0x1ffffffffffffffl; t10 += t9 >> 57; r[ 9] = t9 & 0x1ffffffffffffffl; t11 += t10 >> 57; r[10] = t10 & 0x1ffffffffffffffl; t12 += t11 >> 57; r[11] = t11 & 0x1ffffffffffffffl; t13 += t12 >> 57; r[12] = t12 & 0x1ffffffffffffffl; t14 += t13 >> 57; r[13] = t13 & 0x1ffffffffffffffl; t15 += t14 >> 57; r[14] = t14 & 0x1ffffffffffffffl; t16 += t15 >> 57; r[15] = t15 & 0x1ffffffffffffffl; r[17] = (sp_digit)(t16 >> 57); r[16] = t16 & 0x1ffffffffffffffl; } /* Add b to a into r. (r = a + b) * * r A single precision integer. * a A single precision integer. * b A single precision integer. */ SP_NOINLINE static int sp_2048_add_9(sp_digit* r, const sp_digit* a, const sp_digit* b) { r[ 0] = a[ 0] + b[ 0]; r[ 1] = a[ 1] + b[ 1]; r[ 2] = a[ 2] + b[ 2]; r[ 3] = a[ 3] + b[ 3]; r[ 4] = a[ 4] + b[ 4]; r[ 5] = a[ 5] + b[ 5]; r[ 6] = a[ 6] + b[ 6]; r[ 7] = a[ 7] + b[ 7]; r[ 8] = a[ 8] + b[ 8]; return 0; } /* Add b to a into r. (r = a + b) * * r A single precision integer. * a A single precision integer. * b A single precision integer. */ SP_NOINLINE static int sp_2048_add_18(sp_digit* r, const sp_digit* a, const sp_digit* b) { int i; for (i = 0; i < 16; i += 8) { r[i + 0] = a[i + 0] + b[i + 0]; r[i + 1] = a[i + 1] + b[i + 1]; r[i + 2] = a[i + 2] + b[i + 2]; r[i + 3] = a[i + 3] + b[i + 3]; r[i + 4] = a[i + 4] + b[i + 4]; r[i + 5] = a[i + 5] + b[i + 5]; r[i + 6] = a[i + 6] + b[i + 6]; r[i + 7] = a[i + 7] + b[i + 7]; } r[16] = a[16] + b[16]; r[17] = a[17] + b[17]; return 0; } /* Sub b from a into r. (r = a - b) * * r A single precision integer. * a A single precision integer. * b A single precision integer. */ SP_NOINLINE static int sp_2048_sub_18(sp_digit* r, const sp_digit* a, const sp_digit* b) { int i; for (i = 0; i < 16; i += 8) { r[i + 0] = a[i + 0] - b[i + 0]; r[i + 1] = a[i + 1] - b[i + 1]; r[i + 2] = a[i + 2] - b[i + 2]; r[i + 3] = a[i + 3] - b[i + 3]; r[i + 4] = a[i + 4] - b[i + 4]; r[i + 5] = a[i + 5] - b[i + 5]; r[i + 6] = a[i + 6] - b[i + 6]; r[i + 7] = a[i + 7] - b[i + 7]; } r[16] = a[16] - b[16]; r[17] = a[17] - b[17]; return 0; } /* Multiply a and b into r. (r = a * b) * * r A single precision integer. * a A single precision integer. * b A single precision integer. */ SP_NOINLINE static void sp_2048_mul_18(sp_digit* r, const sp_digit* a, const sp_digit* b) { sp_digit* z0 = r; sp_digit z1[18]; sp_digit* a1 = z1; sp_digit b1[9]; sp_digit* z2 = r + 18; sp_2048_add_9(a1, a, &a[9]); sp_2048_add_9(b1, b, &b[9]); sp_2048_mul_9(z2, &a[9], &b[9]); sp_2048_mul_9(z0, a, b); sp_2048_mul_9(z1, a1, b1); sp_2048_sub_18(z1, z1, z2); sp_2048_sub_18(z1, z1, z0); sp_2048_add_18(r + 9, r + 9, z1); } /* Square a and put result in r. (r = a * a) * * r A single precision integer. * a A single precision integer. */ SP_NOINLINE static void sp_2048_sqr_18(sp_digit* r, const sp_digit* a) { sp_digit* z0 = r; sp_digit z1[18]; sp_digit* a1 = z1; sp_digit* z2 = r + 18; sp_2048_add_9(a1, a, &a[9]); sp_2048_sqr_9(z2, &a[9]); sp_2048_sqr_9(z0, a); sp_2048_sqr_9(z1, a1); sp_2048_sub_18(z1, z1, z2); sp_2048_sub_18(z1, z1, z0); sp_2048_add_18(r + 9, r + 9, z1); } /* Add b to a into r. (r = a + b) * * r A single precision integer. * a A single precision integer. * b A single precision integer. */ SP_NOINLINE static int sp_2048_add_36(sp_digit* r, const sp_digit* a, const sp_digit* b) { int i; for (i = 0; i < 32; i += 8) { r[i + 0] = a[i + 0] + b[i + 0]; r[i + 1] = a[i + 1] + b[i + 1]; r[i + 2] = a[i + 2] + b[i + 2]; r[i + 3] = a[i + 3] + b[i + 3]; r[i + 4] = a[i + 4] + b[i + 4]; r[i + 5] = a[i + 5] + b[i + 5]; r[i + 6] = a[i + 6] + b[i + 6]; r[i + 7] = a[i + 7] + b[i + 7]; } r[32] = a[32] + b[32]; r[33] = a[33] + b[33]; r[34] = a[34] + b[34]; r[35] = a[35] + b[35]; return 0; } /* Sub b from a into r. (r = a - b) * * r A single precision integer. * a A single precision integer. * b A single precision integer. */ SP_NOINLINE static int sp_2048_sub_36(sp_digit* r, const sp_digit* a, const sp_digit* b) { int i; for (i = 0; i < 32; i += 8) { r[i + 0] = a[i + 0] - b[i + 0]; r[i + 1] = a[i + 1] - b[i + 1]; r[i + 2] = a[i + 2] - b[i + 2]; r[i + 3] = a[i + 3] - b[i + 3]; r[i + 4] = a[i + 4] - b[i + 4]; r[i + 5] = a[i + 5] - b[i + 5]; r[i + 6] = a[i + 6] - b[i + 6]; r[i + 7] = a[i + 7] - b[i + 7]; } r[32] = a[32] - b[32]; r[33] = a[33] - b[33]; r[34] = a[34] - b[34]; r[35] = a[35] - b[35]; return 0; } /* Multiply a and b into r. (r = a * b) * * r A single precision integer. * a A single precision integer. * b A single precision integer. */ SP_NOINLINE static void sp_2048_mul_36(sp_digit* r, const sp_digit* a, const sp_digit* b) { sp_digit* z0 = r; sp_digit z1[36]; sp_digit* a1 = z1; sp_digit b1[18]; sp_digit* z2 = r + 36; sp_2048_add_18(a1, a, &a[18]); sp_2048_add_18(b1, b, &b[18]); sp_2048_mul_18(z2, &a[18], &b[18]); sp_2048_mul_18(z0, a, b); sp_2048_mul_18(z1, a1, b1); sp_2048_sub_36(z1, z1, z2); sp_2048_sub_36(z1, z1, z0); sp_2048_add_36(r + 18, r + 18, z1); } /* Square a and put result in r. (r = a * a) * * r A single precision integer. * a A single precision integer. */ SP_NOINLINE static void sp_2048_sqr_36(sp_digit* r, const sp_digit* a) { sp_digit* z0 = r; sp_digit z1[36]; sp_digit* a1 = z1; sp_digit* z2 = r + 36; sp_2048_add_18(a1, a, &a[18]); sp_2048_sqr_18(z2, &a[18]); sp_2048_sqr_18(z0, a); sp_2048_sqr_18(z1, a1); sp_2048_sub_36(z1, z1, z2); sp_2048_sub_36(z1, z1, z0); sp_2048_add_36(r + 18, r + 18, z1); } #endif /* WOLFSSL_SP_SMALL */ #ifdef WOLFSSL_SP_SMALL /* Add b to a into r. (r = a + b) * * r A single precision integer. * a A single precision integer. * b A single precision integer. */ SP_NOINLINE static int sp_2048_add_36(sp_digit* r, const sp_digit* a, const sp_digit* b) { int i; for (i = 0; i < 36; i++) r[i] = a[i] + b[i]; return 0; } #endif /* WOLFSSL_SP_SMALL */ #ifdef WOLFSSL_SP_SMALL /* Sub b from a into r. (r = a - b) * * r A single precision integer. * a A single precision integer. * b A single precision integer. */ SP_NOINLINE static int sp_2048_sub_36(sp_digit* r, const sp_digit* a, const sp_digit* b) { int i; for (i = 0; i < 36; i++) r[i] = a[i] - b[i]; return 0; } #endif /* WOLFSSL_SP_SMALL */ #ifdef WOLFSSL_SP_SMALL /* Multiply a and b into r. (r = a * b) * * r A single precision integer. * a A single precision integer. * b A single precision integer. */ SP_NOINLINE static void sp_2048_mul_36(sp_digit* r, const sp_digit* a, const sp_digit* b) { int i, j, k; int128_t c; c = ((int128_t)a[35]) * b[35]; r[71] = (sp_digit)(c >> 57); c = (c & 0x1ffffffffffffffl) << 57; for (k = 69; k >= 0; k--) { for (i = 35; i >= 0; i--) { j = k - i; if (j >= 36) break; if (j < 0) continue; c += ((int128_t)a[i]) * b[j]; } r[k + 2] += c >> 114; r[k + 1] = (c >> 57) & 0x1ffffffffffffffl; c = (c & 0x1ffffffffffffffl) << 57; } r[0] = (sp_digit)(c >> 57); } /* Square a and put result in r. (r = a * a) * * r A single precision integer. * a A single precision integer. */ SP_NOINLINE static void sp_2048_sqr_36(sp_digit* r, const sp_digit* a) { int i, j, k; int128_t c; c = ((int128_t)a[35]) * a[35]; r[71] = (sp_digit)(c >> 57); c = (c & 0x1ffffffffffffffl) << 57; for (k = 69; k >= 0; k--) { for (i = 35; i >= 0; i--) { j = k - i; if (j >= 36 || i <= j) break; if (j < 0) continue; c += ((int128_t)a[i]) * a[j] * 2; } if (i == j) c += ((int128_t)a[i]) * a[i]; r[k + 2] += c >> 114; r[k + 1] = (c >> 57) & 0x1ffffffffffffffl; c = (c & 0x1ffffffffffffffl) << 57; } r[0] = (sp_digit)(c >> 57); } #endif /* WOLFSSL_SP_SMALL */ #if !defined(SP_RSA_PRIVATE_EXP_D) && defined(WOLFSSL_HAVE_SP_RSA) #ifdef WOLFSSL_SP_SMALL /* Add b to a into r. (r = a + b) * * r A single precision integer. * a A single precision integer. * b A single precision integer. */ SP_NOINLINE static int sp_2048_add_18(sp_digit* r, const sp_digit* a, const sp_digit* b) { int i; for (i = 0; i < 18; i++) r[i] = a[i] + b[i]; return 0; } #endif /* WOLFSSL_SP_SMALL */ #ifdef WOLFSSL_SP_SMALL /* Sub b from a into r. (r = a - b) * * r A single precision integer. * a A single precision integer. * b A single precision integer. */ SP_NOINLINE static int sp_2048_sub_18(sp_digit* r, const sp_digit* a, const sp_digit* b) { int i; for (i = 0; i < 18; i++) r[i] = a[i] - b[i]; return 0; } #endif /* WOLFSSL_SP_SMALL */ #ifdef WOLFSSL_SP_SMALL /* Multiply a and b into r. (r = a * b) * * r A single precision integer. * a A single precision integer. * b A single precision integer. */ SP_NOINLINE static void sp_2048_mul_18(sp_digit* r, const sp_digit* a, const sp_digit* b) { int i, j, k; int128_t c; c = ((int128_t)a[17]) * b[17]; r[35] = (sp_digit)(c >> 57); c = (c & 0x1ffffffffffffffl) << 57; for (k = 33; k >= 0; k--) { for (i = 17; i >= 0; i--) { j = k - i; if (j >= 18) break; if (j < 0) continue; c += ((int128_t)a[i]) * b[j]; } r[k + 2] += c >> 114; r[k + 1] = (c >> 57) & 0x1ffffffffffffffl; c = (c & 0x1ffffffffffffffl) << 57; } r[0] = (sp_digit)(c >> 57); } /* Square a and put result in r. (r = a * a) * * r A single precision integer. * a A single precision integer. */ SP_NOINLINE static void sp_2048_sqr_18(sp_digit* r, const sp_digit* a) { int i, j, k; int128_t c; c = ((int128_t)a[17]) * a[17]; r[35] = (sp_digit)(c >> 57); c = (c & 0x1ffffffffffffffl) << 57; for (k = 33; k >= 0; k--) { for (i = 17; i >= 0; i--) { j = k - i; if (j >= 18 || i <= j) break; if (j < 0) continue; c += ((int128_t)a[i]) * a[j] * 2; } if (i == j) c += ((int128_t)a[i]) * a[i]; r[k + 2] += c >> 114; r[k + 1] = (c >> 57) & 0x1ffffffffffffffl; c = (c & 0x1ffffffffffffffl) << 57; } r[0] = (sp_digit)(c >> 57); } #endif /* WOLFSSL_SP_SMALL */ #endif /* !SP_RSA_PRIVATE_EXP_D && WOLFSSL_HAVE_SP_RSA */ /* Caclulate the bottom digit of -1/a mod 2^n. * * a A single precision number. * rho Bottom word of inverse. */ static void sp_2048_mont_setup(sp_digit* a, sp_digit* rho) { sp_digit x, b; b = a[0]; x = (((b + 2) & 4) << 1) + b; /* here x*a==1 mod 2**4 */ x *= 2 - b * x; /* here x*a==1 mod 2**8 */ x *= 2 - b * x; /* here x*a==1 mod 2**16 */ x *= 2 - b * x; /* here x*a==1 mod 2**32 */ x *= 2 - b * x; /* here x*a==1 mod 2**64 */ x &= 0x1ffffffffffffffl; /* rho = -1/m mod b */ *rho = (1L << 57) - x; } #if !defined(SP_RSA_PRIVATE_EXP_D) && defined(WOLFSSL_HAVE_SP_RSA) /* r = 2^n mod m where n is the number of bits to reduce by. * Given m must be 2048 bits, just need to subtract. * * r A single precision number. * m A signle precision number. */ static void sp_2048_mont_norm_18(sp_digit* r, sp_digit* m) { /* Set r = 2^n - 1. */ #ifdef WOLFSSL_SP_SMALL int i; for (i=0; i<17; i++) r[i] = 0x1ffffffffffffffl; #else int i; for (i = 0; i < 16; i += 8) { r[i + 0] = 0x1ffffffffffffffl; r[i + 1] = 0x1ffffffffffffffl; r[i + 2] = 0x1ffffffffffffffl; r[i + 3] = 0x1ffffffffffffffl; r[i + 4] = 0x1ffffffffffffffl; r[i + 5] = 0x1ffffffffffffffl; r[i + 6] = 0x1ffffffffffffffl; r[i + 7] = 0x1ffffffffffffffl; } r[16] = 0x1ffffffffffffffl; #endif r[17] = 0x7fffffffffffffl; /* r = (2^n - 1) mod n */ sp_2048_sub_18(r, r, m); /* Add one so r = 2^n mod m */ r[0] += 1; } /* Compare a with b in constant time. * * a A single precision integer. * b A single precision integer. * return -ve, 0 or +ve if a is less than, equal to or greater than b * respectively. */ static sp_digit sp_2048_cmp_18(const sp_digit* a, const sp_digit* b) { sp_digit r = 0; #ifdef WOLFSSL_SP_SMALL int i; for (i=17; i>=0; i--) r |= (a[i] - b[i]) & (0 - !r); #else int i; r |= (a[17] - b[17]) & (0 - !r); r |= (a[16] - b[16]) & (0 - !r); for (i = 8; i >= 0; i -= 8) { r |= (a[i + 7] - b[i + 7]) & (0 - !r); r |= (a[i + 6] - b[i + 6]) & (0 - !r); r |= (a[i + 5] - b[i + 5]) & (0 - !r); r |= (a[i + 4] - b[i + 4]) & (0 - !r); r |= (a[i + 3] - b[i + 3]) & (0 - !r); r |= (a[i + 2] - b[i + 2]) & (0 - !r); r |= (a[i + 1] - b[i + 1]) & (0 - !r); r |= (a[i + 0] - b[i + 0]) & (0 - !r); } #endif /* WOLFSSL_SP_SMALL */ return r; } /* Conditionally subtract b from a using the mask m. * m is -1 to subtract and 0 when not. * * r A single precision number representing condition subtract result. * a A single precision number to subtract from. * b A single precision number to subtract. * m Mask value to apply. */ static void sp_2048_cond_sub_18(sp_digit* r, const sp_digit* a, const sp_digit* b, const sp_digit m) { #ifdef WOLFSSL_SP_SMALL int i; for (i = 0; i < 18; i++) r[i] = a[i] - (b[i] & m); #else int i; for (i = 0; i < 16; i += 8) { r[i + 0] = a[i + 0] - (b[i + 0] & m); r[i + 1] = a[i + 1] - (b[i + 1] & m); r[i + 2] = a[i + 2] - (b[i + 2] & m); r[i + 3] = a[i + 3] - (b[i + 3] & m); r[i + 4] = a[i + 4] - (b[i + 4] & m); r[i + 5] = a[i + 5] - (b[i + 5] & m); r[i + 6] = a[i + 6] - (b[i + 6] & m); r[i + 7] = a[i + 7] - (b[i + 7] & m); } r[16] = a[16] - (b[16] & m); r[17] = a[17] - (b[17] & m); #endif /* WOLFSSL_SP_SMALL */ } /* Mul a by scalar b and add into r. (r += a * b) * * r A single precision integer. * a A single precision integer. * b A scalar. */ SP_NOINLINE static void sp_2048_mul_add_18(sp_digit* r, const sp_digit* a, const sp_digit b) { #ifdef WOLFSSL_SP_SMALL int128_t tb = b; int128_t t = 0; int i; for (i = 0; i < 18; i++) { t += (tb * a[i]) + r[i]; r[i] = t & 0x1ffffffffffffffl; t >>= 57; } r[18] += t; #else int128_t tb = b; int128_t t[8]; int i; t[0] = tb * a[0]; r[0] += t[0] & 0x1ffffffffffffffl; for (i = 0; i < 16; i += 8) { t[1] = tb * a[i+1]; r[i+1] += (t[0] >> 57) + (t[1] & 0x1ffffffffffffffl); t[2] = tb * a[i+2]; r[i+2] += (t[1] >> 57) + (t[2] & 0x1ffffffffffffffl); t[3] = tb * a[i+3]; r[i+3] += (t[2] >> 57) + (t[3] & 0x1ffffffffffffffl); t[4] = tb * a[i+4]; r[i+4] += (t[3] >> 57) + (t[4] & 0x1ffffffffffffffl); t[5] = tb * a[i+5]; r[i+5] += (t[4] >> 57) + (t[5] & 0x1ffffffffffffffl); t[6] = tb * a[i+6]; r[i+6] += (t[5] >> 57) + (t[6] & 0x1ffffffffffffffl); t[7] = tb * a[i+7]; r[i+7] += (t[6] >> 57) + (t[7] & 0x1ffffffffffffffl); t[0] = tb * a[i+8]; r[i+8] += (t[7] >> 57) + (t[0] & 0x1ffffffffffffffl); } t[1] = tb * a[17]; r[17] += (t[0] >> 57) + (t[1] & 0x1ffffffffffffffl); r[18] += t[1] >> 57; #endif /* WOLFSSL_SP_SMALL */ } /* Normalize the values in each word to 57. * * a Array of sp_digit to normalize. */ static void sp_2048_norm_18(sp_digit* a) { #ifdef WOLFSSL_SP_SMALL int i; for (i = 0; i < 17; i++) { a[i+1] += a[i] >> 57; a[i] &= 0x1ffffffffffffffl; } #else int i; for (i = 0; i < 16; i += 8) { a[i+1] += a[i+0] >> 57; a[i+0] &= 0x1ffffffffffffffl; a[i+2] += a[i+1] >> 57; a[i+1] &= 0x1ffffffffffffffl; a[i+3] += a[i+2] >> 57; a[i+2] &= 0x1ffffffffffffffl; a[i+4] += a[i+3] >> 57; a[i+3] &= 0x1ffffffffffffffl; a[i+5] += a[i+4] >> 57; a[i+4] &= 0x1ffffffffffffffl; a[i+6] += a[i+5] >> 57; a[i+5] &= 0x1ffffffffffffffl; a[i+7] += a[i+6] >> 57; a[i+6] &= 0x1ffffffffffffffl; a[i+8] += a[i+7] >> 57; a[i+7] &= 0x1ffffffffffffffl; a[i+9] += a[i+8] >> 57; a[i+8] &= 0x1ffffffffffffffl; } a[16+1] += a[16] >> 57; a[16] &= 0x1ffffffffffffffl; #endif } /* Shift the result in the high 1024 bits down to the bottom. * * r A single precision number. * a A single precision number. */ static void sp_2048_mont_shift_18(sp_digit* r, const sp_digit* a) { #ifdef WOLFSSL_SP_SMALL int i; word64 n; n = a[17] >> 55; for (i = 0; i < 17; i++) { n += a[18 + i] << 2; r[i] = n & 0x1ffffffffffffffl; n >>= 57; } n += a[35] << 2; r[17] = n; #else word64 n; int i; n = a[17] >> 55; for (i = 0; i < 16; i += 8) { n += a[i+18] << 2; r[i+0] = n & 0x1ffffffffffffffl; n >>= 57; n += a[i+19] << 2; r[i+1] = n & 0x1ffffffffffffffl; n >>= 57; n += a[i+20] << 2; r[i+2] = n & 0x1ffffffffffffffl; n >>= 57; n += a[i+21] << 2; r[i+3] = n & 0x1ffffffffffffffl; n >>= 57; n += a[i+22] << 2; r[i+4] = n & 0x1ffffffffffffffl; n >>= 57; n += a[i+23] << 2; r[i+5] = n & 0x1ffffffffffffffl; n >>= 57; n += a[i+24] << 2; r[i+6] = n & 0x1ffffffffffffffl; n >>= 57; n += a[i+25] << 2; r[i+7] = n & 0x1ffffffffffffffl; n >>= 57; } n += a[34] << 2; r[16] = n & 0x1ffffffffffffffl; n >>= 57; n += a[35] << 2; r[17] = n; #endif /* WOLFSSL_SP_SMALL */ XMEMSET(&r[18], 0, sizeof(*r) * 18); } /* Reduce the number back to 2048 bits using Montgomery reduction. * * a A single precision number to reduce in place. * m The single precision number representing the modulus. * mp The digit representing the negative inverse of m mod 2^n. */ static void sp_2048_mont_reduce_18(sp_digit* a, sp_digit* m, sp_digit mp) { int i; sp_digit mu; for (i=0; i<17; i++) { mu = (a[i] * mp) & 0x1ffffffffffffffl; sp_2048_mul_add_18(a+i, m, mu); a[i+1] += a[i] >> 57; } mu = (a[i] * mp) & 0x7fffffffffffffl; sp_2048_mul_add_18(a+i, m, mu); a[i+1] += a[i] >> 57; a[i] &= 0x1ffffffffffffffl; sp_2048_mont_shift_18(a, a); sp_2048_cond_sub_18(a, a, m, 0 - ((a[17] >> 55) > 0)); sp_2048_norm_18(a); } /* Multiply two Montogmery form numbers mod the modulus (prime). * (r = a * b mod m) * * r Result of multiplication. * a First number to multiply in Montogmery form. * b Second number to multiply in Montogmery form. * m Modulus (prime). * mp Montogmery mulitplier. */ static void sp_2048_mont_mul_18(sp_digit* r, sp_digit* a, sp_digit* b, sp_digit* m, sp_digit mp) { sp_2048_mul_18(r, a, b); sp_2048_mont_reduce_18(r, m, mp); } /* Square the Montgomery form number. (r = a * a mod m) * * r Result of squaring. * a Number to square in Montogmery form. * m Modulus (prime). * mp Montogmery mulitplier. */ static void sp_2048_mont_sqr_18(sp_digit* r, sp_digit* a, sp_digit* m, sp_digit mp) { sp_2048_sqr_18(r, a); sp_2048_mont_reduce_18(r, m, mp); } /* Multiply a by scalar b into r. (r = a * b) * * r A single precision integer. * a A single precision integer. * b A scalar. */ SP_NOINLINE static void sp_2048_mul_d_18(sp_digit* r, const sp_digit* a, const sp_digit b) { #ifdef WOLFSSL_SP_SMALL int128_t tb = b; int128_t t = 0; int i; for (i = 0; i < 18; i++) { t += tb * a[i]; r[i] = t & 0x1ffffffffffffffl; t >>= 57; } r[18] = (sp_digit)t; #else int128_t tb = b; int128_t t[8]; int i; t[0] = tb * a[0]; r[0] = t[0] & 0x1ffffffffffffffl; for (i = 0; i < 16; i += 8) { t[1] = tb * a[i+1]; r[i+1] = (sp_digit)(t[0] >> 57) + (t[1] & 0x1ffffffffffffffl); t[2] = tb * a[i+2]; r[i+2] = (sp_digit)(t[1] >> 57) + (t[2] & 0x1ffffffffffffffl); t[3] = tb * a[i+3]; r[i+3] = (sp_digit)(t[2] >> 57) + (t[3] & 0x1ffffffffffffffl); t[4] = tb * a[i+4]; r[i+4] = (sp_digit)(t[3] >> 57) + (t[4] & 0x1ffffffffffffffl); t[5] = tb * a[i+5]; r[i+5] = (sp_digit)(t[4] >> 57) + (t[5] & 0x1ffffffffffffffl); t[6] = tb * a[i+6]; r[i+6] = (sp_digit)(t[5] >> 57) + (t[6] & 0x1ffffffffffffffl); t[7] = tb * a[i+7]; r[i+7] = (sp_digit)(t[6] >> 57) + (t[7] & 0x1ffffffffffffffl); t[0] = tb * a[i+8]; r[i+8] = (sp_digit)(t[7] >> 57) + (t[0] & 0x1ffffffffffffffl); } t[1] = tb * a[17]; r[17] = (sp_digit)(t[0] >> 57) + (t[1] & 0x1ffffffffffffffl); r[18] = (sp_digit)(t[1] >> 57); #endif /* WOLFSSL_SP_SMALL */ } /* Conditionally add a and b using the mask m. * m is -1 to add and 0 when not. * * r A single precision number representing conditional add result. * a A single precision number to add with. * b A single precision number to add. * m Mask value to apply. */ static void sp_2048_cond_add_18(sp_digit* r, const sp_digit* a, const sp_digit* b, const sp_digit m) { #ifdef WOLFSSL_SP_SMALL int i; for (i = 0; i < 18; i++) r[i] = a[i] + (b[i] & m); #else int i; for (i = 0; i < 16; i += 8) { r[i + 0] = a[i + 0] + (b[i + 0] & m); r[i + 1] = a[i + 1] + (b[i + 1] & m); r[i + 2] = a[i + 2] + (b[i + 2] & m); r[i + 3] = a[i + 3] + (b[i + 3] & m); r[i + 4] = a[i + 4] + (b[i + 4] & m); r[i + 5] = a[i + 5] + (b[i + 5] & m); r[i + 6] = a[i + 6] + (b[i + 6] & m); r[i + 7] = a[i + 7] + (b[i + 7] & m); } r[16] = a[16] + (b[16] & m); r[17] = a[17] + (b[17] & m); #endif /* WOLFSSL_SP_SMALL */ } #ifdef WOLFSSL_SMALL /* Sub b from a into r. (r = a - b) * * r A single precision integer. * a A single precision integer. * b A single precision integer. */ SP_NOINLINE static int sp_2048_sub_18(sp_digit* r, const sp_digit* a, const sp_digit* b) { int i; for (i = 0; i < 18; i++) r[i] = a[i] - b[i]; return 0; } #endif #ifdef WOLFSSL_SMALL /* Add b to a into r. (r = a + b) * * r A single precision integer. * a A single precision integer. * b A single precision integer. */ SP_NOINLINE static int sp_2048_add_18(sp_digit* r, const sp_digit* a, const sp_digit* b) { int i; for (i = 0; i < 18; i++) r[i] = a[i] + b[i]; return 0; } #endif /* Divide d in a and put remainder into r (m*d + r = a) * m is not calculated as it is not needed at this time. * * a Nmber to be divided. * d Number to divide with. * m Multiplier result. * r Remainder from the division. * returns MEMORY_E when unable to allocate memory and MP_OKAY otherwise. */ static int sp_2048_div_18(sp_digit* a, sp_digit* d, sp_digit* m, sp_digit* r) { int i; int128_t d1; sp_digit div, r1; #if defined(WOLFSSL_SP_SMALL) || defined(WOLFSSL_SMALL_STACK) sp_digit* td; #else sp_digit t1d[36], t2d[18 + 1]; #endif sp_digit* t1; sp_digit* t2; int err = MP_OKAY; #if defined(WOLFSSL_SP_SMALL) || defined(WOLFSSL_SMALL_STACK) td = XMALLOC(sizeof(sp_digit) * (3 * 18 + 1), NULL, DYNAMIC_TYPE_TMP_BUFFER); if (td != NULL) { t1 = td; t2 = td + 2 * 18; } else err = MEMORY_E; #else t1 = t1d; t2 = t2d; #endif (void)m; if (err == MP_OKAY) { div = d[17]; XMEMCPY(t1, a, sizeof(*t1) * 2 * 18); for (i=17; i>=0; i--) { t1[18 + i] += t1[18 + i - 1] >> 57; t1[18 + i - 1] &= 0x1ffffffffffffffl; d1 = t1[18 + i]; d1 <<= 57; d1 += t1[18 + i - 1]; r1 = (sp_digit)(d1 / div); sp_2048_mul_d_18(t2, d, r1); sp_2048_sub_18(&t1[i], &t1[i], t2); t1[18 + i] -= t2[18]; t1[18 + i] += t1[18 + i - 1] >> 57; t1[18 + i - 1] &= 0x1ffffffffffffffl; r1 = (((-t1[18 + i]) << 57) - t1[18 + i - 1]) / div; r1++; sp_2048_mul_d_18(t2, d, r1); sp_2048_add_18(&t1[i], &t1[i], t2); t1[18 + i] += t1[18 + i - 1] >> 57; t1[18 + i - 1] &= 0x1ffffffffffffffl; } t1[18 - 1] += t1[18 - 2] >> 57; t1[18 - 2] &= 0x1ffffffffffffffl; d1 = t1[18 - 1]; r1 = (sp_digit)(d1 / div); sp_2048_mul_d_18(t2, d, r1); sp_2048_sub_18(t1, t1, t2); XMEMCPY(r, t1, sizeof(*r) * 2 * 18); for (i=0; i<16; i++) { r[i+1] += r[i] >> 57; r[i] &= 0x1ffffffffffffffl; } sp_2048_cond_add_18(r, r, d, 0 - (r[17] < 0)); } #if defined(WOLFSSL_SP_SMALL) || defined(WOLFSSL_SMALL_STACK) if (td != NULL) XFREE(td, NULL, DYNAMIC_TYPE_TMP_BUFFER); #endif return err; } /* Reduce a modulo m into r. (r = a mod m) * * r A single precision number that is the reduced result. * a A single precision number that is to be reduced. * m A single precision number that is the modulus to reduce with. * returns MEMORY_E when unable to allocate memory and MP_OKAY otherwise. */ static int sp_2048_mod_18(sp_digit* r, sp_digit* a, sp_digit* m) { return sp_2048_div_18(a, m, NULL, r); } /* Modular exponentiate a to the e mod m. (r = a^e mod m) * * r A single precision number that is the result of the operation. * a A single precision number being exponentiated. * e A single precision number that is the exponent. * bits The number of bits in the exponent. * m A single precision number that is the modulus. * returns 0 on success and MEMORY_E on dynamic memory allocation failure. */ static int sp_2048_mod_exp_18(sp_digit* r, sp_digit* a, sp_digit* e, int bits, sp_digit* m, int reduceA) { #ifdef WOLFSSL_SP_SMALL sp_digit* td; sp_digit* t[3]; sp_digit* norm; sp_digit mp = 1; sp_digit n; int i; int c, y; int err = MP_OKAY; td = (sp_digit*)XMALLOC(sizeof(*td) * 3 * 18 * 2, NULL, DYNAMIC_TYPE_TMP_BUFFER); if (td == NULL) err = MEMORY_E; if (err == MP_OKAY) { XMEMSET(td, 0, sizeof(*td) * 3 * 18 * 2); norm = t[0] = td; t[1] = &td[18 * 2]; t[2] = &td[2 * 18 * 2]; sp_2048_mont_setup(m, &mp); sp_2048_mont_norm_18(norm, m); if (reduceA) err = sp_2048_mod_18(t[1], a, m); else XMEMCPY(t[1], a, sizeof(sp_digit) * 18); } if (err == MP_OKAY) { sp_2048_mul_18(t[1], t[1], norm); err = sp_2048_mod_18(t[1], t[1], m); } if (err == MP_OKAY) { i = bits / 57; c = bits % 57; n = e[i--] << (57 - c); for (; ; c--) { if (c == 0) { if (i == -1) break; n = e[i--]; c = 57; } y = (n >> 56) & 1; n <<= 1; sp_2048_mont_mul_18(t[y^1], t[0], t[1], m, mp); XMEMCPY(t[2], (void*)(((size_t)t[0] & addr_mask[y^1]) + ((size_t)t[1] & addr_mask[y])), sizeof(*t[2]) * 18 * 2); sp_2048_mont_sqr_18(t[2], t[2], m, mp); XMEMCPY((void*)(((size_t)t[0] & addr_mask[y^1]) + ((size_t)t[1] & addr_mask[y])), t[2], sizeof(*t[2]) * 18 * 2); } sp_2048_mont_reduce_18(t[0], m, mp); n = sp_2048_cmp_18(t[0], m); sp_2048_cond_sub_18(t[0], t[0], m, (n < 0) - 1); XMEMCPY(r, t[0], sizeof(*r) * 18 * 2); } if (td != NULL) XFREE(td, NULL, DYNAMIC_TYPE_TMP_BUFFER); return err; #elif defined(WOLFSSL_SP_CACHE_RESISTANT) #ifndef WOLFSSL_SMALL_STACK sp_digit t[3][36]; #else sp_digit* td; sp_digit* t[3]; #endif sp_digit* norm; sp_digit mp = 1; sp_digit n; int i; int c, y; int err = MP_OKAY; #ifdef WOLFSSL_SMALL_STACK td = (sp_digit*)XMALLOC(sizeof(*td) * 3 * 18 * 2, NULL, DYNAMIC_TYPE_TMP_BUFFER); if (td == NULL) err = MEMORY_E; if (err == MP_OKAY) { t[0] = td; t[1] = &td[18 * 2]; t[2] = &td[2 * 18 * 2]; norm = t[0]; } #else norm = t[0]; #endif if (err == MP_OKAY) { sp_2048_mont_setup(m, &mp); sp_2048_mont_norm_18(norm, m); if (reduceA) { err = sp_2048_mod_18(t[1], a, m); if (err == MP_OKAY) { sp_2048_mul_18(t[1], t[1], norm); err = sp_2048_mod_18(t[1], t[1], m); } } else { sp_2048_mul_18(t[1], a, norm); err = sp_2048_mod_18(t[1], t[1], m); } } if (err == MP_OKAY) { i = bits / 57; c = bits % 57; n = e[i--] << (57 - c); for (; ; c--) { if (c == 0) { if (i == -1) break; n = e[i--]; c = 57; } y = (n >> 56) & 1; n <<= 1; sp_2048_mont_mul_18(t[y^1], t[0], t[1], m, mp); XMEMCPY(t[2], (void*)(((size_t)t[0] & addr_mask[y^1]) + ((size_t)t[1] & addr_mask[y])), sizeof(t[2])); sp_2048_mont_sqr_18(t[2], t[2], m, mp); XMEMCPY((void*)(((size_t)t[0] & addr_mask[y^1]) + ((size_t)t[1] & addr_mask[y])), t[2], sizeof(t[2])); } sp_2048_mont_reduce_18(t[0], m, mp); n = sp_2048_cmp_18(t[0], m); sp_2048_cond_sub_18(t[0], t[0], m, (n < 0) - 1); XMEMCPY(r, t[0], sizeof(t[0])); } #ifdef WOLFSSL_SMALL_STACK if (td != NULL) XFREE(td, NULL, DYNAMIC_TYPE_TMP_BUFFER); #endif return err; #else #ifndef WOLFSSL_SMALL_STACK sp_digit t[32][36]; #else sp_digit* t[32]; sp_digit* td; #endif sp_digit* norm; sp_digit rt[36]; sp_digit mp = 1; sp_digit n; int i; int c, y; int err = MP_OKAY; #ifdef WOLFSSL_SMALL_STACK td = (sp_digit*)XMALLOC(sizeof(sp_digit) * 32 * 36, NULL, DYNAMIC_TYPE_TMP_BUFFER); if (td == NULL) err = MEMORY_E; if (err == MP_OKAY) { for (i=0; i<32; i++) t[i] = td + i * 36; norm = t[0]; } #else norm = t[0]; #endif if (err == MP_OKAY) { sp_2048_mont_setup(m, &mp); sp_2048_mont_norm_18(norm, m); if (reduceA) { err = sp_2048_mod_18(t[1], a, m); if (err == MP_OKAY) { sp_2048_mul_18(t[1], t[1], norm); err = sp_2048_mod_18(t[1], t[1], m); } } else { sp_2048_mul_18(t[1], a, norm); err = sp_2048_mod_18(t[1], t[1], m); } } if (err == MP_OKAY) { sp_2048_mont_sqr_18(t[ 2], t[ 1], m, mp); sp_2048_mont_mul_18(t[ 3], t[ 2], t[ 1], m, mp); sp_2048_mont_sqr_18(t[ 4], t[ 2], m, mp); sp_2048_mont_mul_18(t[ 5], t[ 3], t[ 2], m, mp); sp_2048_mont_sqr_18(t[ 6], t[ 3], m, mp); sp_2048_mont_mul_18(t[ 7], t[ 4], t[ 3], m, mp); sp_2048_mont_sqr_18(t[ 8], t[ 4], m, mp); sp_2048_mont_mul_18(t[ 9], t[ 5], t[ 4], m, mp); sp_2048_mont_sqr_18(t[10], t[ 5], m, mp); sp_2048_mont_mul_18(t[11], t[ 6], t[ 5], m, mp); sp_2048_mont_sqr_18(t[12], t[ 6], m, mp); sp_2048_mont_mul_18(t[13], t[ 7], t[ 6], m, mp); sp_2048_mont_sqr_18(t[14], t[ 7], m, mp); sp_2048_mont_mul_18(t[15], t[ 8], t[ 7], m, mp); sp_2048_mont_sqr_18(t[16], t[ 8], m, mp); sp_2048_mont_mul_18(t[17], t[ 9], t[ 8], m, mp); sp_2048_mont_sqr_18(t[18], t[ 9], m, mp); sp_2048_mont_mul_18(t[19], t[10], t[ 9], m, mp); sp_2048_mont_sqr_18(t[20], t[10], m, mp); sp_2048_mont_mul_18(t[21], t[11], t[10], m, mp); sp_2048_mont_sqr_18(t[22], t[11], m, mp); sp_2048_mont_mul_18(t[23], t[12], t[11], m, mp); sp_2048_mont_sqr_18(t[24], t[12], m, mp); sp_2048_mont_mul_18(t[25], t[13], t[12], m, mp); sp_2048_mont_sqr_18(t[26], t[13], m, mp); sp_2048_mont_mul_18(t[27], t[14], t[13], m, mp); sp_2048_mont_sqr_18(t[28], t[14], m, mp); sp_2048_mont_mul_18(t[29], t[15], t[14], m, mp); sp_2048_mont_sqr_18(t[30], t[15], m, mp); sp_2048_mont_mul_18(t[31], t[16], t[15], m, mp); bits = ((bits + 4) / 5) * 5; i = ((bits + 56) / 57) - 1; c = bits % 57; if (c == 0) c = 57; if (i < 18) n = e[i--] << (64 - c); else { n = 0; i--; } if (c < 5) { n |= e[i--] << (7 - c); c += 57; } y = n >> 59; n <<= 5; c -= 5; XMEMCPY(rt, t[y], sizeof(rt)); for (; i>=0 || c>=5; ) { if (c < 5) { n |= e[i--] << (7 - c); c += 57; } y = (n >> 59) & 0x1f; n <<= 5; c -= 5; sp_2048_mont_sqr_18(rt, rt, m, mp); sp_2048_mont_sqr_18(rt, rt, m, mp); sp_2048_mont_sqr_18(rt, rt, m, mp); sp_2048_mont_sqr_18(rt, rt, m, mp); sp_2048_mont_sqr_18(rt, rt, m, mp); sp_2048_mont_mul_18(rt, rt, t[y], m, mp); } sp_2048_mont_reduce_18(rt, m, mp); n = sp_2048_cmp_18(rt, m); sp_2048_cond_sub_18(rt, rt, m, (n < 0) - 1); XMEMCPY(r, rt, sizeof(rt)); } #ifdef WOLFSSL_SMALL_STACK if (td != NULL) XFREE(td, NULL, DYNAMIC_TYPE_TMP_BUFFER); #endif return err; #endif } #endif /* !SP_RSA_PRIVATE_EXP_D && WOLFSSL_HAVE_SP_RSA */ /* r = 2^n mod m where n is the number of bits to reduce by. * Given m must be 2048 bits, just need to subtract. * * r A single precision number. * m A signle precision number. */ static void sp_2048_mont_norm_36(sp_digit* r, sp_digit* m) { /* Set r = 2^n - 1. */ #ifdef WOLFSSL_SP_SMALL int i; for (i=0; i<35; i++) r[i] = 0x1ffffffffffffffl; #else int i; for (i = 0; i < 32; i += 8) { r[i + 0] = 0x1ffffffffffffffl; r[i + 1] = 0x1ffffffffffffffl; r[i + 2] = 0x1ffffffffffffffl; r[i + 3] = 0x1ffffffffffffffl; r[i + 4] = 0x1ffffffffffffffl; r[i + 5] = 0x1ffffffffffffffl; r[i + 6] = 0x1ffffffffffffffl; r[i + 7] = 0x1ffffffffffffffl; } r[32] = 0x1ffffffffffffffl; r[33] = 0x1ffffffffffffffl; r[34] = 0x1ffffffffffffffl; #endif r[35] = 0x1fffffffffffffl; /* r = (2^n - 1) mod n */ sp_2048_sub_36(r, r, m); /* Add one so r = 2^n mod m */ r[0] += 1; } /* Compare a with b in constant time. * * a A single precision integer. * b A single precision integer. * return -ve, 0 or +ve if a is less than, equal to or greater than b * respectively. */ static sp_digit sp_2048_cmp_36(const sp_digit* a, const sp_digit* b) { sp_digit r = 0; #ifdef WOLFSSL_SP_SMALL int i; for (i=35; i>=0; i--) r |= (a[i] - b[i]) & (0 - !r); #else int i; r |= (a[35] - b[35]) & (0 - !r); r |= (a[34] - b[34]) & (0 - !r); r |= (a[33] - b[33]) & (0 - !r); r |= (a[32] - b[32]) & (0 - !r); for (i = 24; i >= 0; i -= 8) { r |= (a[i + 7] - b[i + 7]) & (0 - !r); r |= (a[i + 6] - b[i + 6]) & (0 - !r); r |= (a[i + 5] - b[i + 5]) & (0 - !r); r |= (a[i + 4] - b[i + 4]) & (0 - !r); r |= (a[i + 3] - b[i + 3]) & (0 - !r); r |= (a[i + 2] - b[i + 2]) & (0 - !r); r |= (a[i + 1] - b[i + 1]) & (0 - !r); r |= (a[i + 0] - b[i + 0]) & (0 - !r); } #endif /* WOLFSSL_SP_SMALL */ return r; } /* Conditionally subtract b from a using the mask m. * m is -1 to subtract and 0 when not. * * r A single precision number representing condition subtract result. * a A single precision number to subtract from. * b A single precision number to subtract. * m Mask value to apply. */ static void sp_2048_cond_sub_36(sp_digit* r, const sp_digit* a, const sp_digit* b, const sp_digit m) { #ifdef WOLFSSL_SP_SMALL int i; for (i = 0; i < 36; i++) r[i] = a[i] - (b[i] & m); #else int i; for (i = 0; i < 32; i += 8) { r[i + 0] = a[i + 0] - (b[i + 0] & m); r[i + 1] = a[i + 1] - (b[i + 1] & m); r[i + 2] = a[i + 2] - (b[i + 2] & m); r[i + 3] = a[i + 3] - (b[i + 3] & m); r[i + 4] = a[i + 4] - (b[i + 4] & m); r[i + 5] = a[i + 5] - (b[i + 5] & m); r[i + 6] = a[i + 6] - (b[i + 6] & m); r[i + 7] = a[i + 7] - (b[i + 7] & m); } r[32] = a[32] - (b[32] & m); r[33] = a[33] - (b[33] & m); r[34] = a[34] - (b[34] & m); r[35] = a[35] - (b[35] & m); #endif /* WOLFSSL_SP_SMALL */ } /* Mul a by scalar b and add into r. (r += a * b) * * r A single precision integer. * a A single precision integer. * b A scalar. */ SP_NOINLINE static void sp_2048_mul_add_36(sp_digit* r, const sp_digit* a, const sp_digit b) { #ifdef WOLFSSL_SP_SMALL int128_t tb = b; int128_t t = 0; int i; for (i = 0; i < 36; i++) { t += (tb * a[i]) + r[i]; r[i] = t & 0x1ffffffffffffffl; t >>= 57; } r[36] += t; #else int128_t tb = b; int128_t t[8]; int i; t[0] = tb * a[0]; r[0] += t[0] & 0x1ffffffffffffffl; for (i = 0; i < 32; i += 8) { t[1] = tb * a[i+1]; r[i+1] += (t[0] >> 57) + (t[1] & 0x1ffffffffffffffl); t[2] = tb * a[i+2]; r[i+2] += (t[1] >> 57) + (t[2] & 0x1ffffffffffffffl); t[3] = tb * a[i+3]; r[i+3] += (t[2] >> 57) + (t[3] & 0x1ffffffffffffffl); t[4] = tb * a[i+4]; r[i+4] += (t[3] >> 57) + (t[4] & 0x1ffffffffffffffl); t[5] = tb * a[i+5]; r[i+5] += (t[4] >> 57) + (t[5] & 0x1ffffffffffffffl); t[6] = tb * a[i+6]; r[i+6] += (t[5] >> 57) + (t[6] & 0x1ffffffffffffffl); t[7] = tb * a[i+7]; r[i+7] += (t[6] >> 57) + (t[7] & 0x1ffffffffffffffl); t[0] = tb * a[i+8]; r[i+8] += (t[7] >> 57) + (t[0] & 0x1ffffffffffffffl); } t[1] = tb * a[33]; r[33] += (t[0] >> 57) + (t[1] & 0x1ffffffffffffffl); t[2] = tb * a[34]; r[34] += (t[1] >> 57) + (t[2] & 0x1ffffffffffffffl); t[3] = tb * a[35]; r[35] += (t[2] >> 57) + (t[3] & 0x1ffffffffffffffl); r[36] += t[3] >> 57; #endif /* WOLFSSL_SP_SMALL */ } /* Normalize the values in each word to 57. * * a Array of sp_digit to normalize. */ static void sp_2048_norm_36(sp_digit* a) { #ifdef WOLFSSL_SP_SMALL int i; for (i = 0; i < 35; i++) { a[i+1] += a[i] >> 57; a[i] &= 0x1ffffffffffffffl; } #else int i; for (i = 0; i < 32; i += 8) { a[i+1] += a[i+0] >> 57; a[i+0] &= 0x1ffffffffffffffl; a[i+2] += a[i+1] >> 57; a[i+1] &= 0x1ffffffffffffffl; a[i+3] += a[i+2] >> 57; a[i+2] &= 0x1ffffffffffffffl; a[i+4] += a[i+3] >> 57; a[i+3] &= 0x1ffffffffffffffl; a[i+5] += a[i+4] >> 57; a[i+4] &= 0x1ffffffffffffffl; a[i+6] += a[i+5] >> 57; a[i+5] &= 0x1ffffffffffffffl; a[i+7] += a[i+6] >> 57; a[i+6] &= 0x1ffffffffffffffl; a[i+8] += a[i+7] >> 57; a[i+7] &= 0x1ffffffffffffffl; a[i+9] += a[i+8] >> 57; a[i+8] &= 0x1ffffffffffffffl; } a[32+1] += a[32] >> 57; a[32] &= 0x1ffffffffffffffl; a[33+1] += a[33] >> 57; a[33] &= 0x1ffffffffffffffl; a[34+1] += a[34] >> 57; a[34] &= 0x1ffffffffffffffl; #endif } /* Shift the result in the high 2048 bits down to the bottom. * * r A single precision number. * a A single precision number. */ static void sp_2048_mont_shift_36(sp_digit* r, const sp_digit* a) { #ifdef WOLFSSL_SP_SMALL int i; sp_digit n, s; s = a[36]; n = a[35] >> 53; for (i = 0; i < 35; i++) { n += (s & 0x1ffffffffffffffl) << 4; r[i] = n & 0x1ffffffffffffffl; n >>= 57; s = a[37 + i] + (s >> 57); } n += s << 4; r[35] = n; #else sp_digit n, s; int i; s = a[36]; n = a[35] >> 53; for (i = 0; i < 32; i += 8) { n += (s & 0x1ffffffffffffffl) << 4; r[i+0] = n & 0x1ffffffffffffffl; n >>= 57; s = a[i+37] + (s >> 57); n += (s & 0x1ffffffffffffffl) << 4; r[i+1] = n & 0x1ffffffffffffffl; n >>= 57; s = a[i+38] + (s >> 57); n += (s & 0x1ffffffffffffffl) << 4; r[i+2] = n & 0x1ffffffffffffffl; n >>= 57; s = a[i+39] + (s >> 57); n += (s & 0x1ffffffffffffffl) << 4; r[i+3] = n & 0x1ffffffffffffffl; n >>= 57; s = a[i+40] + (s >> 57); n += (s & 0x1ffffffffffffffl) << 4; r[i+4] = n & 0x1ffffffffffffffl; n >>= 57; s = a[i+41] + (s >> 57); n += (s & 0x1ffffffffffffffl) << 4; r[i+5] = n & 0x1ffffffffffffffl; n >>= 57; s = a[i+42] + (s >> 57); n += (s & 0x1ffffffffffffffl) << 4; r[i+6] = n & 0x1ffffffffffffffl; n >>= 57; s = a[i+43] + (s >> 57); n += (s & 0x1ffffffffffffffl) << 4; r[i+7] = n & 0x1ffffffffffffffl; n >>= 57; s = a[i+44] + (s >> 57); } n += (s & 0x1ffffffffffffffl) << 4; r[32] = n & 0x1ffffffffffffffl; n >>= 57; s = a[69] + (s >> 57); n += (s & 0x1ffffffffffffffl) << 4; r[33] = n & 0x1ffffffffffffffl; n >>= 57; s = a[70] + (s >> 57); n += (s & 0x1ffffffffffffffl) << 4; r[34] = n & 0x1ffffffffffffffl; n >>= 57; s = a[71] + (s >> 57); n += s << 4; r[35] = n; #endif /* WOLFSSL_SP_SMALL */ XMEMSET(&r[36], 0, sizeof(*r) * 36); } /* Reduce the number back to 2048 bits using Montgomery reduction. * * a A single precision number to reduce in place. * m The single precision number representing the modulus. * mp The digit representing the negative inverse of m mod 2^n. */ static void sp_2048_mont_reduce_36(sp_digit* a, sp_digit* m, sp_digit mp) { int i; sp_digit mu; if (mp != 1) { for (i=0; i<35; i++) { mu = (a[i] * mp) & 0x1ffffffffffffffl; sp_2048_mul_add_36(a+i, m, mu); a[i+1] += a[i] >> 57; } mu = (a[i] * mp) & 0x1fffffffffffffl; sp_2048_mul_add_36(a+i, m, mu); a[i+1] += a[i] >> 57; a[i] &= 0x1ffffffffffffffl; } else { for (i=0; i<35; i++) { mu = a[i] & 0x1ffffffffffffffl; sp_2048_mul_add_36(a+i, m, mu); a[i+1] += a[i] >> 57; } mu = a[i] & 0x1fffffffffffffl; sp_2048_mul_add_36(a+i, m, mu); a[i+1] += a[i] >> 57; a[i] &= 0x1ffffffffffffffl; } sp_2048_mont_shift_36(a, a); sp_2048_cond_sub_36(a, a, m, 0 - ((a[35] >> 53) > 0)); sp_2048_norm_36(a); } /* Multiply two Montogmery form numbers mod the modulus (prime). * (r = a * b mod m) * * r Result of multiplication. * a First number to multiply in Montogmery form. * b Second number to multiply in Montogmery form. * m Modulus (prime). * mp Montogmery mulitplier. */ static void sp_2048_mont_mul_36(sp_digit* r, sp_digit* a, sp_digit* b, sp_digit* m, sp_digit mp) { sp_2048_mul_36(r, a, b); sp_2048_mont_reduce_36(r, m, mp); } /* Square the Montgomery form number. (r = a * a mod m) * * r Result of squaring. * a Number to square in Montogmery form. * m Modulus (prime). * mp Montogmery mulitplier. */ static void sp_2048_mont_sqr_36(sp_digit* r, sp_digit* a, sp_digit* m, sp_digit mp) { sp_2048_sqr_36(r, a); sp_2048_mont_reduce_36(r, m, mp); } /* Multiply a by scalar b into r. (r = a * b) * * r A single precision integer. * a A single precision integer. * b A scalar. */ SP_NOINLINE static void sp_2048_mul_d_36(sp_digit* r, const sp_digit* a, const sp_digit b) { #ifdef WOLFSSL_SP_SMALL int128_t tb = b; int128_t t = 0; int i; for (i = 0; i < 36; i++) { t += tb * a[i]; r[i] = t & 0x1ffffffffffffffl; t >>= 57; } r[36] = (sp_digit)t; #else int128_t tb = b; int128_t t[8]; int i; t[0] = tb * a[0]; r[0] = t[0] & 0x1ffffffffffffffl; for (i = 0; i < 32; i += 8) { t[1] = tb * a[i+1]; r[i+1] = (sp_digit)(t[0] >> 57) + (t[1] & 0x1ffffffffffffffl); t[2] = tb * a[i+2]; r[i+2] = (sp_digit)(t[1] >> 57) + (t[2] & 0x1ffffffffffffffl); t[3] = tb * a[i+3]; r[i+3] = (sp_digit)(t[2] >> 57) + (t[3] & 0x1ffffffffffffffl); t[4] = tb * a[i+4]; r[i+4] = (sp_digit)(t[3] >> 57) + (t[4] & 0x1ffffffffffffffl); t[5] = tb * a[i+5]; r[i+5] = (sp_digit)(t[4] >> 57) + (t[5] & 0x1ffffffffffffffl); t[6] = tb * a[i+6]; r[i+6] = (sp_digit)(t[5] >> 57) + (t[6] & 0x1ffffffffffffffl); t[7] = tb * a[i+7]; r[i+7] = (sp_digit)(t[6] >> 57) + (t[7] & 0x1ffffffffffffffl); t[0] = tb * a[i+8]; r[i+8] = (sp_digit)(t[7] >> 57) + (t[0] & 0x1ffffffffffffffl); } t[1] = tb * a[33]; r[33] = (sp_digit)(t[0] >> 57) + (t[1] & 0x1ffffffffffffffl); t[2] = tb * a[34]; r[34] = (sp_digit)(t[1] >> 57) + (t[2] & 0x1ffffffffffffffl); t[3] = tb * a[35]; r[35] = (sp_digit)(t[2] >> 57) + (t[3] & 0x1ffffffffffffffl); r[36] = (sp_digit)(t[3] >> 57); #endif /* WOLFSSL_SP_SMALL */ } /* Conditionally add a and b using the mask m. * m is -1 to add and 0 when not. * * r A single precision number representing conditional add result. * a A single precision number to add with. * b A single precision number to add. * m Mask value to apply. */ static void sp_2048_cond_add_36(sp_digit* r, const sp_digit* a, const sp_digit* b, const sp_digit m) { #ifdef WOLFSSL_SP_SMALL int i; for (i = 0; i < 36; i++) r[i] = a[i] + (b[i] & m); #else int i; for (i = 0; i < 32; i += 8) { r[i + 0] = a[i + 0] + (b[i + 0] & m); r[i + 1] = a[i + 1] + (b[i + 1] & m); r[i + 2] = a[i + 2] + (b[i + 2] & m); r[i + 3] = a[i + 3] + (b[i + 3] & m); r[i + 4] = a[i + 4] + (b[i + 4] & m); r[i + 5] = a[i + 5] + (b[i + 5] & m); r[i + 6] = a[i + 6] + (b[i + 6] & m); r[i + 7] = a[i + 7] + (b[i + 7] & m); } r[32] = a[32] + (b[32] & m); r[33] = a[33] + (b[33] & m); r[34] = a[34] + (b[34] & m); r[35] = a[35] + (b[35] & m); #endif /* WOLFSSL_SP_SMALL */ } #ifdef WOLFSSL_SMALL /* Sub b from a into r. (r = a - b) * * r A single precision integer. * a A single precision integer. * b A single precision integer. */ SP_NOINLINE static int sp_2048_sub_36(sp_digit* r, const sp_digit* a, const sp_digit* b) { int i; for (i = 0; i < 36; i++) r[i] = a[i] - b[i]; return 0; } #endif #ifdef WOLFSSL_SMALL /* Add b to a into r. (r = a + b) * * r A single precision integer. * a A single precision integer. * b A single precision integer. */ SP_NOINLINE static int sp_2048_add_36(sp_digit* r, const sp_digit* a, const sp_digit* b) { int i; for (i = 0; i < 36; i++) r[i] = a[i] + b[i]; return 0; } #endif /* Divide d in a and put remainder into r (m*d + r = a) * m is not calculated as it is not needed at this time. * * a Nmber to be divided. * d Number to divide with. * m Multiplier result. * r Remainder from the division. * returns MEMORY_E when unable to allocate memory and MP_OKAY otherwise. */ static int sp_2048_div_36(sp_digit* a, sp_digit* d, sp_digit* m, sp_digit* r) { int i; int128_t d1; sp_digit div, r1; #if defined(WOLFSSL_SP_SMALL) || defined(WOLFSSL_SMALL_STACK) sp_digit* td; #else sp_digit t1d[72], t2d[36 + 1]; #endif sp_digit* t1; sp_digit* t2; int err = MP_OKAY; #if defined(WOLFSSL_SP_SMALL) || defined(WOLFSSL_SMALL_STACK) td = XMALLOC(sizeof(sp_digit) * (3 * 36 + 1), NULL, DYNAMIC_TYPE_TMP_BUFFER); if (td != NULL) { t1 = td; t2 = td + 2 * 36; } else err = MEMORY_E; #else t1 = t1d; t2 = t2d; #endif (void)m; if (err == MP_OKAY) { div = d[35]; XMEMCPY(t1, a, sizeof(*t1) * 2 * 36); for (i=35; i>=0; i--) { t1[36 + i] += t1[36 + i - 1] >> 57; t1[36 + i - 1] &= 0x1ffffffffffffffl; d1 = t1[36 + i]; d1 <<= 57; d1 += t1[36 + i - 1]; r1 = (sp_digit)(d1 / div); sp_2048_mul_d_36(t2, d, r1); sp_2048_sub_36(&t1[i], &t1[i], t2); t1[36 + i] -= t2[36]; t1[36 + i] += t1[36 + i - 1] >> 57; t1[36 + i - 1] &= 0x1ffffffffffffffl; r1 = (((-t1[36 + i]) << 57) - t1[36 + i - 1]) / div; r1++; sp_2048_mul_d_36(t2, d, r1); sp_2048_add_36(&t1[i], &t1[i], t2); t1[36 + i] += t1[36 + i - 1] >> 57; t1[36 + i - 1] &= 0x1ffffffffffffffl; } t1[36 - 1] += t1[36 - 2] >> 57; t1[36 - 2] &= 0x1ffffffffffffffl; d1 = t1[36 - 1]; r1 = (sp_digit)(d1 / div); sp_2048_mul_d_36(t2, d, r1); sp_2048_sub_36(t1, t1, t2); XMEMCPY(r, t1, sizeof(*r) * 2 * 36); for (i=0; i<34; i++) { r[i+1] += r[i] >> 57; r[i] &= 0x1ffffffffffffffl; } sp_2048_cond_add_36(r, r, d, 0 - (r[35] < 0)); } #if defined(WOLFSSL_SP_SMALL) || defined(WOLFSSL_SMALL_STACK) if (td != NULL) XFREE(td, NULL, DYNAMIC_TYPE_TMP_BUFFER); #endif return err; } /* Reduce a modulo m into r. (r = a mod m) * * r A single precision number that is the reduced result. * a A single precision number that is to be reduced. * m A single precision number that is the modulus to reduce with. * returns MEMORY_E when unable to allocate memory and MP_OKAY otherwise. */ static int sp_2048_mod_36(sp_digit* r, sp_digit* a, sp_digit* m) { return sp_2048_div_36(a, m, NULL, r); } #if defined(SP_RSA_PRIVATE_EXP_D) || defined(WOLFSSL_HAVE_SP_DH) /* Modular exponentiate a to the e mod m. (r = a^e mod m) * * r A single precision number that is the result of the operation. * a A single precision number being exponentiated. * e A single precision number that is the exponent. * bits The number of bits in the exponent. * m A single precision number that is the modulus. * returns 0 on success and MEMORY_E on dynamic memory allocation failure. */ static int sp_2048_mod_exp_36(sp_digit* r, sp_digit* a, sp_digit* e, int bits, sp_digit* m, int reduceA) { #ifdef WOLFSSL_SP_SMALL sp_digit* td; sp_digit* t[3]; sp_digit* norm; sp_digit mp = 1; sp_digit n; int i; int c, y; int err = MP_OKAY; td = (sp_digit*)XMALLOC(sizeof(*td) * 3 * 36 * 2, NULL, DYNAMIC_TYPE_TMP_BUFFER); if (td == NULL) err = MEMORY_E; if (err == MP_OKAY) { XMEMSET(td, 0, sizeof(*td) * 3 * 36 * 2); norm = t[0] = td; t[1] = &td[36 * 2]; t[2] = &td[2 * 36 * 2]; sp_2048_mont_setup(m, &mp); sp_2048_mont_norm_36(norm, m); if (reduceA) err = sp_2048_mod_36(t[1], a, m); else XMEMCPY(t[1], a, sizeof(sp_digit) * 36); } if (err == MP_OKAY) { sp_2048_mul_36(t[1], t[1], norm); err = sp_2048_mod_36(t[1], t[1], m); } if (err == MP_OKAY) { i = bits / 57; c = bits % 57; n = e[i--] << (57 - c); for (; ; c--) { if (c == 0) { if (i == -1) break; n = e[i--]; c = 57; } y = (n >> 56) & 1; n <<= 1; sp_2048_mont_mul_36(t[y^1], t[0], t[1], m, mp); XMEMCPY(t[2], (void*)(((size_t)t[0] & addr_mask[y^1]) + ((size_t)t[1] & addr_mask[y])), sizeof(*t[2]) * 36 * 2); sp_2048_mont_sqr_36(t[2], t[2], m, mp); XMEMCPY((void*)(((size_t)t[0] & addr_mask[y^1]) + ((size_t)t[1] & addr_mask[y])), t[2], sizeof(*t[2]) * 36 * 2); } sp_2048_mont_reduce_36(t[0], m, mp); n = sp_2048_cmp_36(t[0], m); sp_2048_cond_sub_36(t[0], t[0], m, (n < 0) - 1); XMEMCPY(r, t[0], sizeof(*r) * 36 * 2); } if (td != NULL) XFREE(td, NULL, DYNAMIC_TYPE_TMP_BUFFER); return err; #elif defined(WOLFSSL_SP_CACHE_RESISTANT) #ifndef WOLFSSL_SMALL_STACK sp_digit t[3][72]; #else sp_digit* td; sp_digit* t[3]; #endif sp_digit* norm; sp_digit mp = 1; sp_digit n; int i; int c, y; int err = MP_OKAY; #ifdef WOLFSSL_SMALL_STACK td = (sp_digit*)XMALLOC(sizeof(*td) * 3 * 36 * 2, NULL, DYNAMIC_TYPE_TMP_BUFFER); if (td == NULL) err = MEMORY_E; if (err == MP_OKAY) { t[0] = td; t[1] = &td[36 * 2]; t[2] = &td[2 * 36 * 2]; norm = t[0]; } #else norm = t[0]; #endif if (err == MP_OKAY) { sp_2048_mont_setup(m, &mp); sp_2048_mont_norm_36(norm, m); if (reduceA) { err = sp_2048_mod_36(t[1], a, m); if (err == MP_OKAY) { sp_2048_mul_36(t[1], t[1], norm); err = sp_2048_mod_36(t[1], t[1], m); } } else { sp_2048_mul_36(t[1], a, norm); err = sp_2048_mod_36(t[1], t[1], m); } } if (err == MP_OKAY) { i = bits / 57; c = bits % 57; n = e[i--] << (57 - c); for (; ; c--) { if (c == 0) { if (i == -1) break; n = e[i--]; c = 57; } y = (n >> 56) & 1; n <<= 1; sp_2048_mont_mul_36(t[y^1], t[0], t[1], m, mp); XMEMCPY(t[2], (void*)(((size_t)t[0] & addr_mask[y^1]) + ((size_t)t[1] & addr_mask[y])), sizeof(t[2])); sp_2048_mont_sqr_36(t[2], t[2], m, mp); XMEMCPY((void*)(((size_t)t[0] & addr_mask[y^1]) + ((size_t)t[1] & addr_mask[y])), t[2], sizeof(t[2])); } sp_2048_mont_reduce_36(t[0], m, mp); n = sp_2048_cmp_36(t[0], m); sp_2048_cond_sub_36(t[0], t[0], m, (n < 0) - 1); XMEMCPY(r, t[0], sizeof(t[0])); } #ifdef WOLFSSL_SMALL_STACK if (td != NULL) XFREE(td, NULL, DYNAMIC_TYPE_TMP_BUFFER); #endif return err; #else #ifndef WOLFSSL_SMALL_STACK sp_digit t[32][72]; #else sp_digit* t[32]; sp_digit* td; #endif sp_digit* norm; sp_digit rt[72]; sp_digit mp = 1; sp_digit n; int i; int c, y; int err = MP_OKAY; #ifdef WOLFSSL_SMALL_STACK td = (sp_digit*)XMALLOC(sizeof(sp_digit) * 32 * 72, NULL, DYNAMIC_TYPE_TMP_BUFFER); if (td == NULL) err = MEMORY_E; if (err == MP_OKAY) { for (i=0; i<32; i++) t[i] = td + i * 72; norm = t[0]; } #else norm = t[0]; #endif if (err == MP_OKAY) { sp_2048_mont_setup(m, &mp); sp_2048_mont_norm_36(norm, m); if (reduceA) { err = sp_2048_mod_36(t[1], a, m); if (err == MP_OKAY) { sp_2048_mul_36(t[1], t[1], norm); err = sp_2048_mod_36(t[1], t[1], m); } } else { sp_2048_mul_36(t[1], a, norm); err = sp_2048_mod_36(t[1], t[1], m); } } if (err == MP_OKAY) { sp_2048_mont_sqr_36(t[ 2], t[ 1], m, mp); sp_2048_mont_mul_36(t[ 3], t[ 2], t[ 1], m, mp); sp_2048_mont_sqr_36(t[ 4], t[ 2], m, mp); sp_2048_mont_mul_36(t[ 5], t[ 3], t[ 2], m, mp); sp_2048_mont_sqr_36(t[ 6], t[ 3], m, mp); sp_2048_mont_mul_36(t[ 7], t[ 4], t[ 3], m, mp); sp_2048_mont_sqr_36(t[ 8], t[ 4], m, mp); sp_2048_mont_mul_36(t[ 9], t[ 5], t[ 4], m, mp); sp_2048_mont_sqr_36(t[10], t[ 5], m, mp); sp_2048_mont_mul_36(t[11], t[ 6], t[ 5], m, mp); sp_2048_mont_sqr_36(t[12], t[ 6], m, mp); sp_2048_mont_mul_36(t[13], t[ 7], t[ 6], m, mp); sp_2048_mont_sqr_36(t[14], t[ 7], m, mp); sp_2048_mont_mul_36(t[15], t[ 8], t[ 7], m, mp); sp_2048_mont_sqr_36(t[16], t[ 8], m, mp); sp_2048_mont_mul_36(t[17], t[ 9], t[ 8], m, mp); sp_2048_mont_sqr_36(t[18], t[ 9], m, mp); sp_2048_mont_mul_36(t[19], t[10], t[ 9], m, mp); sp_2048_mont_sqr_36(t[20], t[10], m, mp); sp_2048_mont_mul_36(t[21], t[11], t[10], m, mp); sp_2048_mont_sqr_36(t[22], t[11], m, mp); sp_2048_mont_mul_36(t[23], t[12], t[11], m, mp); sp_2048_mont_sqr_36(t[24], t[12], m, mp); sp_2048_mont_mul_36(t[25], t[13], t[12], m, mp); sp_2048_mont_sqr_36(t[26], t[13], m, mp); sp_2048_mont_mul_36(t[27], t[14], t[13], m, mp); sp_2048_mont_sqr_36(t[28], t[14], m, mp); sp_2048_mont_mul_36(t[29], t[15], t[14], m, mp); sp_2048_mont_sqr_36(t[30], t[15], m, mp); sp_2048_mont_mul_36(t[31], t[16], t[15], m, mp); bits = ((bits + 4) / 5) * 5; i = ((bits + 56) / 57) - 1; c = bits % 57; if (c == 0) c = 57; if (i < 36) n = e[i--] << (64 - c); else { n = 0; i--; } if (c < 5) { n |= e[i--] << (7 - c); c += 57; } y = n >> 59; n <<= 5; c -= 5; XMEMCPY(rt, t[y], sizeof(rt)); for (; i>=0 || c>=5; ) { if (c < 5) { n |= e[i--] << (7 - c); c += 57; } y = (n >> 59) & 0x1f; n <<= 5; c -= 5; sp_2048_mont_sqr_36(rt, rt, m, mp); sp_2048_mont_sqr_36(rt, rt, m, mp); sp_2048_mont_sqr_36(rt, rt, m, mp); sp_2048_mont_sqr_36(rt, rt, m, mp); sp_2048_mont_sqr_36(rt, rt, m, mp); sp_2048_mont_mul_36(rt, rt, t[y], m, mp); } sp_2048_mont_reduce_36(rt, m, mp); n = sp_2048_cmp_36(rt, m); sp_2048_cond_sub_36(rt, rt, m, (n < 0) - 1); XMEMCPY(r, rt, sizeof(rt)); } #ifdef WOLFSSL_SMALL_STACK if (td != NULL) XFREE(td, NULL, DYNAMIC_TYPE_TMP_BUFFER); #endif return err; #endif } #endif /* SP_RSA_PRIVATE_EXP_D || WOLFSSL_HAVE_SP_DH */ #if defined(WOLFSSL_HAVE_SP_RSA) && !defined(SP_RSA_PRIVATE_EXP_D) && \ !defined(RSA_LOW_MEM) /* AND m into each word of a and store in r. * * r A single precision integer. * a A single precision integer. * m Mask to AND against each digit. */ static void sp_2048_mask_18(sp_digit* r, sp_digit* a, sp_digit m) { #ifdef WOLFSSL_SP_SMALL int i; for (i=0; i<18; i++) r[i] = a[i] & m; #else int i; for (i = 0; i < 16; i += 8) { r[i+0] = a[i+0] & m; r[i+1] = a[i+1] & m; r[i+2] = a[i+2] & m; r[i+3] = a[i+3] & m; r[i+4] = a[i+4] & m; r[i+5] = a[i+5] & m; r[i+6] = a[i+6] & m; r[i+7] = a[i+7] & m; } r[16] = a[16] & m; r[17] = a[17] & m; #endif } #endif #ifdef WOLFSSL_HAVE_SP_RSA /* RSA public key operation. * * in Array of bytes representing the number to exponentiate, base. * inLen Number of bytes in base. * em Public exponent. * mm Modulus. * out Buffer to hold big-endian bytes of exponentiation result. * Must be at least 256 bytes long. * outLen Number of bytes in result. * returns 0 on success, MP_TO_E when the outLen is too small, MP_READ_E when * an array is too long and MEMORY_E when dynamic memory allocation fails. */ int sp_RsaPublic_2048(const byte* in, word32 inLen, mp_int* em, mp_int* mm, byte* out, word32* outLen) { #ifdef WOLFSSL_SP_SMALL sp_digit* d = NULL; sp_digit* a; sp_digit* m; sp_digit* r; sp_digit* norm; sp_digit e[1]; sp_digit mp; int i; int err = MP_OKAY; if (*outLen < 256) err = MP_TO_E; if (err == MP_OKAY && (mp_count_bits(em) > 57 || inLen > 256 || mp_count_bits(mm) != 2048)) err = MP_READ_E; if (err == MP_OKAY) { d = (sp_digit*)XMALLOC(sizeof(sp_digit) * 36 * 5, NULL, DYNAMIC_TYPE_TMP_BUFFER); if (d == NULL) err = MEMORY_E; } if (err == MP_OKAY) { a = d; r = a + 36 * 2; m = r + 36 * 2; norm = r; sp_2048_from_bin(a, 36, in, inLen); #if DIGIT_BIT >= 57 e[0] = em->dp[0]; #else e[0] = em->dp[0]; if (em->used > 1) e[0] |= ((sp_digit)em->dp[1]) << DIGIT_BIT; #endif if (e[0] == 0) err = MP_EXPTMOD_E; } if (err == MP_OKAY) { sp_2048_from_mp(m, 36, mm); sp_2048_mont_setup(m, &mp); sp_2048_mont_norm_36(norm, m); } if (err == MP_OKAY) { sp_2048_mul_36(a, a, norm); err = sp_2048_mod_36(a, a, m); } if (err == MP_OKAY) { for (i=56; i>=0; i--) if (e[0] >> i) break; XMEMCPY(r, a, sizeof(sp_digit) * 36 * 2); for (i--; i>=0; i--) { sp_2048_mont_sqr_36(r, r, m, mp); if (((e[0] >> i) & 1) == 1) sp_2048_mont_mul_36(r, r, a, m, mp); } sp_2048_mont_reduce_36(r, m, mp); mp = sp_2048_cmp_36(r, m); sp_2048_cond_sub_36(r, r, m, (mp < 0) - 1); sp_2048_to_bin(r, out); *outLen = 256; } if (d != NULL) XFREE(d, NULL, DYNAMIC_TYPE_TMP_BUFFER); return err; #else #if !defined(WOLFSSL_SP_SMALL) && !defined(WOLFSSL_SMALL_STACK) sp_digit ad[72], md[36], rd[72]; #else sp_digit* d = NULL; #endif sp_digit* a; sp_digit* m; sp_digit* r; sp_digit e[1]; int err = MP_OKAY; if (*outLen < 256) err = MP_TO_E; if (err == MP_OKAY && (mp_count_bits(em) > 57 || inLen > 256 || mp_count_bits(mm) != 2048)) err = MP_READ_E; #if defined(WOLFSSL_SP_SMALL) || defined(WOLFSSL_SMALL_STACK) if (err == MP_OKAY) { d = (sp_digit*)XMALLOC(sizeof(sp_digit) * 36 * 5, NULL, DYNAMIC_TYPE_TMP_BUFFER); if (d == NULL) err = MEMORY_E; } if (err == MP_OKAY) { a = d; r = a + 36 * 2; m = r + 36 * 2; } #else a = ad; m = md; r = rd; #endif if (err == MP_OKAY) { sp_2048_from_bin(a, 36, in, inLen); #if DIGIT_BIT >= 57 e[0] = em->dp[0]; #else e[0] = em->dp[0]; if (em->used > 1) e[0] |= ((sp_digit)em->dp[1]) << DIGIT_BIT; #endif if (e[0] == 0) err = MP_EXPTMOD_E; } if (err == MP_OKAY) { sp_2048_from_mp(m, 36, mm); if (e[0] == 0x3) { if (err == MP_OKAY) { sp_2048_sqr_36(r, a); err = sp_2048_mod_36(r, r, m); } if (err == MP_OKAY) { sp_2048_mul_36(r, a, r); err = sp_2048_mod_36(r, r, m); } } else { sp_digit* norm = r; int i; sp_digit mp; sp_2048_mont_setup(m, &mp); sp_2048_mont_norm_36(norm, m); if (err == MP_OKAY) { sp_2048_mul_36(a, a, norm); err = sp_2048_mod_36(a, a, m); } if (err == MP_OKAY) { for (i=56; i>=0; i--) if (e[0] >> i) break; XMEMCPY(r, a, sizeof(sp_digit) * 72); for (i--; i>=0; i--) { sp_2048_mont_sqr_36(r, r, m, mp); if (((e[0] >> i) & 1) == 1) sp_2048_mont_mul_36(r, r, a, m, mp); } sp_2048_mont_reduce_36(r, m, mp); mp = sp_2048_cmp_36(r, m); sp_2048_cond_sub_36(r, r, m, (mp < 0) - 1); } } } if (err == MP_OKAY) { sp_2048_to_bin(r, out); *outLen = 256; } #if defined(WOLFSSL_SP_SMALL) || defined(WOLFSSL_SMALL_STACK) if (d != NULL) XFREE(d, NULL, DYNAMIC_TYPE_TMP_BUFFER); #endif return err; #endif /* WOLFSSL_SP_SMALL */ } /* RSA private key operation. * * in Array of bytes representing the number to exponentiate, base. * inLen Number of bytes in base. * dm Private exponent. * pm First prime. * qm Second prime. * dpm First prime's CRT exponent. * dqm Second prime's CRT exponent. * qim Inverse of second prime mod p. * mm Modulus. * out Buffer to hold big-endian bytes of exponentiation result. * Must be at least 256 bytes long. * outLen Number of bytes in result. * returns 0 on success, MP_TO_E when the outLen is too small, MP_READ_E when * an array is too long and MEMORY_E when dynamic memory allocation fails. */ int sp_RsaPrivate_2048(const byte* in, word32 inLen, mp_int* dm, mp_int* pm, mp_int* qm, mp_int* dpm, mp_int* dqm, mp_int* qim, mp_int* mm, byte* out, word32* outLen) { #if defined(SP_RSA_PRIVATE_EXP_D) || defined(RSA_LOW_MEM) #if defined(WOLFSSL_SP_SMALL) || defined(WOLFSSL_SMALL_STACK) sp_digit* a; sp_digit* d = NULL; sp_digit* m; sp_digit* r; int err = MP_OKAY; (void)pm; (void)qm; (void)dpm; (void)dqm; (void)qim; if (*outLen < 256) err = MP_TO_E; if (err == MP_OKAY && (mp_count_bits(dm) > 2048 || inLen > 256 || mp_count_bits(mm) != 2048)) err = MP_READ_E; if (err == MP_OKAY) { d = (sp_digit*)XMALLOC(sizeof(sp_digit) * 36 * 4, NULL, DYNAMIC_TYPE_TMP_BUFFER); if (d == NULL) err = MEMORY_E; } if (err == MP_OKAY) { a = d + 36; m = a + 36; r = a; sp_2048_from_bin(a, 36, in, inLen); sp_2048_from_mp(d, 36, dm); sp_2048_from_mp(m, 36, mm); err = sp_2048_mod_exp_36(r, a, d, 2048, m, 0); } if (err == MP_OKAY) { sp_2048_to_bin(r, out); *outLen = 256; } if (d != NULL) { XMEMSET(d, 0, sizeof(sp_digit) * 36); XFREE(d, NULL, DYNAMIC_TYPE_TMP_BUFFER); } return err; #else sp_digit a[72], d[36], m[36]; sp_digit* r = a; int err = MP_OKAY; (void)pm; (void)qm; (void)dpm; (void)dqm; (void)qim; if (*outLen < 256) err = MP_TO_E; if (err == MP_OKAY && (mp_count_bits(dm) > 2048 || inLen > 256 || mp_count_bits(mm) != 2048)) err = MP_READ_E; if (err == MP_OKAY) { sp_2048_from_bin(a, 36, in, inLen); sp_2048_from_mp(d, 36, dm); sp_2048_from_mp(m, 36, mm); err = sp_2048_mod_exp_36(r, a, d, 2048, m, 0); } if (err == MP_OKAY) { sp_2048_to_bin(r, out); *outLen = 256; } XMEMSET(d, 0, sizeof(sp_digit) * 36); return err; #endif /* WOLFSSL_SP_SMALL || defined(WOLFSSL_SMALL_STACK) */ #else #if defined(WOLFSSL_SP_SMALL) || defined(WOLFSSL_SMALL_STACK) sp_digit* t = NULL; sp_digit* a; sp_digit* p; sp_digit* q; sp_digit* dp; sp_digit* dq; sp_digit* qi; sp_digit* tmp; sp_digit* tmpa; sp_digit* tmpb; sp_digit* r; int err = MP_OKAY; (void)dm; (void)mm; if (*outLen < 256) err = MP_TO_E; if (err == MP_OKAY && (inLen > 256 || mp_count_bits(mm) != 2048)) err = MP_READ_E; if (err == MP_OKAY) { t = (sp_digit*)XMALLOC(sizeof(sp_digit) * 18 * 11, NULL, DYNAMIC_TYPE_TMP_BUFFER); if (t == NULL) err = MEMORY_E; } if (err == MP_OKAY) { a = t; p = a + 36 * 2; q = p + 18; qi = dq = dp = q + 18; tmpa = qi + 18; tmpb = tmpa + 36; tmp = t; r = tmp + 36; sp_2048_from_bin(a, 36, in, inLen); sp_2048_from_mp(p, 18, pm); sp_2048_from_mp(q, 18, qm); sp_2048_from_mp(dp, 18, dpm); err = sp_2048_mod_exp_18(tmpa, a, dp, 1024, p, 1); } if (err == MP_OKAY) { sp_2048_from_mp(dq, 18, dqm); err = sp_2048_mod_exp_18(tmpb, a, dq, 1024, q, 1); } if (err == MP_OKAY) { sp_2048_sub_18(tmpa, tmpa, tmpb); sp_2048_mask_18(tmp, p, tmpa[17] >> 63); sp_2048_add_18(tmpa, tmpa, tmp); sp_2048_from_mp(qi, 18, qim); sp_2048_mul_18(tmpa, tmpa, qi); err = sp_2048_mod_18(tmpa, tmpa, p); } if (err == MP_OKAY) { sp_2048_mul_18(tmpa, q, tmpa); sp_2048_add_36(r, tmpb, tmpa); sp_2048_norm_36(r); sp_2048_to_bin(r, out); *outLen = 256; } if (t != NULL) { XMEMSET(t, 0, sizeof(sp_digit) * 18 * 11); XFREE(t, NULL, DYNAMIC_TYPE_TMP_BUFFER); } return err; #else sp_digit a[36 * 2]; sp_digit p[18], q[18], dp[18], dq[18], qi[18]; sp_digit tmp[36], tmpa[36], tmpb[36]; sp_digit* r = a; int err = MP_OKAY; (void)dm; (void)mm; if (*outLen < 256) err = MP_TO_E; if (err == MP_OKAY && (inLen > 256 || mp_count_bits(mm) != 2048)) err = MP_READ_E; if (err == MP_OKAY) { sp_2048_from_bin(a, 36, in, inLen); sp_2048_from_mp(p, 18, pm); sp_2048_from_mp(q, 18, qm); sp_2048_from_mp(dp, 18, dpm); sp_2048_from_mp(dq, 18, dqm); sp_2048_from_mp(qi, 18, qim); err = sp_2048_mod_exp_18(tmpa, a, dp, 1024, p, 1); } if (err == MP_OKAY) err = sp_2048_mod_exp_18(tmpb, a, dq, 1024, q, 1); if (err == MP_OKAY) { sp_2048_sub_18(tmpa, tmpa, tmpb); sp_2048_mask_18(tmp, p, tmpa[17] >> 63); sp_2048_add_18(tmpa, tmpa, tmp); sp_2048_mul_18(tmpa, tmpa, qi); err = sp_2048_mod_18(tmpa, tmpa, p); } if (err == MP_OKAY) { sp_2048_mul_18(tmpa, tmpa, q); sp_2048_add_36(r, tmpb, tmpa); sp_2048_norm_36(r); sp_2048_to_bin(r, out); *outLen = 256; } XMEMSET(tmpa, 0, sizeof(tmpa)); XMEMSET(tmpb, 0, sizeof(tmpb)); XMEMSET(p, 0, sizeof(p)); XMEMSET(q, 0, sizeof(q)); XMEMSET(dp, 0, sizeof(dp)); XMEMSET(dq, 0, sizeof(dq)); XMEMSET(qi, 0, sizeof(qi)); return err; #endif /* WOLFSSL_SP_SMALL || defined(WOLFSSL_SMALL_STACK) */ #endif /* SP_RSA_PRIVATE_EXP_D || RSA_LOW_MEM */ } #endif /* WOLFSSL_HAVE_SP_RSA */ #ifdef WOLFSSL_HAVE_SP_DH /* Convert an array of sp_digit to an mp_int. * * a A single precision integer. * r A multi-precision integer. */ static int sp_2048_to_mp(sp_digit* a, mp_int* r) { int err; err = mp_grow(r, (2048 + DIGIT_BIT - 1) / DIGIT_BIT); if (err == MP_OKAY) { #if DIGIT_BIT == 57 XMEMCPY(r->dp, a, sizeof(sp_digit) * 36); r->used = 36; mp_clamp(r); #elif DIGIT_BIT < 57 int i, j = 0, s = 0; r->dp[0] = 0; for (i = 0; i < 36; i++) { r->dp[j] |= a[i] << s; r->dp[j] &= (1l << DIGIT_BIT) - 1; s = DIGIT_BIT - s; r->dp[++j] = a[i] >> s; while (s + DIGIT_BIT <= 57) { s += DIGIT_BIT; r->dp[j] &= (1l << DIGIT_BIT) - 1; r->dp[++j] = a[i] >> s; } s = 57 - s; } r->used = (2048 + DIGIT_BIT - 1) / DIGIT_BIT; mp_clamp(r); #else int i, j = 0, s = 0; r->dp[0] = 0; for (i = 0; i < 36; i++) { r->dp[j] |= ((mp_digit)a[i]) << s; if (s + 57 >= DIGIT_BIT) { #if DIGIT_BIT < 64 r->dp[j] &= (1l << DIGIT_BIT) - 1; #endif s = DIGIT_BIT - s; r->dp[++j] = a[i] >> s; s = 57 - s; } else s += 57; } r->used = (2048 + DIGIT_BIT - 1) / DIGIT_BIT; mp_clamp(r); #endif } return err; } /* Perform the modular exponentiation for Diffie-Hellman. * * base Base. MP integer. * exp Exponent. MP integer. * mod Modulus. MP integer. * res Result. MP integer. * returs 0 on success, MP_READ_E if there are too many bytes in an array * and MEMORY_E if memory allocation fails. */ int sp_ModExp_2048(mp_int* base, mp_int* exp, mp_int* mod, mp_int* res) { #ifdef WOLFSSL_SP_SMALL int err = MP_OKAY; sp_digit* d = NULL; sp_digit* b; sp_digit* e; sp_digit* m; sp_digit* r; int expBits = mp_count_bits(exp); if (mp_count_bits(base) > 2048 || expBits > 2048 || mp_count_bits(mod) != 2048) { err = MP_READ_E; } if (err == MP_OKAY) { d = (sp_digit*)XMALLOC(sizeof(*d) * 36 * 4, NULL, DYNAMIC_TYPE_TMP_BUFFER); if (d == NULL) err = MEMORY_E; } if (err == MP_OKAY) { b = d; e = b + 36 * 2; m = e + 36; r = b; sp_2048_from_mp(b, 36, base); sp_2048_from_mp(e, 36, exp); sp_2048_from_mp(m, 36, mod); err = sp_2048_mod_exp_36(r, b, e, mp_count_bits(exp), m, 0); } if (err == MP_OKAY) { err = sp_2048_to_mp(r, res); } if (d != NULL) { XMEMSET(e, 0, sizeof(sp_digit) * 36); XFREE(d, NULL, DYNAMIC_TYPE_TMP_BUFFER); } return err; #else #ifndef WOLFSSL_SMALL_STACK sp_digit bd[72], ed[36], md[36]; #else sp_digit* d = NULL; #endif sp_digit* b; sp_digit* e; sp_digit* m; sp_digit* r; int err = MP_OKAY; int expBits = mp_count_bits(exp); if (mp_count_bits(base) > 2048 || expBits > 2048 || mp_count_bits(mod) != 2048) { err = MP_READ_E; } #ifdef WOLFSSL_SMALL_STACK if (err == MP_OKAY) { d = (sp_digit*)XMALLOC(sizeof(*d) * 36 * 4, NULL, DYNAMIC_TYPE_TMP_BUFFER); if (d == NULL) err = MEMORY_E; } if (err == MP_OKAY) { b = d; e = b + 36 * 2; m = e + 36; r = b; } #else r = b = bd; e = ed; m = md; #endif if (err == MP_OKAY) { sp_2048_from_mp(b, 36, base); sp_2048_from_mp(e, 36, exp); sp_2048_from_mp(m, 36, mod); err = sp_2048_mod_exp_36(r, b, e, expBits, m, 0); } if (err == MP_OKAY) { err = sp_2048_to_mp(r, res); } XMEMSET(e, 0, sizeof(sp_digit) * 36); #ifdef WOLFSSL_SMALL_STACK if (d != NULL) XFREE(d, NULL, DYNAMIC_TYPE_TMP_BUFFER); #endif return err; #endif } /* Perform the modular exponentiation for Diffie-Hellman. * * base Base. * exp Array of bytes that is the exponent. * expLen Length of data, in bytes, in exponent. * mod Modulus. * out Buffer to hold big-endian bytes of exponentiation result. * Must be at least 256 bytes long. * outLen Length, in bytes, of exponentiation result. * returs 0 on success, MP_READ_E if there are too many bytes in an array * and MEMORY_E if memory allocation fails. */ int sp_DhExp_2048(mp_int* base, const byte* exp, word32 expLen, mp_int* mod, byte* out, word32* outLen) { #ifdef WOLFSSL_SP_SMALL int err = MP_OKAY; sp_digit* d = NULL; sp_digit* b; sp_digit* e; sp_digit* m; sp_digit* r; word32 i; if (mp_count_bits(base) > 2048 || expLen > 256 || mp_count_bits(mod) != 2048) { err = MP_READ_E; } if (err == MP_OKAY) { d = (sp_digit*)XMALLOC(sizeof(*d) * 36 * 4, NULL, DYNAMIC_TYPE_TMP_BUFFER); if (d == NULL) err = MEMORY_E; } if (err == MP_OKAY) { b = d; e = b + 36 * 2; m = e + 36; r = b; sp_2048_from_mp(b, 36, base); sp_2048_from_bin(e, 36, exp, expLen); sp_2048_from_mp(m, 36, mod); err = sp_2048_mod_exp_36(r, b, e, expLen * 8, m, 0); } if (err == MP_OKAY) { sp_2048_to_bin(r, out); *outLen = 256; for (i=0; i<256 && out[i] == 0; i++) { } *outLen -= i; XMEMMOVE(out, out + i, *outLen); } if (d != NULL) { XMEMSET(e, 0, sizeof(sp_digit) * 36); XFREE(d, NULL, DYNAMIC_TYPE_TMP_BUFFER); } return err; #else #ifndef WOLFSSL_SMALL_STACK sp_digit bd[72], ed[36], md[36]; #else sp_digit* d = NULL; #endif sp_digit* b; sp_digit* e; sp_digit* m; sp_digit* r; word32 i; int err = MP_OKAY; if (mp_count_bits(base) > 2048 || expLen > 256 || mp_count_bits(mod) != 2048) { err = MP_READ_E; } #ifdef WOLFSSL_SMALL_STACK if (err == MP_OKAY) { d = (sp_digit*)XMALLOC(sizeof(*d) * 36 * 4, NULL, DYNAMIC_TYPE_TMP_BUFFER); if (d == NULL) err = MEMORY_E; } if (err == MP_OKAY) { b = d; e = b + 36 * 2; m = e + 36; r = b; } #else r = b = bd; e = ed; m = md; #endif if (err == MP_OKAY) { sp_2048_from_mp(b, 36, base); sp_2048_from_bin(e, 36, exp, expLen); sp_2048_from_mp(m, 36, mod); err = sp_2048_mod_exp_36(r, b, e, expLen * 8, m, 0); } if (err == MP_OKAY) { sp_2048_to_bin(r, out); *outLen = 256; for (i=0; i<256 && out[i] == 0; i++) { } *outLen -= i; XMEMMOVE(out, out + i, *outLen); } XMEMSET(e, 0, sizeof(sp_digit) * 36); #ifdef WOLFSSL_SMALL_STACK if (d != NULL) XFREE(d, NULL, DYNAMIC_TYPE_TMP_BUFFER); #endif return err; #endif } #endif /* WOLFSSL_HAVE_SP_DH */ #endif /* WOLFSSL_SP_NO_2048 */ #ifndef WOLFSSL_SP_NO_3072 /* Read big endian unsigned byte aray into r. * * r A single precision integer. * a Byte array. * n Number of bytes in array to read. */ static void sp_3072_from_bin(sp_digit* r, int max, const byte* a, int n) { int i, j = 0, s = 0; r[0] = 0; for (i = n-1; i >= 0; i--) { r[j] |= ((sp_digit)a[i]) << s; if (s >= 49) { r[j] &= 0x1ffffffffffffffl; s = 57 - s; if (j + 1 >= max) break; r[++j] = a[i] >> s; s = 8 - s; } else s += 8; } for (j++; j < max; j++) r[j] = 0; } /* Convert an mp_int to an array of sp_digit. * * r A single precision integer. * a A multi-precision integer. */ static void sp_3072_from_mp(sp_digit* r, int max, mp_int* a) { #if DIGIT_BIT == 57 int j; XMEMCPY(r, a->dp, sizeof(sp_digit) * a->used); for (j = a->used; j < max; j++) r[j] = 0; #elif DIGIT_BIT > 57 int i, j = 0, s = 0; r[0] = 0; for (i = 0; i < a->used && j < max; i++) { r[j] |= a->dp[i] << s; r[j] &= 0x1ffffffffffffffl; s = 57 - s; if (j + 1 >= max) break; r[++j] = a->dp[i] >> s; while (s + 57 <= DIGIT_BIT) { s += 57; r[j] &= 0x1ffffffffffffffl; if (j + 1 >= max) break; if (s < DIGIT_BIT) r[++j] = a->dp[i] >> s; else r[++j] = 0; } s = DIGIT_BIT - s; } for (j++; j < max; j++) r[j] = 0; #else int i, j = 0, s = 0; r[0] = 0; for (i = 0; i < a->used && j < max; i++) { r[j] |= ((sp_digit)a->dp[i]) << s; if (s + DIGIT_BIT >= 57) { r[j] &= 0x1ffffffffffffffl; if (j + 1 >= max) break; s = 57 - s; if (s == DIGIT_BIT) { r[++j] = 0; s = 0; } else { r[++j] = a->dp[i] >> s; s = DIGIT_BIT - s; } } else s += DIGIT_BIT; } for (j++; j < max; j++) r[j] = 0; #endif } /* Write r as big endian to byte aray. * Fixed length number of bytes written: 384 * * r A single precision integer. * a Byte array. */ static void sp_3072_to_bin(sp_digit* r, byte* a) { int i, j, s = 0, b; for (i=0; i<53; i++) { r[i+1] += r[i] >> 57; r[i] &= 0x1ffffffffffffffl; } j = 3072 / 8 - 1; a[j] = 0; for (i=0; i<54 && j>=0; i++) { b = 0; a[j--] |= r[i] << s; b += 8 - s; if (j < 0) break; while (b < 57) { a[j--] = r[i] >> b; b += 8; if (j < 0) break; } s = 8 - (b - 57); if (j >= 0) a[j] = 0; if (s != 0) j++; } } #ifndef WOLFSSL_SP_SMALL /* Multiply a and b into r. (r = a * b) * * r A single precision integer. * a A single precision integer. * b A single precision integer. */ SP_NOINLINE static void sp_3072_mul_9(sp_digit* r, const sp_digit* a, const sp_digit* b) { int128_t t0 = ((int128_t)a[ 0]) * b[ 0]; int128_t t1 = ((int128_t)a[ 0]) * b[ 1] + ((int128_t)a[ 1]) * b[ 0]; int128_t t2 = ((int128_t)a[ 0]) * b[ 2] + ((int128_t)a[ 1]) * b[ 1] + ((int128_t)a[ 2]) * b[ 0]; int128_t t3 = ((int128_t)a[ 0]) * b[ 3] + ((int128_t)a[ 1]) * b[ 2] + ((int128_t)a[ 2]) * b[ 1] + ((int128_t)a[ 3]) * b[ 0]; int128_t t4 = ((int128_t)a[ 0]) * b[ 4] + ((int128_t)a[ 1]) * b[ 3] + ((int128_t)a[ 2]) * b[ 2] + ((int128_t)a[ 3]) * b[ 1] + ((int128_t)a[ 4]) * b[ 0]; int128_t t5 = ((int128_t)a[ 0]) * b[ 5] + ((int128_t)a[ 1]) * b[ 4] + ((int128_t)a[ 2]) * b[ 3] + ((int128_t)a[ 3]) * b[ 2] + ((int128_t)a[ 4]) * b[ 1] + ((int128_t)a[ 5]) * b[ 0]; int128_t t6 = ((int128_t)a[ 0]) * b[ 6] + ((int128_t)a[ 1]) * b[ 5] + ((int128_t)a[ 2]) * b[ 4] + ((int128_t)a[ 3]) * b[ 3] + ((int128_t)a[ 4]) * b[ 2] + ((int128_t)a[ 5]) * b[ 1] + ((int128_t)a[ 6]) * b[ 0]; int128_t t7 = ((int128_t)a[ 0]) * b[ 7] + ((int128_t)a[ 1]) * b[ 6] + ((int128_t)a[ 2]) * b[ 5] + ((int128_t)a[ 3]) * b[ 4] + ((int128_t)a[ 4]) * b[ 3] + ((int128_t)a[ 5]) * b[ 2] + ((int128_t)a[ 6]) * b[ 1] + ((int128_t)a[ 7]) * b[ 0]; int128_t t8 = ((int128_t)a[ 0]) * b[ 8] + ((int128_t)a[ 1]) * b[ 7] + ((int128_t)a[ 2]) * b[ 6] + ((int128_t)a[ 3]) * b[ 5] + ((int128_t)a[ 4]) * b[ 4] + ((int128_t)a[ 5]) * b[ 3] + ((int128_t)a[ 6]) * b[ 2] + ((int128_t)a[ 7]) * b[ 1] + ((int128_t)a[ 8]) * b[ 0]; int128_t t9 = ((int128_t)a[ 1]) * b[ 8] + ((int128_t)a[ 2]) * b[ 7] + ((int128_t)a[ 3]) * b[ 6] + ((int128_t)a[ 4]) * b[ 5] + ((int128_t)a[ 5]) * b[ 4] + ((int128_t)a[ 6]) * b[ 3] + ((int128_t)a[ 7]) * b[ 2] + ((int128_t)a[ 8]) * b[ 1]; int128_t t10 = ((int128_t)a[ 2]) * b[ 8] + ((int128_t)a[ 3]) * b[ 7] + ((int128_t)a[ 4]) * b[ 6] + ((int128_t)a[ 5]) * b[ 5] + ((int128_t)a[ 6]) * b[ 4] + ((int128_t)a[ 7]) * b[ 3] + ((int128_t)a[ 8]) * b[ 2]; int128_t t11 = ((int128_t)a[ 3]) * b[ 8] + ((int128_t)a[ 4]) * b[ 7] + ((int128_t)a[ 5]) * b[ 6] + ((int128_t)a[ 6]) * b[ 5] + ((int128_t)a[ 7]) * b[ 4] + ((int128_t)a[ 8]) * b[ 3]; int128_t t12 = ((int128_t)a[ 4]) * b[ 8] + ((int128_t)a[ 5]) * b[ 7] + ((int128_t)a[ 6]) * b[ 6] + ((int128_t)a[ 7]) * b[ 5] + ((int128_t)a[ 8]) * b[ 4]; int128_t t13 = ((int128_t)a[ 5]) * b[ 8] + ((int128_t)a[ 6]) * b[ 7] + ((int128_t)a[ 7]) * b[ 6] + ((int128_t)a[ 8]) * b[ 5]; int128_t t14 = ((int128_t)a[ 6]) * b[ 8] + ((int128_t)a[ 7]) * b[ 7] + ((int128_t)a[ 8]) * b[ 6]; int128_t t15 = ((int128_t)a[ 7]) * b[ 8] + ((int128_t)a[ 8]) * b[ 7]; int128_t t16 = ((int128_t)a[ 8]) * b[ 8]; t1 += t0 >> 57; r[ 0] = t0 & 0x1ffffffffffffffl; t2 += t1 >> 57; r[ 1] = t1 & 0x1ffffffffffffffl; t3 += t2 >> 57; r[ 2] = t2 & 0x1ffffffffffffffl; t4 += t3 >> 57; r[ 3] = t3 & 0x1ffffffffffffffl; t5 += t4 >> 57; r[ 4] = t4 & 0x1ffffffffffffffl; t6 += t5 >> 57; r[ 5] = t5 & 0x1ffffffffffffffl; t7 += t6 >> 57; r[ 6] = t6 & 0x1ffffffffffffffl; t8 += t7 >> 57; r[ 7] = t7 & 0x1ffffffffffffffl; t9 += t8 >> 57; r[ 8] = t8 & 0x1ffffffffffffffl; t10 += t9 >> 57; r[ 9] = t9 & 0x1ffffffffffffffl; t11 += t10 >> 57; r[10] = t10 & 0x1ffffffffffffffl; t12 += t11 >> 57; r[11] = t11 & 0x1ffffffffffffffl; t13 += t12 >> 57; r[12] = t12 & 0x1ffffffffffffffl; t14 += t13 >> 57; r[13] = t13 & 0x1ffffffffffffffl; t15 += t14 >> 57; r[14] = t14 & 0x1ffffffffffffffl; t16 += t15 >> 57; r[15] = t15 & 0x1ffffffffffffffl; r[17] = (sp_digit)(t16 >> 57); r[16] = t16 & 0x1ffffffffffffffl; } /* Square a and put result in r. (r = a * a) * * r A single precision integer. * a A single precision integer. */ SP_NOINLINE static void sp_3072_sqr_9(sp_digit* r, const sp_digit* a) { int128_t t0 = ((int128_t)a[ 0]) * a[ 0]; int128_t t1 = (((int128_t)a[ 0]) * a[ 1]) * 2; int128_t t2 = (((int128_t)a[ 0]) * a[ 2]) * 2 + ((int128_t)a[ 1]) * a[ 1]; int128_t t3 = (((int128_t)a[ 0]) * a[ 3] + ((int128_t)a[ 1]) * a[ 2]) * 2; int128_t t4 = (((int128_t)a[ 0]) * a[ 4] + ((int128_t)a[ 1]) * a[ 3]) * 2 + ((int128_t)a[ 2]) * a[ 2]; int128_t t5 = (((int128_t)a[ 0]) * a[ 5] + ((int128_t)a[ 1]) * a[ 4] + ((int128_t)a[ 2]) * a[ 3]) * 2; int128_t t6 = (((int128_t)a[ 0]) * a[ 6] + ((int128_t)a[ 1]) * a[ 5] + ((int128_t)a[ 2]) * a[ 4]) * 2 + ((int128_t)a[ 3]) * a[ 3]; int128_t t7 = (((int128_t)a[ 0]) * a[ 7] + ((int128_t)a[ 1]) * a[ 6] + ((int128_t)a[ 2]) * a[ 5] + ((int128_t)a[ 3]) * a[ 4]) * 2; int128_t t8 = (((int128_t)a[ 0]) * a[ 8] + ((int128_t)a[ 1]) * a[ 7] + ((int128_t)a[ 2]) * a[ 6] + ((int128_t)a[ 3]) * a[ 5]) * 2 + ((int128_t)a[ 4]) * a[ 4]; int128_t t9 = (((int128_t)a[ 1]) * a[ 8] + ((int128_t)a[ 2]) * a[ 7] + ((int128_t)a[ 3]) * a[ 6] + ((int128_t)a[ 4]) * a[ 5]) * 2; int128_t t10 = (((int128_t)a[ 2]) * a[ 8] + ((int128_t)a[ 3]) * a[ 7] + ((int128_t)a[ 4]) * a[ 6]) * 2 + ((int128_t)a[ 5]) * a[ 5]; int128_t t11 = (((int128_t)a[ 3]) * a[ 8] + ((int128_t)a[ 4]) * a[ 7] + ((int128_t)a[ 5]) * a[ 6]) * 2; int128_t t12 = (((int128_t)a[ 4]) * a[ 8] + ((int128_t)a[ 5]) * a[ 7]) * 2 + ((int128_t)a[ 6]) * a[ 6]; int128_t t13 = (((int128_t)a[ 5]) * a[ 8] + ((int128_t)a[ 6]) * a[ 7]) * 2; int128_t t14 = (((int128_t)a[ 6]) * a[ 8]) * 2 + ((int128_t)a[ 7]) * a[ 7]; int128_t t15 = (((int128_t)a[ 7]) * a[ 8]) * 2; int128_t t16 = ((int128_t)a[ 8]) * a[ 8]; t1 += t0 >> 57; r[ 0] = t0 & 0x1ffffffffffffffl; t2 += t1 >> 57; r[ 1] = t1 & 0x1ffffffffffffffl; t3 += t2 >> 57; r[ 2] = t2 & 0x1ffffffffffffffl; t4 += t3 >> 57; r[ 3] = t3 & 0x1ffffffffffffffl; t5 += t4 >> 57; r[ 4] = t4 & 0x1ffffffffffffffl; t6 += t5 >> 57; r[ 5] = t5 & 0x1ffffffffffffffl; t7 += t6 >> 57; r[ 6] = t6 & 0x1ffffffffffffffl; t8 += t7 >> 57; r[ 7] = t7 & 0x1ffffffffffffffl; t9 += t8 >> 57; r[ 8] = t8 & 0x1ffffffffffffffl; t10 += t9 >> 57; r[ 9] = t9 & 0x1ffffffffffffffl; t11 += t10 >> 57; r[10] = t10 & 0x1ffffffffffffffl; t12 += t11 >> 57; r[11] = t11 & 0x1ffffffffffffffl; t13 += t12 >> 57; r[12] = t12 & 0x1ffffffffffffffl; t14 += t13 >> 57; r[13] = t13 & 0x1ffffffffffffffl; t15 += t14 >> 57; r[14] = t14 & 0x1ffffffffffffffl; t16 += t15 >> 57; r[15] = t15 & 0x1ffffffffffffffl; r[17] = (sp_digit)(t16 >> 57); r[16] = t16 & 0x1ffffffffffffffl; } /* Add b to a into r. (r = a + b) * * r A single precision integer. * a A single precision integer. * b A single precision integer. */ SP_NOINLINE static int sp_3072_add_9(sp_digit* r, const sp_digit* a, const sp_digit* b) { r[ 0] = a[ 0] + b[ 0]; r[ 1] = a[ 1] + b[ 1]; r[ 2] = a[ 2] + b[ 2]; r[ 3] = a[ 3] + b[ 3]; r[ 4] = a[ 4] + b[ 4]; r[ 5] = a[ 5] + b[ 5]; r[ 6] = a[ 6] + b[ 6]; r[ 7] = a[ 7] + b[ 7]; r[ 8] = a[ 8] + b[ 8]; return 0; } /* Add b to a into r. (r = a + b) * * r A single precision integer. * a A single precision integer. * b A single precision integer. */ SP_NOINLINE static int sp_3072_add_18(sp_digit* r, const sp_digit* a, const sp_digit* b) { int i; for (i = 0; i < 16; i += 8) { r[i + 0] = a[i + 0] + b[i + 0]; r[i + 1] = a[i + 1] + b[i + 1]; r[i + 2] = a[i + 2] + b[i + 2]; r[i + 3] = a[i + 3] + b[i + 3]; r[i + 4] = a[i + 4] + b[i + 4]; r[i + 5] = a[i + 5] + b[i + 5]; r[i + 6] = a[i + 6] + b[i + 6]; r[i + 7] = a[i + 7] + b[i + 7]; } r[16] = a[16] + b[16]; r[17] = a[17] + b[17]; return 0; } /* Sub b from a into r. (r = a - b) * * r A single precision integer. * a A single precision integer. * b A single precision integer. */ SP_NOINLINE static int sp_3072_sub_18(sp_digit* r, const sp_digit* a, const sp_digit* b) { int i; for (i = 0; i < 16; i += 8) { r[i + 0] = a[i + 0] - b[i + 0]; r[i + 1] = a[i + 1] - b[i + 1]; r[i + 2] = a[i + 2] - b[i + 2]; r[i + 3] = a[i + 3] - b[i + 3]; r[i + 4] = a[i + 4] - b[i + 4]; r[i + 5] = a[i + 5] - b[i + 5]; r[i + 6] = a[i + 6] - b[i + 6]; r[i + 7] = a[i + 7] - b[i + 7]; } r[16] = a[16] - b[16]; r[17] = a[17] - b[17]; return 0; } /* Multiply a and b into r. (r = a * b) * * r A single precision integer. * a A single precision integer. * b A single precision integer. */ SP_NOINLINE static void sp_3072_mul_18(sp_digit* r, const sp_digit* a, const sp_digit* b) { sp_digit* z0 = r; sp_digit z1[18]; sp_digit* a1 = z1; sp_digit b1[9]; sp_digit* z2 = r + 18; sp_3072_add_9(a1, a, &a[9]); sp_3072_add_9(b1, b, &b[9]); sp_3072_mul_9(z2, &a[9], &b[9]); sp_3072_mul_9(z0, a, b); sp_3072_mul_9(z1, a1, b1); sp_3072_sub_18(z1, z1, z2); sp_3072_sub_18(z1, z1, z0); sp_3072_add_18(r + 9, r + 9, z1); } /* Square a and put result in r. (r = a * a) * * r A single precision integer. * a A single precision integer. */ SP_NOINLINE static void sp_3072_sqr_18(sp_digit* r, const sp_digit* a) { sp_digit* z0 = r; sp_digit z1[18]; sp_digit* a1 = z1; sp_digit* z2 = r + 18; sp_3072_add_9(a1, a, &a[9]); sp_3072_sqr_9(z2, &a[9]); sp_3072_sqr_9(z0, a); sp_3072_sqr_9(z1, a1); sp_3072_sub_18(z1, z1, z2); sp_3072_sub_18(z1, z1, z0); sp_3072_add_18(r + 9, r + 9, z1); } /* Sub b from a into r. (r = a - b) * * r A single precision integer. * a A single precision integer. * b A single precision integer. */ SP_NOINLINE static int sp_3072_sub_36(sp_digit* r, const sp_digit* a, const sp_digit* b) { int i; for (i = 0; i < 32; i += 8) { r[i + 0] = a[i + 0] - b[i + 0]; r[i + 1] = a[i + 1] - b[i + 1]; r[i + 2] = a[i + 2] - b[i + 2]; r[i + 3] = a[i + 3] - b[i + 3]; r[i + 4] = a[i + 4] - b[i + 4]; r[i + 5] = a[i + 5] - b[i + 5]; r[i + 6] = a[i + 6] - b[i + 6]; r[i + 7] = a[i + 7] - b[i + 7]; } r[32] = a[32] - b[32]; r[33] = a[33] - b[33]; r[34] = a[34] - b[34]; r[35] = a[35] - b[35]; return 0; } /* Add b to a into r. (r = a + b) * * r A single precision integer. * a A single precision integer. * b A single precision integer. */ SP_NOINLINE static int sp_3072_add_36(sp_digit* r, const sp_digit* a, const sp_digit* b) { int i; for (i = 0; i < 32; i += 8) { r[i + 0] = a[i + 0] + b[i + 0]; r[i + 1] = a[i + 1] + b[i + 1]; r[i + 2] = a[i + 2] + b[i + 2]; r[i + 3] = a[i + 3] + b[i + 3]; r[i + 4] = a[i + 4] + b[i + 4]; r[i + 5] = a[i + 5] + b[i + 5]; r[i + 6] = a[i + 6] + b[i + 6]; r[i + 7] = a[i + 7] + b[i + 7]; } r[32] = a[32] + b[32]; r[33] = a[33] + b[33]; r[34] = a[34] + b[34]; r[35] = a[35] + b[35]; return 0; } /* Multiply a and b into r. (r = a * b) * * r A single precision integer. * a A single precision integer. * b A single precision integer. */ SP_NOINLINE static void sp_3072_mul_54(sp_digit* r, const sp_digit* a, const sp_digit* b) { sp_digit p0[36]; sp_digit p1[36]; sp_digit p2[36]; sp_digit p3[36]; sp_digit p4[36]; sp_digit p5[36]; sp_digit t0[36]; sp_digit t1[36]; sp_digit t2[36]; sp_digit a0[18]; sp_digit a1[18]; sp_digit a2[18]; sp_digit b0[18]; sp_digit b1[18]; sp_digit b2[18]; sp_3072_add_18(a0, a, &a[18]); sp_3072_add_18(b0, b, &b[18]); sp_3072_add_18(a1, &a[18], &a[36]); sp_3072_add_18(b1, &b[18], &b[36]); sp_3072_add_18(a2, a0, &a[36]); sp_3072_add_18(b2, b0, &b[36]); sp_3072_mul_18(p0, a, b); sp_3072_mul_18(p2, &a[18], &b[18]); sp_3072_mul_18(p4, &a[36], &b[36]); sp_3072_mul_18(p1, a0, b0); sp_3072_mul_18(p3, a1, b1); sp_3072_mul_18(p5, a2, b2); XMEMSET(r, 0, sizeof(*r)*2*54); sp_3072_sub_36(t0, p3, p2); sp_3072_sub_36(t1, p1, p2); sp_3072_sub_36(t2, p5, t0); sp_3072_sub_36(t2, t2, t1); sp_3072_sub_36(t0, t0, p4); sp_3072_sub_36(t1, t1, p0); sp_3072_add_36(r, r, p0); sp_3072_add_36(&r[18], &r[18], t1); sp_3072_add_36(&r[36], &r[36], t2); sp_3072_add_36(&r[54], &r[54], t0); sp_3072_add_36(&r[72], &r[72], p4); } /* Square a into r. (r = a * a) * * r A single precision integer. * a A single precision integer. */ SP_NOINLINE static void sp_3072_sqr_54(sp_digit* r, const sp_digit* a) { sp_digit p0[36]; sp_digit p1[36]; sp_digit p2[36]; sp_digit p3[36]; sp_digit p4[36]; sp_digit p5[36]; sp_digit t0[36]; sp_digit t1[36]; sp_digit t2[36]; sp_digit a0[18]; sp_digit a1[18]; sp_digit a2[18]; sp_3072_add_18(a0, a, &a[18]); sp_3072_add_18(a1, &a[18], &a[36]); sp_3072_add_18(a2, a0, &a[36]); sp_3072_sqr_18(p0, a); sp_3072_sqr_18(p2, &a[18]); sp_3072_sqr_18(p4, &a[36]); sp_3072_sqr_18(p1, a0); sp_3072_sqr_18(p3, a1); sp_3072_sqr_18(p5, a2); XMEMSET(r, 0, sizeof(*r)*2*54); sp_3072_sub_36(t0, p3, p2); sp_3072_sub_36(t1, p1, p2); sp_3072_sub_36(t2, p5, t0); sp_3072_sub_36(t2, t2, t1); sp_3072_sub_36(t0, t0, p4); sp_3072_sub_36(t1, t1, p0); sp_3072_add_36(r, r, p0); sp_3072_add_36(&r[18], &r[18], t1); sp_3072_add_36(&r[36], &r[36], t2); sp_3072_add_36(&r[54], &r[54], t0); sp_3072_add_36(&r[72], &r[72], p4); } #endif /* WOLFSSL_SP_SMALL */ #ifdef WOLFSSL_SP_SMALL /* Add b to a into r. (r = a + b) * * r A single precision integer. * a A single precision integer. * b A single precision integer. */ SP_NOINLINE static int sp_3072_add_54(sp_digit* r, const sp_digit* a, const sp_digit* b) { int i; for (i = 0; i < 54; i++) r[i] = a[i] + b[i]; return 0; } #else /* Add b to a into r. (r = a + b) * * r A single precision integer. * a A single precision integer. * b A single precision integer. */ SP_NOINLINE static int sp_3072_add_54(sp_digit* r, const sp_digit* a, const sp_digit* b) { int i; for (i = 0; i < 48; i += 8) { r[i + 0] = a[i + 0] + b[i + 0]; r[i + 1] = a[i + 1] + b[i + 1]; r[i + 2] = a[i + 2] + b[i + 2]; r[i + 3] = a[i + 3] + b[i + 3]; r[i + 4] = a[i + 4] + b[i + 4]; r[i + 5] = a[i + 5] + b[i + 5]; r[i + 6] = a[i + 6] + b[i + 6]; r[i + 7] = a[i + 7] + b[i + 7]; } r[48] = a[48] + b[48]; r[49] = a[49] + b[49]; r[50] = a[50] + b[50]; r[51] = a[51] + b[51]; r[52] = a[52] + b[52]; r[53] = a[53] + b[53]; return 0; } #endif /* WOLFSSL_SP_SMALL */ #ifdef WOLFSSL_SP_SMALL /* Sub b from a into r. (r = a - b) * * r A single precision integer. * a A single precision integer. * b A single precision integer. */ SP_NOINLINE static int sp_3072_sub_54(sp_digit* r, const sp_digit* a, const sp_digit* b) { int i; for (i = 0; i < 54; i++) r[i] = a[i] - b[i]; return 0; } #else /* Sub b from a into r. (r = a - b) * * r A single precision integer. * a A single precision integer. * b A single precision integer. */ SP_NOINLINE static int sp_3072_sub_54(sp_digit* r, const sp_digit* a, const sp_digit* b) { int i; for (i = 0; i < 48; i += 8) { r[i + 0] = a[i + 0] - b[i + 0]; r[i + 1] = a[i + 1] - b[i + 1]; r[i + 2] = a[i + 2] - b[i + 2]; r[i + 3] = a[i + 3] - b[i + 3]; r[i + 4] = a[i + 4] - b[i + 4]; r[i + 5] = a[i + 5] - b[i + 5]; r[i + 6] = a[i + 6] - b[i + 6]; r[i + 7] = a[i + 7] - b[i + 7]; } r[48] = a[48] - b[48]; r[49] = a[49] - b[49]; r[50] = a[50] - b[50]; r[51] = a[51] - b[51]; r[52] = a[52] - b[52]; r[53] = a[53] - b[53]; return 0; } #endif /* WOLFSSL_SP_SMALL */ #ifdef WOLFSSL_SP_SMALL /* Multiply a and b into r. (r = a * b) * * r A single precision integer. * a A single precision integer. * b A single precision integer. */ SP_NOINLINE static void sp_3072_mul_54(sp_digit* r, const sp_digit* a, const sp_digit* b) { int i, j, k; int128_t c; c = ((int128_t)a[53]) * b[53]; r[107] = (sp_digit)(c >> 57); c = (c & 0x1ffffffffffffffl) << 57; for (k = 105; k >= 0; k--) { for (i = 53; i >= 0; i--) { j = k - i; if (j >= 54) break; if (j < 0) continue; c += ((int128_t)a[i]) * b[j]; } r[k + 2] += c >> 114; r[k + 1] = (c >> 57) & 0x1ffffffffffffffl; c = (c & 0x1ffffffffffffffl) << 57; } r[0] = (sp_digit)(c >> 57); } /* Square a and put result in r. (r = a * a) * * r A single precision integer. * a A single precision integer. */ SP_NOINLINE static void sp_3072_sqr_54(sp_digit* r, const sp_digit* a) { int i, j, k; int128_t c; c = ((int128_t)a[53]) * a[53]; r[107] = (sp_digit)(c >> 57); c = (c & 0x1ffffffffffffffl) << 57; for (k = 105; k >= 0; k--) { for (i = 53; i >= 0; i--) { j = k - i; if (j >= 54 || i <= j) break; if (j < 0) continue; c += ((int128_t)a[i]) * a[j] * 2; } if (i == j) c += ((int128_t)a[i]) * a[i]; r[k + 2] += c >> 114; r[k + 1] = (c >> 57) & 0x1ffffffffffffffl; c = (c & 0x1ffffffffffffffl) << 57; } r[0] = (sp_digit)(c >> 57); } #endif /* WOLFSSL_SP_SMALL */ #if !defined(SP_RSA_PRIVATE_EXP_D) && defined(WOLFSSL_HAVE_SP_RSA) #ifdef WOLFSSL_SP_SMALL /* Add b to a into r. (r = a + b) * * r A single precision integer. * a A single precision integer. * b A single precision integer. */ SP_NOINLINE static int sp_3072_add_27(sp_digit* r, const sp_digit* a, const sp_digit* b) { int i; for (i = 0; i < 27; i++) r[i] = a[i] + b[i]; return 0; } #else /* Add b to a into r. (r = a + b) * * r A single precision integer. * a A single precision integer. * b A single precision integer. */ SP_NOINLINE static int sp_3072_add_27(sp_digit* r, const sp_digit* a, const sp_digit* b) { int i; for (i = 0; i < 24; i += 8) { r[i + 0] = a[i + 0] + b[i + 0]; r[i + 1] = a[i + 1] + b[i + 1]; r[i + 2] = a[i + 2] + b[i + 2]; r[i + 3] = a[i + 3] + b[i + 3]; r[i + 4] = a[i + 4] + b[i + 4]; r[i + 5] = a[i + 5] + b[i + 5]; r[i + 6] = a[i + 6] + b[i + 6]; r[i + 7] = a[i + 7] + b[i + 7]; } r[24] = a[24] + b[24]; r[25] = a[25] + b[25]; r[26] = a[26] + b[26]; return 0; } #endif /* WOLFSSL_SP_SMALL */ #ifdef WOLFSSL_SP_SMALL /* Sub b from a into r. (r = a - b) * * r A single precision integer. * a A single precision integer. * b A single precision integer. */ SP_NOINLINE static int sp_3072_sub_27(sp_digit* r, const sp_digit* a, const sp_digit* b) { int i; for (i = 0; i < 27; i++) r[i] = a[i] - b[i]; return 0; } #else /* Sub b from a into r. (r = a - b) * * r A single precision integer. * a A single precision integer. * b A single precision integer. */ SP_NOINLINE static int sp_3072_sub_27(sp_digit* r, const sp_digit* a, const sp_digit* b) { int i; for (i = 0; i < 24; i += 8) { r[i + 0] = a[i + 0] - b[i + 0]; r[i + 1] = a[i + 1] - b[i + 1]; r[i + 2] = a[i + 2] - b[i + 2]; r[i + 3] = a[i + 3] - b[i + 3]; r[i + 4] = a[i + 4] - b[i + 4]; r[i + 5] = a[i + 5] - b[i + 5]; r[i + 6] = a[i + 6] - b[i + 6]; r[i + 7] = a[i + 7] - b[i + 7]; } r[24] = a[24] - b[24]; r[25] = a[25] - b[25]; r[26] = a[26] - b[26]; return 0; } #endif /* WOLFSSL_SP_SMALL */ #ifdef WOLFSSL_SP_SMALL /* Multiply a and b into r. (r = a * b) * * r A single precision integer. * a A single precision integer. * b A single precision integer. */ SP_NOINLINE static void sp_3072_mul_27(sp_digit* r, const sp_digit* a, const sp_digit* b) { int i, j, k; int128_t c; c = ((int128_t)a[26]) * b[26]; r[53] = (sp_digit)(c >> 57); c = (c & 0x1ffffffffffffffl) << 57; for (k = 51; k >= 0; k--) { for (i = 26; i >= 0; i--) { j = k - i; if (j >= 27) break; if (j < 0) continue; c += ((int128_t)a[i]) * b[j]; } r[k + 2] += c >> 114; r[k + 1] = (c >> 57) & 0x1ffffffffffffffl; c = (c & 0x1ffffffffffffffl) << 57; } r[0] = (sp_digit)(c >> 57); } #else /* Multiply a and b into r. (r = a * b) * * r A single precision integer. * a A single precision integer. * b A single precision integer. */ SP_NOINLINE static void sp_3072_mul_27(sp_digit* r, const sp_digit* a, const sp_digit* b) { int i, j; int128_t t[54]; XMEMSET(t, 0, sizeof(t)); for (i=0; i<27; i++) { for (j=0; j<27; j++) t[i+j] += ((int128_t)a[i]) * b[j]; } for (i=0; i<53; i++) { r[i] = t[i] & 0x1ffffffffffffffl; t[i+1] += t[i] >> 57; } r[53] = (sp_digit)t[53]; } #endif /* WOLFSSL_SP_SMALL */ #ifdef WOLFSSL_SP_SMALL /* Square a and put result in r. (r = a * a) * * r A single precision integer. * a A single precision integer. */ SP_NOINLINE static void sp_3072_sqr_27(sp_digit* r, const sp_digit* a) { int i, j, k; int128_t c; c = ((int128_t)a[26]) * a[26]; r[53] = (sp_digit)(c >> 57); c = (c & 0x1ffffffffffffffl) << 57; for (k = 51; k >= 0; k--) { for (i = 26; i >= 0; i--) { j = k - i; if (j >= 27 || i <= j) break; if (j < 0) continue; c += ((int128_t)a[i]) * a[j] * 2; } if (i == j) c += ((int128_t)a[i]) * a[i]; r[k + 2] += c >> 114; r[k + 1] = (c >> 57) & 0x1ffffffffffffffl; c = (c & 0x1ffffffffffffffl) << 57; } r[0] = (sp_digit)(c >> 57); } #else /* Square a and put result in r. (r = a * a) * * r A single precision integer. * a A single precision integer. */ SP_NOINLINE static void sp_3072_sqr_27(sp_digit* r, const sp_digit* a) { int i, j; int128_t t[54]; XMEMSET(t, 0, sizeof(t)); for (i=0; i<27; i++) { for (j=0; j<i; j++) t[i+j] += (((int128_t)a[i]) * a[j]) * 2; t[i+i] += ((int128_t)a[i]) * a[i]; } for (i=0; i<53; i++) { r[i] = t[i] & 0x1ffffffffffffffl; t[i+1] += t[i] >> 57; } r[53] = (sp_digit)t[53]; } #endif /* WOLFSSL_SP_SMALL */ #endif /* !SP_RSA_PRIVATE_EXP_D && WOLFSSL_HAVE_SP_RSA */ /* Caclulate the bottom digit of -1/a mod 2^n. * * a A single precision number. * rho Bottom word of inverse. */ static void sp_3072_mont_setup(sp_digit* a, sp_digit* rho) { sp_digit x, b; b = a[0]; x = (((b + 2) & 4) << 1) + b; /* here x*a==1 mod 2**4 */ x *= 2 - b * x; /* here x*a==1 mod 2**8 */ x *= 2 - b * x; /* here x*a==1 mod 2**16 */ x *= 2 - b * x; /* here x*a==1 mod 2**32 */ x *= 2 - b * x; /* here x*a==1 mod 2**64 */ x &= 0x1ffffffffffffffl; /* rho = -1/m mod b */ *rho = (1L << 57) - x; } #if !defined(SP_RSA_PRIVATE_EXP_D) && defined(WOLFSSL_HAVE_SP_RSA) /* r = 2^n mod m where n is the number of bits to reduce by. * Given m must be 3072 bits, just need to subtract. * * r A single precision number. * m A signle precision number. */ static void sp_3072_mont_norm_27(sp_digit* r, sp_digit* m) { /* Set r = 2^n - 1. */ #ifdef WOLFSSL_SP_SMALL int i; for (i=0; i<26; i++) r[i] = 0x1ffffffffffffffl; #else int i; for (i = 0; i < 24; i += 8) { r[i + 0] = 0x1ffffffffffffffl; r[i + 1] = 0x1ffffffffffffffl; r[i + 2] = 0x1ffffffffffffffl; r[i + 3] = 0x1ffffffffffffffl; r[i + 4] = 0x1ffffffffffffffl; r[i + 5] = 0x1ffffffffffffffl; r[i + 6] = 0x1ffffffffffffffl; r[i + 7] = 0x1ffffffffffffffl; } r[24] = 0x1ffffffffffffffl; r[25] = 0x1ffffffffffffffl; #endif r[26] = 0x3fffffffffffffl; /* r = (2^n - 1) mod n */ sp_3072_sub_27(r, r, m); /* Add one so r = 2^n mod m */ r[0] += 1; } /* Compare a with b in constant time. * * a A single precision integer. * b A single precision integer. * return -ve, 0 or +ve if a is less than, equal to or greater than b * respectively. */ static sp_digit sp_3072_cmp_27(const sp_digit* a, const sp_digit* b) { sp_digit r = 0; #ifdef WOLFSSL_SP_SMALL int i; for (i=26; i>=0; i--) r |= (a[i] - b[i]) & (0 - !r); #else int i; r |= (a[26] - b[26]) & (0 - !r); r |= (a[25] - b[25]) & (0 - !r); r |= (a[24] - b[24]) & (0 - !r); for (i = 16; i >= 0; i -= 8) { r |= (a[i + 7] - b[i + 7]) & (0 - !r); r |= (a[i + 6] - b[i + 6]) & (0 - !r); r |= (a[i + 5] - b[i + 5]) & (0 - !r); r |= (a[i + 4] - b[i + 4]) & (0 - !r); r |= (a[i + 3] - b[i + 3]) & (0 - !r); r |= (a[i + 2] - b[i + 2]) & (0 - !r); r |= (a[i + 1] - b[i + 1]) & (0 - !r); r |= (a[i + 0] - b[i + 0]) & (0 - !r); } #endif /* WOLFSSL_SP_SMALL */ return r; } /* Conditionally subtract b from a using the mask m. * m is -1 to subtract and 0 when not. * * r A single precision number representing condition subtract result. * a A single precision number to subtract from. * b A single precision number to subtract. * m Mask value to apply. */ static void sp_3072_cond_sub_27(sp_digit* r, const sp_digit* a, const sp_digit* b, const sp_digit m) { #ifdef WOLFSSL_SP_SMALL int i; for (i = 0; i < 27; i++) r[i] = a[i] - (b[i] & m); #else int i; for (i = 0; i < 24; i += 8) { r[i + 0] = a[i + 0] - (b[i + 0] & m); r[i + 1] = a[i + 1] - (b[i + 1] & m); r[i + 2] = a[i + 2] - (b[i + 2] & m); r[i + 3] = a[i + 3] - (b[i + 3] & m); r[i + 4] = a[i + 4] - (b[i + 4] & m); r[i + 5] = a[i + 5] - (b[i + 5] & m); r[i + 6] = a[i + 6] - (b[i + 6] & m); r[i + 7] = a[i + 7] - (b[i + 7] & m); } r[24] = a[24] - (b[24] & m); r[25] = a[25] - (b[25] & m); r[26] = a[26] - (b[26] & m); #endif /* WOLFSSL_SP_SMALL */ } /* Mul a by scalar b and add into r. (r += a * b) * * r A single precision integer. * a A single precision integer. * b A scalar. */ SP_NOINLINE static void sp_3072_mul_add_27(sp_digit* r, const sp_digit* a, const sp_digit b) { #ifdef WOLFSSL_SP_SMALL int128_t tb = b; int128_t t = 0; int i; for (i = 0; i < 27; i++) { t += (tb * a[i]) + r[i]; r[i] = t & 0x1ffffffffffffffl; t >>= 57; } r[27] += t; #else int128_t tb = b; int128_t t[8]; int i; t[0] = tb * a[0]; r[0] += t[0] & 0x1ffffffffffffffl; for (i = 0; i < 24; i += 8) { t[1] = tb * a[i+1]; r[i+1] += (t[0] >> 57) + (t[1] & 0x1ffffffffffffffl); t[2] = tb * a[i+2]; r[i+2] += (t[1] >> 57) + (t[2] & 0x1ffffffffffffffl); t[3] = tb * a[i+3]; r[i+3] += (t[2] >> 57) + (t[3] & 0x1ffffffffffffffl); t[4] = tb * a[i+4]; r[i+4] += (t[3] >> 57) + (t[4] & 0x1ffffffffffffffl); t[5] = tb * a[i+5]; r[i+5] += (t[4] >> 57) + (t[5] & 0x1ffffffffffffffl); t[6] = tb * a[i+6]; r[i+6] += (t[5] >> 57) + (t[6] & 0x1ffffffffffffffl); t[7] = tb * a[i+7]; r[i+7] += (t[6] >> 57) + (t[7] & 0x1ffffffffffffffl); t[0] = tb * a[i+8]; r[i+8] += (t[7] >> 57) + (t[0] & 0x1ffffffffffffffl); } t[1] = tb * a[25]; r[25] += (t[0] >> 57) + (t[1] & 0x1ffffffffffffffl); t[2] = tb * a[26]; r[26] += (t[1] >> 57) + (t[2] & 0x1ffffffffffffffl); r[27] += t[2] >> 57; #endif /* WOLFSSL_SP_SMALL */ } /* Normalize the values in each word to 57. * * a Array of sp_digit to normalize. */ static void sp_3072_norm_27(sp_digit* a) { #ifdef WOLFSSL_SP_SMALL int i; for (i = 0; i < 26; i++) { a[i+1] += a[i] >> 57; a[i] &= 0x1ffffffffffffffl; } #else int i; for (i = 0; i < 24; i += 8) { a[i+1] += a[i+0] >> 57; a[i+0] &= 0x1ffffffffffffffl; a[i+2] += a[i+1] >> 57; a[i+1] &= 0x1ffffffffffffffl; a[i+3] += a[i+2] >> 57; a[i+2] &= 0x1ffffffffffffffl; a[i+4] += a[i+3] >> 57; a[i+3] &= 0x1ffffffffffffffl; a[i+5] += a[i+4] >> 57; a[i+4] &= 0x1ffffffffffffffl; a[i+6] += a[i+5] >> 57; a[i+5] &= 0x1ffffffffffffffl; a[i+7] += a[i+6] >> 57; a[i+6] &= 0x1ffffffffffffffl; a[i+8] += a[i+7] >> 57; a[i+7] &= 0x1ffffffffffffffl; a[i+9] += a[i+8] >> 57; a[i+8] &= 0x1ffffffffffffffl; } a[24+1] += a[24] >> 57; a[24] &= 0x1ffffffffffffffl; a[25+1] += a[25] >> 57; a[25] &= 0x1ffffffffffffffl; #endif } /* Shift the result in the high 1536 bits down to the bottom. * * r A single precision number. * a A single precision number. */ static void sp_3072_mont_shift_27(sp_digit* r, const sp_digit* a) { #ifdef WOLFSSL_SP_SMALL int i; sp_digit n, s; s = a[27]; n = a[26] >> 54; for (i = 0; i < 26; i++) { n += (s & 0x1ffffffffffffffl) << 3; r[i] = n & 0x1ffffffffffffffl; n >>= 57; s = a[28 + i] + (s >> 57); } n += s << 3; r[26] = n; #else sp_digit n, s; int i; s = a[27]; n = a[26] >> 54; for (i = 0; i < 24; i += 8) { n += (s & 0x1ffffffffffffffl) << 3; r[i+0] = n & 0x1ffffffffffffffl; n >>= 57; s = a[i+28] + (s >> 57); n += (s & 0x1ffffffffffffffl) << 3; r[i+1] = n & 0x1ffffffffffffffl; n >>= 57; s = a[i+29] + (s >> 57); n += (s & 0x1ffffffffffffffl) << 3; r[i+2] = n & 0x1ffffffffffffffl; n >>= 57; s = a[i+30] + (s >> 57); n += (s & 0x1ffffffffffffffl) << 3; r[i+3] = n & 0x1ffffffffffffffl; n >>= 57; s = a[i+31] + (s >> 57); n += (s & 0x1ffffffffffffffl) << 3; r[i+4] = n & 0x1ffffffffffffffl; n >>= 57; s = a[i+32] + (s >> 57); n += (s & 0x1ffffffffffffffl) << 3; r[i+5] = n & 0x1ffffffffffffffl; n >>= 57; s = a[i+33] + (s >> 57); n += (s & 0x1ffffffffffffffl) << 3; r[i+6] = n & 0x1ffffffffffffffl; n >>= 57; s = a[i+34] + (s >> 57); n += (s & 0x1ffffffffffffffl) << 3; r[i+7] = n & 0x1ffffffffffffffl; n >>= 57; s = a[i+35] + (s >> 57); } n += (s & 0x1ffffffffffffffl) << 3; r[24] = n & 0x1ffffffffffffffl; n >>= 57; s = a[52] + (s >> 57); n += (s & 0x1ffffffffffffffl) << 3; r[25] = n & 0x1ffffffffffffffl; n >>= 57; s = a[53] + (s >> 57); n += s << 3; r[26] = n; #endif /* WOLFSSL_SP_SMALL */ XMEMSET(&r[27], 0, sizeof(*r) * 27); } /* Reduce the number back to 3072 bits using Montgomery reduction. * * a A single precision number to reduce in place. * m The single precision number representing the modulus. * mp The digit representing the negative inverse of m mod 2^n. */ static void sp_3072_mont_reduce_27(sp_digit* a, sp_digit* m, sp_digit mp) { int i; sp_digit mu; for (i=0; i<26; i++) { mu = (a[i] * mp) & 0x1ffffffffffffffl; sp_3072_mul_add_27(a+i, m, mu); a[i+1] += a[i] >> 57; } mu = (a[i] * mp) & 0x3fffffffffffffl; sp_3072_mul_add_27(a+i, m, mu); a[i+1] += a[i] >> 57; a[i] &= 0x1ffffffffffffffl; sp_3072_mont_shift_27(a, a); sp_3072_cond_sub_27(a, a, m, 0 - ((a[26] >> 54) > 0)); sp_3072_norm_27(a); } /* Multiply two Montogmery form numbers mod the modulus (prime). * (r = a * b mod m) * * r Result of multiplication. * a First number to multiply in Montogmery form. * b Second number to multiply in Montogmery form. * m Modulus (prime). * mp Montogmery mulitplier. */ static void sp_3072_mont_mul_27(sp_digit* r, sp_digit* a, sp_digit* b, sp_digit* m, sp_digit mp) { sp_3072_mul_27(r, a, b); sp_3072_mont_reduce_27(r, m, mp); } /* Square the Montgomery form number. (r = a * a mod m) * * r Result of squaring. * a Number to square in Montogmery form. * m Modulus (prime). * mp Montogmery mulitplier. */ static void sp_3072_mont_sqr_27(sp_digit* r, sp_digit* a, sp_digit* m, sp_digit mp) { sp_3072_sqr_27(r, a); sp_3072_mont_reduce_27(r, m, mp); } /* Multiply a by scalar b into r. (r = a * b) * * r A single precision integer. * a A single precision integer. * b A scalar. */ SP_NOINLINE static void sp_3072_mul_d_27(sp_digit* r, const sp_digit* a, const sp_digit b) { #ifdef WOLFSSL_SP_SMALL int128_t tb = b; int128_t t = 0; int i; for (i = 0; i < 27; i++) { t += tb * a[i]; r[i] = t & 0x1ffffffffffffffl; t >>= 57; } r[27] = (sp_digit)t; #else int128_t tb = b; int128_t t[8]; int i; t[0] = tb * a[0]; r[0] = t[0] & 0x1ffffffffffffffl; for (i = 0; i < 24; i += 8) { t[1] = tb * a[i+1]; r[i+1] = (sp_digit)(t[0] >> 57) + (t[1] & 0x1ffffffffffffffl); t[2] = tb * a[i+2]; r[i+2] = (sp_digit)(t[1] >> 57) + (t[2] & 0x1ffffffffffffffl); t[3] = tb * a[i+3]; r[i+3] = (sp_digit)(t[2] >> 57) + (t[3] & 0x1ffffffffffffffl); t[4] = tb * a[i+4]; r[i+4] = (sp_digit)(t[3] >> 57) + (t[4] & 0x1ffffffffffffffl); t[5] = tb * a[i+5]; r[i+5] = (sp_digit)(t[4] >> 57) + (t[5] & 0x1ffffffffffffffl); t[6] = tb * a[i+6]; r[i+6] = (sp_digit)(t[5] >> 57) + (t[6] & 0x1ffffffffffffffl); t[7] = tb * a[i+7]; r[i+7] = (sp_digit)(t[6] >> 57) + (t[7] & 0x1ffffffffffffffl); t[0] = tb * a[i+8]; r[i+8] = (sp_digit)(t[7] >> 57) + (t[0] & 0x1ffffffffffffffl); } t[1] = tb * a[25]; r[25] = (sp_digit)(t[0] >> 57) + (t[1] & 0x1ffffffffffffffl); t[2] = tb * a[26]; r[26] = (sp_digit)(t[1] >> 57) + (t[2] & 0x1ffffffffffffffl); r[27] = (sp_digit)(t[2] >> 57); #endif /* WOLFSSL_SP_SMALL */ } /* Conditionally add a and b using the mask m. * m is -1 to add and 0 when not. * * r A single precision number representing conditional add result. * a A single precision number to add with. * b A single precision number to add. * m Mask value to apply. */ static void sp_3072_cond_add_27(sp_digit* r, const sp_digit* a, const sp_digit* b, const sp_digit m) { #ifdef WOLFSSL_SP_SMALL int i; for (i = 0; i < 27; i++) r[i] = a[i] + (b[i] & m); #else int i; for (i = 0; i < 24; i += 8) { r[i + 0] = a[i + 0] + (b[i + 0] & m); r[i + 1] = a[i + 1] + (b[i + 1] & m); r[i + 2] = a[i + 2] + (b[i + 2] & m); r[i + 3] = a[i + 3] + (b[i + 3] & m); r[i + 4] = a[i + 4] + (b[i + 4] & m); r[i + 5] = a[i + 5] + (b[i + 5] & m); r[i + 6] = a[i + 6] + (b[i + 6] & m); r[i + 7] = a[i + 7] + (b[i + 7] & m); } r[24] = a[24] + (b[24] & m); r[25] = a[25] + (b[25] & m); r[26] = a[26] + (b[26] & m); #endif /* WOLFSSL_SP_SMALL */ } /* Divide d in a and put remainder into r (m*d + r = a) * m is not calculated as it is not needed at this time. * * a Nmber to be divided. * d Number to divide with. * m Multiplier result. * r Remainder from the division. * returns MEMORY_E when unable to allocate memory and MP_OKAY otherwise. */ static int sp_3072_div_27(sp_digit* a, sp_digit* d, sp_digit* m, sp_digit* r) { int i; int128_t d1; sp_digit div, r1; #if defined(WOLFSSL_SP_SMALL) || defined(WOLFSSL_SMALL_STACK) sp_digit* td; #else sp_digit t1d[54], t2d[27 + 1]; #endif sp_digit* t1; sp_digit* t2; int err = MP_OKAY; #if defined(WOLFSSL_SP_SMALL) || defined(WOLFSSL_SMALL_STACK) td = XMALLOC(sizeof(sp_digit) * (3 * 27 + 1), NULL, DYNAMIC_TYPE_TMP_BUFFER); if (td != NULL) { t1 = td; t2 = td + 2 * 27; } else err = MEMORY_E; #else t1 = t1d; t2 = t2d; #endif (void)m; if (err == MP_OKAY) { div = d[26]; XMEMCPY(t1, a, sizeof(*t1) * 2 * 27); for (i=26; i>=0; i--) { t1[27 + i] += t1[27 + i - 1] >> 57; t1[27 + i - 1] &= 0x1ffffffffffffffl; d1 = t1[27 + i]; d1 <<= 57; d1 += t1[27 + i - 1]; r1 = (sp_digit)(d1 / div); sp_3072_mul_d_27(t2, d, r1); sp_3072_sub_27(&t1[i], &t1[i], t2); t1[27 + i] -= t2[27]; t1[27 + i] += t1[27 + i - 1] >> 57; t1[27 + i - 1] &= 0x1ffffffffffffffl; r1 = (((-t1[27 + i]) << 57) - t1[27 + i - 1]) / div; r1++; sp_3072_mul_d_27(t2, d, r1); sp_3072_add_27(&t1[i], &t1[i], t2); t1[27 + i] += t1[27 + i - 1] >> 57; t1[27 + i - 1] &= 0x1ffffffffffffffl; } t1[27 - 1] += t1[27 - 2] >> 57; t1[27 - 2] &= 0x1ffffffffffffffl; d1 = t1[27 - 1]; r1 = (sp_digit)(d1 / div); sp_3072_mul_d_27(t2, d, r1); sp_3072_sub_27(t1, t1, t2); XMEMCPY(r, t1, sizeof(*r) * 2 * 27); for (i=0; i<25; i++) { r[i+1] += r[i] >> 57; r[i] &= 0x1ffffffffffffffl; } sp_3072_cond_add_27(r, r, d, 0 - (r[26] < 0)); } #if defined(WOLFSSL_SP_SMALL) || defined(WOLFSSL_SMALL_STACK) if (td != NULL) XFREE(td, NULL, DYNAMIC_TYPE_TMP_BUFFER); #endif return err; } /* Reduce a modulo m into r. (r = a mod m) * * r A single precision number that is the reduced result. * a A single precision number that is to be reduced. * m A single precision number that is the modulus to reduce with. * returns MEMORY_E when unable to allocate memory and MP_OKAY otherwise. */ static int sp_3072_mod_27(sp_digit* r, sp_digit* a, sp_digit* m) { return sp_3072_div_27(a, m, NULL, r); } /* Modular exponentiate a to the e mod m. (r = a^e mod m) * * r A single precision number that is the result of the operation. * a A single precision number being exponentiated. * e A single precision number that is the exponent. * bits The number of bits in the exponent. * m A single precision number that is the modulus. * returns 0 on success and MEMORY_E on dynamic memory allocation failure. */ static int sp_3072_mod_exp_27(sp_digit* r, sp_digit* a, sp_digit* e, int bits, sp_digit* m, int reduceA) { #ifdef WOLFSSL_SP_SMALL sp_digit* td; sp_digit* t[3]; sp_digit* norm; sp_digit mp = 1; sp_digit n; int i; int c, y; int err = MP_OKAY; td = (sp_digit*)XMALLOC(sizeof(*td) * 3 * 27 * 2, NULL, DYNAMIC_TYPE_TMP_BUFFER); if (td == NULL) err = MEMORY_E; if (err == MP_OKAY) { XMEMSET(td, 0, sizeof(*td) * 3 * 27 * 2); norm = t[0] = td; t[1] = &td[27 * 2]; t[2] = &td[2 * 27 * 2]; sp_3072_mont_setup(m, &mp); sp_3072_mont_norm_27(norm, m); if (reduceA) err = sp_3072_mod_27(t[1], a, m); else XMEMCPY(t[1], a, sizeof(sp_digit) * 27); } if (err == MP_OKAY) { sp_3072_mul_27(t[1], t[1], norm); err = sp_3072_mod_27(t[1], t[1], m); } if (err == MP_OKAY) { i = bits / 57; c = bits % 57; n = e[i--] << (57 - c); for (; ; c--) { if (c == 0) { if (i == -1) break; n = e[i--]; c = 57; } y = (n >> 56) & 1; n <<= 1; sp_3072_mont_mul_27(t[y^1], t[0], t[1], m, mp); XMEMCPY(t[2], (void*)(((size_t)t[0] & addr_mask[y^1]) + ((size_t)t[1] & addr_mask[y])), sizeof(*t[2]) * 27 * 2); sp_3072_mont_sqr_27(t[2], t[2], m, mp); XMEMCPY((void*)(((size_t)t[0] & addr_mask[y^1]) + ((size_t)t[1] & addr_mask[y])), t[2], sizeof(*t[2]) * 27 * 2); } sp_3072_mont_reduce_27(t[0], m, mp); n = sp_3072_cmp_27(t[0], m); sp_3072_cond_sub_27(t[0], t[0], m, (n < 0) - 1); XMEMCPY(r, t[0], sizeof(*r) * 27 * 2); } if (td != NULL) XFREE(td, NULL, DYNAMIC_TYPE_TMP_BUFFER); return err; #elif defined(WOLFSSL_SP_CACHE_RESISTANT) #ifndef WOLFSSL_SMALL_STACK sp_digit t[3][54]; #else sp_digit* td; sp_digit* t[3]; #endif sp_digit* norm; sp_digit mp = 1; sp_digit n; int i; int c, y; int err = MP_OKAY; #ifdef WOLFSSL_SMALL_STACK td = (sp_digit*)XMALLOC(sizeof(*td) * 3 * 27 * 2, NULL, DYNAMIC_TYPE_TMP_BUFFER); if (td == NULL) err = MEMORY_E; if (err == MP_OKAY) { t[0] = td; t[1] = &td[27 * 2]; t[2] = &td[2 * 27 * 2]; norm = t[0]; } #else norm = t[0]; #endif if (err == MP_OKAY) { sp_3072_mont_setup(m, &mp); sp_3072_mont_norm_27(norm, m); if (reduceA) { err = sp_3072_mod_27(t[1], a, m); if (err == MP_OKAY) { sp_3072_mul_27(t[1], t[1], norm); err = sp_3072_mod_27(t[1], t[1], m); } } else { sp_3072_mul_27(t[1], a, norm); err = sp_3072_mod_27(t[1], t[1], m); } } if (err == MP_OKAY) { i = bits / 57; c = bits % 57; n = e[i--] << (57 - c); for (; ; c--) { if (c == 0) { if (i == -1) break; n = e[i--]; c = 57; } y = (n >> 56) & 1; n <<= 1; sp_3072_mont_mul_27(t[y^1], t[0], t[1], m, mp); XMEMCPY(t[2], (void*)(((size_t)t[0] & addr_mask[y^1]) + ((size_t)t[1] & addr_mask[y])), sizeof(t[2])); sp_3072_mont_sqr_27(t[2], t[2], m, mp); XMEMCPY((void*)(((size_t)t[0] & addr_mask[y^1]) + ((size_t)t[1] & addr_mask[y])), t[2], sizeof(t[2])); } sp_3072_mont_reduce_27(t[0], m, mp); n = sp_3072_cmp_27(t[0], m); sp_3072_cond_sub_27(t[0], t[0], m, (n < 0) - 1); XMEMCPY(r, t[0], sizeof(t[0])); } #ifdef WOLFSSL_SMALL_STACK if (td != NULL) XFREE(td, NULL, DYNAMIC_TYPE_TMP_BUFFER); #endif return err; #else #ifndef WOLFSSL_SMALL_STACK sp_digit t[32][54]; #else sp_digit* t[32]; sp_digit* td; #endif sp_digit* norm; sp_digit rt[54]; sp_digit mp = 1; sp_digit n; int i; int c, y; int err = MP_OKAY; #ifdef WOLFSSL_SMALL_STACK td = (sp_digit*)XMALLOC(sizeof(sp_digit) * 32 * 54, NULL, DYNAMIC_TYPE_TMP_BUFFER); if (td == NULL) err = MEMORY_E; if (err == MP_OKAY) { for (i=0; i<32; i++) t[i] = td + i * 54; norm = t[0]; } #else norm = t[0]; #endif if (err == MP_OKAY) { sp_3072_mont_setup(m, &mp); sp_3072_mont_norm_27(norm, m); if (reduceA) { err = sp_3072_mod_27(t[1], a, m); if (err == MP_OKAY) { sp_3072_mul_27(t[1], t[1], norm); err = sp_3072_mod_27(t[1], t[1], m); } } else { sp_3072_mul_27(t[1], a, norm); err = sp_3072_mod_27(t[1], t[1], m); } } if (err == MP_OKAY) { sp_3072_mont_sqr_27(t[ 2], t[ 1], m, mp); sp_3072_mont_mul_27(t[ 3], t[ 2], t[ 1], m, mp); sp_3072_mont_sqr_27(t[ 4], t[ 2], m, mp); sp_3072_mont_mul_27(t[ 5], t[ 3], t[ 2], m, mp); sp_3072_mont_sqr_27(t[ 6], t[ 3], m, mp); sp_3072_mont_mul_27(t[ 7], t[ 4], t[ 3], m, mp); sp_3072_mont_sqr_27(t[ 8], t[ 4], m, mp); sp_3072_mont_mul_27(t[ 9], t[ 5], t[ 4], m, mp); sp_3072_mont_sqr_27(t[10], t[ 5], m, mp); sp_3072_mont_mul_27(t[11], t[ 6], t[ 5], m, mp); sp_3072_mont_sqr_27(t[12], t[ 6], m, mp); sp_3072_mont_mul_27(t[13], t[ 7], t[ 6], m, mp); sp_3072_mont_sqr_27(t[14], t[ 7], m, mp); sp_3072_mont_mul_27(t[15], t[ 8], t[ 7], m, mp); sp_3072_mont_sqr_27(t[16], t[ 8], m, mp); sp_3072_mont_mul_27(t[17], t[ 9], t[ 8], m, mp); sp_3072_mont_sqr_27(t[18], t[ 9], m, mp); sp_3072_mont_mul_27(t[19], t[10], t[ 9], m, mp); sp_3072_mont_sqr_27(t[20], t[10], m, mp); sp_3072_mont_mul_27(t[21], t[11], t[10], m, mp); sp_3072_mont_sqr_27(t[22], t[11], m, mp); sp_3072_mont_mul_27(t[23], t[12], t[11], m, mp); sp_3072_mont_sqr_27(t[24], t[12], m, mp); sp_3072_mont_mul_27(t[25], t[13], t[12], m, mp); sp_3072_mont_sqr_27(t[26], t[13], m, mp); sp_3072_mont_mul_27(t[27], t[14], t[13], m, mp); sp_3072_mont_sqr_27(t[28], t[14], m, mp); sp_3072_mont_mul_27(t[29], t[15], t[14], m, mp); sp_3072_mont_sqr_27(t[30], t[15], m, mp); sp_3072_mont_mul_27(t[31], t[16], t[15], m, mp); bits = ((bits + 4) / 5) * 5; i = ((bits + 56) / 57) - 1; c = bits % 57; if (c == 0) c = 57; if (i < 27) n = e[i--] << (64 - c); else { n = 0; i--; } if (c < 5) { n |= e[i--] << (7 - c); c += 57; } y = n >> 59; n <<= 5; c -= 5; XMEMCPY(rt, t[y], sizeof(rt)); for (; i>=0 || c>=5; ) { if (c < 5) { n |= e[i--] << (7 - c); c += 57; } y = (n >> 59) & 0x1f; n <<= 5; c -= 5; sp_3072_mont_sqr_27(rt, rt, m, mp); sp_3072_mont_sqr_27(rt, rt, m, mp); sp_3072_mont_sqr_27(rt, rt, m, mp); sp_3072_mont_sqr_27(rt, rt, m, mp); sp_3072_mont_sqr_27(rt, rt, m, mp); sp_3072_mont_mul_27(rt, rt, t[y], m, mp); } sp_3072_mont_reduce_27(rt, m, mp); n = sp_3072_cmp_27(rt, m); sp_3072_cond_sub_27(rt, rt, m, (n < 0) - 1); XMEMCPY(r, rt, sizeof(rt)); } #ifdef WOLFSSL_SMALL_STACK if (td != NULL) XFREE(td, NULL, DYNAMIC_TYPE_TMP_BUFFER); #endif return err; #endif } #endif /* !SP_RSA_PRIVATE_EXP_D && WOLFSSL_HAVE_SP_RSA */ /* r = 2^n mod m where n is the number of bits to reduce by. * Given m must be 3072 bits, just need to subtract. * * r A single precision number. * m A signle precision number. */ static void sp_3072_mont_norm_54(sp_digit* r, sp_digit* m) { /* Set r = 2^n - 1. */ #ifdef WOLFSSL_SP_SMALL int i; for (i=0; i<53; i++) r[i] = 0x1ffffffffffffffl; #else int i; for (i = 0; i < 48; i += 8) { r[i + 0] = 0x1ffffffffffffffl; r[i + 1] = 0x1ffffffffffffffl; r[i + 2] = 0x1ffffffffffffffl; r[i + 3] = 0x1ffffffffffffffl; r[i + 4] = 0x1ffffffffffffffl; r[i + 5] = 0x1ffffffffffffffl; r[i + 6] = 0x1ffffffffffffffl; r[i + 7] = 0x1ffffffffffffffl; } r[48] = 0x1ffffffffffffffl; r[49] = 0x1ffffffffffffffl; r[50] = 0x1ffffffffffffffl; r[51] = 0x1ffffffffffffffl; r[52] = 0x1ffffffffffffffl; #endif r[53] = 0x7ffffffffffffl; /* r = (2^n - 1) mod n */ sp_3072_sub_54(r, r, m); /* Add one so r = 2^n mod m */ r[0] += 1; } /* Compare a with b in constant time. * * a A single precision integer. * b A single precision integer. * return -ve, 0 or +ve if a is less than, equal to or greater than b * respectively. */ static sp_digit sp_3072_cmp_54(const sp_digit* a, const sp_digit* b) { sp_digit r = 0; #ifdef WOLFSSL_SP_SMALL int i; for (i=53; i>=0; i--) r |= (a[i] - b[i]) & (0 - !r); #else int i; r |= (a[53] - b[53]) & (0 - !r); r |= (a[52] - b[52]) & (0 - !r); r |= (a[51] - b[51]) & (0 - !r); r |= (a[50] - b[50]) & (0 - !r); r |= (a[49] - b[49]) & (0 - !r); r |= (a[48] - b[48]) & (0 - !r); for (i = 40; i >= 0; i -= 8) { r |= (a[i + 7] - b[i + 7]) & (0 - !r); r |= (a[i + 6] - b[i + 6]) & (0 - !r); r |= (a[i + 5] - b[i + 5]) & (0 - !r); r |= (a[i + 4] - b[i + 4]) & (0 - !r); r |= (a[i + 3] - b[i + 3]) & (0 - !r); r |= (a[i + 2] - b[i + 2]) & (0 - !r); r |= (a[i + 1] - b[i + 1]) & (0 - !r); r |= (a[i + 0] - b[i + 0]) & (0 - !r); } #endif /* WOLFSSL_SP_SMALL */ return r; } /* Conditionally subtract b from a using the mask m. * m is -1 to subtract and 0 when not. * * r A single precision number representing condition subtract result. * a A single precision number to subtract from. * b A single precision number to subtract. * m Mask value to apply. */ static void sp_3072_cond_sub_54(sp_digit* r, const sp_digit* a, const sp_digit* b, const sp_digit m) { #ifdef WOLFSSL_SP_SMALL int i; for (i = 0; i < 54; i++) r[i] = a[i] - (b[i] & m); #else int i; for (i = 0; i < 48; i += 8) { r[i + 0] = a[i + 0] - (b[i + 0] & m); r[i + 1] = a[i + 1] - (b[i + 1] & m); r[i + 2] = a[i + 2] - (b[i + 2] & m); r[i + 3] = a[i + 3] - (b[i + 3] & m); r[i + 4] = a[i + 4] - (b[i + 4] & m); r[i + 5] = a[i + 5] - (b[i + 5] & m); r[i + 6] = a[i + 6] - (b[i + 6] & m); r[i + 7] = a[i + 7] - (b[i + 7] & m); } r[48] = a[48] - (b[48] & m); r[49] = a[49] - (b[49] & m); r[50] = a[50] - (b[50] & m); r[51] = a[51] - (b[51] & m); r[52] = a[52] - (b[52] & m); r[53] = a[53] - (b[53] & m); #endif /* WOLFSSL_SP_SMALL */ } /* Mul a by scalar b and add into r. (r += a * b) * * r A single precision integer. * a A single precision integer. * b A scalar. */ SP_NOINLINE static void sp_3072_mul_add_54(sp_digit* r, const sp_digit* a, const sp_digit b) { #ifdef WOLFSSL_SP_SMALL int128_t tb = b; int128_t t = 0; int i; for (i = 0; i < 54; i++) { t += (tb * a[i]) + r[i]; r[i] = t & 0x1ffffffffffffffl; t >>= 57; } r[54] += t; #else int128_t tb = b; int128_t t[8]; int i; t[0] = tb * a[0]; r[0] += t[0] & 0x1ffffffffffffffl; for (i = 0; i < 48; i += 8) { t[1] = tb * a[i+1]; r[i+1] += (t[0] >> 57) + (t[1] & 0x1ffffffffffffffl); t[2] = tb * a[i+2]; r[i+2] += (t[1] >> 57) + (t[2] & 0x1ffffffffffffffl); t[3] = tb * a[i+3]; r[i+3] += (t[2] >> 57) + (t[3] & 0x1ffffffffffffffl); t[4] = tb * a[i+4]; r[i+4] += (t[3] >> 57) + (t[4] & 0x1ffffffffffffffl); t[5] = tb * a[i+5]; r[i+5] += (t[4] >> 57) + (t[5] & 0x1ffffffffffffffl); t[6] = tb * a[i+6]; r[i+6] += (t[5] >> 57) + (t[6] & 0x1ffffffffffffffl); t[7] = tb * a[i+7]; r[i+7] += (t[6] >> 57) + (t[7] & 0x1ffffffffffffffl); t[0] = tb * a[i+8]; r[i+8] += (t[7] >> 57) + (t[0] & 0x1ffffffffffffffl); } t[1] = tb * a[49]; r[49] += (t[0] >> 57) + (t[1] & 0x1ffffffffffffffl); t[2] = tb * a[50]; r[50] += (t[1] >> 57) + (t[2] & 0x1ffffffffffffffl); t[3] = tb * a[51]; r[51] += (t[2] >> 57) + (t[3] & 0x1ffffffffffffffl); t[4] = tb * a[52]; r[52] += (t[3] >> 57) + (t[4] & 0x1ffffffffffffffl); t[5] = tb * a[53]; r[53] += (t[4] >> 57) + (t[5] & 0x1ffffffffffffffl); r[54] += t[5] >> 57; #endif /* WOLFSSL_SP_SMALL */ } /* Normalize the values in each word to 57. * * a Array of sp_digit to normalize. */ static void sp_3072_norm_54(sp_digit* a) { #ifdef WOLFSSL_SP_SMALL int i; for (i = 0; i < 53; i++) { a[i+1] += a[i] >> 57; a[i] &= 0x1ffffffffffffffl; } #else int i; for (i = 0; i < 48; i += 8) { a[i+1] += a[i+0] >> 57; a[i+0] &= 0x1ffffffffffffffl; a[i+2] += a[i+1] >> 57; a[i+1] &= 0x1ffffffffffffffl; a[i+3] += a[i+2] >> 57; a[i+2] &= 0x1ffffffffffffffl; a[i+4] += a[i+3] >> 57; a[i+3] &= 0x1ffffffffffffffl; a[i+5] += a[i+4] >> 57; a[i+4] &= 0x1ffffffffffffffl; a[i+6] += a[i+5] >> 57; a[i+5] &= 0x1ffffffffffffffl; a[i+7] += a[i+6] >> 57; a[i+6] &= 0x1ffffffffffffffl; a[i+8] += a[i+7] >> 57; a[i+7] &= 0x1ffffffffffffffl; a[i+9] += a[i+8] >> 57; a[i+8] &= 0x1ffffffffffffffl; } a[48+1] += a[48] >> 57; a[48] &= 0x1ffffffffffffffl; a[49+1] += a[49] >> 57; a[49] &= 0x1ffffffffffffffl; a[50+1] += a[50] >> 57; a[50] &= 0x1ffffffffffffffl; a[51+1] += a[51] >> 57; a[51] &= 0x1ffffffffffffffl; a[52+1] += a[52] >> 57; a[52] &= 0x1ffffffffffffffl; #endif } /* Shift the result in the high 3072 bits down to the bottom. * * r A single precision number. * a A single precision number. */ static void sp_3072_mont_shift_54(sp_digit* r, const sp_digit* a) { #ifdef WOLFSSL_SP_SMALL int i; int128_t n = a[53] >> 51; n += ((int128_t)a[54]) << 6; for (i = 0; i < 53; i++) { r[i] = n & 0x1ffffffffffffffl; n >>= 57; n += ((int128_t)a[55 + i]) << 6; } r[53] = (sp_digit)n; #else int i; int128_t n = a[53] >> 51; n += ((int128_t)a[54]) << 6; for (i = 0; i < 48; i += 8) { r[i + 0] = n & 0x1ffffffffffffffl; n >>= 57; n += ((int128_t)a[i + 55]) << 6; r[i + 1] = n & 0x1ffffffffffffffl; n >>= 57; n += ((int128_t)a[i + 56]) << 6; r[i + 2] = n & 0x1ffffffffffffffl; n >>= 57; n += ((int128_t)a[i + 57]) << 6; r[i + 3] = n & 0x1ffffffffffffffl; n >>= 57; n += ((int128_t)a[i + 58]) << 6; r[i + 4] = n & 0x1ffffffffffffffl; n >>= 57; n += ((int128_t)a[i + 59]) << 6; r[i + 5] = n & 0x1ffffffffffffffl; n >>= 57; n += ((int128_t)a[i + 60]) << 6; r[i + 6] = n & 0x1ffffffffffffffl; n >>= 57; n += ((int128_t)a[i + 61]) << 6; r[i + 7] = n & 0x1ffffffffffffffl; n >>= 57; n += ((int128_t)a[i + 62]) << 6; } r[48] = n & 0x1ffffffffffffffl; n >>= 57; n += ((int128_t)a[103]) << 6; r[49] = n & 0x1ffffffffffffffl; n >>= 57; n += ((int128_t)a[104]) << 6; r[50] = n & 0x1ffffffffffffffl; n >>= 57; n += ((int128_t)a[105]) << 6; r[51] = n & 0x1ffffffffffffffl; n >>= 57; n += ((int128_t)a[106]) << 6; r[52] = n & 0x1ffffffffffffffl; n >>= 57; n += ((int128_t)a[107]) << 6; r[53] = (sp_digit)n; #endif /* WOLFSSL_SP_SMALL */ XMEMSET(&r[54], 0, sizeof(*r) * 54); } /* Reduce the number back to 3072 bits using Montgomery reduction. * * a A single precision number to reduce in place. * m The single precision number representing the modulus. * mp The digit representing the negative inverse of m mod 2^n. */ static void sp_3072_mont_reduce_54(sp_digit* a, sp_digit* m, sp_digit mp) { int i; sp_digit mu; if (mp != 1) { for (i=0; i<53; i++) { mu = (a[i] * mp) & 0x1ffffffffffffffl; sp_3072_mul_add_54(a+i, m, mu); a[i+1] += a[i] >> 57; } mu = (a[i] * mp) & 0x7ffffffffffffl; sp_3072_mul_add_54(a+i, m, mu); a[i+1] += a[i] >> 57; a[i] &= 0x1ffffffffffffffl; } else { for (i=0; i<53; i++) { mu = a[i] & 0x1ffffffffffffffl; sp_3072_mul_add_54(a+i, m, mu); a[i+1] += a[i] >> 57; } mu = a[i] & 0x7ffffffffffffl; sp_3072_mul_add_54(a+i, m, mu); a[i+1] += a[i] >> 57; a[i] &= 0x1ffffffffffffffl; } sp_3072_mont_shift_54(a, a); sp_3072_cond_sub_54(a, a, m, 0 - ((a[53] >> 51) > 0)); sp_3072_norm_54(a); } /* Multiply two Montogmery form numbers mod the modulus (prime). * (r = a * b mod m) * * r Result of multiplication. * a First number to multiply in Montogmery form. * b Second number to multiply in Montogmery form. * m Modulus (prime). * mp Montogmery mulitplier. */ static void sp_3072_mont_mul_54(sp_digit* r, sp_digit* a, sp_digit* b, sp_digit* m, sp_digit mp) { sp_3072_mul_54(r, a, b); sp_3072_mont_reduce_54(r, m, mp); } /* Square the Montgomery form number. (r = a * a mod m) * * r Result of squaring. * a Number to square in Montogmery form. * m Modulus (prime). * mp Montogmery mulitplier. */ static void sp_3072_mont_sqr_54(sp_digit* r, sp_digit* a, sp_digit* m, sp_digit mp) { sp_3072_sqr_54(r, a); sp_3072_mont_reduce_54(r, m, mp); } /* Multiply a by scalar b into r. (r = a * b) * * r A single precision integer. * a A single precision integer. * b A scalar. */ SP_NOINLINE static void sp_3072_mul_d_54(sp_digit* r, const sp_digit* a, const sp_digit b) { #ifdef WOLFSSL_SP_SMALL int128_t tb = b; int128_t t = 0; int i; for (i = 0; i < 54; i++) { t += tb * a[i]; r[i] = t & 0x1ffffffffffffffl; t >>= 57; } r[54] = (sp_digit)t; #else int128_t tb = b; int128_t t[8]; int i; t[0] = tb * a[0]; r[0] = t[0] & 0x1ffffffffffffffl; for (i = 0; i < 48; i += 8) { t[1] = tb * a[i+1]; r[i+1] = (sp_digit)(t[0] >> 57) + (t[1] & 0x1ffffffffffffffl); t[2] = tb * a[i+2]; r[i+2] = (sp_digit)(t[1] >> 57) + (t[2] & 0x1ffffffffffffffl); t[3] = tb * a[i+3]; r[i+3] = (sp_digit)(t[2] >> 57) + (t[3] & 0x1ffffffffffffffl); t[4] = tb * a[i+4]; r[i+4] = (sp_digit)(t[3] >> 57) + (t[4] & 0x1ffffffffffffffl); t[5] = tb * a[i+5]; r[i+5] = (sp_digit)(t[4] >> 57) + (t[5] & 0x1ffffffffffffffl); t[6] = tb * a[i+6]; r[i+6] = (sp_digit)(t[5] >> 57) + (t[6] & 0x1ffffffffffffffl); t[7] = tb * a[i+7]; r[i+7] = (sp_digit)(t[6] >> 57) + (t[7] & 0x1ffffffffffffffl); t[0] = tb * a[i+8]; r[i+8] = (sp_digit)(t[7] >> 57) + (t[0] & 0x1ffffffffffffffl); } t[1] = tb * a[49]; r[49] = (sp_digit)(t[0] >> 57) + (t[1] & 0x1ffffffffffffffl); t[2] = tb * a[50]; r[50] = (sp_digit)(t[1] >> 57) + (t[2] & 0x1ffffffffffffffl); t[3] = tb * a[51]; r[51] = (sp_digit)(t[2] >> 57) + (t[3] & 0x1ffffffffffffffl); t[4] = tb * a[52]; r[52] = (sp_digit)(t[3] >> 57) + (t[4] & 0x1ffffffffffffffl); t[5] = tb * a[53]; r[53] = (sp_digit)(t[4] >> 57) + (t[5] & 0x1ffffffffffffffl); r[54] = (sp_digit)(t[5] >> 57); #endif /* WOLFSSL_SP_SMALL */ } /* Conditionally add a and b using the mask m. * m is -1 to add and 0 when not. * * r A single precision number representing conditional add result. * a A single precision number to add with. * b A single precision number to add. * m Mask value to apply. */ static void sp_3072_cond_add_54(sp_digit* r, const sp_digit* a, const sp_digit* b, const sp_digit m) { #ifdef WOLFSSL_SP_SMALL int i; for (i = 0; i < 54; i++) r[i] = a[i] + (b[i] & m); #else int i; for (i = 0; i < 48; i += 8) { r[i + 0] = a[i + 0] + (b[i + 0] & m); r[i + 1] = a[i + 1] + (b[i + 1] & m); r[i + 2] = a[i + 2] + (b[i + 2] & m); r[i + 3] = a[i + 3] + (b[i + 3] & m); r[i + 4] = a[i + 4] + (b[i + 4] & m); r[i + 5] = a[i + 5] + (b[i + 5] & m); r[i + 6] = a[i + 6] + (b[i + 6] & m); r[i + 7] = a[i + 7] + (b[i + 7] & m); } r[48] = a[48] + (b[48] & m); r[49] = a[49] + (b[49] & m); r[50] = a[50] + (b[50] & m); r[51] = a[51] + (b[51] & m); r[52] = a[52] + (b[52] & m); r[53] = a[53] + (b[53] & m); #endif /* WOLFSSL_SP_SMALL */ } /* Divide d in a and put remainder into r (m*d + r = a) * m is not calculated as it is not needed at this time. * * a Nmber to be divided. * d Number to divide with. * m Multiplier result. * r Remainder from the division. * returns MEMORY_E when unable to allocate memory and MP_OKAY otherwise. */ static int sp_3072_div_54(sp_digit* a, sp_digit* d, sp_digit* m, sp_digit* r) { int i; int128_t d1; sp_digit div, r1; #if defined(WOLFSSL_SP_SMALL) || defined(WOLFSSL_SMALL_STACK) sp_digit* td; #else sp_digit t1d[108], t2d[54 + 1]; #endif sp_digit* t1; sp_digit* t2; int err = MP_OKAY; #if defined(WOLFSSL_SP_SMALL) || defined(WOLFSSL_SMALL_STACK) td = XMALLOC(sizeof(sp_digit) * (3 * 54 + 1), NULL, DYNAMIC_TYPE_TMP_BUFFER); if (td != NULL) { t1 = td; t2 = td + 2 * 54; } else err = MEMORY_E; #else t1 = t1d; t2 = t2d; #endif (void)m; if (err == MP_OKAY) { div = d[53]; XMEMCPY(t1, a, sizeof(*t1) * 2 * 54); for (i=53; i>=0; i--) { t1[54 + i] += t1[54 + i - 1] >> 57; t1[54 + i - 1] &= 0x1ffffffffffffffl; d1 = t1[54 + i]; d1 <<= 57; d1 += t1[54 + i - 1]; r1 = (sp_digit)(d1 / div); sp_3072_mul_d_54(t2, d, r1); sp_3072_sub_54(&t1[i], &t1[i], t2); t1[54 + i] -= t2[54]; t1[54 + i] += t1[54 + i - 1] >> 57; t1[54 + i - 1] &= 0x1ffffffffffffffl; r1 = (((-t1[54 + i]) << 57) - t1[54 + i - 1]) / div; r1++; sp_3072_mul_d_54(t2, d, r1); sp_3072_add_54(&t1[i], &t1[i], t2); t1[54 + i] += t1[54 + i - 1] >> 57; t1[54 + i - 1] &= 0x1ffffffffffffffl; } t1[54 - 1] += t1[54 - 2] >> 57; t1[54 - 2] &= 0x1ffffffffffffffl; d1 = t1[54 - 1]; r1 = (sp_digit)(d1 / div); sp_3072_mul_d_54(t2, d, r1); sp_3072_sub_54(t1, t1, t2); XMEMCPY(r, t1, sizeof(*r) * 2 * 54); for (i=0; i<52; i++) { r[i+1] += r[i] >> 57; r[i] &= 0x1ffffffffffffffl; } sp_3072_cond_add_54(r, r, d, 0 - (r[53] < 0)); } #if defined(WOLFSSL_SP_SMALL) || defined(WOLFSSL_SMALL_STACK) if (td != NULL) XFREE(td, NULL, DYNAMIC_TYPE_TMP_BUFFER); #endif return err; } /* Reduce a modulo m into r. (r = a mod m) * * r A single precision number that is the reduced result. * a A single precision number that is to be reduced. * m A single precision number that is the modulus to reduce with. * returns MEMORY_E when unable to allocate memory and MP_OKAY otherwise. */ static int sp_3072_mod_54(sp_digit* r, sp_digit* a, sp_digit* m) { return sp_3072_div_54(a, m, NULL, r); } #if defined(SP_RSA_PRIVATE_EXP_D) || defined(WOLFSSL_HAVE_SP_DH) /* Modular exponentiate a to the e mod m. (r = a^e mod m) * * r A single precision number that is the result of the operation. * a A single precision number being exponentiated. * e A single precision number that is the exponent. * bits The number of bits in the exponent. * m A single precision number that is the modulus. * returns 0 on success and MEMORY_E on dynamic memory allocation failure. */ static int sp_3072_mod_exp_54(sp_digit* r, sp_digit* a, sp_digit* e, int bits, sp_digit* m, int reduceA) { #ifdef WOLFSSL_SP_SMALL sp_digit* td; sp_digit* t[3]; sp_digit* norm; sp_digit mp = 1; sp_digit n; int i; int c, y; int err = MP_OKAY; td = (sp_digit*)XMALLOC(sizeof(*td) * 3 * 54 * 2, NULL, DYNAMIC_TYPE_TMP_BUFFER); if (td == NULL) err = MEMORY_E; if (err == MP_OKAY) { XMEMSET(td, 0, sizeof(*td) * 3 * 54 * 2); norm = t[0] = td; t[1] = &td[54 * 2]; t[2] = &td[2 * 54 * 2]; sp_3072_mont_setup(m, &mp); sp_3072_mont_norm_54(norm, m); if (reduceA) err = sp_3072_mod_54(t[1], a, m); else XMEMCPY(t[1], a, sizeof(sp_digit) * 54); } if (err == MP_OKAY) { sp_3072_mul_54(t[1], t[1], norm); err = sp_3072_mod_54(t[1], t[1], m); } if (err == MP_OKAY) { i = bits / 57; c = bits % 57; n = e[i--] << (57 - c); for (; ; c--) { if (c == 0) { if (i == -1) break; n = e[i--]; c = 57; } y = (n >> 56) & 1; n <<= 1; sp_3072_mont_mul_54(t[y^1], t[0], t[1], m, mp); XMEMCPY(t[2], (void*)(((size_t)t[0] & addr_mask[y^1]) + ((size_t)t[1] & addr_mask[y])), sizeof(*t[2]) * 54 * 2); sp_3072_mont_sqr_54(t[2], t[2], m, mp); XMEMCPY((void*)(((size_t)t[0] & addr_mask[y^1]) + ((size_t)t[1] & addr_mask[y])), t[2], sizeof(*t[2]) * 54 * 2); } sp_3072_mont_reduce_54(t[0], m, mp); n = sp_3072_cmp_54(t[0], m); sp_3072_cond_sub_54(t[0], t[0], m, (n < 0) - 1); XMEMCPY(r, t[0], sizeof(*r) * 54 * 2); } if (td != NULL) XFREE(td, NULL, DYNAMIC_TYPE_TMP_BUFFER); return err; #elif defined(WOLFSSL_SP_CACHE_RESISTANT) #ifndef WOLFSSL_SMALL_STACK sp_digit t[3][108]; #else sp_digit* td; sp_digit* t[3]; #endif sp_digit* norm; sp_digit mp = 1; sp_digit n; int i; int c, y; int err = MP_OKAY; #ifdef WOLFSSL_SMALL_STACK td = (sp_digit*)XMALLOC(sizeof(*td) * 3 * 54 * 2, NULL, DYNAMIC_TYPE_TMP_BUFFER); if (td == NULL) err = MEMORY_E; if (err == MP_OKAY) { t[0] = td; t[1] = &td[54 * 2]; t[2] = &td[2 * 54 * 2]; norm = t[0]; } #else norm = t[0]; #endif if (err == MP_OKAY) { sp_3072_mont_setup(m, &mp); sp_3072_mont_norm_54(norm, m); if (reduceA) { err = sp_3072_mod_54(t[1], a, m); if (err == MP_OKAY) { sp_3072_mul_54(t[1], t[1], norm); err = sp_3072_mod_54(t[1], t[1], m); } } else { sp_3072_mul_54(t[1], a, norm); err = sp_3072_mod_54(t[1], t[1], m); } } if (err == MP_OKAY) { i = bits / 57; c = bits % 57; n = e[i--] << (57 - c); for (; ; c--) { if (c == 0) { if (i == -1) break; n = e[i--]; c = 57; } y = (n >> 56) & 1; n <<= 1; sp_3072_mont_mul_54(t[y^1], t[0], t[1], m, mp); XMEMCPY(t[2], (void*)(((size_t)t[0] & addr_mask[y^1]) + ((size_t)t[1] & addr_mask[y])), sizeof(t[2])); sp_3072_mont_sqr_54(t[2], t[2], m, mp); XMEMCPY((void*)(((size_t)t[0] & addr_mask[y^1]) + ((size_t)t[1] & addr_mask[y])), t[2], sizeof(t[2])); } sp_3072_mont_reduce_54(t[0], m, mp); n = sp_3072_cmp_54(t[0], m); sp_3072_cond_sub_54(t[0], t[0], m, (n < 0) - 1); XMEMCPY(r, t[0], sizeof(t[0])); } #ifdef WOLFSSL_SMALL_STACK if (td != NULL) XFREE(td, NULL, DYNAMIC_TYPE_TMP_BUFFER); #endif return err; #else #ifndef WOLFSSL_SMALL_STACK sp_digit t[32][108]; #else sp_digit* t[32]; sp_digit* td; #endif sp_digit* norm; sp_digit rt[108]; sp_digit mp = 1; sp_digit n; int i; int c, y; int err = MP_OKAY; #ifdef WOLFSSL_SMALL_STACK td = (sp_digit*)XMALLOC(sizeof(sp_digit) * 32 * 108, NULL, DYNAMIC_TYPE_TMP_BUFFER); if (td == NULL) err = MEMORY_E; if (err == MP_OKAY) { for (i=0; i<32; i++) t[i] = td + i * 108; norm = t[0]; } #else norm = t[0]; #endif if (err == MP_OKAY) { sp_3072_mont_setup(m, &mp); sp_3072_mont_norm_54(norm, m); if (reduceA) { err = sp_3072_mod_54(t[1], a, m); if (err == MP_OKAY) { sp_3072_mul_54(t[1], t[1], norm); err = sp_3072_mod_54(t[1], t[1], m); } } else { sp_3072_mul_54(t[1], a, norm); err = sp_3072_mod_54(t[1], t[1], m); } } if (err == MP_OKAY) { sp_3072_mont_sqr_54(t[ 2], t[ 1], m, mp); sp_3072_mont_mul_54(t[ 3], t[ 2], t[ 1], m, mp); sp_3072_mont_sqr_54(t[ 4], t[ 2], m, mp); sp_3072_mont_mul_54(t[ 5], t[ 3], t[ 2], m, mp); sp_3072_mont_sqr_54(t[ 6], t[ 3], m, mp); sp_3072_mont_mul_54(t[ 7], t[ 4], t[ 3], m, mp); sp_3072_mont_sqr_54(t[ 8], t[ 4], m, mp); sp_3072_mont_mul_54(t[ 9], t[ 5], t[ 4], m, mp); sp_3072_mont_sqr_54(t[10], t[ 5], m, mp); sp_3072_mont_mul_54(t[11], t[ 6], t[ 5], m, mp); sp_3072_mont_sqr_54(t[12], t[ 6], m, mp); sp_3072_mont_mul_54(t[13], t[ 7], t[ 6], m, mp); sp_3072_mont_sqr_54(t[14], t[ 7], m, mp); sp_3072_mont_mul_54(t[15], t[ 8], t[ 7], m, mp); sp_3072_mont_sqr_54(t[16], t[ 8], m, mp); sp_3072_mont_mul_54(t[17], t[ 9], t[ 8], m, mp); sp_3072_mont_sqr_54(t[18], t[ 9], m, mp); sp_3072_mont_mul_54(t[19], t[10], t[ 9], m, mp); sp_3072_mont_sqr_54(t[20], t[10], m, mp); sp_3072_mont_mul_54(t[21], t[11], t[10], m, mp); sp_3072_mont_sqr_54(t[22], t[11], m, mp); sp_3072_mont_mul_54(t[23], t[12], t[11], m, mp); sp_3072_mont_sqr_54(t[24], t[12], m, mp); sp_3072_mont_mul_54(t[25], t[13], t[12], m, mp); sp_3072_mont_sqr_54(t[26], t[13], m, mp); sp_3072_mont_mul_54(t[27], t[14], t[13], m, mp); sp_3072_mont_sqr_54(t[28], t[14], m, mp); sp_3072_mont_mul_54(t[29], t[15], t[14], m, mp); sp_3072_mont_sqr_54(t[30], t[15], m, mp); sp_3072_mont_mul_54(t[31], t[16], t[15], m, mp); bits = ((bits + 4) / 5) * 5; i = ((bits + 56) / 57) - 1; c = bits % 57; if (c == 0) c = 57; if (i < 54) n = e[i--] << (64 - c); else { n = 0; i--; } if (c < 5) { n |= e[i--] << (7 - c); c += 57; } y = n >> 59; n <<= 5; c -= 5; XMEMCPY(rt, t[y], sizeof(rt)); for (; i>=0 || c>=5; ) { if (c < 5) { n |= e[i--] << (7 - c); c += 57; } y = (n >> 59) & 0x1f; n <<= 5; c -= 5; sp_3072_mont_sqr_54(rt, rt, m, mp); sp_3072_mont_sqr_54(rt, rt, m, mp); sp_3072_mont_sqr_54(rt, rt, m, mp); sp_3072_mont_sqr_54(rt, rt, m, mp); sp_3072_mont_sqr_54(rt, rt, m, mp); sp_3072_mont_mul_54(rt, rt, t[y], m, mp); } sp_3072_mont_reduce_54(rt, m, mp); n = sp_3072_cmp_54(rt, m); sp_3072_cond_sub_54(rt, rt, m, (n < 0) - 1); XMEMCPY(r, rt, sizeof(rt)); } #ifdef WOLFSSL_SMALL_STACK if (td != NULL) XFREE(td, NULL, DYNAMIC_TYPE_TMP_BUFFER); #endif return err; #endif } #endif /* SP_RSA_PRIVATE_EXP_D || WOLFSSL_HAVE_SP_DH */ #if defined(WOLFSSL_HAVE_SP_RSA) && !defined(SP_RSA_PRIVATE_EXP_D) && \ !defined(RSA_LOW_MEM) /* AND m into each word of a and store in r. * * r A single precision integer. * a A single precision integer. * m Mask to AND against each digit. */ static void sp_3072_mask_27(sp_digit* r, sp_digit* a, sp_digit m) { #ifdef WOLFSSL_SP_SMALL int i; for (i=0; i<27; i++) r[i] = a[i] & m; #else int i; for (i = 0; i < 24; i += 8) { r[i+0] = a[i+0] & m; r[i+1] = a[i+1] & m; r[i+2] = a[i+2] & m; r[i+3] = a[i+3] & m; r[i+4] = a[i+4] & m; r[i+5] = a[i+5] & m; r[i+6] = a[i+6] & m; r[i+7] = a[i+7] & m; } r[24] = a[24] & m; r[25] = a[25] & m; r[26] = a[26] & m; #endif } #endif #ifdef WOLFSSL_HAVE_SP_RSA /* RSA public key operation. * * in Array of bytes representing the number to exponentiate, base. * inLen Number of bytes in base. * em Public exponent. * mm Modulus. * out Buffer to hold big-endian bytes of exponentiation result. * Must be at least 384 bytes long. * outLen Number of bytes in result. * returns 0 on success, MP_TO_E when the outLen is too small, MP_READ_E when * an array is too long and MEMORY_E when dynamic memory allocation fails. */ int sp_RsaPublic_3072(const byte* in, word32 inLen, mp_int* em, mp_int* mm, byte* out, word32* outLen) { #ifdef WOLFSSL_SP_SMALL sp_digit* d = NULL; sp_digit* a; sp_digit* m; sp_digit* r; sp_digit* norm; sp_digit e[1]; sp_digit mp; int i; int err = MP_OKAY; if (*outLen < 384) err = MP_TO_E; if (err == MP_OKAY && (mp_count_bits(em) > 57 || inLen > 384 || mp_count_bits(mm) != 3072)) err = MP_READ_E; if (err == MP_OKAY) { d = (sp_digit*)XMALLOC(sizeof(sp_digit) * 54 * 5, NULL, DYNAMIC_TYPE_TMP_BUFFER); if (d == NULL) err = MEMORY_E; } if (err == MP_OKAY) { a = d; r = a + 54 * 2; m = r + 54 * 2; norm = r; sp_3072_from_bin(a, 54, in, inLen); #if DIGIT_BIT >= 57 e[0] = em->dp[0]; #else e[0] = em->dp[0]; if (em->used > 1) e[0] |= ((sp_digit)em->dp[1]) << DIGIT_BIT; #endif if (e[0] == 0) err = MP_EXPTMOD_E; } if (err == MP_OKAY) { sp_3072_from_mp(m, 54, mm); sp_3072_mont_setup(m, &mp); sp_3072_mont_norm_54(norm, m); } if (err == MP_OKAY) { sp_3072_mul_54(a, a, norm); err = sp_3072_mod_54(a, a, m); } if (err == MP_OKAY) { for (i=56; i>=0; i--) if (e[0] >> i) break; XMEMCPY(r, a, sizeof(sp_digit) * 54 * 2); for (i--; i>=0; i--) { sp_3072_mont_sqr_54(r, r, m, mp); if (((e[0] >> i) & 1) == 1) sp_3072_mont_mul_54(r, r, a, m, mp); } sp_3072_mont_reduce_54(r, m, mp); mp = sp_3072_cmp_54(r, m); sp_3072_cond_sub_54(r, r, m, (mp < 0) - 1); sp_3072_to_bin(r, out); *outLen = 384; } if (d != NULL) XFREE(d, NULL, DYNAMIC_TYPE_TMP_BUFFER); return err; #else #if !defined(WOLFSSL_SP_SMALL) && !defined(WOLFSSL_SMALL_STACK) sp_digit ad[108], md[54], rd[108]; #else sp_digit* d = NULL; #endif sp_digit* a; sp_digit* m; sp_digit* r; sp_digit e[1]; int err = MP_OKAY; if (*outLen < 384) err = MP_TO_E; if (err == MP_OKAY && (mp_count_bits(em) > 57 || inLen > 384 || mp_count_bits(mm) != 3072)) err = MP_READ_E; #if defined(WOLFSSL_SP_SMALL) || defined(WOLFSSL_SMALL_STACK) if (err == MP_OKAY) { d = (sp_digit*)XMALLOC(sizeof(sp_digit) * 54 * 5, NULL, DYNAMIC_TYPE_TMP_BUFFER); if (d == NULL) err = MEMORY_E; } if (err == MP_OKAY) { a = d; r = a + 54 * 2; m = r + 54 * 2; } #else a = ad; m = md; r = rd; #endif if (err == MP_OKAY) { sp_3072_from_bin(a, 54, in, inLen); #if DIGIT_BIT >= 57 e[0] = em->dp[0]; #else e[0] = em->dp[0]; if (em->used > 1) e[0] |= ((sp_digit)em->dp[1]) << DIGIT_BIT; #endif if (e[0] == 0) err = MP_EXPTMOD_E; } if (err == MP_OKAY) { sp_3072_from_mp(m, 54, mm); if (e[0] == 0x3) { if (err == MP_OKAY) { sp_3072_sqr_54(r, a); err = sp_3072_mod_54(r, r, m); } if (err == MP_OKAY) { sp_3072_mul_54(r, a, r); err = sp_3072_mod_54(r, r, m); } } else { sp_digit* norm = r; int i; sp_digit mp; sp_3072_mont_setup(m, &mp); sp_3072_mont_norm_54(norm, m); if (err == MP_OKAY) { sp_3072_mul_54(a, a, norm); err = sp_3072_mod_54(a, a, m); } if (err == MP_OKAY) { for (i=56; i>=0; i--) if (e[0] >> i) break; XMEMCPY(r, a, sizeof(sp_digit) * 108); for (i--; i>=0; i--) { sp_3072_mont_sqr_54(r, r, m, mp); if (((e[0] >> i) & 1) == 1) sp_3072_mont_mul_54(r, r, a, m, mp); } sp_3072_mont_reduce_54(r, m, mp); mp = sp_3072_cmp_54(r, m); sp_3072_cond_sub_54(r, r, m, (mp < 0) - 1); } } } if (err == MP_OKAY) { sp_3072_to_bin(r, out); *outLen = 384; } #if defined(WOLFSSL_SP_SMALL) || defined(WOLFSSL_SMALL_STACK) if (d != NULL) XFREE(d, NULL, DYNAMIC_TYPE_TMP_BUFFER); #endif return err; #endif /* WOLFSSL_SP_SMALL */ } /* RSA private key operation. * * in Array of bytes representing the number to exponentiate, base. * inLen Number of bytes in base. * dm Private exponent. * pm First prime. * qm Second prime. * dpm First prime's CRT exponent. * dqm Second prime's CRT exponent. * qim Inverse of second prime mod p. * mm Modulus. * out Buffer to hold big-endian bytes of exponentiation result. * Must be at least 384 bytes long. * outLen Number of bytes in result. * returns 0 on success, MP_TO_E when the outLen is too small, MP_READ_E when * an array is too long and MEMORY_E when dynamic memory allocation fails. */ int sp_RsaPrivate_3072(const byte* in, word32 inLen, mp_int* dm, mp_int* pm, mp_int* qm, mp_int* dpm, mp_int* dqm, mp_int* qim, mp_int* mm, byte* out, word32* outLen) { #if defined(SP_RSA_PRIVATE_EXP_D) || defined(RSA_LOW_MEM) #if defined(WOLFSSL_SP_SMALL) || defined(WOLFSSL_SMALL_STACK) sp_digit* a; sp_digit* d = NULL; sp_digit* m; sp_digit* r; int err = MP_OKAY; (void)pm; (void)qm; (void)dpm; (void)dqm; (void)qim; if (*outLen < 384) err = MP_TO_E; if (err == MP_OKAY && (mp_count_bits(dm) > 3072 || inLen > 384 || mp_count_bits(mm) != 3072)) err = MP_READ_E; if (err == MP_OKAY) { d = (sp_digit*)XMALLOC(sizeof(sp_digit) * 54 * 4, NULL, DYNAMIC_TYPE_TMP_BUFFER); if (d == NULL) err = MEMORY_E; } if (err == MP_OKAY) { a = d + 54; m = a + 54; r = a; sp_3072_from_bin(a, 54, in, inLen); sp_3072_from_mp(d, 54, dm); sp_3072_from_mp(m, 54, mm); err = sp_3072_mod_exp_54(r, a, d, 3072, m, 0); } if (err == MP_OKAY) { sp_3072_to_bin(r, out); *outLen = 384; } if (d != NULL) { XMEMSET(d, 0, sizeof(sp_digit) * 54); XFREE(d, NULL, DYNAMIC_TYPE_TMP_BUFFER); } return err; #else sp_digit a[108], d[54], m[54]; sp_digit* r = a; int err = MP_OKAY; (void)pm; (void)qm; (void)dpm; (void)dqm; (void)qim; if (*outLen < 384) err = MP_TO_E; if (err == MP_OKAY && (mp_count_bits(dm) > 3072 || inLen > 384 || mp_count_bits(mm) != 3072)) err = MP_READ_E; if (err == MP_OKAY) { sp_3072_from_bin(a, 54, in, inLen); sp_3072_from_mp(d, 54, dm); sp_3072_from_mp(m, 54, mm); err = sp_3072_mod_exp_54(r, a, d, 3072, m, 0); } if (err == MP_OKAY) { sp_3072_to_bin(r, out); *outLen = 384; } XMEMSET(d, 0, sizeof(sp_digit) * 54); return err; #endif /* WOLFSSL_SP_SMALL || defined(WOLFSSL_SMALL_STACK) */ #else #if defined(WOLFSSL_SP_SMALL) || defined(WOLFSSL_SMALL_STACK) sp_digit* t = NULL; sp_digit* a; sp_digit* p; sp_digit* q; sp_digit* dp; sp_digit* dq; sp_digit* qi; sp_digit* tmp; sp_digit* tmpa; sp_digit* tmpb; sp_digit* r; int err = MP_OKAY; (void)dm; (void)mm; if (*outLen < 384) err = MP_TO_E; if (err == MP_OKAY && (inLen > 384 || mp_count_bits(mm) != 3072)) err = MP_READ_E; if (err == MP_OKAY) { t = (sp_digit*)XMALLOC(sizeof(sp_digit) * 27 * 11, NULL, DYNAMIC_TYPE_TMP_BUFFER); if (t == NULL) err = MEMORY_E; } if (err == MP_OKAY) { a = t; p = a + 54 * 2; q = p + 27; qi = dq = dp = q + 27; tmpa = qi + 27; tmpb = tmpa + 54; tmp = t; r = tmp + 54; sp_3072_from_bin(a, 54, in, inLen); sp_3072_from_mp(p, 27, pm); sp_3072_from_mp(q, 27, qm); sp_3072_from_mp(dp, 27, dpm); err = sp_3072_mod_exp_27(tmpa, a, dp, 1536, p, 1); } if (err == MP_OKAY) { sp_3072_from_mp(dq, 27, dqm); err = sp_3072_mod_exp_27(tmpb, a, dq, 1536, q, 1); } if (err == MP_OKAY) { sp_3072_sub_27(tmpa, tmpa, tmpb); sp_3072_mask_27(tmp, p, tmpa[26] >> 63); sp_3072_add_27(tmpa, tmpa, tmp); sp_3072_from_mp(qi, 27, qim); sp_3072_mul_27(tmpa, tmpa, qi); err = sp_3072_mod_27(tmpa, tmpa, p); } if (err == MP_OKAY) { sp_3072_mul_27(tmpa, q, tmpa); sp_3072_add_54(r, tmpb, tmpa); sp_3072_norm_54(r); sp_3072_to_bin(r, out); *outLen = 384; } if (t != NULL) { XMEMSET(t, 0, sizeof(sp_digit) * 27 * 11); XFREE(t, NULL, DYNAMIC_TYPE_TMP_BUFFER); } return err; #else sp_digit a[54 * 2]; sp_digit p[27], q[27], dp[27], dq[27], qi[27]; sp_digit tmp[54], tmpa[54], tmpb[54]; sp_digit* r = a; int err = MP_OKAY; (void)dm; (void)mm; if (*outLen < 384) err = MP_TO_E; if (err == MP_OKAY && (inLen > 384 || mp_count_bits(mm) != 3072)) err = MP_READ_E; if (err == MP_OKAY) { sp_3072_from_bin(a, 54, in, inLen); sp_3072_from_mp(p, 27, pm); sp_3072_from_mp(q, 27, qm); sp_3072_from_mp(dp, 27, dpm); sp_3072_from_mp(dq, 27, dqm); sp_3072_from_mp(qi, 27, qim); err = sp_3072_mod_exp_27(tmpa, a, dp, 1536, p, 1); } if (err == MP_OKAY) err = sp_3072_mod_exp_27(tmpb, a, dq, 1536, q, 1); if (err == MP_OKAY) { sp_3072_sub_27(tmpa, tmpa, tmpb); sp_3072_mask_27(tmp, p, tmpa[26] >> 63); sp_3072_add_27(tmpa, tmpa, tmp); sp_3072_mul_27(tmpa, tmpa, qi); err = sp_3072_mod_27(tmpa, tmpa, p); } if (err == MP_OKAY) { sp_3072_mul_27(tmpa, tmpa, q); sp_3072_add_54(r, tmpb, tmpa); sp_3072_norm_54(r); sp_3072_to_bin(r, out); *outLen = 384; } XMEMSET(tmpa, 0, sizeof(tmpa)); XMEMSET(tmpb, 0, sizeof(tmpb)); XMEMSET(p, 0, sizeof(p)); XMEMSET(q, 0, sizeof(q)); XMEMSET(dp, 0, sizeof(dp)); XMEMSET(dq, 0, sizeof(dq)); XMEMSET(qi, 0, sizeof(qi)); return err; #endif /* WOLFSSL_SP_SMALL || defined(WOLFSSL_SMALL_STACK) */ #endif /* SP_RSA_PRIVATE_EXP_D || RSA_LOW_MEM */ } #endif /* WOLFSSL_HAVE_SP_RSA */ #ifdef WOLFSSL_HAVE_SP_DH /* Convert an array of sp_digit to an mp_int. * * a A single precision integer. * r A multi-precision integer. */ static int sp_3072_to_mp(sp_digit* a, mp_int* r) { int err; err = mp_grow(r, (3072 + DIGIT_BIT - 1) / DIGIT_BIT); if (err == MP_OKAY) { #if DIGIT_BIT == 57 XMEMCPY(r->dp, a, sizeof(sp_digit) * 54); r->used = 54; mp_clamp(r); #elif DIGIT_BIT < 57 int i, j = 0, s = 0; r->dp[0] = 0; for (i = 0; i < 54; i++) { r->dp[j] |= a[i] << s; r->dp[j] &= (1l << DIGIT_BIT) - 1; s = DIGIT_BIT - s; r->dp[++j] = a[i] >> s; while (s + DIGIT_BIT <= 57) { s += DIGIT_BIT; r->dp[j] &= (1l << DIGIT_BIT) - 1; r->dp[++j] = a[i] >> s; } s = 57 - s; } r->used = (3072 + DIGIT_BIT - 1) / DIGIT_BIT; mp_clamp(r); #else int i, j = 0, s = 0; r->dp[0] = 0; for (i = 0; i < 54; i++) { r->dp[j] |= ((mp_digit)a[i]) << s; if (s + 57 >= DIGIT_BIT) { #if DIGIT_BIT < 64 r->dp[j] &= (1l << DIGIT_BIT) - 1; #endif s = DIGIT_BIT - s; r->dp[++j] = a[i] >> s; s = 57 - s; } else s += 57; } r->used = (3072 + DIGIT_BIT - 1) / DIGIT_BIT; mp_clamp(r); #endif } return err; } /* Perform the modular exponentiation for Diffie-Hellman. * * base Base. MP integer. * exp Exponent. MP integer. * mod Modulus. MP integer. * res Result. MP integer. * returs 0 on success, MP_READ_E if there are too many bytes in an array * and MEMORY_E if memory allocation fails. */ int sp_ModExp_3072(mp_int* base, mp_int* exp, mp_int* mod, mp_int* res) { #ifdef WOLFSSL_SP_SMALL int err = MP_OKAY; sp_digit* d = NULL; sp_digit* b; sp_digit* e; sp_digit* m; sp_digit* r; int expBits = mp_count_bits(exp); if (mp_count_bits(base) > 3072 || expBits > 3072 || mp_count_bits(mod) != 3072) { err = MP_READ_E; } if (err == MP_OKAY) { d = (sp_digit*)XMALLOC(sizeof(*d) * 54 * 4, NULL, DYNAMIC_TYPE_TMP_BUFFER); if (d == NULL) err = MEMORY_E; } if (err == MP_OKAY) { b = d; e = b + 54 * 2; m = e + 54; r = b; sp_3072_from_mp(b, 54, base); sp_3072_from_mp(e, 54, exp); sp_3072_from_mp(m, 54, mod); err = sp_3072_mod_exp_54(r, b, e, mp_count_bits(exp), m, 0); } if (err == MP_OKAY) { err = sp_3072_to_mp(r, res); } if (d != NULL) { XMEMSET(e, 0, sizeof(sp_digit) * 54); XFREE(d, NULL, DYNAMIC_TYPE_TMP_BUFFER); } return err; #else #ifndef WOLFSSL_SMALL_STACK sp_digit bd[108], ed[54], md[54]; #else sp_digit* d = NULL; #endif sp_digit* b; sp_digit* e; sp_digit* m; sp_digit* r; int err = MP_OKAY; int expBits = mp_count_bits(exp); if (mp_count_bits(base) > 3072 || expBits > 3072 || mp_count_bits(mod) != 3072) { err = MP_READ_E; } #ifdef WOLFSSL_SMALL_STACK if (err == MP_OKAY) { d = (sp_digit*)XMALLOC(sizeof(*d) * 54 * 4, NULL, DYNAMIC_TYPE_TMP_BUFFER); if (d == NULL) err = MEMORY_E; } if (err == MP_OKAY) { b = d; e = b + 54 * 2; m = e + 54; r = b; } #else r = b = bd; e = ed; m = md; #endif if (err == MP_OKAY) { sp_3072_from_mp(b, 54, base); sp_3072_from_mp(e, 54, exp); sp_3072_from_mp(m, 54, mod); err = sp_3072_mod_exp_54(r, b, e, expBits, m, 0); } if (err == MP_OKAY) { err = sp_3072_to_mp(r, res); } XMEMSET(e, 0, sizeof(sp_digit) * 54); #ifdef WOLFSSL_SMALL_STACK if (d != NULL) XFREE(d, NULL, DYNAMIC_TYPE_TMP_BUFFER); #endif return err; #endif } /* Perform the modular exponentiation for Diffie-Hellman. * * base Base. * exp Array of bytes that is the exponent. * expLen Length of data, in bytes, in exponent. * mod Modulus. * out Buffer to hold big-endian bytes of exponentiation result. * Must be at least 384 bytes long. * outLen Length, in bytes, of exponentiation result. * returs 0 on success, MP_READ_E if there are too many bytes in an array * and MEMORY_E if memory allocation fails. */ int sp_DhExp_3072(mp_int* base, const byte* exp, word32 expLen, mp_int* mod, byte* out, word32* outLen) { #ifdef WOLFSSL_SP_SMALL int err = MP_OKAY; sp_digit* d = NULL; sp_digit* b; sp_digit* e; sp_digit* m; sp_digit* r; word32 i; if (mp_count_bits(base) > 3072 || expLen > 384 || mp_count_bits(mod) != 3072) { err = MP_READ_E; } if (err == MP_OKAY) { d = (sp_digit*)XMALLOC(sizeof(*d) * 54 * 4, NULL, DYNAMIC_TYPE_TMP_BUFFER); if (d == NULL) err = MEMORY_E; } if (err == MP_OKAY) { b = d; e = b + 54 * 2; m = e + 54; r = b; sp_3072_from_mp(b, 54, base); sp_3072_from_bin(e, 54, exp, expLen); sp_3072_from_mp(m, 54, mod); err = sp_3072_mod_exp_54(r, b, e, expLen * 8, m, 0); } if (err == MP_OKAY) { sp_3072_to_bin(r, out); *outLen = 384; for (i=0; i<384 && out[i] == 0; i++) { } *outLen -= i; XMEMMOVE(out, out + i, *outLen); } if (d != NULL) { XMEMSET(e, 0, sizeof(sp_digit) * 54); XFREE(d, NULL, DYNAMIC_TYPE_TMP_BUFFER); } return err; #else #ifndef WOLFSSL_SMALL_STACK sp_digit bd[108], ed[54], md[54]; #else sp_digit* d = NULL; #endif sp_digit* b; sp_digit* e; sp_digit* m; sp_digit* r; word32 i; int err = MP_OKAY; if (mp_count_bits(base) > 3072 || expLen > 384 || mp_count_bits(mod) != 3072) { err = MP_READ_E; } #ifdef WOLFSSL_SMALL_STACK if (err == MP_OKAY) { d = (sp_digit*)XMALLOC(sizeof(*d) * 54 * 4, NULL, DYNAMIC_TYPE_TMP_BUFFER); if (d == NULL) err = MEMORY_E; } if (err == MP_OKAY) { b = d; e = b + 54 * 2; m = e + 54; r = b; } #else r = b = bd; e = ed; m = md; #endif if (err == MP_OKAY) { sp_3072_from_mp(b, 54, base); sp_3072_from_bin(e, 54, exp, expLen); sp_3072_from_mp(m, 54, mod); err = sp_3072_mod_exp_54(r, b, e, expLen * 8, m, 0); } if (err == MP_OKAY) { sp_3072_to_bin(r, out); *outLen = 384; for (i=0; i<384 && out[i] == 0; i++) { } *outLen -= i; XMEMMOVE(out, out + i, *outLen); } XMEMSET(e, 0, sizeof(sp_digit) * 54); #ifdef WOLFSSL_SMALL_STACK if (d != NULL) XFREE(d, NULL, DYNAMIC_TYPE_TMP_BUFFER); #endif return err; #endif } #endif /* WOLFSSL_HAVE_SP_DH */ #endif /* WOLFSSL_SP_NO_3072 */ #endif /* WOLFSSL_HAVE_SP_RSA || WOLFSSL_HAVE_SP_DH */ #ifdef WOLFSSL_HAVE_SP_ECC #ifndef WOLFSSL_SP_NO_256 /* Point structure to use. */ typedef struct sp_point { sp_digit x[2 * 5]; sp_digit y[2 * 5]; sp_digit z[2 * 5]; int infinity; } sp_point; /* The modulus (prime) of the curve P256. */ static sp_digit p256_mod[5] = { 0xfffffffffffffl,0x00fffffffffffl,0x0000000000000l,0x0001000000000l, 0x0ffffffff0000l }; #ifndef WOLFSSL_SP_SMALL /* The Montogmery normalizer for modulus of the curve P256. */ static sp_digit p256_norm_mod[5] = { 0x0000000000001l,0xff00000000000l,0xfffffffffffffl,0xfffefffffffffl, 0x000000000ffffl }; #endif /* WOLFSSL_SP_SMALL */ /* The Montogmery multiplier for modulus of the curve P256. */ static sp_digit p256_mp_mod = 0x0000000000001; #if defined(WOLFSSL_VALIDATE_ECC_KEYGEN) || defined(HAVE_ECC_SIGN) || \ defined(HAVE_ECC_VERIFY) /* The order of the curve P256. */ static sp_digit p256_order[5] = { 0x9cac2fc632551l,0xada7179e84f3bl,0xfffffffbce6fal,0x0000fffffffffl, 0x0ffffffff0000l }; #endif /* The order of the curve P256 minus 2. */ static sp_digit p256_order2[5] = { 0x9cac2fc63254fl,0xada7179e84f3bl,0xfffffffbce6fal,0x0000fffffffffl, 0x0ffffffff0000l }; #if defined(HAVE_ECC_SIGN) || defined(HAVE_ECC_VERIFY) /* The Montogmery normalizer for order of the curve P256. */ static sp_digit p256_norm_order[5] = { 0x6353d039cdaafl,0x5258e8617b0c4l,0x0000000431905l,0xffff000000000l, 0x000000000ffffl }; #endif #if defined(HAVE_ECC_SIGN) || defined(HAVE_ECC_VERIFY) /* The Montogmery multiplier for order of the curve P256. */ static sp_digit p256_mp_order = 0x1c8aaee00bc4fl; #endif /* The base point of curve P256. */ static sp_point p256_base = { /* X ordinate */ { 0x13945d898c296l,0x812deb33a0f4al,0x3a440f277037dl,0x4247f8bce6e56l, 0x06b17d1f2e12cl }, /* Y ordinate */ { 0x6406837bf51f5l,0x576b315ececbbl,0xc0f9e162bce33l,0x7f9b8ee7eb4a7l, 0x04fe342e2fe1al }, /* Z ordinate */ { 0x0000000000001l,0x0000000000000l,0x0000000000000l,0x0000000000000l, 0x0000000000000l }, /* infinity */ 0 }; #if defined(HAVE_ECC_CHECK_KEY) || defined(HAVE_COMP_KEY) static sp_digit p256_b[5] = { 0xe3c3e27d2604bl,0xb0cc53b0f63bcl,0x69886bc651d06l,0x93e7b3ebbd557l, 0x05ac635d8aa3al }; #endif #if defined(WOLFSSL_SP_SMALL) || defined(WOLFSSL_SMALL_STACK) /* Allocate memory for point and return error. */ #define sp_ecc_point_new(heap, sp, p) \ ((p = XMALLOC(sizeof(sp_point), heap, DYNAMIC_TYPE_ECC)) == NULL) ? \ MEMORY_E : MP_OKAY #else /* Set pointer to data and return no error. */ #define sp_ecc_point_new(heap, sp, p) ((p = &sp) == NULL) ? MEMORY_E : MP_OKAY #endif #if defined(WOLFSSL_SP_SMALL) || defined(WOLFSSL_SMALL_STACK) /* If valid pointer then clear point data if requested and free data. */ #define sp_ecc_point_free(p, clear, heap) \ do { \ if (p != NULL) { \ if (clear) \ XMEMSET(p, 0, sizeof(*p)); \ XFREE(p, heap, DYNAMIC_TYPE_ECC); \ } \ } \ while (0) #else /* Clear point data if requested. */ #define sp_ecc_point_free(p, clear, heap) \ do { \ if (clear) \ XMEMSET(p, 0, sizeof(*p)); \ } \ while (0) #endif /* Multiply a number by Montogmery normalizer mod modulus (prime). * * r The resulting Montgomery form number. * a The number to convert. * m The modulus (prime). * returns MEMORY_E when memory allocation fails and MP_OKAY otherwise. */ static int sp_256_mod_mul_norm_5(sp_digit* r, sp_digit* a, sp_digit* m) { #if defined(WOLFSSL_SP_SMALL) || defined(WOLFSSL_SMALL_STACK) int64_t* td; #else int64_t td[8]; int64_t a32d[8]; #endif int64_t* t; int64_t* a32; int64_t o; int err = MP_OKAY; (void)m; #if defined(WOLFSSL_SP_SMALL) || defined(WOLFSSL_SMALL_STACK) td = XMALLOC(sizeof(int64_t) * 2 * 8, NULL, DYNAMIC_TYPE_ECC); if (td != NULL) { t = td; a32 = td + 8; } else err = MEMORY_E; #else t = td; a32 = a32d; #endif if (err == MP_OKAY) { a32[0] = (sp_digit)(a[0]) & 0xffffffff; a32[1] = (sp_digit)(a[0] >> 32); a32[1] |= a[1] << 20; a32[1] &= 0xffffffff; a32[2] = (sp_digit)(a[1] >> 12) & 0xffffffff; a32[3] = (sp_digit)(a[1] >> 44); a32[3] |= a[2] << 8; a32[3] &= 0xffffffff; a32[4] = (sp_digit)(a[2] >> 24); a32[4] |= a[3] << 28; a32[4] &= 0xffffffff; a32[5] = (sp_digit)(a[3] >> 4) & 0xffffffff; a32[6] = (sp_digit)(a[3] >> 36); a32[6] |= a[4] << 16; a32[6] &= 0xffffffff; a32[7] = (sp_digit)(a[4] >> 16) & 0xffffffff; /* 1 1 0 -1 -1 -1 -1 0 */ t[0] = 0 + a32[0] + a32[1] - a32[3] - a32[4] - a32[5] - a32[6]; /* 0 1 1 0 -1 -1 -1 -1 */ t[1] = 0 + a32[1] + a32[2] - a32[4] - a32[5] - a32[6] - a32[7]; /* 0 0 1 1 0 -1 -1 -1 */ t[2] = 0 + a32[2] + a32[3] - a32[5] - a32[6] - a32[7]; /* -1 -1 0 2 2 1 0 -1 */ t[3] = 0 - a32[0] - a32[1] + 2 * a32[3] + 2 * a32[4] + a32[5] - a32[7]; /* 0 -1 -1 0 2 2 1 0 */ t[4] = 0 - a32[1] - a32[2] + 2 * a32[4] + 2 * a32[5] + a32[6]; /* 0 0 -1 -1 0 2 2 1 */ t[5] = 0 - a32[2] - a32[3] + 2 * a32[5] + 2 * a32[6] + a32[7]; /* -1 -1 0 0 0 1 3 2 */ t[6] = 0 - a32[0] - a32[1] + a32[5] + 3 * a32[6] + 2 * a32[7]; /* 1 0 -1 -1 -1 -1 0 3 */ t[7] = 0 + a32[0] - a32[2] - a32[3] - a32[4] - a32[5] + 3 * a32[7]; t[1] += t[0] >> 32; t[0] &= 0xffffffff; t[2] += t[1] >> 32; t[1] &= 0xffffffff; t[3] += t[2] >> 32; t[2] &= 0xffffffff; t[4] += t[3] >> 32; t[3] &= 0xffffffff; t[5] += t[4] >> 32; t[4] &= 0xffffffff; t[6] += t[5] >> 32; t[5] &= 0xffffffff; t[7] += t[6] >> 32; t[6] &= 0xffffffff; o = t[7] >> 32; t[7] &= 0xffffffff; t[0] += o; t[3] -= o; t[6] -= o; t[7] += o; t[1] += t[0] >> 32; t[0] &= 0xffffffff; t[2] += t[1] >> 32; t[1] &= 0xffffffff; t[3] += t[2] >> 32; t[2] &= 0xffffffff; t[4] += t[3] >> 32; t[3] &= 0xffffffff; t[5] += t[4] >> 32; t[4] &= 0xffffffff; t[6] += t[5] >> 32; t[5] &= 0xffffffff; t[7] += t[6] >> 32; t[6] &= 0xffffffff; r[0] = t[0]; r[0] |= t[1] << 32; r[0] &= 0xfffffffffffffl; r[1] = (sp_digit)(t[1] >> 20); r[1] |= t[2] << 12; r[1] |= t[3] << 44; r[1] &= 0xfffffffffffffl; r[2] = (sp_digit)(t[3] >> 8); r[2] |= t[4] << 24; r[2] &= 0xfffffffffffffl; r[3] = (sp_digit)(t[4] >> 28); r[3] |= t[5] << 4; r[3] |= t[6] << 36; r[3] &= 0xfffffffffffffl; r[4] = (sp_digit)(t[6] >> 16); r[4] |= t[7] << 16; } #if defined(WOLFSSL_SP_SMALL) || defined(WOLFSSL_SMALL_STACK) if (td != NULL) XFREE(td, NULL, DYNAMIC_TYPE_ECC); #endif return err; } /* Convert an mp_int to an array of sp_digit. * * r A single precision integer. * a A multi-precision integer. */ static void sp_256_from_mp(sp_digit* r, int max, mp_int* a) { #if DIGIT_BIT == 52 int j; XMEMCPY(r, a->dp, sizeof(sp_digit) * a->used); for (j = a->used; j < max; j++) r[j] = 0; #elif DIGIT_BIT > 52 int i, j = 0, s = 0; r[0] = 0; for (i = 0; i < a->used && j < max; i++) { r[j] |= a->dp[i] << s; r[j] &= 0xfffffffffffffl; s = 52 - s; if (j + 1 >= max) break; r[++j] = a->dp[i] >> s; while (s + 52 <= DIGIT_BIT) { s += 52; r[j] &= 0xfffffffffffffl; if (j + 1 >= max) break; if (s < DIGIT_BIT) r[++j] = a->dp[i] >> s; else r[++j] = 0; } s = DIGIT_BIT - s; } for (j++; j < max; j++) r[j] = 0; #else int i, j = 0, s = 0; r[0] = 0; for (i = 0; i < a->used && j < max; i++) { r[j] |= ((sp_digit)a->dp[i]) << s; if (s + DIGIT_BIT >= 52) { r[j] &= 0xfffffffffffffl; if (j + 1 >= max) break; s = 52 - s; if (s == DIGIT_BIT) { r[++j] = 0; s = 0; } else { r[++j] = a->dp[i] >> s; s = DIGIT_BIT - s; } } else s += DIGIT_BIT; } for (j++; j < max; j++) r[j] = 0; #endif } /* Convert a point of type ecc_point to type sp_point. * * p Point of type sp_point (result). * pm Point of type ecc_point. */ static void sp_256_point_from_ecc_point_5(sp_point* p, ecc_point* pm) { XMEMSET(p->x, 0, sizeof(p->x)); XMEMSET(p->y, 0, sizeof(p->y)); XMEMSET(p->z, 0, sizeof(p->z)); sp_256_from_mp(p->x, 5, pm->x); sp_256_from_mp(p->y, 5, pm->y); sp_256_from_mp(p->z, 5, pm->z); p->infinity = 0; } /* Convert an array of sp_digit to an mp_int. * * a A single precision integer. * r A multi-precision integer. */ static int sp_256_to_mp(sp_digit* a, mp_int* r) { int err; err = mp_grow(r, (256 + DIGIT_BIT - 1) / DIGIT_BIT); if (err == MP_OKAY) { #if DIGIT_BIT == 52 XMEMCPY(r->dp, a, sizeof(sp_digit) * 5); r->used = 5; mp_clamp(r); #elif DIGIT_BIT < 52 int i, j = 0, s = 0; r->dp[0] = 0; for (i = 0; i < 5; i++) { r->dp[j] |= a[i] << s; r->dp[j] &= (1l << DIGIT_BIT) - 1; s = DIGIT_BIT - s; r->dp[++j] = a[i] >> s; while (s + DIGIT_BIT <= 52) { s += DIGIT_BIT; r->dp[j] &= (1l << DIGIT_BIT) - 1; r->dp[++j] = a[i] >> s; } s = 52 - s; } r->used = (256 + DIGIT_BIT - 1) / DIGIT_BIT; mp_clamp(r); #else int i, j = 0, s = 0; r->dp[0] = 0; for (i = 0; i < 5; i++) { r->dp[j] |= ((mp_digit)a[i]) << s; if (s + 52 >= DIGIT_BIT) { #if DIGIT_BIT < 64 r->dp[j] &= (1l << DIGIT_BIT) - 1; #endif s = DIGIT_BIT - s; r->dp[++j] = a[i] >> s; s = 52 - s; } else s += 52; } r->used = (256 + DIGIT_BIT - 1) / DIGIT_BIT; mp_clamp(r); #endif } return err; } /* Convert a point of type sp_point to type ecc_point. * * p Point of type sp_point. * pm Point of type ecc_point (result). * returns MEMORY_E when allocation of memory in ecc_point fails otherwise * MP_OKAY. */ static int sp_256_point_to_ecc_point_5(sp_point* p, ecc_point* pm) { int err; err = sp_256_to_mp(p->x, pm->x); if (err == MP_OKAY) err = sp_256_to_mp(p->y, pm->y); if (err == MP_OKAY) err = sp_256_to_mp(p->z, pm->z); return err; } /* Compare a with b in constant time. * * a A single precision integer. * b A single precision integer. * return -ve, 0 or +ve if a is less than, equal to or greater than b * respectively. */ static sp_digit sp_256_cmp_5(const sp_digit* a, const sp_digit* b) { sp_digit r = 0; #ifdef WOLFSSL_SP_SMALL int i; for (i=4; i>=0; i--) r |= (a[i] - b[i]) & (0 - !r); #else r |= (a[ 4] - b[ 4]) & (0 - !r); r |= (a[ 3] - b[ 3]) & (0 - !r); r |= (a[ 2] - b[ 2]) & (0 - !r); r |= (a[ 1] - b[ 1]) & (0 - !r); r |= (a[ 0] - b[ 0]) & (0 - !r); #endif /* WOLFSSL_SP_SMALL */ return r; } /* Normalize the values in each word to 52. * * a Array of sp_digit to normalize. */ static void sp_256_norm_5(sp_digit* a) { #ifdef WOLFSSL_SP_SMALL int i; for (i = 0; i < 4; i++) { a[i+1] += a[i] >> 52; a[i] &= 0xfffffffffffffl; } #else a[1] += a[0] >> 52; a[0] &= 0xfffffffffffffl; a[2] += a[1] >> 52; a[1] &= 0xfffffffffffffl; a[3] += a[2] >> 52; a[2] &= 0xfffffffffffffl; a[4] += a[3] >> 52; a[3] &= 0xfffffffffffffl; #endif } /* Conditionally subtract b from a using the mask m. * m is -1 to subtract and 0 when not. * * r A single precision number representing condition subtract result. * a A single precision number to subtract from. * b A single precision number to subtract. * m Mask value to apply. */ static void sp_256_cond_sub_5(sp_digit* r, const sp_digit* a, const sp_digit* b, const sp_digit m) { #ifdef WOLFSSL_SP_SMALL int i; for (i = 0; i < 5; i++) r[i] = a[i] - (b[i] & m); #else r[ 0] = a[ 0] - (b[ 0] & m); r[ 1] = a[ 1] - (b[ 1] & m); r[ 2] = a[ 2] - (b[ 2] & m); r[ 3] = a[ 3] - (b[ 3] & m); r[ 4] = a[ 4] - (b[ 4] & m); #endif /* WOLFSSL_SP_SMALL */ } /* Mul a by scalar b and add into r. (r += a * b) * * r A single precision integer. * a A single precision integer. * b A scalar. */ SP_NOINLINE static void sp_256_mul_add_5(sp_digit* r, const sp_digit* a, const sp_digit b) { #ifdef WOLFSSL_SP_SMALL int128_t tb = b; int128_t t = 0; int i; for (i = 0; i < 5; i++) { t += (tb * a[i]) + r[i]; r[i] = t & 0xfffffffffffffl; t >>= 52; } r[5] += t; #else int128_t tb = b; int128_t t[5]; t[ 0] = tb * a[ 0]; t[ 1] = tb * a[ 1]; t[ 2] = tb * a[ 2]; t[ 3] = tb * a[ 3]; t[ 4] = tb * a[ 4]; r[ 0] += (t[ 0] & 0xfffffffffffffl); r[ 1] += (t[ 0] >> 52) + (t[ 1] & 0xfffffffffffffl); r[ 2] += (t[ 1] >> 52) + (t[ 2] & 0xfffffffffffffl); r[ 3] += (t[ 2] >> 52) + (t[ 3] & 0xfffffffffffffl); r[ 4] += (t[ 3] >> 52) + (t[ 4] & 0xfffffffffffffl); r[ 5] += t[ 4] >> 52; #endif /* WOLFSSL_SP_SMALL */ } /* Shift the result in the high 256 bits down to the bottom. * * r A single precision number. * a A single precision number. */ static void sp_256_mont_shift_5(sp_digit* r, const sp_digit* a) { #ifdef WOLFSSL_SP_SMALL int i; word64 n; n = a[4] >> 48; for (i = 0; i < 4; i++) { n += a[5 + i] << 4; r[i] = n & 0xfffffffffffffl; n >>= 52; } n += a[9] << 4; r[4] = n; #else word64 n; n = a[4] >> 48; n += a[ 5] << 4; r[ 0] = n & 0xfffffffffffffl; n >>= 52; n += a[ 6] << 4; r[ 1] = n & 0xfffffffffffffl; n >>= 52; n += a[ 7] << 4; r[ 2] = n & 0xfffffffffffffl; n >>= 52; n += a[ 8] << 4; r[ 3] = n & 0xfffffffffffffl; n >>= 52; n += a[ 9] << 4; r[ 4] = n; #endif /* WOLFSSL_SP_SMALL */ XMEMSET(&r[5], 0, sizeof(*r) * 5); } /* Reduce the number back to 256 bits using Montgomery reduction. * * a A single precision number to reduce in place. * m The single precision number representing the modulus. * mp The digit representing the negative inverse of m mod 2^n. */ static void sp_256_mont_reduce_5(sp_digit* a, sp_digit* m, sp_digit mp) { int i; sp_digit mu; if (mp != 1) { for (i=0; i<4; i++) { mu = (a[i] * mp) & 0xfffffffffffffl; sp_256_mul_add_5(a+i, m, mu); a[i+1] += a[i] >> 52; } mu = (a[i] * mp) & 0xffffffffffffl; sp_256_mul_add_5(a+i, m, mu); a[i+1] += a[i] >> 52; a[i] &= 0xfffffffffffffl; } else { for (i=0; i<4; i++) { mu = a[i] & 0xfffffffffffffl; sp_256_mul_add_5(a+i, p256_mod, mu); a[i+1] += a[i] >> 52; } mu = a[i] & 0xffffffffffffl; sp_256_mul_add_5(a+i, p256_mod, mu); a[i+1] += a[i] >> 52; a[i] &= 0xfffffffffffffl; } sp_256_mont_shift_5(a, a); sp_256_cond_sub_5(a, a, m, 0 - ((a[4] >> 48) > 0)); sp_256_norm_5(a); } #ifdef WOLFSSL_SP_SMALL /* Multiply a and b into r. (r = a * b) * * r A single precision integer. * a A single precision integer. * b A single precision integer. */ SP_NOINLINE static void sp_256_mul_5(sp_digit* r, const sp_digit* a, const sp_digit* b) { int i, j, k; int128_t c; c = ((int128_t)a[4]) * b[4]; r[9] = (sp_digit)(c >> 52); c = (c & 0xfffffffffffffl) << 52; for (k = 7; k >= 0; k--) { for (i = 4; i >= 0; i--) { j = k - i; if (j >= 5) break; if (j < 0) continue; c += ((int128_t)a[i]) * b[j]; } r[k + 2] += c >> 104; r[k + 1] = (c >> 52) & 0xfffffffffffffl; c = (c & 0xfffffffffffffl) << 52; } r[0] = (sp_digit)(c >> 52); } #else /* Multiply a and b into r. (r = a * b) * * r A single precision integer. * a A single precision integer. * b A single precision integer. */ SP_NOINLINE static void sp_256_mul_5(sp_digit* r, const sp_digit* a, const sp_digit* b) { int128_t t0 = ((int128_t)a[ 0]) * b[ 0]; int128_t t1 = ((int128_t)a[ 0]) * b[ 1] + ((int128_t)a[ 1]) * b[ 0]; int128_t t2 = ((int128_t)a[ 0]) * b[ 2] + ((int128_t)a[ 1]) * b[ 1] + ((int128_t)a[ 2]) * b[ 0]; int128_t t3 = ((int128_t)a[ 0]) * b[ 3] + ((int128_t)a[ 1]) * b[ 2] + ((int128_t)a[ 2]) * b[ 1] + ((int128_t)a[ 3]) * b[ 0]; int128_t t4 = ((int128_t)a[ 0]) * b[ 4] + ((int128_t)a[ 1]) * b[ 3] + ((int128_t)a[ 2]) * b[ 2] + ((int128_t)a[ 3]) * b[ 1] + ((int128_t)a[ 4]) * b[ 0]; int128_t t5 = ((int128_t)a[ 1]) * b[ 4] + ((int128_t)a[ 2]) * b[ 3] + ((int128_t)a[ 3]) * b[ 2] + ((int128_t)a[ 4]) * b[ 1]; int128_t t6 = ((int128_t)a[ 2]) * b[ 4] + ((int128_t)a[ 3]) * b[ 3] + ((int128_t)a[ 4]) * b[ 2]; int128_t t7 = ((int128_t)a[ 3]) * b[ 4] + ((int128_t)a[ 4]) * b[ 3]; int128_t t8 = ((int128_t)a[ 4]) * b[ 4]; t1 += t0 >> 52; r[ 0] = t0 & 0xfffffffffffffl; t2 += t1 >> 52; r[ 1] = t1 & 0xfffffffffffffl; t3 += t2 >> 52; r[ 2] = t2 & 0xfffffffffffffl; t4 += t3 >> 52; r[ 3] = t3 & 0xfffffffffffffl; t5 += t4 >> 52; r[ 4] = t4 & 0xfffffffffffffl; t6 += t5 >> 52; r[ 5] = t5 & 0xfffffffffffffl; t7 += t6 >> 52; r[ 6] = t6 & 0xfffffffffffffl; t8 += t7 >> 52; r[ 7] = t7 & 0xfffffffffffffl; r[9] = (sp_digit)(t8 >> 52); r[8] = t8 & 0xfffffffffffffl; } #endif /* WOLFSSL_SP_SMALL */ /* Multiply two Montogmery form numbers mod the modulus (prime). * (r = a * b mod m) * * r Result of multiplication. * a First number to multiply in Montogmery form. * b Second number to multiply in Montogmery form. * m Modulus (prime). * mp Montogmery mulitplier. */ static void sp_256_mont_mul_5(sp_digit* r, sp_digit* a, sp_digit* b, sp_digit* m, sp_digit mp) { sp_256_mul_5(r, a, b); sp_256_mont_reduce_5(r, m, mp); } #ifdef WOLFSSL_SP_SMALL /* Square a and put result in r. (r = a * a) * * r A single precision integer. * a A single precision integer. */ SP_NOINLINE static void sp_256_sqr_5(sp_digit* r, const sp_digit* a) { int i, j, k; int128_t c; c = ((int128_t)a[4]) * a[4]; r[9] = (sp_digit)(c >> 52); c = (c & 0xfffffffffffffl) << 52; for (k = 7; k >= 0; k--) { for (i = 4; i >= 0; i--) { j = k - i; if (j >= 5 || i <= j) break; if (j < 0) continue; c += ((int128_t)a[i]) * a[j] * 2; } if (i == j) c += ((int128_t)a[i]) * a[i]; r[k + 2] += c >> 104; r[k + 1] = (c >> 52) & 0xfffffffffffffl; c = (c & 0xfffffffffffffl) << 52; } r[0] = (sp_digit)(c >> 52); } #else /* Square a and put result in r. (r = a * a) * * r A single precision integer. * a A single precision integer. */ SP_NOINLINE static void sp_256_sqr_5(sp_digit* r, const sp_digit* a) { int128_t t0 = ((int128_t)a[ 0]) * a[ 0]; int128_t t1 = (((int128_t)a[ 0]) * a[ 1]) * 2; int128_t t2 = (((int128_t)a[ 0]) * a[ 2]) * 2 + ((int128_t)a[ 1]) * a[ 1]; int128_t t3 = (((int128_t)a[ 0]) * a[ 3] + ((int128_t)a[ 1]) * a[ 2]) * 2; int128_t t4 = (((int128_t)a[ 0]) * a[ 4] + ((int128_t)a[ 1]) * a[ 3]) * 2 + ((int128_t)a[ 2]) * a[ 2]; int128_t t5 = (((int128_t)a[ 1]) * a[ 4] + ((int128_t)a[ 2]) * a[ 3]) * 2; int128_t t6 = (((int128_t)a[ 2]) * a[ 4]) * 2 + ((int128_t)a[ 3]) * a[ 3]; int128_t t7 = (((int128_t)a[ 3]) * a[ 4]) * 2; int128_t t8 = ((int128_t)a[ 4]) * a[ 4]; t1 += t0 >> 52; r[ 0] = t0 & 0xfffffffffffffl; t2 += t1 >> 52; r[ 1] = t1 & 0xfffffffffffffl; t3 += t2 >> 52; r[ 2] = t2 & 0xfffffffffffffl; t4 += t3 >> 52; r[ 3] = t3 & 0xfffffffffffffl; t5 += t4 >> 52; r[ 4] = t4 & 0xfffffffffffffl; t6 += t5 >> 52; r[ 5] = t5 & 0xfffffffffffffl; t7 += t6 >> 52; r[ 6] = t6 & 0xfffffffffffffl; t8 += t7 >> 52; r[ 7] = t7 & 0xfffffffffffffl; r[9] = (sp_digit)(t8 >> 52); r[8] = t8 & 0xfffffffffffffl; } #endif /* WOLFSSL_SP_SMALL */ /* Square the Montgomery form number. (r = a * a mod m) * * r Result of squaring. * a Number to square in Montogmery form. * m Modulus (prime). * mp Montogmery mulitplier. */ static void sp_256_mont_sqr_5(sp_digit* r, sp_digit* a, sp_digit* m, sp_digit mp) { sp_256_sqr_5(r, a); sp_256_mont_reduce_5(r, m, mp); } #ifndef WOLFSSL_SP_SMALL /* Square the Montgomery form number a number of times. (r = a ^ n mod m) * * r Result of squaring. * a Number to square in Montogmery form. * n Number of times to square. * m Modulus (prime). * mp Montogmery mulitplier. */ static void sp_256_mont_sqr_n_5(sp_digit* r, sp_digit* a, int n, sp_digit* m, sp_digit mp) { sp_256_mont_sqr_5(r, a, m, mp); for (; n > 1; n--) sp_256_mont_sqr_5(r, r, m, mp); } #else /* Mod-2 for the P256 curve. */ static const uint64_t p256_mod_2[4] = { 0xfffffffffffffffd,0x00000000ffffffff,0x0000000000000000, 0xffffffff00000001 }; #endif /* !WOLFSSL_SP_SMALL */ /* Invert the number, in Montgomery form, modulo the modulus (prime) of the * P256 curve. (r = 1 / a mod m) * * r Inverse result. * a Number to invert. * td Temporary data. */ static void sp_256_mont_inv_5(sp_digit* r, sp_digit* a, sp_digit* td) { #ifdef WOLFSSL_SP_SMALL sp_digit* t = td; int i; XMEMCPY(t, a, sizeof(sp_digit) * 5); for (i=254; i>=0; i--) { sp_256_mont_sqr_5(t, t, p256_mod, p256_mp_mod); if (p256_mod_2[i / 64] & ((sp_digit)1 << (i % 64))) sp_256_mont_mul_5(t, t, a, p256_mod, p256_mp_mod); } XMEMCPY(r, t, sizeof(sp_digit) * 5); #else sp_digit* t = td; sp_digit* t2 = td + 2 * 5; sp_digit* t3 = td + 4 * 5; /* t = a^2 */ sp_256_mont_sqr_5(t, a, p256_mod, p256_mp_mod); /* t = a^3 = t * a */ sp_256_mont_mul_5(t, t, a, p256_mod, p256_mp_mod); /* t2= a^c = t ^ 2 ^ 2 */ sp_256_mont_sqr_n_5(t2, t, 2, p256_mod, p256_mp_mod); /* t3= a^d = t2 * a */ sp_256_mont_mul_5(t3, t2, a, p256_mod, p256_mp_mod); /* t = a^f = t2 * t */ sp_256_mont_mul_5(t, t2, t, p256_mod, p256_mp_mod); /* t2= a^f0 = t ^ 2 ^ 4 */ sp_256_mont_sqr_n_5(t2, t, 4, p256_mod, p256_mp_mod); /* t3= a^fd = t2 * t3 */ sp_256_mont_mul_5(t3, t2, t3, p256_mod, p256_mp_mod); /* t = a^ff = t2 * t */ sp_256_mont_mul_5(t, t2, t, p256_mod, p256_mp_mod); /* t2= a^ff00 = t ^ 2 ^ 8 */ sp_256_mont_sqr_n_5(t2, t, 8, p256_mod, p256_mp_mod); /* t3= a^fffd = t2 * t3 */ sp_256_mont_mul_5(t3, t2, t3, p256_mod, p256_mp_mod); /* t = a^ffff = t2 * t */ sp_256_mont_mul_5(t, t2, t, p256_mod, p256_mp_mod); /* t2= a^ffff0000 = t ^ 2 ^ 16 */ sp_256_mont_sqr_n_5(t2, t, 16, p256_mod, p256_mp_mod); /* t3= a^fffffffd = t2 * t3 */ sp_256_mont_mul_5(t3, t2, t3, p256_mod, p256_mp_mod); /* t = a^ffffffff = t2 * t */ sp_256_mont_mul_5(t, t2, t, p256_mod, p256_mp_mod); /* t = a^ffffffff00000000 = t ^ 2 ^ 32 */ sp_256_mont_sqr_n_5(t2, t, 32, p256_mod, p256_mp_mod); /* t2= a^ffffffffffffffff = t2 * t */ sp_256_mont_mul_5(t, t2, t, p256_mod, p256_mp_mod); /* t2= a^ffffffff00000001 = t2 * a */ sp_256_mont_mul_5(t2, t2, a, p256_mod, p256_mp_mod); /* t2= a^ffffffff000000010000000000000000000000000000000000000000 * = t2 ^ 2 ^ 160 */ sp_256_mont_sqr_n_5(t2, t2, 160, p256_mod, p256_mp_mod); /* t2= a^ffffffff00000001000000000000000000000000ffffffffffffffff * = t2 * t */ sp_256_mont_mul_5(t2, t2, t, p256_mod, p256_mp_mod); /* t2= a^ffffffff00000001000000000000000000000000ffffffffffffffff00000000 * = t2 ^ 2 ^ 32 */ sp_256_mont_sqr_n_5(t2, t2, 32, p256_mod, p256_mp_mod); /* r = a^ffffffff00000001000000000000000000000000fffffffffffffffffffffffd * = t2 * t3 */ sp_256_mont_mul_5(r, t2, t3, p256_mod, p256_mp_mod); #endif /* WOLFSSL_SP_SMALL */ } /* Map the Montgomery form projective co-ordinate point to an affine point. * * r Resulting affine co-ordinate point. * p Montgomery form projective co-ordinate point. * t Temporary ordinate data. */ static void sp_256_map_5(sp_point* r, sp_point* p, sp_digit* t) { sp_digit* t1 = t; sp_digit* t2 = t + 2*5; int64_t n; sp_256_mont_inv_5(t1, p->z, t + 2*5); sp_256_mont_sqr_5(t2, t1, p256_mod, p256_mp_mod); sp_256_mont_mul_5(t1, t2, t1, p256_mod, p256_mp_mod); /* x /= z^2 */ sp_256_mont_mul_5(r->x, p->x, t2, p256_mod, p256_mp_mod); XMEMSET(r->x + 5, 0, sizeof(r->x) / 2); sp_256_mont_reduce_5(r->x, p256_mod, p256_mp_mod); /* Reduce x to less than modulus */ n = sp_256_cmp_5(r->x, p256_mod); sp_256_cond_sub_5(r->x, r->x, p256_mod, 0 - (n >= 0)); sp_256_norm_5(r->x); /* y /= z^3 */ sp_256_mont_mul_5(r->y, p->y, t1, p256_mod, p256_mp_mod); XMEMSET(r->y + 5, 0, sizeof(r->y) / 2); sp_256_mont_reduce_5(r->y, p256_mod, p256_mp_mod); /* Reduce y to less than modulus */ n = sp_256_cmp_5(r->y, p256_mod); sp_256_cond_sub_5(r->y, r->y, p256_mod, 0 - (n >= 0)); sp_256_norm_5(r->y); XMEMSET(r->z, 0, sizeof(r->z)); r->z[0] = 1; } #ifdef WOLFSSL_SP_SMALL /* Add b to a into r. (r = a + b) * * r A single precision integer. * a A single precision integer. * b A single precision integer. */ SP_NOINLINE static int sp_256_add_5(sp_digit* r, const sp_digit* a, const sp_digit* b) { int i; for (i = 0; i < 5; i++) r[i] = a[i] + b[i]; return 0; } #else /* Add b to a into r. (r = a + b) * * r A single precision integer. * a A single precision integer. * b A single precision integer. */ SP_NOINLINE static int sp_256_add_5(sp_digit* r, const sp_digit* a, const sp_digit* b) { r[ 0] = a[ 0] + b[ 0]; r[ 1] = a[ 1] + b[ 1]; r[ 2] = a[ 2] + b[ 2]; r[ 3] = a[ 3] + b[ 3]; r[ 4] = a[ 4] + b[ 4]; return 0; } #endif /* WOLFSSL_SP_SMALL */ /* Add two Montgomery form numbers (r = a + b % m). * * r Result of addition. * a First number to add in Montogmery form. * b Second number to add in Montogmery form. * m Modulus (prime). */ static void sp_256_mont_add_5(sp_digit* r, sp_digit* a, sp_digit* b, sp_digit* m) { sp_256_add_5(r, a, b); sp_256_norm_5(r); sp_256_cond_sub_5(r, r, m, 0 - ((r[4] >> 48) > 0)); sp_256_norm_5(r); } /* Double a Montgomery form number (r = a + a % m). * * r Result of doubling. * a Number to double in Montogmery form. * m Modulus (prime). */ static void sp_256_mont_dbl_5(sp_digit* r, sp_digit* a, sp_digit* m) { sp_256_add_5(r, a, a); sp_256_norm_5(r); sp_256_cond_sub_5(r, r, m, 0 - ((r[4] >> 48) > 0)); sp_256_norm_5(r); } /* Triple a Montgomery form number (r = a + a + a % m). * * r Result of Tripling. * a Number to triple in Montogmery form. * m Modulus (prime). */ static void sp_256_mont_tpl_5(sp_digit* r, sp_digit* a, sp_digit* m) { sp_256_add_5(r, a, a); sp_256_norm_5(r); sp_256_cond_sub_5(r, r, m, 0 - ((r[4] >> 48) > 0)); sp_256_norm_5(r); sp_256_add_5(r, r, a); sp_256_norm_5(r); sp_256_cond_sub_5(r, r, m, 0 - ((r[4] >> 48) > 0)); sp_256_norm_5(r); } #ifdef WOLFSSL_SP_SMALL /* Sub b from a into r. (r = a - b) * * r A single precision integer. * a A single precision integer. * b A single precision integer. */ SP_NOINLINE static int sp_256_sub_5(sp_digit* r, const sp_digit* a, const sp_digit* b) { int i; for (i = 0; i < 5; i++) r[i] = a[i] - b[i]; return 0; } #else /* Sub b from a into r. (r = a - b) * * r A single precision integer. * a A single precision integer. * b A single precision integer. */ SP_NOINLINE static int sp_256_sub_5(sp_digit* r, const sp_digit* a, const sp_digit* b) { r[ 0] = a[ 0] - b[ 0]; r[ 1] = a[ 1] - b[ 1]; r[ 2] = a[ 2] - b[ 2]; r[ 3] = a[ 3] - b[ 3]; r[ 4] = a[ 4] - b[ 4]; return 0; } #endif /* WOLFSSL_SP_SMALL */ /* Conditionally add a and b using the mask m. * m is -1 to add and 0 when not. * * r A single precision number representing conditional add result. * a A single precision number to add with. * b A single precision number to add. * m Mask value to apply. */ static void sp_256_cond_add_5(sp_digit* r, const sp_digit* a, const sp_digit* b, const sp_digit m) { #ifdef WOLFSSL_SP_SMALL int i; for (i = 0; i < 5; i++) r[i] = a[i] + (b[i] & m); #else r[ 0] = a[ 0] + (b[ 0] & m); r[ 1] = a[ 1] + (b[ 1] & m); r[ 2] = a[ 2] + (b[ 2] & m); r[ 3] = a[ 3] + (b[ 3] & m); r[ 4] = a[ 4] + (b[ 4] & m); #endif /* WOLFSSL_SP_SMALL */ } /* Subtract two Montgomery form numbers (r = a - b % m). * * r Result of subtration. * a Number to subtract from in Montogmery form. * b Number to subtract with in Montogmery form. * m Modulus (prime). */ static void sp_256_mont_sub_5(sp_digit* r, sp_digit* a, sp_digit* b, sp_digit* m) { sp_256_sub_5(r, a, b); sp_256_cond_add_5(r, r, m, r[4] >> 48); sp_256_norm_5(r); } /* Shift number left one bit. * Bottom bit is lost. * * r Result of shift. * a Number to shift. */ SP_NOINLINE static void sp_256_rshift1_5(sp_digit* r, sp_digit* a) { #ifdef WOLFSSL_SP_SMALL int i; for (i=0; i<4; i++) r[i] = ((a[i] >> 1) | (a[i + 1] << 51)) & 0xfffffffffffffl; #else r[0] = ((a[0] >> 1) | (a[1] << 51)) & 0xfffffffffffffl; r[1] = ((a[1] >> 1) | (a[2] << 51)) & 0xfffffffffffffl; r[2] = ((a[2] >> 1) | (a[3] << 51)) & 0xfffffffffffffl; r[3] = ((a[3] >> 1) | (a[4] << 51)) & 0xfffffffffffffl; #endif r[4] = a[4] >> 1; } /* Divide the number by 2 mod the modulus (prime). (r = a / 2 % m) * * r Result of division by 2. * a Number to divide. * m Modulus (prime). */ static void sp_256_div2_5(sp_digit* r, sp_digit* a, sp_digit* m) { sp_256_cond_add_5(r, a, m, 0 - (a[0] & 1)); sp_256_norm_5(r); sp_256_rshift1_5(r, r); } /* Double the Montgomery form projective point p. * * r Result of doubling point. * p Point to double. * t Temporary ordinate data. */ static void sp_256_proj_point_dbl_5(sp_point* r, sp_point* p, sp_digit* t) { sp_point *rp[2]; sp_point tp; sp_digit* t1 = t; sp_digit* t2 = t + 2*5; sp_digit* x; sp_digit* y; sp_digit* z; int i; /* When infinity don't double point passed in - constant time. */ rp[0] = r; rp[1] = &tp; x = rp[p->infinity]->x; y = rp[p->infinity]->y; z = rp[p->infinity]->z; /* Put point to double into result - good for infinty. */ if (r != p) { for (i=0; i<5; i++) r->x[i] = p->x[i]; for (i=0; i<5; i++) r->y[i] = p->y[i]; for (i=0; i<5; i++) r->z[i] = p->z[i]; r->infinity = p->infinity; } /* T1 = Z * Z */ sp_256_mont_sqr_5(t1, z, p256_mod, p256_mp_mod); /* Z = Y * Z */ sp_256_mont_mul_5(z, y, z, p256_mod, p256_mp_mod); /* Z = 2Z */ sp_256_mont_dbl_5(z, z, p256_mod); /* T2 = X - T1 */ sp_256_mont_sub_5(t2, x, t1, p256_mod); /* T1 = X + T1 */ sp_256_mont_add_5(t1, x, t1, p256_mod); /* T2 = T1 * T2 */ sp_256_mont_mul_5(t2, t1, t2, p256_mod, p256_mp_mod); /* T1 = 3T2 */ sp_256_mont_tpl_5(t1, t2, p256_mod); /* Y = 2Y */ sp_256_mont_dbl_5(y, y, p256_mod); /* Y = Y * Y */ sp_256_mont_sqr_5(y, y, p256_mod, p256_mp_mod); /* T2 = Y * Y */ sp_256_mont_sqr_5(t2, y, p256_mod, p256_mp_mod); /* T2 = T2/2 */ sp_256_div2_5(t2, t2, p256_mod); /* Y = Y * X */ sp_256_mont_mul_5(y, y, x, p256_mod, p256_mp_mod); /* X = T1 * T1 */ sp_256_mont_mul_5(x, t1, t1, p256_mod, p256_mp_mod); /* X = X - Y */ sp_256_mont_sub_5(x, x, y, p256_mod); /* X = X - Y */ sp_256_mont_sub_5(x, x, y, p256_mod); /* Y = Y - X */ sp_256_mont_sub_5(y, y, x, p256_mod); /* Y = Y * T1 */ sp_256_mont_mul_5(y, y, t1, p256_mod, p256_mp_mod); /* Y = Y - T2 */ sp_256_mont_sub_5(y, y, t2, p256_mod); } /* Compare two numbers to determine if they are equal. * Constant time implementation. * * a First number to compare. * b Second number to compare. * returns 1 when equal and 0 otherwise. */ static int sp_256_cmp_equal_5(const sp_digit* a, const sp_digit* b) { return ((a[0] ^ b[0]) | (a[1] ^ b[1]) | (a[2] ^ b[2]) | (a[3] ^ b[3]) | (a[4] ^ b[4])) == 0; } /* Add two Montgomery form projective points. * * r Result of addition. * p Frist point to add. * q Second point to add. * t Temporary ordinate data. */ static void sp_256_proj_point_add_5(sp_point* r, sp_point* p, sp_point* q, sp_digit* t) { sp_point *ap[2]; sp_point *rp[2]; sp_point tp; sp_digit* t1 = t; sp_digit* t2 = t + 2*5; sp_digit* t3 = t + 4*5; sp_digit* t4 = t + 6*5; sp_digit* t5 = t + 8*5; sp_digit* x; sp_digit* y; sp_digit* z; int i; /* Ensure only the first point is the same as the result. */ if (q == r) { sp_point* a = p; p = q; q = a; } /* Check double */ sp_256_sub_5(t1, p256_mod, q->y); sp_256_norm_5(t1); if (sp_256_cmp_equal_5(p->x, q->x) & sp_256_cmp_equal_5(p->z, q->z) & (sp_256_cmp_equal_5(p->y, q->y) | sp_256_cmp_equal_5(p->y, t1))) { sp_256_proj_point_dbl_5(r, p, t); } else { rp[0] = r; rp[1] = &tp; XMEMSET(&tp, 0, sizeof(tp)); x = rp[p->infinity | q->infinity]->x; y = rp[p->infinity | q->infinity]->y; z = rp[p->infinity | q->infinity]->z; ap[0] = p; ap[1] = q; for (i=0; i<5; i++) r->x[i] = ap[p->infinity]->x[i]; for (i=0; i<5; i++) r->y[i] = ap[p->infinity]->y[i]; for (i=0; i<5; i++) r->z[i] = ap[p->infinity]->z[i]; r->infinity = ap[p->infinity]->infinity; /* U1 = X1*Z2^2 */ sp_256_mont_sqr_5(t1, q->z, p256_mod, p256_mp_mod); sp_256_mont_mul_5(t3, t1, q->z, p256_mod, p256_mp_mod); sp_256_mont_mul_5(t1, t1, x, p256_mod, p256_mp_mod); /* U2 = X2*Z1^2 */ sp_256_mont_sqr_5(t2, z, p256_mod, p256_mp_mod); sp_256_mont_mul_5(t4, t2, z, p256_mod, p256_mp_mod); sp_256_mont_mul_5(t2, t2, q->x, p256_mod, p256_mp_mod); /* S1 = Y1*Z2^3 */ sp_256_mont_mul_5(t3, t3, y, p256_mod, p256_mp_mod); /* S2 = Y2*Z1^3 */ sp_256_mont_mul_5(t4, t4, q->y, p256_mod, p256_mp_mod); /* H = U2 - U1 */ sp_256_mont_sub_5(t2, t2, t1, p256_mod); /* R = S2 - S1 */ sp_256_mont_sub_5(t4, t4, t3, p256_mod); /* Z3 = H*Z1*Z2 */ sp_256_mont_mul_5(z, z, q->z, p256_mod, p256_mp_mod); sp_256_mont_mul_5(z, z, t2, p256_mod, p256_mp_mod); /* X3 = R^2 - H^3 - 2*U1*H^2 */ sp_256_mont_sqr_5(x, t4, p256_mod, p256_mp_mod); sp_256_mont_sqr_5(t5, t2, p256_mod, p256_mp_mod); sp_256_mont_mul_5(y, t1, t5, p256_mod, p256_mp_mod); sp_256_mont_mul_5(t5, t5, t2, p256_mod, p256_mp_mod); sp_256_mont_sub_5(x, x, t5, p256_mod); sp_256_mont_dbl_5(t1, y, p256_mod); sp_256_mont_sub_5(x, x, t1, p256_mod); /* Y3 = R*(U1*H^2 - X3) - S1*H^3 */ sp_256_mont_sub_5(y, y, x, p256_mod); sp_256_mont_mul_5(y, y, t4, p256_mod, p256_mp_mod); sp_256_mont_mul_5(t5, t5, t3, p256_mod, p256_mp_mod); sp_256_mont_sub_5(y, y, t5, p256_mod); } } #ifdef WOLFSSL_SP_SMALL /* Multiply the point by the scalar and return the result. * If map is true then convert result to affine co-ordinates. * * r Resulting point. * g Point to multiply. * k Scalar to multiply by. * map Indicates whether to convert result to affine. * heap Heap to use for allocation. * returns MEMORY_E when memory allocation fails and MP_OKAY on success. */ static int sp_256_ecc_mulmod_5(sp_point* r, sp_point* g, sp_digit* k, int map, void* heap) { sp_point* td; sp_point* t[3]; sp_digit* tmp; sp_digit n; int i; int c, y; int err = MP_OKAY; (void)heap; td = (sp_point*)XMALLOC(sizeof(sp_point) * 3, heap, DYNAMIC_TYPE_ECC); if (td == NULL) err = MEMORY_E; tmp = (sp_digit*)XMALLOC(sizeof(sp_digit) * 2 * 5 * 5, heap, DYNAMIC_TYPE_ECC); if (tmp == NULL) err = MEMORY_E; if (err == MP_OKAY) { XMEMSET(td, 0, sizeof(*td) * 3); t[0] = &td[0]; t[1] = &td[1]; t[2] = &td[2]; /* t[0] = {0, 0, 1} * norm */ t[0]->infinity = 1; /* t[1] = {g->x, g->y, g->z} * norm */ err = sp_256_mod_mul_norm_5(t[1]->x, g->x, p256_mod); } if (err == MP_OKAY) err = sp_256_mod_mul_norm_5(t[1]->y, g->y, p256_mod); if (err == MP_OKAY) err = sp_256_mod_mul_norm_5(t[1]->z, g->z, p256_mod); if (err == MP_OKAY) { i = 4; c = 48; n = k[i--] << (52 - c); for (; ; c--) { if (c == 0) { if (i == -1) break; n = k[i--]; c = 52; } y = (n >> 51) & 1; n <<= 1; sp_256_proj_point_add_5(t[y^1], t[0], t[1], tmp); XMEMCPY(t[2], (void*)(((size_t)t[0] & addr_mask[y^1]) + ((size_t)t[1] & addr_mask[y])), sizeof(sp_point)); sp_256_proj_point_dbl_5(t[2], t[2], tmp); XMEMCPY((void*)(((size_t)t[0] & addr_mask[y^1]) + ((size_t)t[1] & addr_mask[y])), t[2], sizeof(sp_point)); } if (map) sp_256_map_5(r, t[0], tmp); else XMEMCPY(r, t[0], sizeof(sp_point)); } if (tmp != NULL) { XMEMSET(tmp, 0, sizeof(sp_digit) * 2 * 5 * 5); XFREE(tmp, NULL, DYNAMIC_TYPE_TMP_BUFFER); } if (td != NULL) { XMEMSET(td, 0, sizeof(sp_point) * 3); XFREE(td, NULL, DYNAMIC_TYPE_TMP_BUFFER); } return err; } #elif defined(WOLFSSL_SP_CACHE_RESISTANT) /* Multiply the point by the scalar and return the result. * If map is true then convert result to affine co-ordinates. * * r Resulting point. * g Point to multiply. * k Scalar to multiply by. * map Indicates whether to convert result to affine. * heap Heap to use for allocation. * returns MEMORY_E when memory allocation fails and MP_OKAY on success. */ static int sp_256_ecc_mulmod_5(sp_point* r, sp_point* g, sp_digit* k, int map, void* heap) { #if !defined(WOLFSSL_SP_SMALL) && !defined(WOLFSSL_SMALL_STACK) sp_point td[3]; sp_digit tmpd[2 * 5 * 5]; #endif sp_point* t; sp_digit* tmp; sp_digit n; int i; int c, y; int err = MP_OKAY; (void)heap; #if defined(WOLFSSL_SP_SMALL) || defined(WOLFSSL_SMALL_STACK) sp_point td[3]; t = (sp_point*)XMALLOC(sizeof(*td) * 3, heap, DYNAMIC_TYPE_ECC); if (t == NULL) err = MEMORY_E; tmp = (sp_digit*)XMALLOC(sizeof(sp_digit) * 2 * 5 * 5, heap, DYNAMIC_TYPE_ECC); if (tmp == NULL) err = MEMORY_E; #else t = td; tmp = tmpd; #endif if (err == MP_OKAY) { t[0] = &td[0]; t[1] = &td[1]; t[2] = &td[2]; /* t[0] = {0, 0, 1} * norm */ XMEMSET(&t[0], 0, sizeof(t[0])); t[0].infinity = 1; /* t[1] = {g->x, g->y, g->z} * norm */ err = sp_256_mod_mul_norm_5(t[1].x, g->x, p256_mod); } if (err == MP_OKAY) err = sp_256_mod_mul_norm_5(t[1].y, g->y, p256_mod); if (err == MP_OKAY) err = sp_256_mod_mul_norm_5(t[1].z, g->z, p256_mod); if (err == MP_OKAY) { i = 4; c = 48; n = k[i--] << (52 - c); for (; ; c--) { if (c == 0) { if (i == -1) break; n = k[i--]; c = 52; } y = (n >> 51) & 1; n <<= 1; sp_256_proj_point_add_5(&t[y^1], &t[0], &t[1], tmp); XMEMCPY(&t[2], (void*)(((size_t)&t[0] & addr_mask[y^1]) + ((size_t)&t[1] & addr_mask[y])), sizeof(t[2])); sp_256_proj_point_dbl_5(&t[2], &t[2], tmp); XMEMCPY((void*)(((size_t)&t[0] & addr_mask[y^1]) + ((size_t)&t[1] & addr_mask[y])), &t[2], sizeof(t[2])); } if (map) sp_256_map_5(r, &t[0], tmp); else XMEMCPY(r, &t[0], sizeof(sp_point)); } #if defined(WOLFSSL_SP_SMALL) || defined(WOLFSSL_SMALL_STACK) if (tmp != NULL) { XMEMSET(tmp, 0, sizeof(sp_digit) * 2 * 5 * 5); XFREE(tmp, heap, DYNAMIC_TYPE_ECC); } if (t != NULL) { XMEMSET(t, 0, sizeof(sp_point) * 3); XFREE(t, heap, DYNAMIC_TYPE_ECC); } #else ForceZero(tmpd, sizeof(tmpd)); ForceZero(td, sizeof(td)); #endif return err; } #else /* A table entry for pre-computed points. */ typedef struct sp_table_entry { sp_digit x[5]; sp_digit y[5]; byte infinity; } sp_table_entry; /* Multiply the point by the scalar and return the result. * If map is true then convert result to affine co-ordinates. * * r Resulting point. * g Point to multiply. * k Scalar to multiply by. * map Indicates whether to convert result to affine. * heap Heap to use for allocation. * returns MEMORY_E when memory allocation fails and MP_OKAY on success. */ static int sp_256_ecc_mulmod_fast_5(sp_point* r, sp_point* g, sp_digit* k, int map, void* heap) { #if !defined(WOLFSSL_SP_SMALL) && !defined(WOLFSSL_SMALL_STACK) sp_point td[16]; sp_point rtd; sp_digit tmpd[2 * 5 * 5]; #endif sp_point* t; sp_point* rt; sp_digit* tmp; sp_digit n; int i; int c, y; int err; (void)heap; err = sp_ecc_point_new(heap, rtd, rt); #if defined(WOLFSSL_SP_SMALL) || defined(WOLFSSL_SMALL_STACK) t = (sp_point*)XMALLOC(sizeof(sp_point) * 16, heap, DYNAMIC_TYPE_ECC); if (t == NULL) err = MEMORY_E; tmp = (sp_digit*)XMALLOC(sizeof(sp_digit) * 2 * 5 * 5, heap, DYNAMIC_TYPE_ECC); if (tmp == NULL) err = MEMORY_E; #else t = td; tmp = tmpd; #endif if (err == MP_OKAY) { /* t[0] = {0, 0, 1} * norm */ XMEMSET(&t[0], 0, sizeof(t[0])); t[0].infinity = 1; /* t[1] = {g->x, g->y, g->z} * norm */ sp_256_mod_mul_norm_5(t[1].x, g->x, p256_mod); sp_256_mod_mul_norm_5(t[1].y, g->y, p256_mod); sp_256_mod_mul_norm_5(t[1].z, g->z, p256_mod); t[1].infinity = 0; sp_256_proj_point_dbl_5(&t[ 2], &t[ 1], tmp); t[ 2].infinity = 0; sp_256_proj_point_add_5(&t[ 3], &t[ 2], &t[ 1], tmp); t[ 3].infinity = 0; sp_256_proj_point_dbl_5(&t[ 4], &t[ 2], tmp); t[ 4].infinity = 0; sp_256_proj_point_add_5(&t[ 5], &t[ 3], &t[ 2], tmp); t[ 5].infinity = 0; sp_256_proj_point_dbl_5(&t[ 6], &t[ 3], tmp); t[ 6].infinity = 0; sp_256_proj_point_add_5(&t[ 7], &t[ 4], &t[ 3], tmp); t[ 7].infinity = 0; sp_256_proj_point_dbl_5(&t[ 8], &t[ 4], tmp); t[ 8].infinity = 0; sp_256_proj_point_add_5(&t[ 9], &t[ 5], &t[ 4], tmp); t[ 9].infinity = 0; sp_256_proj_point_dbl_5(&t[10], &t[ 5], tmp); t[10].infinity = 0; sp_256_proj_point_add_5(&t[11], &t[ 6], &t[ 5], tmp); t[11].infinity = 0; sp_256_proj_point_dbl_5(&t[12], &t[ 6], tmp); t[12].infinity = 0; sp_256_proj_point_add_5(&t[13], &t[ 7], &t[ 6], tmp); t[13].infinity = 0; sp_256_proj_point_dbl_5(&t[14], &t[ 7], tmp); t[14].infinity = 0; sp_256_proj_point_add_5(&t[15], &t[ 8], &t[ 7], tmp); t[15].infinity = 0; i = 3; n = k[i+1] << 12; c = 44; y = n >> 56; XMEMCPY(rt, &t[y], sizeof(sp_point)); n <<= 8; for (; i>=0 || c>=4; ) { if (c < 4) { n |= k[i--] << (12 - c); c += 52; } y = (n >> 60) & 0xf; n <<= 4; c -= 4; sp_256_proj_point_dbl_5(rt, rt, tmp); sp_256_proj_point_dbl_5(rt, rt, tmp); sp_256_proj_point_dbl_5(rt, rt, tmp); sp_256_proj_point_dbl_5(rt, rt, tmp); sp_256_proj_point_add_5(rt, rt, &t[y], tmp); } if (map) sp_256_map_5(r, rt, tmp); else XMEMCPY(r, rt, sizeof(sp_point)); } #if defined(WOLFSSL_SP_SMALL) || defined(WOLFSSL_SMALL_STACK) if (tmp != NULL) { XMEMSET(tmp, 0, sizeof(sp_digit) * 2 * 5 * 5); XFREE(tmp, heap, DYNAMIC_TYPE_ECC); } if (t != NULL) { XMEMSET(t, 0, sizeof(sp_point) * 16); XFREE(t, heap, DYNAMIC_TYPE_ECC); } #else ForceZero(tmpd, sizeof(tmpd)); ForceZero(td, sizeof(td)); #endif sp_ecc_point_free(rt, 1, heap); return err; } #ifdef FP_ECC /* Double the Montgomery form projective point p a number of times. * * r Result of repeated doubling of point. * p Point to double. * n Number of times to double * t Temporary ordinate data. */ static void sp_256_proj_point_dbl_n_5(sp_point* r, sp_point* p, int n, sp_digit* t) { sp_point *rp[2]; sp_point tp; sp_digit* w = t; sp_digit* a = t + 2*5; sp_digit* b = t + 4*5; sp_digit* t1 = t + 6*5; sp_digit* t2 = t + 8*5; sp_digit* x; sp_digit* y; sp_digit* z; int i; rp[0] = r; rp[1] = &tp; x = rp[p->infinity]->x; y = rp[p->infinity]->y; z = rp[p->infinity]->z; if (r != p) { for (i=0; i<5; i++) r->x[i] = p->x[i]; for (i=0; i<5; i++) r->y[i] = p->y[i]; for (i=0; i<5; i++) r->z[i] = p->z[i]; r->infinity = p->infinity; } /* Y = 2*Y */ sp_256_mont_dbl_5(y, y, p256_mod); /* W = Z^4 */ sp_256_mont_sqr_5(w, z, p256_mod, p256_mp_mod); sp_256_mont_sqr_5(w, w, p256_mod, p256_mp_mod); while (n--) { /* A = 3*(X^2 - W) */ sp_256_mont_sqr_5(t1, x, p256_mod, p256_mp_mod); sp_256_mont_sub_5(t1, t1, w, p256_mod); sp_256_mont_tpl_5(a, t1, p256_mod); /* B = X*Y^2 */ sp_256_mont_sqr_5(t2, y, p256_mod, p256_mp_mod); sp_256_mont_mul_5(b, t2, x, p256_mod, p256_mp_mod); /* X = A^2 - 2B */ sp_256_mont_sqr_5(x, a, p256_mod, p256_mp_mod); sp_256_mont_dbl_5(t1, b, p256_mod); sp_256_mont_sub_5(x, x, t1, p256_mod); /* Z = Z*Y */ sp_256_mont_mul_5(z, z, y, p256_mod, p256_mp_mod); /* t2 = Y^4 */ sp_256_mont_sqr_5(t2, t2, p256_mod, p256_mp_mod); if (n) { /* W = W*Y^4 */ sp_256_mont_mul_5(w, w, t2, p256_mod, p256_mp_mod); } /* y = 2*A*(B - X) - Y^4 */ sp_256_mont_sub_5(y, b, x, p256_mod); sp_256_mont_mul_5(y, y, a, p256_mod, p256_mp_mod); sp_256_mont_dbl_5(y, y, p256_mod); sp_256_mont_sub_5(y, y, t2, p256_mod); } /* Y = Y/2 */ sp_256_div2_5(y, y, p256_mod); } #endif /* FP_ECC */ /* Add two Montgomery form projective points. The second point has a q value of * one. * Only the first point can be the same pointer as the result point. * * r Result of addition. * p Frist point to add. * q Second point to add. * t Temporary ordinate data. */ static void sp_256_proj_point_add_qz1_5(sp_point* r, sp_point* p, sp_point* q, sp_digit* t) { sp_point *ap[2]; sp_point *rp[2]; sp_point tp; sp_digit* t1 = t; sp_digit* t2 = t + 2*5; sp_digit* t3 = t + 4*5; sp_digit* t4 = t + 6*5; sp_digit* t5 = t + 8*5; sp_digit* x; sp_digit* y; sp_digit* z; int i; /* Check double */ sp_256_sub_5(t1, p256_mod, q->y); sp_256_norm_5(t1); if (sp_256_cmp_equal_5(p->x, q->x) & sp_256_cmp_equal_5(p->z, q->z) & (sp_256_cmp_equal_5(p->y, q->y) | sp_256_cmp_equal_5(p->y, t1))) { sp_256_proj_point_dbl_5(r, p, t); } else { rp[0] = r; rp[1] = &tp; XMEMSET(&tp, 0, sizeof(tp)); x = rp[p->infinity | q->infinity]->x; y = rp[p->infinity | q->infinity]->y; z = rp[p->infinity | q->infinity]->z; ap[0] = p; ap[1] = q; for (i=0; i<5; i++) r->x[i] = ap[p->infinity]->x[i]; for (i=0; i<5; i++) r->y[i] = ap[p->infinity]->y[i]; for (i=0; i<5; i++) r->z[i] = ap[p->infinity]->z[i]; r->infinity = ap[p->infinity]->infinity; /* U2 = X2*Z1^2 */ sp_256_mont_sqr_5(t2, z, p256_mod, p256_mp_mod); sp_256_mont_mul_5(t4, t2, z, p256_mod, p256_mp_mod); sp_256_mont_mul_5(t2, t2, q->x, p256_mod, p256_mp_mod); /* S2 = Y2*Z1^3 */ sp_256_mont_mul_5(t4, t4, q->y, p256_mod, p256_mp_mod); /* H = U2 - X1 */ sp_256_mont_sub_5(t2, t2, x, p256_mod); /* R = S2 - Y1 */ sp_256_mont_sub_5(t4, t4, y, p256_mod); /* Z3 = H*Z1 */ sp_256_mont_mul_5(z, z, t2, p256_mod, p256_mp_mod); /* X3 = R^2 - H^3 - 2*X1*H^2 */ sp_256_mont_sqr_5(t1, t4, p256_mod, p256_mp_mod); sp_256_mont_sqr_5(t5, t2, p256_mod, p256_mp_mod); sp_256_mont_mul_5(t3, x, t5, p256_mod, p256_mp_mod); sp_256_mont_mul_5(t5, t5, t2, p256_mod, p256_mp_mod); sp_256_mont_sub_5(x, t1, t5, p256_mod); sp_256_mont_dbl_5(t1, t3, p256_mod); sp_256_mont_sub_5(x, x, t1, p256_mod); /* Y3 = R*(X1*H^2 - X3) - Y1*H^3 */ sp_256_mont_sub_5(t3, t3, x, p256_mod); sp_256_mont_mul_5(t3, t3, t4, p256_mod, p256_mp_mod); sp_256_mont_mul_5(t5, t5, y, p256_mod, p256_mp_mod); sp_256_mont_sub_5(y, t3, t5, p256_mod); } } #ifdef FP_ECC /* Convert the projective point to affine. * Ordinates are in Montgomery form. * * a Point to convert. * t Temprorary data. */ static void sp_256_proj_to_affine_5(sp_point* a, sp_digit* t) { sp_digit* t1 = t; sp_digit* t2 = t + 2 * 5; sp_digit* tmp = t + 4 * 5; sp_256_mont_inv_5(t1, a->z, tmp); sp_256_mont_sqr_5(t2, t1, p256_mod, p256_mp_mod); sp_256_mont_mul_5(t1, t2, t1, p256_mod, p256_mp_mod); sp_256_mont_mul_5(a->x, a->x, t2, p256_mod, p256_mp_mod); sp_256_mont_mul_5(a->y, a->y, t1, p256_mod, p256_mp_mod); XMEMCPY(a->z, p256_norm_mod, sizeof(p256_norm_mod)); } /* Generate the pre-computed table of points for the base point. * * a The base point. * table Place to store generated point data. * tmp Temprorary data. * heap Heap to use for allocation. */ static int sp_256_gen_stripe_table_5(sp_point* a, sp_table_entry* table, sp_digit* tmp, void* heap) { #if !defined(WOLFSSL_SP_SMALL) && !defined(WOLFSSL_SMALL_STACK) sp_point td, s1d, s2d; #endif sp_point* t; sp_point* s1 = NULL; sp_point* s2 = NULL; int i, j; int err; (void)heap; err = sp_ecc_point_new(heap, td, t); if (err == MP_OKAY) err = sp_ecc_point_new(heap, s1d, s1); if (err == MP_OKAY) err = sp_ecc_point_new(heap, s2d, s2); if (err == MP_OKAY) err = sp_256_mod_mul_norm_5(t->x, a->x, p256_mod); if (err == MP_OKAY) err = sp_256_mod_mul_norm_5(t->y, a->y, p256_mod); if (err == MP_OKAY) err = sp_256_mod_mul_norm_5(t->z, a->z, p256_mod); if (err == MP_OKAY) { t->infinity = 0; sp_256_proj_to_affine_5(t, tmp); XMEMCPY(s1->z, p256_norm_mod, sizeof(p256_norm_mod)); s1->infinity = 0; XMEMCPY(s2->z, p256_norm_mod, sizeof(p256_norm_mod)); s2->infinity = 0; /* table[0] = {0, 0, infinity} */ XMEMSET(&table[0], 0, sizeof(sp_table_entry)); table[0].infinity = 1; /* table[1] = Affine version of 'a' in Montgomery form */ XMEMCPY(table[1].x, t->x, sizeof(table->x)); XMEMCPY(table[1].y, t->y, sizeof(table->y)); table[1].infinity = 0; for (i=1; i<8; i++) { sp_256_proj_point_dbl_n_5(t, t, 32, tmp); sp_256_proj_to_affine_5(t, tmp); XMEMCPY(table[1<<i].x, t->x, sizeof(table->x)); XMEMCPY(table[1<<i].y, t->y, sizeof(table->y)); table[1<<i].infinity = 0; } for (i=1; i<8; i++) { XMEMCPY(s1->x, table[1<<i].x, sizeof(table->x)); XMEMCPY(s1->y, table[1<<i].y, sizeof(table->y)); for (j=(1<<i)+1; j<(1<<(i+1)); j++) { XMEMCPY(s2->x, table[j-(1<<i)].x, sizeof(table->x)); XMEMCPY(s2->y, table[j-(1<<i)].y, sizeof(table->y)); sp_256_proj_point_add_qz1_5(t, s1, s2, tmp); sp_256_proj_to_affine_5(t, tmp); XMEMCPY(table[j].x, t->x, sizeof(table->x)); XMEMCPY(table[j].y, t->y, sizeof(table->y)); table[j].infinity = 0; } } } sp_ecc_point_free(s2, 0, heap); sp_ecc_point_free(s1, 0, heap); sp_ecc_point_free( t, 0, heap); return err; } #endif /* FP_ECC */ /* Multiply the point by the scalar and return the result. * If map is true then convert result to affine co-ordinates. * * r Resulting point. * k Scalar to multiply by. * map Indicates whether to convert result to affine. * heap Heap to use for allocation. * returns MEMORY_E when memory allocation fails and MP_OKAY on success. */ static int sp_256_ecc_mulmod_stripe_5(sp_point* r, sp_point* g, sp_table_entry* table, sp_digit* k, int map, void* heap) { #if !defined(WOLFSSL_SP_SMALL) && !defined(WOLFSSL_SMALL_STACK) sp_point rtd; sp_point pd; sp_digit td[2 * 5 * 5]; #endif sp_point* rt; sp_point* p = NULL; sp_digit* t; int i, j; int y, x; int err; (void)g; (void)heap; err = sp_ecc_point_new(heap, rtd, rt); if (err == MP_OKAY) err = sp_ecc_point_new(heap, pd, p); #if defined(WOLFSSL_SP_SMALL) || defined(WOLFSSL_SMALL_STACK) t = (sp_digit*)XMALLOC(sizeof(sp_digit) * 2 * 5 * 5, heap, DYNAMIC_TYPE_ECC); if (t == NULL) err = MEMORY_E; #else t = td; #endif if (err == MP_OKAY) { XMEMCPY(p->z, p256_norm_mod, sizeof(p256_norm_mod)); XMEMCPY(rt->z, p256_norm_mod, sizeof(p256_norm_mod)); y = 0; for (j=0,x=31; j<8; j++,x+=32) y |= ((k[x / 52] >> (x % 52)) & 1) << j; XMEMCPY(rt->x, table[y].x, sizeof(table[y].x)); XMEMCPY(rt->y, table[y].y, sizeof(table[y].y)); rt->infinity = table[y].infinity; for (i=30; i>=0; i--) { y = 0; for (j=0,x=i; j<8; j++,x+=32) y |= ((k[x / 52] >> (x % 52)) & 1) << j; sp_256_proj_point_dbl_5(rt, rt, t); XMEMCPY(p->x, table[y].x, sizeof(table[y].x)); XMEMCPY(p->y, table[y].y, sizeof(table[y].y)); p->infinity = table[y].infinity; sp_256_proj_point_add_qz1_5(rt, rt, p, t); } if (map) sp_256_map_5(r, rt, t); else XMEMCPY(r, rt, sizeof(sp_point)); } #if defined(WOLFSSL_SP_SMALL) || defined(WOLFSSL_SMALL_STACK) if (t != NULL) XFREE(t, heap, DYNAMIC_TYPE_ECC); #endif sp_ecc_point_free(p, 0, heap); sp_ecc_point_free(rt, 0, heap); return err; } #ifdef FP_ECC #ifndef FP_ENTRIES #define FP_ENTRIES 16 #endif typedef struct sp_cache_t { sp_digit x[5]; sp_digit y[5]; sp_table_entry table[256]; uint32_t cnt; int set; } sp_cache_t; static THREAD_LS_T sp_cache_t sp_cache[FP_ENTRIES]; static THREAD_LS_T int sp_cache_last = -1; static THREAD_LS_T int sp_cache_inited = 0; #ifndef HAVE_THREAD_LS static volatile int initCacheMutex = 0; static wolfSSL_Mutex sp_cache_lock; #endif static void sp_ecc_get_cache(sp_point* g, sp_cache_t** cache) { int i, j; uint32_t least; if (sp_cache_inited == 0) { for (i=0; i<FP_ENTRIES; i++) { sp_cache[i].set = 0; } sp_cache_inited = 1; } /* Compare point with those in cache. */ for (i=0; i<FP_ENTRIES; i++) { if (!sp_cache[i].set) continue; if (sp_256_cmp_equal_5(g->x, sp_cache[i].x) & sp_256_cmp_equal_5(g->y, sp_cache[i].y)) { sp_cache[i].cnt++; break; } } /* No match. */ if (i == FP_ENTRIES) { /* Find empty entry. */ i = (sp_cache_last + 1) % FP_ENTRIES; for (; i != sp_cache_last; i=(i+1)%FP_ENTRIES) { if (!sp_cache[i].set) { break; } } /* Evict least used. */ if (i == sp_cache_last) { least = sp_cache[0].cnt; for (j=1; j<FP_ENTRIES; j++) { if (sp_cache[j].cnt < least) { i = j; least = sp_cache[i].cnt; } } } XMEMCPY(sp_cache[i].x, g->x, sizeof(sp_cache[i].x)); XMEMCPY(sp_cache[i].y, g->y, sizeof(sp_cache[i].y)); sp_cache[i].set = 1; sp_cache[i].cnt = 1; } *cache = &sp_cache[i]; sp_cache_last = i; } #endif /* FP_ECC */ /* Multiply the base point of P256 by the scalar and return the result. * If map is true then convert result to affine co-ordinates. * * r Resulting point. * g Point to multiply. * k Scalar to multiply by. * map Indicates whether to convert result to affine. * heap Heap to use for allocation. * returns MEMORY_E when memory allocation fails and MP_OKAY on success. */ static int sp_256_ecc_mulmod_5(sp_point* r, sp_point* g, sp_digit* k, int map, void* heap) { #ifndef FP_ECC return sp_256_ecc_mulmod_fast_5(r, g, k, map, heap); #else sp_digit tmp[2 * 5 * 5]; sp_cache_t* cache; int err = MP_OKAY; #ifndef HAVE_THREAD_LS if (initCacheMutex == 0) { wc_InitMutex(&sp_cache_lock); initCacheMutex = 1; } if (wc_LockMutex(&sp_cache_lock) != 0) err = BAD_MUTEX_E; #endif /* HAVE_THREAD_LS */ if (err == MP_OKAY) { sp_ecc_get_cache(g, &cache); if (cache->cnt == 2) sp_256_gen_stripe_table_5(g, cache->table, tmp, heap); #ifndef HAVE_THREAD_LS wc_UnLockMutex(&sp_cache_lock); #endif /* HAVE_THREAD_LS */ if (cache->cnt < 2) { err = sp_256_ecc_mulmod_fast_5(r, g, k, map, heap); } else { err = sp_256_ecc_mulmod_stripe_5(r, g, cache->table, k, map, heap); } } return err; #endif } #endif /* Multiply the point by the scalar and return the result. * If map is true then convert result to affine co-ordinates. * * km Scalar to multiply by. * p Point to multiply. * r Resulting point. * map Indicates whether to convert result to affine. * heap Heap to use for allocation. * returns MEMORY_E when memory allocation fails and MP_OKAY on success. */ int sp_ecc_mulmod_256(mp_int* km, ecc_point* gm, ecc_point* r, int map, void* heap) { #if !defined(WOLFSSL_SP_SMALL) && !defined(WOLFSSL_SMALL_STACK) sp_point p; sp_digit kd[5]; #endif sp_point* point; sp_digit* k = NULL; int err = MP_OKAY; #ifdef HAVE_INTEL_AVX2 word32 cpuid_flags = cpuid_get_flags(); #endif err = sp_ecc_point_new(heap, p, point); #if defined(WOLFSSL_SP_SMALL) || defined(WOLFSSL_SMALL_STACK) if (err == MP_OKAY) { k = XMALLOC(sizeof(sp_digit) * 5, heap, DYNAMIC_TYPE_ECC); if (k == NULL) err = MEMORY_E; } #else k = kd; #endif if (err == MP_OKAY) { sp_256_from_mp(k, 5, km); sp_256_point_from_ecc_point_5(point, gm); #ifdef HAVE_INTEL_AVX2 if (IS_INTEL_BMI2(cpuid_flags) && IS_INTEL_ADX(cpuid_flags)) err = sp_256_ecc_mulmod_avx2_5(point, point, k, map, heap); else #endif err = sp_256_ecc_mulmod_5(point, point, k, map, heap); } if (err == MP_OKAY) err = sp_256_point_to_ecc_point_5(point, r); #if defined(WOLFSSL_SP_SMALL) || defined(WOLFSSL_SMALL_STACK) if (k != NULL) XFREE(k, heap, DYNAMIC_TYPE_ECC); #endif sp_ecc_point_free(point, 0, heap); return err; } #ifdef WOLFSSL_SP_SMALL /* Multiply the base point of P256 by the scalar and return the result. * If map is true then convert result to affine co-ordinates. * * r Resulting point. * k Scalar to multiply by. * map Indicates whether to convert result to affine. * heap Heap to use for allocation. * returns MEMORY_E when memory allocation fails and MP_OKAY on success. */ static int sp_256_ecc_mulmod_base_5(sp_point* r, sp_digit* k, int map, void* heap) { /* No pre-computed values. */ return sp_256_ecc_mulmod_5(r, &p256_base, k, map, heap); } #else static sp_table_entry p256_table[256] = { /* 0 */ { { 0x00, 0x00, 0x00, 0x00, 0x00 }, { 0x00, 0x00, 0x00, 0x00, 0x00 }, 1 }, /* 1 */ { { 0x730d418a9143cl,0xfc5fedb60179el,0x762251075ba95l,0x55c679fb732b7l, 0x018905f76a537l }, { 0x25357ce95560al,0xe4ba19e45cddfl,0xd21f3258b4ab8l,0x5d85d2e88688dl, 0x08571ff182588l }, 0 }, /* 2 */ { { 0x886024147519al,0xac26b372f0202l,0x785ebc8d0981el,0x58e9a9d4a7caal, 0x0d953c50ddbdfl }, { 0x361ccfd590f8fl,0x6b44e6c9179d6l,0x2eb64cf72e962l,0x88f37fd961102l, 0x0863ebb7e9eb2l }, 0 }, /* 3 */ { { 0x6b6235cdb6485l,0xa22f0a2f97785l,0xf7e300b808f0el,0x80a03e68d9544l, 0x000076055b5ffl }, { 0x4eb9b838d2010l,0xbb3243708a763l,0x42a660654014fl,0x3ee0e0e47d398l, 0x0830877613437l }, 0 }, /* 4 */ { { 0x22fc516a0d2bbl,0x6c1a6234994f9l,0x7c62c8b0d5cc1l,0x667f9241cf3a5l, 0x02f5e6961fd1bl }, { 0x5c70bf5a01797l,0x4d609561925c1l,0x71fdb523d20b4l,0x0f7b04911b370l, 0x0f648f9168d6fl }, 0 }, /* 5 */ { { 0x66847e137bbbcl,0x9e8a6a0bec9e5l,0x9d73463e43446l,0x0015b1c427617l, 0x05abe0285133dl }, { 0xa837cc04c7dabl,0x4c43260c0792al,0x8e6cc37573d9fl,0x73830c9315627l, 0x094bb725b6b6fl }, 0 }, /* 6 */ { { 0x9b48f720f141cl,0xcd2df5bc74bbfl,0x11045c46199b3l,0xc4efdc3f61294l, 0x0cdd6bbcb2f7dl }, { 0x6700beaf436fdl,0x6db99326beccal,0x14f25226f647fl,0xe5f60c0fa7920l, 0x0a361bebd4bdal }, 0 }, /* 7 */ { { 0xa2558597c13c7l,0x5f50b7c3e128al,0x3c09d1dc38d63l,0x292c07039aecfl, 0x0ba12ca09c4b5l }, { 0x08fa459f91dfdl,0x66ceea07fb9e4l,0xd780b293af43bl,0xef4b1eceb0899l, 0x053ebb99d701fl }, 0 }, /* 8 */ { { 0x7ee31b0e63d34l,0x72a9e54fab4fel,0x5e7b5a4f46005l,0x4831c0493334dl, 0x08589fb9206d5l }, { 0x0f5cc6583553al,0x4ae25649e5aa7l,0x0044652087909l,0x1c4fcc9045071l, 0x0ebb0696d0254l }, 0 }, /* 9 */ { { 0x6ca15ac1647c5l,0x47c4cf5799461l,0x64dfbacb8127dl,0x7da3dc666aa37l, 0x0eb2820cbd1b2l }, { 0x6f8d86a87e008l,0x9d922378f3940l,0x0ccecb2d87dfal,0xda1d56ed2e428l, 0x01f28289b55a7l }, 0 }, /* 10 */ { { 0xaa0c03b89da99l,0x9eb8284022abbl,0x81c05e8a6f2d7l,0x4d6327847862bl, 0x0337a4b5905e5l }, { 0x7500d21f7794al,0xb77d6d7f613c6l,0x4cfd6e8207005l,0xfbd60a5a37810l, 0x00d65e0d5f4c2l }, 0 }, /* 11 */ { { 0x09bbeb5275d38l,0x450be0a358d9dl,0x73eb2654268a7l,0xa232f0762ff49l, 0x0c23da24252f4l }, { 0x1b84f0b94520cl,0x63b05bd78e5dal,0x4d29ea1096667l,0xcff13a4dcb869l, 0x019de3b8cc790l }, 0 }, /* 12 */ { { 0xa716c26c5fe04l,0x0b3bba1bdb183l,0x4cb712c3b28del,0xcbfd7432c586al, 0x0e34dcbd491fcl }, { 0x8d46baaa58403l,0x8682e97a53b40l,0x6aaa8af9a6974l,0x0f7f9e3901273l, 0x0e7641f447b4el }, 0 }, /* 13 */ { { 0x53941df64ba59l,0xec0b0242fc7d7l,0x1581859d33f10l,0x57bf4f06dfc6al, 0x04a12df57052al }, { 0x6338f9439dbd0l,0xd4bde53e1fbfal,0x1f1b314d3c24bl,0xea46fd5e4ffa2l, 0x06af5aa93bb5bl }, 0 }, /* 14 */ { { 0x0b69910c91999l,0x402a580491da1l,0x8cc20900a24b4l,0x40133e0094b4bl, 0x05fe3475a66a4l }, { 0x8cabdf93e7b4bl,0x1a7c23f91ab0fl,0xd1e6263292b50l,0xa91642e889aecl, 0x0b544e308ecfel }, 0 }, /* 15 */ { { 0x8c6e916ddfdcel,0x66f89179e6647l,0xd4e67e12c3291l,0xc20b4e8d6e764l, 0x0e0b6b2bda6b0l }, { 0x12df2bb7efb57l,0xde790c40070d3l,0x79bc9441aac0dl,0x3774f90336ad6l, 0x071c023de25a6l }, 0 }, /* 16 */ { { 0x8c244bfe20925l,0xc38fdce86762al,0xd38706391c19al,0x24f65a96a5d5dl, 0x061d587d421d3l }, { 0x673a2a37173eal,0x0853778b65e87l,0x5bab43e238480l,0xefbe10f8441e0l, 0x0fa11fe124621l }, 0 }, /* 17 */ { { 0x91f2b2cb19ffdl,0x5bb1923c231c8l,0xac5ca8e01ba8dl,0xbedcb6d03d678l, 0x0586eb04c1f13l }, { 0x5c6e527e8ed09l,0x3c1819ede20c3l,0x6c652fa1e81a3l,0x4f11278fd6c05l, 0x019d5ac087086l }, 0 }, /* 18 */ { { 0x9f581309a4e1fl,0x1be92700741e9l,0xfd28d20ab7de7l,0x563f26a5ef0bel, 0x0e7c0073f7f9cl }, { 0xd663a0ef59f76l,0x5420fcb0501f6l,0xa6602d4669b3bl,0x3c0ac08c1f7a7l, 0x0e08504fec65bl }, 0 }, /* 19 */ { { 0x8f68da031b3cal,0x9ee6da6d66f09l,0x4f246e86d1cabl,0x96b45bfd81fa9l, 0x078f018825b09l }, { 0xefde43a25787fl,0x0d1dccac9bb7el,0x35bfc368016f8l,0x747a0cea4877bl, 0x043a773b87e94l }, 0 }, /* 20 */ { { 0x77734d2b533d5l,0xf6a1bdddc0625l,0x79ec293673b8al,0x66b1577e7c9aal, 0x0bb6de651c3b2l }, { 0x9303ab65259b3l,0xd3d03a7480e7el,0xb3cfc27d6a0afl,0xb99bc5ac83d19l, 0x060b4619a5d18l }, 0 }, /* 21 */ { { 0xa38e11ae5aa1cl,0x2b49e73658bd6l,0xe5f87edb8b765l,0xffcd0b130014el, 0x09d0f27b2aeebl }, { 0x246317a730a55l,0x2fddbbc83aca9l,0xc019a719c955bl,0xc48d07c1dfe0al, 0x0244a566d356el }, 0 }, /* 22 */ { { 0x0394aeacf1f96l,0xa9024c271c6dbl,0x2cbd3b99f2122l,0xef692626ac1b8l, 0x045e58c873581l }, { 0xf479da38f9dbcl,0x46e888a040d3fl,0x6e0bed7a8aaf1l,0xb7a4945adfb24l, 0x0c040e21cc1e4l }, 0 }, /* 23 */ { { 0xaf0006f8117b6l,0xff73a35433847l,0xd9475eb651969l,0x6ec7482b35761l, 0x01cdf5c97682cl }, { 0x775b411f04839l,0xf448de16987dbl,0x70b32197dbeacl,0xff3db2921dd1bl, 0x0046755f8a92dl }, 0 }, /* 24 */ { { 0xac5d2bce8ffcdl,0x8b2fe61a82cc8l,0x202d6c70d53c4l,0xa5f3f6f161727l, 0x0046e5e113b83l }, { 0x8ff64d8007f01l,0x125af43183e7bl,0x5e1a03c7fb1efl,0x005b045c5ea63l, 0x06e0106c3303dl }, 0 }, /* 25 */ { { 0x7358488dd73b1l,0x8f995ed0d948cl,0x56a2ab7767070l,0xcf1f38385ea8cl, 0x0442594ede901l }, { 0xaa2c912d4b65bl,0x3b96c90c37f8fl,0xe978d1f94c234l,0xe68ed326e4a15l, 0x0a796fa514c2el }, 0 }, /* 26 */ { { 0xfb604823addd7l,0x83e56693b3359l,0xcbf3c809e2a61l,0x66e9f885b78e3l, 0x0e4ad2da9c697l }, { 0xf7f428e048a61l,0x8cc092d9a0357l,0x03ed8ef082d19l,0x5143fc3a1af4cl, 0x0c5e94046c37bl }, 0 }, /* 27 */ { { 0xa538c2be75f9el,0xe8cb123a78476l,0x109c04b6fd1a9l,0x4747d85e4df0bl, 0x063283dafdb46l }, { 0x28cf7baf2df15l,0x550ad9a7f4ce7l,0x834bcc3e592c4l,0xa938fab226adel, 0x068bd19ab1981l }, 0 }, /* 28 */ { { 0xead511887d659l,0xf4b359305ac08l,0xfe74fe33374d5l,0xdfd696986981cl, 0x0495292f53c6fl }, { 0x78c9e1acec896l,0x10ec5b44844a8l,0x64d60a7d964b2l,0x68376696f7e26l, 0x00ec7530d2603l }, 0 }, /* 29 */ { { 0x13a05ad2687bbl,0x6af32e21fa2dal,0xdd4607ba1f83bl,0x3f0b390f5ef51l, 0x00f6207a66486l }, { 0x7e3bb0f138233l,0x6c272aa718bd6l,0x6ec88aedd66b9l,0x6dcf8ed004072l, 0x0ff0db07208edl }, 0 }, /* 30 */ { { 0xfa1014c95d553l,0xfd5d680a8a749l,0xf3b566fa44052l,0x0ea3183b4317fl, 0x0313b513c8874l }, { 0x2e2ac08d11549l,0x0bb4dee21cb40l,0x7f2320e071ee1l,0x9f8126b987dd4l, 0x02d3abcf986f1l }, 0 }, /* 31 */ { { 0x88501815581a2l,0x56632211af4c2l,0xcab2e999a0a6dl,0x8cdf19ba7a0f0l, 0x0c036fa10ded9l }, { 0xe08bac1fbd009l,0x9006d1581629al,0xb9e0d8f0b68b1l,0x0194c2eb32779l, 0x0a6b2a2c4b6d4l }, 0 }, /* 32 */ { { 0x3e50f6d3549cfl,0x6ffacd665ed43l,0xe11fcb46f3369l,0x9860695bfdaccl, 0x0810ee252af7cl }, { 0x50fe17159bb2cl,0xbe758b357b654l,0x69fea72f7dfbel,0x17452b057e74dl, 0x0d485717a9273l }, 0 }, /* 33 */ { { 0x41a8af0cb5a98l,0x931f3110bf117l,0xb382adfd3da8fl,0x604e1994e2cbal, 0x06a6045a72f9al }, { 0xc0d3fa2b2411dl,0x3e510e96e0170l,0x865b3ccbe0eb8l,0x57903bcc9f738l, 0x0d3e45cfaf9e1l }, 0 }, /* 34 */ { { 0xf69bbe83f7669l,0x8272877d6bce1l,0x244278d09f8ael,0xc19c9548ae543l, 0x0207755dee3c2l }, { 0xd61d96fef1945l,0xefb12d28c387bl,0x2df64aa18813cl,0xb00d9fbcd1d67l, 0x048dc5ee57154l }, 0 }, /* 35 */ { { 0x790bff7e5a199l,0xcf989ccbb7123l,0xa519c79e0efb8l,0xf445c27a2bfe0l, 0x0f2fb0aeddff6l }, { 0x09575f0b5025fl,0xd740fa9f2241cl,0x80bfbd0550543l,0xd5258fa3c8ad3l, 0x0a13e9015db28l }, 0 }, /* 36 */ { { 0x7a350a2b65cbcl,0x722a464226f9fl,0x23f07a10b04b9l,0x526f265ce241el, 0x02bf0d6b01497l }, { 0x4dd3f4b216fb7l,0x67fbdda26ad3dl,0x708505cf7d7b8l,0xe89faeb7b83f6l, 0x042a94a5a162fl }, 0 }, /* 37 */ { { 0x6ad0beaadf191l,0x9025a268d7584l,0x94dc1f60f8a48l,0xde3de86030504l, 0x02c2dd969c65el }, { 0x2171d93849c17l,0xba1da250dd6d0l,0xc3a5485460488l,0x6dbc4810c7063l, 0x0f437fa1f42c5l }, 0 }, /* 38 */ { { 0x0d7144a0f7dabl,0x931776e9ac6aal,0x5f397860f0497l,0x7aa852c0a050fl, 0x0aaf45b335470l }, { 0x37c33c18d364al,0x063e49716585el,0x5ec5444d40b9bl,0x72bcf41716811l, 0x0cdf6310df4f2l }, 0 }, /* 39 */ { { 0x3c6238ea8b7efl,0x1885bc2287747l,0xbda8e3408e935l,0x2ff2419567722l, 0x0f0d008bada9el }, { 0x2671d2414d3b1l,0x85b019ea76291l,0x53bcbdbb37549l,0x7b8b5c61b96d4l, 0x05bd5c2f5ca88l }, 0 }, /* 40 */ { { 0xf469ef49a3154l,0x956e2b2e9aef0l,0xa924a9c3e85a5l,0x471945aaec1eal, 0x0aa12dfc8a09el }, { 0x272274df69f1dl,0x2ca2ff5e7326fl,0x7a9dd44e0e4c8l,0xa901b9d8ce73bl, 0x06c036e73e48cl }, 0 }, /* 41 */ { { 0xae12a0f6e3138l,0x0025ad345a5cfl,0x5672bc56966efl,0xbe248993c64b4l, 0x0292ff65896afl }, { 0x50d445e213402l,0x274392c9fed52l,0xa1c72e8f6580el,0x7276097b397fdl, 0x0644e0c90311bl }, 0 }, /* 42 */ { { 0x421e1a47153f0l,0x79920418c9e1el,0x05d7672b86c3bl,0x9a7793bdce877l, 0x0f25ae793cab7l }, { 0x194a36d869d0cl,0x824986c2641f3l,0x96e945e9d55c8l,0x0a3e49fb5ea30l, 0x039b8e65313dbl }, 0 }, /* 43 */ { { 0x54200b6fd2e59l,0x669255c98f377l,0xe2a573935e2c0l,0xdb06d9dab21a0l, 0x039122f2f0f19l }, { 0xce1e003cad53cl,0x0fe65c17e3cfbl,0xaa13877225b2cl,0xff8d72baf1d29l, 0x08de80af8ce80l }, 0 }, /* 44 */ { { 0xea8d9207bbb76l,0x7c21782758afbl,0xc0436b1921c7el,0x8c04dfa2b74b1l, 0x0871949062e36l }, { 0x928bba3993df5l,0xb5f3b3d26ab5fl,0x5b55050639d75l,0xfde1011aa78a8l, 0x0fc315e6a5b74l }, 0 }, /* 45 */ { { 0xfd41ae8d6ecfal,0xf61aec7f86561l,0x924741d5f8c44l,0x908898452a7b4l, 0x0e6d4a7adee38l }, { 0x52ed14593c75dl,0xa4dd271162605l,0xba2c7db70a70dl,0xae57d2aede937l, 0x035dfaf9a9be2l }, 0 }, /* 46 */ { { 0x56fcdaa736636l,0x97ae2cab7e6b9l,0xf34996609f51dl,0x0d2bfb10bf410l, 0x01da5c7d71c83l }, { 0x1e4833cce6825l,0x8ff9573c3b5c4l,0x23036b815ad11l,0xb9d6a28552c7fl, 0x07077c0fddbf4l }, 0 }, /* 47 */ { { 0x3ff8d46b9661cl,0x6b0d2cfd71bf6l,0x847f8f7a1dfd3l,0xfe440373e140al, 0x053a8632ee50el }, { 0x6ff68696d8051l,0x95c74f468a097l,0xe4e26bddaec0cl,0xfcc162994dc35l, 0x0028ca76d34e1l }, 0 }, /* 48 */ { { 0xd47dcfc9877eel,0x10801d0002d11l,0x4c260b6c8b362l,0xf046d002c1175l, 0x004c17cd86962l }, { 0xbd094b0daddf5l,0x7524ce55c06d9l,0x2da03b5bea235l,0x7474663356e67l, 0x0f7ba4de9fed9l }, 0 }, /* 49 */ { { 0xbfa34ebe1263fl,0x3571ae7ce6d0dl,0x2a6f523557637l,0x1c41d24405538l, 0x0e31f96005213l }, { 0xb9216ea6b6ec6l,0x2e73c2fc44d1bl,0x9d0a29437a1d1l,0xd47bc10e7eac8l, 0x0aa3a6259ce34l }, 0 }, /* 50 */ { { 0xf9df536f3dcd3l,0x50d2bf7360fbcl,0xf504f5b6cededl,0xdaee491710fadl, 0x02398dd627e79l }, { 0x705a36d09569el,0xbb5149f769cf4l,0x5f6034cea0619l,0x6210ff9c03773l, 0x05717f5b21c04l }, 0 }, /* 51 */ { { 0x229c921dd895el,0x0040c284519fel,0xd637ecd8e5185l,0x28defa13d2391l, 0x0660a2c560e3cl }, { 0xa88aed67fcbd0l,0x780ea9f0969ccl,0x2e92b4dc84724l,0x245332b2f4817l, 0x0624ee54c4f52l }, 0 }, /* 52 */ { { 0x49ce4d897ecccl,0xd93f9880aa095l,0x43a7c204d49d1l,0xfbc0723c24230l, 0x04f392afb92bdl }, { 0x9f8fa7de44fd9l,0xe457b32156696l,0x68ebc3cb66cfbl,0x399cdb2fa8033l, 0x08a3e7977ccdbl }, 0 }, /* 53 */ { { 0x1881f06c4b125l,0x00f6e3ca8cddel,0xc7a13e9ae34e3l,0x4404ef6999de5l, 0x03888d02370c2l }, { 0x8035644f91081l,0x615f015504762l,0x32cd36e3d9fcfl,0x23361827edc86l, 0x0a5e62e471810l }, 0 }, /* 54 */ { { 0x25ee32facd6c8l,0x5454bcbc661a8l,0x8df9931699c63l,0x5adc0ce3edf79l, 0x02c4768e6466al }, { 0x6ff8c90a64bc9l,0x20e4779f5cb34l,0xc05e884630a60l,0x52a0d949d064bl, 0x07b5e6441f9e6l }, 0 }, /* 55 */ { { 0x9422c1d28444al,0xd8be136a39216l,0xb0c7fcee996c5l,0x744a2387afe5fl, 0x0b8af73cb0c8dl }, { 0xe83aa338b86fdl,0x58a58a5cff5fdl,0x0ac9433fee3f1l,0x0895c9ee8f6f2l, 0x0a036395f7f3fl }, 0 }, /* 56 */ { { 0x3c6bba10f7770l,0x81a12a0e248c7l,0x1bc2b9fa6f16dl,0xb533100df6825l, 0x04be36b01875fl }, { 0x6086e9fb56dbbl,0x8b07e7a4f8922l,0x6d52f20306fefl,0x00c0eeaccc056l, 0x08cbc9a871bdcl }, 0 }, /* 57 */ { { 0x1895cc0dac4abl,0x40712ff112e13l,0xa1cee57a874a4l,0x35f86332ae7c6l, 0x044e7553e0c08l }, { 0x03fff7734002dl,0x8b0b34425c6d5l,0xe8738b59d35cbl,0xfc1895f702760l, 0x0470a683a5eb8l }, 0 }, /* 58 */ { { 0x761dc90513482l,0x2a01e9276a81bl,0xce73083028720l,0xc6efcda441ee0l, 0x016410690c63dl }, { 0x34a066d06a2edl,0x45189b100bf50l,0xb8218c9dd4d77l,0xbb4fd914ae72al, 0x0d73479fd7abcl }, 0 }, /* 59 */ { { 0xefb165ad4c6e5l,0x8f5b06d04d7edl,0x575cb14262cf0l,0x666b12ed5bb18l, 0x0816469e30771l }, { 0xb9d79561e291el,0x22c1de1661d7al,0x35e0513eb9dafl,0x3f9cf49827eb1l, 0x00a36dd23f0ddl }, 0 }, /* 60 */ { { 0xd32c741d5533cl,0x9e8684628f098l,0x349bd117c5f5al,0xb11839a228adel, 0x0e331dfd6fdbal }, { 0x0ab686bcc6ed8l,0xbdef7a260e510l,0xce850d77160c3l,0x33899063d9a7bl, 0x0d3b4782a492el }, 0 }, /* 61 */ { { 0x9b6e8f3821f90l,0xed66eb7aada14l,0xa01311692edd9l,0xa5bd0bb669531l, 0x07281275a4c86l }, { 0x858f7d3ff47e5l,0xbc61016441503l,0xdfd9bb15e1616l,0x505962b0f11a7l, 0x02c062e7ece14l }, 0 }, /* 62 */ { { 0xf996f0159ac2el,0x36cbdb2713a76l,0x8e46047281e77l,0x7ef12ad6d2880l, 0x0282a35f92c4el }, { 0x54b1ec0ce5cd2l,0xc91379c2299c3l,0xe82c11ecf99efl,0x2abd992caf383l, 0x0c71cd513554dl }, 0 }, /* 63 */ { { 0x5de9c09b578f4l,0x58e3affa7a488l,0x9182f1f1884e2l,0xf3a38f76b1b75l, 0x0c50f6740cf47l }, { 0x4adf3374b68eal,0x2369965fe2a9cl,0x5a53050a406f3l,0x58dc2f86a2228l, 0x0b9ecb3a72129l }, 0 }, /* 64 */ { { 0x8410ef4f8b16al,0xfec47b266a56fl,0xd9c87c197241al,0xab1b0a406b8e6l, 0x0803f3e02cd42l }, { 0x309a804dbec69l,0xf73bbad05f7f0l,0xd8e197fa83b85l,0xadc1c6097273al, 0x0c097440e5067l }, 0 }, /* 65 */ { { 0xa56f2c379ab34l,0x8b841df8d1846l,0x76c68efa8ee06l,0x1f30203144591l, 0x0f1af32d5915fl }, { 0x375315d75bd50l,0xbaf72f67bc99cl,0x8d7723f837cffl,0x1c8b0613a4184l, 0x023d0f130e2d4l }, 0 }, /* 66 */ { { 0xab6edf41500d9l,0xe5fcbeada8857l,0x97259510d890al,0xfadd52fe86488l, 0x0b0288dd6c0a3l }, { 0x20f30650bcb08l,0x13695d6e16853l,0x989aa7671af63l,0xc8d231f520a7bl, 0x0ffd3724ff408l }, 0 }, /* 67 */ { { 0x68e64b458e6cbl,0x20317a5d28539l,0xaa75f56992dadl,0x26df3814ae0b7l, 0x0f5590f4ad78cl }, { 0x24bd3cf0ba55al,0x4a0c778bae0fcl,0x83b674a0fc472l,0x4a201ce9864f6l, 0x018d6da54f6f7l }, 0 }, /* 68 */ { { 0x3e225d5be5a2bl,0x835934f3c6ed9l,0x2626ffc6fe799l,0x216a431409262l, 0x050bbb4d97990l }, { 0x191c6e57ec63el,0x40181dcdb2378l,0x236e0f665422cl,0x49c341a8099b0l, 0x02b10011801fel }, 0 }, /* 69 */ { { 0x8b5c59b391593l,0xa2598270fcfc6l,0x19adcbbc385f5l,0xae0c7144f3aadl, 0x0dd55899983fbl }, { 0x88b8e74b82ff4l,0x4071e734c993bl,0x3c0322ad2e03cl,0x60419a7a9eaf4l, 0x0e6e4c551149dl }, 0 }, /* 70 */ { { 0x655bb1e9af288l,0x64f7ada93155fl,0xb2820e5647e1al,0x56ff43697e4bcl, 0x051e00db107edl }, { 0x169b8771c327el,0x0b4a96c2ad43dl,0xdeb477929cdb2l,0x9177c07d51f53l, 0x0e22f42414982l }, 0 }, /* 71 */ { { 0x5e8f4635f1abbl,0xb568538874cd4l,0x5a8034d7edc0cl,0x48c9c9472c1fbl, 0x0f709373d52dcl }, { 0x966bba8af30d6l,0x4af137b69c401l,0x361c47e95bf5fl,0x5b113966162a9l, 0x0bd52d288e727l }, 0 }, /* 72 */ { { 0x55c7a9c5fa877l,0x727d3a3d48ab1l,0x3d189d817dad6l,0x77a643f43f9e7l, 0x0a0d0f8e4c8aal }, { 0xeafd8cc94f92dl,0xbe0c4ddb3a0bbl,0x82eba14d818c8l,0x6a0022cc65f8bl, 0x0a56c78c7946dl }, 0 }, /* 73 */ { { 0x2391b0dd09529l,0xa63daddfcf296l,0xb5bf481803e0el,0x367a2c77351f5l, 0x0d8befdf8731al }, { 0x19d42fc0157f4l,0xd7fec8e650ab9l,0x2d48b0af51cael,0x6478cdf9cb400l, 0x0854a68a5ce9fl }, 0 }, /* 74 */ { { 0x5f67b63506ea5l,0x89a4fe0d66dc3l,0xe95cd4d9286c4l,0x6a953f101d3bfl, 0x05cacea0b9884l }, { 0xdf60c9ceac44dl,0xf4354d1c3aa90l,0xd5dbabe3db29al,0xefa908dd3de8al, 0x0e4982d1235e4l }, 0 }, /* 75 */ { { 0x04a22c34cd55el,0xb32680d132231l,0xfa1d94358695bl,0x0499fb345afa1l, 0x08046b7f616b2l }, { 0x3581e38e7d098l,0x8df46f0b70b53l,0x4cb78c4d7f61el,0xaf5530dea9ea4l, 0x0eb17ca7b9082l }, 0 }, /* 76 */ { { 0x1b59876a145b9l,0x0fc1bc71ec175l,0x92715bba5cf6bl,0xe131d3e035653l, 0x0097b00bafab5l }, { 0x6c8e9565f69e1l,0x5ab5be5199aa6l,0xa4fd98477e8f7l,0xcc9e6033ba11dl, 0x0f95c747bafdbl }, 0 }, /* 77 */ { { 0xf01d3bebae45el,0xf0c4bc6955558l,0xbc64fc6a8ebe9l,0xd837aeb705b1dl, 0x03512601e566el }, { 0x6f1e1fa1161cdl,0xd54c65ef87933l,0x24f21e5328ab8l,0xab6b4757eee27l, 0x00ef971236068l }, 0 }, /* 78 */ { { 0x98cf754ca4226l,0x38f8642c8e025l,0x68e17905eede1l,0xbc9548963f744l, 0x0fc16d9333b4fl }, { 0x6fb31e7c800cal,0x312678adaabe9l,0xff3e8b5138063l,0x7a173d6244976l, 0x014ca4af1b95dl }, 0 }, /* 79 */ { { 0x771babd2f81d5l,0x6901f7d1967a4l,0xad9c9071a5f9dl,0x231dd898bef7cl, 0x04057b063f59cl }, { 0xd82fe89c05c0al,0x6f1dc0df85bffl,0x35a16dbe4911cl,0x0b133befccaeal, 0x01c3b5d64f133l }, 0 }, /* 80 */ { { 0x14bfe80ec21fel,0x6ac255be825fel,0xf4a5d67f6ce11l,0x63af98bc5a072l, 0x0fad27148db7el }, { 0x0b6ac29ab05b3l,0x3c4e251ae690cl,0x2aade7d37a9a8l,0x1a840a7dc875cl, 0x077387de39f0el }, 0 }, /* 81 */ { { 0xecc49a56c0dd7l,0xd846086c741e9l,0x505aecea5cffcl,0xc47e8f7a1408fl, 0x0b37b85c0bef0l }, { 0x6b6e4cc0e6a8fl,0xbf6b388f23359l,0x39cef4efd6d4bl,0x28d5aba453facl, 0x09c135ac8f9f6l }, 0 }, /* 82 */ { { 0xa320284e35743l,0xb185a3cdef32al,0xdf19819320d6al,0x851fb821b1761l, 0x05721361fc433l }, { 0xdb36a71fc9168l,0x735e5c403c1f0l,0x7bcd8f55f98bal,0x11bdf64ca87e3l, 0x0dcbac3c9e6bbl }, 0 }, /* 83 */ { { 0xd99684518cbe2l,0x189c9eb04ef01l,0x47feebfd242fcl,0x6862727663c7el, 0x0b8c1c89e2d62l }, { 0x58bddc8e1d569l,0xc8b7d88cd051al,0x11f31eb563809l,0x22d426c27fd9fl, 0x05d23bbda2f94l }, 0 }, /* 84 */ { { 0xc729495c8f8bel,0x803bf362bf0a1l,0xf63d4ac2961c4l,0xe9009e418403dl, 0x0c109f9cb91ecl }, { 0x095d058945705l,0x96ddeb85c0c2dl,0xa40449bb9083dl,0x1ee184692b8d7l, 0x09bc3344f2eeel }, 0 }, /* 85 */ { { 0xae35642913074l,0x2748a542b10d5l,0x310732a55491bl,0x4cc1469ca665bl, 0x029591d525f1al }, { 0xf5b6bb84f983fl,0x419f5f84e1e76l,0x0baa189be7eefl,0x332c1200d4968l, 0x06376551f18efl }, 0 }, /* 86 */ { { 0x5f14e562976ccl,0xe60ef12c38bdal,0xcca985222bca3l,0x987abbfa30646l, 0x0bdb79dc808e2l }, { 0xcb5c9cb06a772l,0xaafe536dcefd2l,0xc2b5db838f475l,0xc14ac2a3e0227l, 0x08ee86001add3l }, 0 }, /* 87 */ { { 0x96981a4ade873l,0x4dc4fba48ccbel,0xa054ba57ee9aal,0xaa4b2cee28995l, 0x092e51d7a6f77l }, { 0xbafa87190a34dl,0x5bf6bd1ed1948l,0xcaf1144d698f7l,0xaaaad00ee6e30l, 0x05182f86f0a56l }, 0 }, /* 88 */ { { 0x6212c7a4cc99cl,0x683e6d9ca1fbal,0xac98c5aff609bl,0xa6f25dbb27cb5l, 0x091dcab5d4073l }, { 0x6cc3d5f575a70l,0x396f8d87fa01bl,0x99817360cb361l,0x4f2b165d4e8c8l, 0x017a0cedb9797l }, 0 }, /* 89 */ { { 0x61e2a076c8d3al,0x39210f924b388l,0x3a835d9701aadl,0xdf4194d0eae41l, 0x02e8ce36c7f4cl }, { 0x73dab037a862bl,0xb760e4c8fa912l,0x3baf2dd01ba9bl,0x68f3f96453883l, 0x0f4ccc6cb34f6l }, 0 }, /* 90 */ { { 0xf525cf1f79687l,0x9592efa81544el,0x5c78d297c5954l,0xf3c9e1231741al, 0x0ac0db4889a0dl }, { 0xfc711df01747fl,0x58ef17df1386bl,0xccb6bb5592b93l,0x74a2e5880e4f5l, 0x095a64a6194c9l }, 0 }, /* 91 */ { { 0x1efdac15a4c93l,0x738258514172cl,0x6cb0bad40269bl,0x06776a8dfb1c1l, 0x0231e54ba2921l }, { 0xdf9178ae6d2dcl,0x3f39112918a70l,0xe5b72234d6aa6l,0x31e1f627726b5l, 0x0ab0be032d8a7l }, 0 }, /* 92 */ { { 0xad0e98d131f2dl,0xe33b04f101097l,0x5e9a748637f09l,0xa6791ac86196dl, 0x0f1bcc8802cf6l }, { 0x69140e8daacb4l,0x5560f6500925cl,0x77937a63c4e40l,0xb271591cc8fc4l, 0x0851694695aebl }, 0 }, /* 93 */ { { 0x5c143f1dcf593l,0x29b018be3bde3l,0xbdd9d3d78202bl,0x55d8e9cdadc29l, 0x08f67d9d2daadl }, { 0x116567481ea5fl,0xe9e34c590c841l,0x5053fa8e7d2ddl,0x8b5dffdd43f40l, 0x0f84572b9c072l }, 0 }, /* 94 */ { { 0xa7a7197af71c9l,0x447a7365655e1l,0xe1d5063a14494l,0x2c19a1b4ae070l, 0x0edee2710616bl }, { 0x034f511734121l,0x554a25e9f0b2fl,0x40c2ecf1cac6el,0xd7f48dc148f3al, 0x09fd27e9b44ebl }, 0 }, /* 95 */ { { 0x7658af6e2cb16l,0x2cfe5919b63ccl,0x68d5583e3eb7dl,0xf3875a8c58161l, 0x0a40c2fb6958fl }, { 0xec560fedcc158l,0xc655f230568c9l,0xa307e127ad804l,0xdecfd93967049l, 0x099bc9bb87dc6l }, 0 }, /* 96 */ { { 0x9521d927dafc6l,0x695c09cd1984al,0x9366dde52c1fbl,0x7e649d9581a0fl, 0x09abe210ba16dl }, { 0xaf84a48915220l,0x6a4dd816c6480l,0x681ca5afa7317l,0x44b0c7d539871l, 0x07881c25787f3l }, 0 }, /* 97 */ { { 0x99b51e0bcf3ffl,0xc5127f74f6933l,0xd01d9680d02cbl,0x89408fb465a2dl, 0x015e6e319a30el }, { 0xd6e0d3e0e05f4l,0xdc43588404646l,0x4f850d3fad7bdl,0x72cebe61c7d1cl, 0x00e55facf1911l }, 0 }, /* 98 */ { { 0xd9806f8787564l,0x2131e85ce67e9l,0x819e8d61a3317l,0x65776b0158cabl, 0x0d73d09766fe9l }, { 0x834251eb7206el,0x0fc618bb42424l,0xe30a520a51929l,0xa50b5dcbb8595l, 0x09250a3748f15l }, 0 }, /* 99 */ { { 0xf08f8be577410l,0x035077a8c6cafl,0xc0a63a4fd408al,0x8c0bf1f63289el, 0x077414082c1ccl }, { 0x40fa6eb0991cdl,0x6649fdc29605al,0x324fd40c1ca08l,0x20b93a68a3c7bl, 0x08cb04f4d12ebl }, 0 }, /* 100 */ { { 0x2d0556906171cl,0xcdb0240c3fb1cl,0x89068419073e9l,0x3b51db8e6b4fdl, 0x0e4e429ef4712l }, { 0xdd53c38ec36f4l,0x01ff4b6a270b8l,0x79a9a48f9d2dcl,0x65525d066e078l, 0x037bca2ff3c6el }, 0 }, /* 101 */ { { 0x2e3c7df562470l,0xa2c0964ac94cdl,0x0c793be44f272l,0xb22a7c6d5df98l, 0x059913edc3002l }, { 0x39a835750592al,0x80e783de027a1l,0xa05d64f99e01dl,0xe226cf8c0375el, 0x043786e4ab013l }, 0 }, /* 102 */ { { 0x2b0ed9e56b5a6l,0xa6d9fc68f9ff3l,0x97846a70750d9l,0x9e7aec15e8455l, 0x08638ca98b7e7l }, { 0xae0960afc24b2l,0xaf4dace8f22f5l,0xecba78f05398el,0xa6f03b765dd0al, 0x01ecdd36a7b3al }, 0 }, /* 103 */ { { 0xacd626c5ff2f3l,0xc02873a9785d3l,0x2110d54a2d516l,0xf32dad94c9fadl, 0x0d85d0f85d459l }, { 0x00b8d10b11da3l,0x30a78318c49f7l,0x208decdd2c22cl,0x3c62556988f49l, 0x0a04f19c3b4edl }, 0 }, /* 104 */ { { 0x924c8ed7f93bdl,0x5d392f51f6087l,0x21b71afcb64acl,0x50b07cae330a8l, 0x092b2eeea5c09l }, { 0xc4c9485b6e235l,0xa92936c0f085al,0x0508891ab2ca4l,0x276c80faa6b3el, 0x01ee782215834l }, 0 }, /* 105 */ { { 0xa2e00e63e79f7l,0xb2f399d906a60l,0x607c09df590e7l,0xe1509021054a6l, 0x0f3f2ced857a6l }, { 0x510f3f10d9b55l,0xacd8642648200l,0x8bd0e7c9d2fcfl,0xe210e5631aa7el, 0x00f56a4543da3l }, 0 }, /* 106 */ { { 0x1bffa1043e0dfl,0xcc9c007e6d5b2l,0x4a8517a6c74b6l,0xe2631a656ec0dl, 0x0bd8f17411969l }, { 0xbbb86beb7494al,0x6f45f3b8388a9l,0x4e5a79a1567d4l,0xfa09df7a12a7al, 0x02d1a1c3530ccl }, 0 }, /* 107 */ { { 0xe3813506508dal,0xc4a1d795a7192l,0xa9944b3336180l,0xba46cddb59497l, 0x0a107a65eb91fl }, { 0x1d1c50f94d639l,0x758a58b7d7e6dl,0xd37ca1c8b4af3l,0x9af21a7c5584bl, 0x0183d760af87al }, 0 }, /* 108 */ { { 0x697110dde59a4l,0x070e8bef8729dl,0xf2ebe78f1ad8dl,0xd754229b49634l, 0x01d44179dc269l }, { 0xdc0cf8390d30el,0x530de8110cb32l,0xbc0339a0a3b27l,0xd26231af1dc52l, 0x0771f9cc29606l }, 0 }, /* 109 */ { { 0x93e7785040739l,0xb98026a939999l,0x5f8fc2644539dl,0x718ecf40f6f2fl, 0x064427a310362l }, { 0xf2d8785428aa8l,0x3febfb49a84f4l,0x23d01ac7b7adcl,0x0d6d201b2c6dfl, 0x049d9b7496ae9l }, 0 }, /* 110 */ { { 0x8d8bc435d1099l,0x4e8e8d1a08cc7l,0xcb68a412adbcdl,0x544502c2e2a02l, 0x09037d81b3f60l }, { 0xbac27074c7b61l,0xab57bfd72e7cdl,0x96d5352fe2031l,0x639c61ccec965l, 0x008c3de6a7cc0l }, 0 }, /* 111 */ { { 0xdd020f6d552abl,0x9805cd81f120fl,0x135129156baffl,0x6b2f06fb7c3e9l, 0x0c69094424579l }, { 0x3ae9c41231bd1l,0x875cc5820517bl,0x9d6a1221eac6el,0x3ac0208837abfl, 0x03fa3db02cafel }, 0 }, /* 112 */ { { 0xa3e6505058880l,0xef643943f2d75l,0xab249257da365l,0x08ff4147861cfl, 0x0c5c4bdb0fdb8l }, { 0x13e34b272b56bl,0x9511b9043a735l,0x8844969c8327el,0xb6b5fd8ce37dfl, 0x02d56db9446c2l }, 0 }, /* 113 */ { { 0x1782fff46ac6bl,0x2607a2e425246l,0x9a48de1d19f79l,0xba42fafea3c40l, 0x00f56bd9de503l }, { 0xd4ed1345cda49l,0xfc816f299d137l,0xeb43402821158l,0xb5f1e7c6a54aal, 0x04003bb9d1173l }, 0 }, /* 114 */ { { 0xe8189a0803387l,0xf539cbd4043b8l,0x2877f21ece115l,0x2f9e4297208ddl, 0x053765522a07fl }, { 0x80a21a8a4182dl,0x7a3219df79a49l,0xa19a2d4a2bbd0l,0x4549674d0a2e1l, 0x07a056f586c5dl }, 0 }, /* 115 */ { { 0xb25589d8a2a47l,0x48c3df2773646l,0xbf0d5395b5829l,0x267551ec000eal, 0x077d482f17a1al }, { 0x1bd9587853948l,0xbd6cfbffeeb8al,0x0681e47a6f817l,0xb0e4ab6ec0578l, 0x04115012b2b38l }, 0 }, /* 116 */ { { 0x3f0f46de28cedl,0x609b13ec473c7l,0xe5c63921d5da7l,0x094661b8ce9e6l, 0x0cdf04572fbeal }, { 0x3c58b6c53c3b0l,0x10447b843c1cbl,0xcb9780e97fe3cl,0x3109fb2b8ae12l, 0x0ee703dda9738l }, 0 }, /* 117 */ { { 0x15140ff57e43al,0xd3b1b811b8345l,0xf42b986d44660l,0xce212b3b5dff8l, 0x02a0ad89da162l }, { 0x4a6946bc277bal,0x54c141c27664el,0xabf6274c788c9l,0x4659141aa64ccl, 0x0d62d0b67ac2bl }, 0 }, /* 118 */ { { 0x5d87b2c054ac4l,0x59f27df78839cl,0x18128d6570058l,0x2426edf7cbf3bl, 0x0b39a23f2991cl }, { 0x84a15f0b16ae5l,0xb1a136f51b952l,0x27007830c6a05l,0x4cc51d63c137fl, 0x004ed0092c067l }, 0 }, /* 119 */ { { 0x185d19ae90393l,0x294a3d64e61f4l,0x854fc143047b4l,0xc387ae0001a69l, 0x0a0a91fc10177l }, { 0xa3f01ae2c831el,0x822b727e16ff0l,0xa3075b4bb76ael,0x0c418f12c8a15l, 0x0084cf9889ed2l }, 0 }, /* 120 */ { { 0x509defca6becfl,0x807dffb328d98l,0x778e8b92fceael,0xf77e5d8a15c44l, 0x0d57955b273abl }, { 0xda79e31b5d4f1l,0x4b3cfa7a1c210l,0xc27c20baa52f0l,0x41f1d4d12089dl, 0x08e14ea4202d1l }, 0 }, /* 121 */ { { 0x50345f2897042l,0x1f43402c4aeedl,0x8bdfb218d0533l,0xd158c8d9c194cl, 0x0597e1a372aa4l }, { 0x7ec1acf0bd68cl,0xdcab024945032l,0x9fe3e846d4be0l,0x4dea5b9c8d7acl, 0x0ca3f0236199bl }, 0 }, /* 122 */ { { 0xa10b56170bd20l,0xf16d3f5de7592l,0x4b2ade20ea897l,0x07e4a3363ff14l, 0x0bde7fd7e309cl }, { 0xbb6d2b8f5432cl,0xcbe043444b516l,0x8f95b5a210dc1l,0xd1983db01e6ffl, 0x0b623ad0e0a7dl }, 0 }, /* 123 */ { { 0xbd67560c7b65bl,0x9023a4a289a75l,0x7b26795ab8c55l,0x137bf8220fd0dl, 0x0d6aa2e4658ecl }, { 0xbc00b5138bb85l,0x21d833a95c10al,0x702a32e8c31d1l,0x513ab24ff00b1l, 0x0111662e02dccl }, 0 }, /* 124 */ { { 0x14015efb42b87l,0x701b6c4dff781l,0x7d7c129bd9f5dl,0x50f866ecccd7al, 0x0db3ee1cb94b7l }, { 0xf3db0f34837cfl,0x8bb9578d4fb26l,0xc56657de7eed1l,0x6a595d2cdf937l, 0x0886a64425220l }, 0 }, /* 125 */ { { 0x34cfb65b569eal,0x41f72119c13c2l,0x15a619e200111l,0x17bc8badc85dal, 0x0a70cf4eb018al }, { 0xf97ae8c4a6a65l,0x270134378f224l,0xf7e096036e5cfl,0x7b77be3a609e4l, 0x0aa4772abd174l }, 0 }, /* 126 */ { { 0x761317aa60cc0l,0x610368115f676l,0xbc1bb5ac79163l,0xf974ded98bb4bl, 0x0611a6ddc30fal }, { 0x78cbcc15ee47al,0x824e0d96a530el,0xdd9ed882e8962l,0x9c8836f35adf3l, 0x05cfffaf81642l }, 0 }, /* 127 */ { { 0x54cff9b7a99cdl,0x9d843c45a1c0dl,0x2c739e17bf3b9l,0x994c038a908f6l, 0x06e5a6b237dc1l }, { 0xb454e0ba5db77l,0x7facf60d63ef8l,0x6608378b7b880l,0xabcce591c0c67l, 0x0481a238d242dl }, 0 }, /* 128 */ { { 0x17bc035d0b34al,0x6b8327c0a7e34l,0xc0362d1440b38l,0xf9438fb7262dal, 0x02c41114ce0cdl }, { 0x5cef1ad95a0b1l,0xa867d543622bal,0x1e486c9c09b37l,0x929726d6cdd20l, 0x020477abf42ffl }, 0 }, /* 129 */ { { 0x5173c18d65dbfl,0x0e339edad82f7l,0xcf1001c77bf94l,0x96b67022d26bdl, 0x0ac66409ac773l }, { 0xbb36fc6261cc3l,0xc9190e7e908b0l,0x45e6c10213f7bl,0x2f856541cebaal, 0x0ce8e6975cc12l }, 0 }, /* 130 */ { { 0x21b41bc0a67d2l,0x0a444d248a0f1l,0x59b473762d476l,0xb4a80e044f1d6l, 0x008fde365250bl }, { 0xec3da848bf287l,0x82d3369d6eacel,0x2449482c2a621l,0x6cd73582dfdc9l, 0x02f7e2fd2565dl }, 0 }, /* 131 */ { { 0xb92dbc3770fa7l,0x5c379043f9ae4l,0x7761171095e8dl,0x02ae54f34e9d1l, 0x0c65be92e9077l }, { 0x8a303f6fd0a40l,0xe3bcce784b275l,0xf9767bfe7d822l,0x3b3a7ae4f5854l, 0x04bff8e47d119l }, 0 }, /* 132 */ { { 0x1d21f00ff1480l,0x7d0754db16cd4l,0xbe0f3ea2ab8fbl,0x967dac81d2efbl, 0x03e4e4ae65772l }, { 0x8f36d3c5303e6l,0x4b922623977e1l,0x324c3c03bd999l,0x60289ed70e261l, 0x05388aefd58ecl }, 0 }, /* 133 */ { { 0x317eb5e5d7713l,0xee75de49daad1l,0x74fb26109b985l,0xbe0e32f5bc4fcl, 0x05cf908d14f75l }, { 0x435108e657b12l,0xa5b96ed9e6760l,0x970ccc2bfd421l,0x0ce20e29f51f8l, 0x0a698ba4060f0l }, 0 }, /* 134 */ { { 0xb1686ef748fecl,0xa27e9d2cf973dl,0xe265effe6e755l,0xad8d630b6544cl, 0x0b142ef8a7aebl }, { 0x1af9f17d5770al,0x672cb3412fad3l,0xf3359de66af3bl,0x50756bd60d1bdl, 0x0d1896a965851l }, 0 }, /* 135 */ { { 0x957ab33c41c08l,0xac5468e2e1ec5l,0xc472f6c87de94l,0xda3918816b73al, 0x0267b0e0b7981l }, { 0x54e5d8e62b988l,0x55116d21e76e5l,0xd2a6f99d8ddc7l,0x93934610faf03l, 0x0b54e287aa111l }, 0 }, /* 136 */ { { 0x122b5178a876bl,0xff085104b40a0l,0x4f29f7651ff96l,0xd4e6050b31ab1l, 0x084abb28b5f87l }, { 0xd439f8270790al,0x9d85e3f46bd5el,0xc1e22122d6cb5l,0x564075f55c1b6l, 0x0e5436f671765l }, 0 }, /* 137 */ { { 0x9025e2286e8d5l,0xb4864453be53fl,0x408e3a0353c95l,0xe99ed832f5bdel, 0x00404f68b5b9cl }, { 0x33bdea781e8e5l,0x18163c2f5bcadl,0x119caa33cdf50l,0xc701575769600l, 0x03a4263df0ac1l }, 0 }, /* 138 */ { { 0x65ecc9aeb596dl,0xe7023c92b4c29l,0xe01396101ea03l,0xa3674704b4b62l, 0x00ca8fd3f905el }, { 0x23a42551b2b61l,0x9c390fcd06925l,0x392a63e1eb7a8l,0x0c33e7f1d2be0l, 0x096dca2644ddbl }, 0 }, /* 139 */ { { 0xbb43a387510afl,0xa8a9a36a01203l,0xf950378846feal,0x59dcd23a57702l, 0x04363e2123aadl }, { 0x3a1c740246a47l,0xd2e55dd24dca4l,0xd8faf96b362b8l,0x98c4f9b086045l, 0x0840e115cd8bbl }, 0 }, /* 140 */ { { 0x205e21023e8a7l,0xcdd8dc7a0bf12l,0x63a5ddfc808a8l,0xd6d4e292a2721l, 0x05e0d6abd30del }, { 0x721c27cfc0f64l,0x1d0e55ed8807al,0xd1f9db242eec0l,0xa25a26a7bef91l, 0x07dea48f42945l }, 0 }, /* 141 */ { { 0xf6f1ce5060a81l,0x72f8f95615abdl,0x6ac268be79f9cl,0x16d1cfd36c540l, 0x0abc2a2beebfdl }, { 0x66f91d3e2eac7l,0x63d2dd04668acl,0x282d31b6f10bal,0xefc16790e3770l, 0x04ea353946c7el }, 0 }, /* 142 */ { { 0xa2f8d5266309dl,0xc081945a3eed8l,0x78c5dc10a51c6l,0xffc3cecaf45a5l, 0x03a76e6891c94l }, { 0xce8a47d7b0d0fl,0x968f584a5f9aal,0xe697fbe963acel,0x646451a30c724l, 0x08212a10a465el }, 0 }, /* 143 */ { { 0xc61c3cfab8caal,0x840e142390ef7l,0xe9733ca18eb8el,0xb164cd1dff677l, 0x0aa7cab71599cl }, { 0xc9273bc837bd1l,0xd0c36af5d702fl,0x423da49c06407l,0x17c317621292fl, 0x040e38073fe06l }, 0 }, /* 144 */ { { 0x80824a7bf9b7cl,0x203fbe30d0f4fl,0x7cf9ce3365d23l,0x5526bfbe53209l, 0x0e3604700b305l }, { 0xb99116cc6c2c7l,0x08ba4cbee64dcl,0x37ad9ec726837l,0xe15fdcded4346l, 0x06542d677a3del }, 0 }, /* 145 */ { { 0x2b6d07b6c377al,0x47903448be3f3l,0x0da8af76cb038l,0x6f21d6fdd3a82l, 0x0a6534aee09bbl }, { 0x1780d1035facfl,0x339dcb47e630al,0x447f39335e55al,0xef226ea50fe1cl, 0x0f3cb672fdc9al }, 0 }, /* 146 */ { { 0x719fe3b55fd83l,0x6c875ddd10eb3l,0x5cea784e0d7a4l,0x70e733ac9fa90l, 0x07cafaa2eaae8l }, { 0x14d041d53b338l,0xa0ef87e6c69b8l,0x1672b0fe0acc0l,0x522efb93d1081l, 0x00aab13c1b9bdl }, 0 }, /* 147 */ { { 0xce278d2681297l,0xb1b509546addcl,0x661aaf2cb350el,0x12e92dc431737l, 0x04b91a6028470l }, { 0xf109572f8ddcfl,0x1e9a911af4dcfl,0x372430e08ebf6l,0x1cab48f4360acl, 0x049534c537232l }, 0 }, /* 148 */ { { 0xf7d71f07b7e9dl,0xa313cd516f83dl,0xc047ee3a478efl,0xc5ee78ef264b6l, 0x0caf46c4fd65al }, { 0xd0c7792aa8266l,0x66913684bba04l,0xe4b16b0edf454l,0x770f56e65168al, 0x014ce9e5704c6l }, 0 }, /* 149 */ { { 0x45e3e965e8f91l,0xbacb0f2492994l,0x0c8a0a0d3aca1l,0x9a71d31cc70f9l, 0x01bb708a53e4cl }, { 0xa9e69558bdd7al,0x08018a26b1d5cl,0xc9cf1ec734a05l,0x0102b093aa714l, 0x0f9d126f2da30l }, 0 }, /* 150 */ { { 0xbca7aaff9563el,0xfeb49914a0749l,0xf5f1671dd077al,0xcc69e27a0311bl, 0x0807afcb9729el }, { 0xa9337c9b08b77l,0x85443c7e387f8l,0x76fd8ba86c3a7l,0xcd8c85fafa594l, 0x0751adcd16568l }, 0 }, /* 151 */ { { 0xa38b410715c0dl,0x718f7697f78ael,0x3fbf06dd113eal,0x743f665eab149l, 0x029ec44682537l }, { 0x4719cb50bebbcl,0xbfe45054223d9l,0xd2dedb1399ee5l,0x077d90cd5b3a8l, 0x0ff9370e392a4l }, 0 }, /* 152 */ { { 0x2d69bc6b75b65l,0xd5266651c559al,0xde9d7d24188f8l,0xd01a28a9f33e3l, 0x09776478ba2a9l }, { 0x2622d929af2c7l,0x6d4e690923885l,0x89a51e9334f5dl,0x82face6cc7e5al, 0x074a6313fac2fl }, 0 }, /* 153 */ { { 0x4dfddb75f079cl,0x9518e36fbbb2fl,0x7cd36dd85b07cl,0x863d1b6cfcf0el, 0x0ab75be150ff4l }, { 0x367c0173fc9b7l,0x20d2594fd081bl,0x4091236b90a74l,0x59f615fdbf03cl, 0x04ebeac2e0b44l }, 0 }, /* 154 */ { { 0xc5fe75c9f2c53l,0x118eae9411eb6l,0x95ac5d8d25220l,0xaffcc8887633fl, 0x0df99887b2c1bl }, { 0x8eed2850aaecbl,0x1b01d6a272bb7l,0x1cdbcac9d4918l,0x4058978dd511bl, 0x027b040a7779fl }, 0 }, /* 155 */ { { 0x05db7f73b2eb2l,0x088e1b2118904l,0x962327ee0df85l,0xa3f5501b71525l, 0x0b393dd37e4cfl }, { 0x30e7b3fd75165l,0xc2bcd33554a12l,0xf7b5022d66344l,0x34196c36f1be0l, 0x009588c12d046l }, 0 }, /* 156 */ { { 0x6093f02601c3bl,0xf8cf5c335fe08l,0x94aff28fb0252l,0x648b955cf2808l, 0x081c879a9db9fl }, { 0xe687cc6f56c51l,0x693f17618c040l,0x059353bfed471l,0x1bc444f88a419l, 0x0fa0d48f55fc1l }, 0 }, /* 157 */ { { 0xe1c9de1608e4dl,0x113582822cbc6l,0x57ec2d7010ddal,0x67d6f6b7ddc11l, 0x08ea0e156b6a3l }, { 0x4e02f2383b3b4l,0x943f01f53ca35l,0xde03ca569966bl,0xb5ac4ff6632b2l, 0x03f5ab924fa00l }, 0 }, /* 158 */ { { 0xbb0d959739efbl,0xf4e7ebec0d337l,0x11a67d1c751b0l,0x256e2da52dd64l, 0x08bc768872b74l }, { 0xe3b7282d3d253l,0xa1f58d779fa5bl,0x16767bba9f679l,0xf34fa1cac168el, 0x0b386f19060fcl }, 0 }, /* 159 */ { { 0x3c1352fedcfc2l,0x6262f8af0d31fl,0x57288c25396bfl,0x9c4d9a02b4eael, 0x04cb460f71b06l }, { 0x7b4d35b8095eal,0x596fc07603ae6l,0x614a16592bbf8l,0x5223e1475f66bl, 0x052c0d50895efl }, 0 }, /* 160 */ { { 0xc210e15339848l,0xe870778c8d231l,0x956e170e87a28l,0x9c0b9d1de6616l, 0x04ac3c9382bb0l }, { 0xe05516998987dl,0xc4ae09f4d619bl,0xa3f933d8b2376l,0x05f41de0b7651l, 0x0380d94c7e397l }, 0 }, /* 161 */ { { 0x355aa81542e75l,0xa1ee01b9b701al,0x24d708796c724l,0x37af6b3a29776l, 0x02ce3e171de26l }, { 0xfeb49f5d5bc1al,0x7e2777e2b5cfel,0x513756ca65560l,0x4e4d4feaac2f9l, 0x02e6cd8520b62l }, 0 }, /* 162 */ { { 0x5954b8c31c31dl,0x005bf21a0c368l,0x5c79ec968533dl,0x9d540bd7626e7l, 0x0ca17754742c6l }, { 0xedafff6d2dbb2l,0xbd174a9d18cc6l,0xa4578e8fd0d8cl,0x2ce6875e8793al, 0x0a976a7139cabl }, 0 }, /* 163 */ { { 0x51f1b93fb353dl,0x8b57fcfa720a6l,0x1b15281d75cabl,0x4999aa88cfa73l, 0x08720a7170a1fl }, { 0xe8d37693e1b90l,0x0b16f6dfc38c3l,0x52a8742d345dcl,0x893c8ea8d00abl, 0x09719ef29c769l }, 0 }, /* 164 */ { { 0xeed8d58e35909l,0xdc33ddc116820l,0xe2050269366d8l,0x04c1d7f999d06l, 0x0a5072976e157l }, { 0xa37eac4e70b2el,0x576890aa8a002l,0x45b2a5c84dcf6l,0x7725cd71bf186l, 0x099389c9df7b7l }, 0 }, /* 165 */ { { 0xc08f27ada7a4bl,0x03fd389366238l,0x66f512c3abe9dl,0x82e46b672e897l, 0x0a88806aa202cl }, { 0x2044ad380184el,0xc4126a8b85660l,0xd844f17a8cb78l,0xdcfe79d670c0al, 0x00043bffb4738l }, 0 }, /* 166 */ { { 0x9b5dc36d5192el,0xd34590b2af8d5l,0x1601781acf885l,0x486683566d0a1l, 0x052f3ef01ba6cl }, { 0x6732a0edcb64dl,0x238068379f398l,0x040f3090a482cl,0x7e7516cbe5fa7l, 0x03296bd899ef2l }, 0 }, /* 167 */ { { 0xaba89454d81d7l,0xef51eb9b3c476l,0x1c579869eade7l,0x71e9619a21cd8l, 0x03b90febfaee5l }, { 0x3023e5496f7cbl,0xd87fb51bc4939l,0x9beb5ce55be41l,0x0b1803f1dd489l, 0x06e88069d9f81l }, 0 }, /* 168 */ { { 0x7ab11b43ea1dbl,0xa95259d292ce3l,0xf84f1860a7ff1l,0xad13851b02218l, 0x0a7222beadefal }, { 0xc78ec2b0a9144l,0x51f2fa59c5a2al,0x147ce385a0240l,0xc69091d1eca56l, 0x0be94d523bc2al }, 0 }, /* 169 */ { { 0x4945e0b226ce7l,0x47967e8b7072fl,0x5a6c63eb8afd7l,0xc766edea46f18l, 0x07782defe9be8l }, { 0xd2aa43db38626l,0x8776f67ad1760l,0x4499cdb460ae7l,0x2e4b341b86fc5l, 0x003838567a289l }, 0 }, /* 170 */ { { 0xdaefd79ec1a0fl,0xfdceb39c972d8l,0x8f61a953bbcd6l,0xb420f5575ffc5l, 0x0dbd986c4adf7l }, { 0xa881415f39eb7l,0xf5b98d976c81al,0xf2f717d6ee2fcl,0xbbd05465475dcl, 0x08e24d3c46860l }, 0 }, /* 171 */ { { 0xd8e549a587390l,0x4f0cbec588749l,0x25983c612bb19l,0xafc846e07da4bl, 0x0541a99c4407bl }, { 0x41692624c8842l,0x2ad86c05ffdb2l,0xf7fcf626044c1l,0x35d1c59d14b44l, 0x0c0092c49f57dl }, 0 }, /* 172 */ { { 0xc75c3df2e61efl,0xc82e1b35cad3cl,0x09f29f47e8841l,0x944dc62d30d19l, 0x075e406347286l }, { 0x41fc5bbc237d0l,0xf0ec4f01c9e7dl,0x82bd534c9537bl,0x858691c51a162l, 0x05b7cb658c784l }, 0 }, /* 173 */ { { 0xa70848a28ead1l,0x08fd3b47f6964l,0x67e5b39802dc5l,0x97a19ae4bfd17l, 0x07ae13eba8df0l }, { 0x16ef8eadd384el,0xd9b6b2ff06fd2l,0xbcdb5f30361a2l,0xe3fd204b98784l, 0x0787d8074e2a8l }, 0 }, /* 174 */ { { 0x25d6b757fbb1cl,0xb2ca201debc5el,0xd2233ffe47bddl,0x84844a55e9a36l, 0x05c2228199ef2l }, { 0xd4a8588315250l,0x2b827097c1773l,0xef5d33f21b21al,0xf2b0ab7c4ea1dl, 0x0e45d37abbaf0l }, 0 }, /* 175 */ { { 0xf1e3428511c8al,0xc8bdca6cd3d2dl,0x27c39a7ebb229l,0xb9d3578a71a76l, 0x0ed7bc12284dfl }, { 0x2a6df93dea561l,0x8dd48f0ed1cf2l,0xbad23e85443f1l,0x6d27d8b861405l, 0x0aac97cc945cal }, 0 }, /* 176 */ { { 0x4ea74a16bd00al,0xadf5c0bcc1eb5l,0xf9bfc06d839e9l,0xdc4e092bb7f11l, 0x0318f97b31163l }, { 0x0c5bec30d7138l,0x23abc30220eccl,0x022360644e8dfl,0xff4d2bb7972fbl, 0x0fa41faa19a84l }, 0 }, /* 177 */ { { 0x2d974a6642269l,0xce9bb783bd440l,0x941e60bc81814l,0xe9e2398d38e47l, 0x038bb6b2c1d26l }, { 0xe4a256a577f87l,0x53dc11fe1cc64l,0x22807288b52d2l,0x01a5ff336abf6l, 0x094dd0905ce76l }, 0 }, /* 178 */ { { 0xcf7dcde93f92al,0xcb89b5f315156l,0x995e750a01333l,0x2ae902404df9cl, 0x092077867d25cl }, { 0x71e010bf39d44l,0x2096bb53d7e24l,0xc9c3d8f5f2c90l,0xeb514c44b7b35l, 0x081e8428bd29bl }, 0 }, /* 179 */ { { 0x9c2bac477199fl,0xee6b5ecdd96ddl,0xe40fd0e8cb8eel,0xa4b18af7db3fel, 0x01b94ab62dbbfl }, { 0x0d8b3ce47f143l,0xfc63f4616344fl,0xc59938351e623l,0x90eef18f270fcl, 0x006a38e280555l }, 0 }, /* 180 */ { { 0xb0139b3355b49l,0x60b4ebf99b2e5l,0x269f3dc20e265l,0xd4f8c08ffa6bdl, 0x0a7b36c2083d9l }, { 0x15c3a1b3e8830l,0xe1a89f9c0b64dl,0x2d16930d5fceal,0x2a20cfeee4a2el, 0x0be54c6b4a282l }, 0 }, /* 181 */ { { 0xdb3df8d91167cl,0x79e7a6625ed6cl,0x46ac7f4517c3fl,0x22bb7105648f3l, 0x0bf30a5abeae0l }, { 0x785be93828a68l,0x327f3ef0368e7l,0x92146b25161c3l,0xd13ae11b5feb5l, 0x0d1c820de2732l }, 0 }, /* 182 */ { { 0xe13479038b363l,0x546b05e519043l,0x026cad158c11fl,0x8da34fe57abe6l, 0x0b7d17bed68a1l }, { 0xa5891e29c2559l,0x765bfffd8444cl,0x4e469484f7a03l,0xcc64498de4af7l, 0x03997fd5e6412l }, 0 }, /* 183 */ { { 0x746828bd61507l,0xd534a64d2af20l,0xa8a15e329e132l,0x13e8ffeddfb08l, 0x00eeb89293c6cl }, { 0x69a3ea7e259f8l,0xe6d13e7e67e9bl,0xd1fa685ce1db7l,0xb6ef277318f6al, 0x0228916f8c922l }, 0 }, /* 184 */ { { 0xae25b0a12ab5bl,0x1f957bc136959l,0x16e2b0ccc1117l,0x097e8058429edl, 0x0ec05ad1d6e93l }, { 0xba5beac3f3708l,0x3530b59d77157l,0x18234e531baf9l,0x1b3747b552371l, 0x07d3141567ff1l }, 0 }, /* 185 */ { { 0x9c05cf6dfefabl,0x68dcb377077bdl,0xa38bb95be2f22l,0xd7a3e53ead973l, 0x0e9ce66fc9bc1l }, { 0xa15766f6a02a1l,0xdf60e600ed75al,0x8cdc1b938c087l,0x0651f8947f346l, 0x0d9650b017228l }, 0 }, /* 186 */ { { 0xb4c4a5a057e60l,0xbe8def25e4504l,0x7c1ccbdcbccc3l,0xb7a2a63532081l, 0x014d6699a804el }, { 0xa8415db1f411al,0x0bf80d769c2c8l,0xc2f77ad09fbafl,0x598ab4deef901l, 0x06f4c68410d43l }, 0 }, /* 187 */ { { 0x6df4e96c24a96l,0x85fcbd99a3872l,0xb2ae30a534dbcl,0x9abb3c466ef28l, 0x04c4350fd6118l }, { 0x7f716f855b8dal,0x94463c38a1296l,0xae9334341a423l,0x18b5c37e1413el, 0x0a726d2425a31l }, 0 }, /* 188 */ { { 0x6b3ee948c1086l,0x3dcbd3a2e1dael,0x3d022f3f1de50l,0xf3923f35ed3f0l, 0x013639e82cc6cl }, { 0x938fbcdafaa86l,0xfb2654a2589acl,0x5051329f45bc5l,0x35a31963b26e4l, 0x0ca9365e1c1a3l }, 0 }, /* 189 */ { { 0x5ac754c3b2d20l,0x17904e241b361l,0xc9d071d742a54l,0x72a5b08521c4cl, 0x09ce29c34970bl }, { 0x81f736d3e0ad6l,0x9ef2f8434c8ccl,0xce862d98060dal,0xaf9835ed1d1a6l, 0x048c4abd7ab42l }, 0 }, /* 190 */ { { 0x1b0cc40c7485al,0xbbe5274dbfd22l,0x263d2e8ead455l,0x33cb493c76989l, 0x078017c32f67bl }, { 0x35769930cb5eel,0x940c408ed2b9dl,0x72f1a4dc0d14el,0x1c04f8b7bf552l, 0x053cd0454de5cl }, 0 }, /* 191 */ { { 0x585fa5d28ccacl,0x56005b746ebcdl,0xd0123aa5f823el,0xfa8f7c79f0a1cl, 0x0eea465c1d3d7l }, { 0x0659f0551803bl,0x9f7ce6af70781l,0x9288e706c0b59l,0x91934195a7702l, 0x01b6e42a47ae6l }, 0 }, /* 192 */ { { 0x0937cf67d04c3l,0xe289eeb8112e8l,0x2594d601e312bl,0xbd3d56b5d8879l, 0x00224da14187fl }, { 0xbb8630c5fe36fl,0x604ef51f5f87al,0x3b429ec580f3cl,0xff33964fb1bfbl, 0x060838ef042bfl }, 0 }, /* 193 */ { { 0xcb2f27e0bbe99l,0xf304aa39ee432l,0xfa939037bda44l,0x16435f497c7a9l, 0x0636eb2022d33l }, { 0xd0e6193ae00aal,0xfe31ae6d2ffcfl,0xf93901c875a00l,0x8bacf43658a29l, 0x08844eeb63921l }, 0 }, /* 194 */ { { 0x171d26b3bae58l,0x7117e39f3e114l,0x1a8eada7db3dfl,0x789ecd37bc7f8l, 0x027ba83dc51fbl }, { 0xf439ffbf54de5l,0x0bb5fe1a71a7dl,0xb297a48727703l,0xa4ab42ee8e35dl, 0x0adb62d3487f3l }, 0 }, /* 195 */ { { 0x168a2a175df2al,0x4f618c32e99b1l,0x46b0916082aa0l,0xc8b2c9e4f2e71l, 0x0b990fd7675e7l }, { 0x9d96b4df37313l,0x79d0b40789082l,0x80877111c2055l,0xd18d66c9ae4a7l, 0x081707ef94d10l }, 0 }, /* 196 */ { { 0x7cab203d6ff96l,0xfc0d84336097dl,0x042db4b5b851bl,0xaa5c268823c4dl, 0x03792daead5a8l }, { 0x18865941afa0bl,0x4142d83671528l,0xbe4e0a7f3e9e7l,0x01ba17c825275l, 0x05abd635e94b0l }, 0 }, /* 197 */ { { 0xfa84e0ac4927cl,0x35a7c8cf23727l,0xadca0dfe38860l,0xb610a4bcd5ea4l, 0x05995bf21846al }, { 0xf860b829dfa33l,0xae958fc18be90l,0x8630366caafe2l,0x411e9b3baf447l, 0x044c32ca2d483l }, 0 }, /* 198 */ { { 0xa97f1e40ed80cl,0xb131d2ca82a74l,0xc2d6ad95f938cl,0xa54c53f2124b7l, 0x01f2162fb8082l }, { 0x67cc5720b173el,0x66085f12f97e4l,0xc9d65dc40e8a6l,0x07c98cebc20e4l, 0x08f1d402bc3e9l }, 0 }, /* 199 */ { { 0x92f9cfbc4058al,0xb6292f56704f5l,0xc1d8c57b15e14l,0xdbf9c55cfe37bl, 0x0b1980f43926el }, { 0x33e0932c76b09l,0x9d33b07f7898cl,0x63bb4611df527l,0x8e456f08ead48l, 0x02828ad9b3744l }, 0 }, /* 200 */ { { 0x722c4c4cf4ac5l,0x3fdde64afb696l,0x0890832f5ac1al,0xb3900551baa2el, 0x04973f1275a14l }, { 0xd8335322eac5dl,0xf50bd9b568e59l,0x25883935e07eel,0x8ac7ab36720fal, 0x06dac8ed0db16l }, 0 }, /* 201 */ { { 0x545aeeda835efl,0xd21d10ed51f7bl,0x3741b094aa113l,0xde4c035a65e01l, 0x04b23ef5920b9l }, { 0xbb6803c4c7341l,0x6d3f58bc37e82l,0x51e3ee8d45770l,0x9a4e73527863al, 0x04dd71534ddf4l }, 0 }, /* 202 */ { { 0x4467295476cd9l,0x2fe31a725bbf9l,0xc4b67e0648d07l,0x4dbb1441c8b8fl, 0x0fd3170002f4al }, { 0x43ff48995d0e1l,0xd10ef729aa1cbl,0x179898276e695l,0xf365e0d5f9764l, 0x014fac58c9569l }, 0 }, /* 203 */ { { 0xa0065f312ae18l,0xc0fcc93fc9ad9l,0xa7d284651958dl,0xda50d9a142408l, 0x0ed7c765136abl }, { 0x70f1a25d4abbcl,0xf3f1a113ea462l,0xb51952f9b5dd8l,0x9f53c609b0755l, 0x0fefcb7f74d2el }, 0 }, /* 204 */ { { 0x9497aba119185l,0x30aac45ba4bd0l,0xa521179d54e8cl,0xd80b492479deal, 0x01801a57e87e0l }, { 0xd3f8dfcafffb0l,0x0bae255240073l,0xb5fdfbc6cf33cl,0x1064781d763b5l, 0x09f8fc11e1eadl }, 0 }, /* 205 */ { { 0x3a1715e69544cl,0x67f04b7813158l,0x78a4c320eaf85l,0x69a91e22a8fd2l, 0x0a9d3809d3d3al }, { 0xc2c2c59a2da3bl,0xf61895c847936l,0x3d5086938ccbcl,0x8ef75e65244e6l, 0x03006b9aee117l }, 0 }, /* 206 */ { { 0x1f2b0c9eead28l,0x5d89f4dfbc0bbl,0x2ce89397eef63l,0xf761074757fdbl, 0x00ab85fd745f8l }, { 0xa7c933e5b4549l,0x5c97922f21ecdl,0x43b80404be2bbl,0x42c2261a1274bl, 0x0b122d67511e9l }, 0 }, /* 207 */ { { 0x607be66a5ae7al,0xfa76adcbe33bel,0xeb6e5c501e703l,0xbaecaf9043014l, 0x09f599dc1097dl }, { 0x5b7180ff250edl,0x74349a20dc6d7l,0x0b227a38eb915l,0x4b78425605a41l, 0x07d5528e08a29l }, 0 }, /* 208 */ { { 0x58f6620c26defl,0xea582b2d1ef0fl,0x1ce3881025585l,0x1730fbe7d79b0l, 0x028ccea01303fl }, { 0xabcd179644ba5l,0xe806fff0b8d1dl,0x6b3e17b1fc643l,0x13bfa60a76fc6l, 0x0c18baf48a1d0l }, 0 }, /* 209 */ { { 0x638c85dc4216dl,0x67206142ac34el,0x5f5064a00c010l,0x596bd453a1719l, 0x09def809db7a9l }, { 0x8642e67ab8d2cl,0x336237a2b641el,0x4c4218bb42404l,0x8ce57d506a6d6l, 0x00357f8b06880l }, 0 }, /* 210 */ { { 0xdbe644cd2cc88l,0x8df0b8f39d8e9l,0xd30a0c8cc61c2l,0x98874a309874cl, 0x0e4a01add1b48l }, { 0x1eeacf57cd8f9l,0x3ebd594c482edl,0xbd2f7871b767dl,0xcc30a7295c717l, 0x0466d7d79ce10l }, 0 }, /* 211 */ { { 0x318929dada2c7l,0xc38f9aa27d47dl,0x20a59e14fa0a6l,0xad1a90e4fd288l, 0x0c672a522451el }, { 0x07cc85d86b655l,0x3bf9ad4af1306l,0x71172a6f0235dl,0x751399a086805l, 0x05e3d64faf2a6l }, 0 }, /* 212 */ { { 0x410c79b3b4416l,0x85eab26d99aa6l,0xb656a74cd8fcfl,0x42fc5ebff74adl, 0x06c8a7a95eb8el }, { 0x60ba7b02a63bdl,0x038b8f004710cl,0x12d90b06b2f23l,0xca918c6c37383l, 0x0348ae422ad82l }, 0 }, /* 213 */ { { 0x746635ccda2fbl,0xa18e0726d27f4l,0x92b1f2022accal,0x2d2e85adf7824l, 0x0c1074de0d9efl }, { 0x3ce44ae9a65b3l,0xac05d7151bfcfl,0xe6a9788fd71e4l,0x4ffcd4711f50cl, 0x0fbadfbdbc9e5l }, 0 }, /* 214 */ { { 0x3f1cd20a99363l,0x8f6cf22775171l,0x4d359b2b91565l,0x6fcd968175cd2l, 0x0b7f976b48371l }, { 0x8e24d5d6dbf74l,0xfd71c3af36575l,0x243dfe38d23bal,0xc80548f477600l, 0x0f4d41b2ecafcl }, 0 }, /* 215 */ { { 0x1cf28fdabd48dl,0x3632c078a451fl,0x17146e9ce81bel,0x0f106ace29741l, 0x0180824eae016l }, { 0x7698b66e58358l,0x52ce6ca358038l,0xe41e6c5635687l,0x6d2582380e345l, 0x067e5f63983cfl }, 0 }, /* 216 */ { { 0xccb8dcf4899efl,0xf09ebb44c0f89l,0x2598ec9949015l,0x1fc6546f9276bl, 0x09fef789a04c1l }, { 0x67ecf53d2a071l,0x7fa4519b096d3l,0x11e2eefb10e1al,0x4e20ca6b3fb06l, 0x0bc80c181a99cl }, 0 }, /* 217 */ { { 0x536f8e5eb82e6l,0xc7f56cb920972l,0x0b5da5e1a484fl,0xdf10c78e21715l, 0x049270e629f8cl }, { 0x9b7bbea6b50adl,0xc1a2388ffc1a3l,0x107197b9a0284l,0x2f7f5403eb178l, 0x0d2ee52f96137l }, 0 }, /* 218 */ { { 0xcd28588e0362al,0xa78fa5d94dd37l,0x434a526442fa8l,0xb733aff836e5al, 0x0dfb478bee5abl }, { 0xf1ce7673eede6l,0xd42b5b2f04a91l,0x530da2fa5390al,0x473a5e66f7bf5l, 0x0d9a140b408dfl }, 0 }, /* 219 */ { { 0x221b56e8ea498l,0x293563ee090e0l,0x35d2ade623478l,0x4b1ae06b83913l, 0x0760c058d623fl }, { 0x9b58cc198aa79l,0xd2f07aba7f0b8l,0xde2556af74890l,0x04094e204110fl, 0x07141982d8f19l }, 0 }, /* 220 */ { { 0xa0e334d4b0f45l,0x38392a94e16f0l,0x3c61d5ed9280bl,0x4e473af324c6bl, 0x03af9d1ce89d5l }, { 0xf798120930371l,0x4c21c17097fd8l,0xc42309beda266l,0x7dd60e9545dcdl, 0x0b1f815c37395l }, 0 }, /* 221 */ { { 0xaa78e89fec44al,0x473caa4caf84fl,0x1b6a624c8c2ael,0xf052691c807dcl, 0x0a41aed141543l }, { 0x353997d5ffe04l,0xdf625b6e20424l,0x78177758bacb2l,0x60ef85d660be8l, 0x0d6e9c1dd86fbl }, 0 }, /* 222 */ { { 0x2e97ec6853264l,0xb7e2304a0b3aal,0x8eae9be771533l,0xf8c21b912bb7bl, 0x09c9c6e10ae9bl }, { 0x09a59e030b74cl,0x4d6a631e90a23l,0x49b79f24ed749l,0x61b689f44b23al, 0x0566bd59640fal }, 0 }, /* 223 */ { { 0xc0118c18061f3l,0xd37c83fc70066l,0x7273245190b25l,0x345ef05fc8e02l, 0x0cf2c7390f525l }, { 0xbceb410eb30cfl,0xba0d77703aa09l,0x50ff255cfd2ebl,0x0979e842c43a1l, 0x002f517558aa2l }, 0 }, /* 224 */ { { 0xef794addb7d07l,0x4224455500396l,0x78aa3ce0b4fc7l,0xd97dfaff8eaccl, 0x014e9ada5e8d4l }, { 0x480a12f7079e2l,0xcde4b0800edaal,0x838157d45baa3l,0x9ae801765e2d7l, 0x0a0ad4fab8e9dl }, 0 }, /* 225 */ { { 0xb76214a653618l,0x3c31eaaa5f0bfl,0x4949d5e187281l,0xed1e1553e7374l, 0x0bcd530b86e56l }, { 0xbe85332e9c47bl,0xfeb50059ab169l,0x92bfbb4dc2776l,0x341dcdba97611l, 0x0909283cf6979l }, 0 }, /* 226 */ { { 0x0032476e81a13l,0x996217123967bl,0x32e19d69bee1al,0x549a08ed361bdl, 0x035eeb7c9ace1l }, { 0x0ae5a7e4e5bdcl,0xd3b6ceec6e128l,0xe266bc12dcd2cl,0xe86452e4224c6l, 0x09a8b2cf4448al }, 0 }, /* 227 */ { { 0x71bf209d03b59l,0xa3b65af2abf64l,0xbd5eec9c90e62l,0x1379ff7ff168el, 0x06bdb60f4d449l }, { 0xafebc8a55bc30l,0x1610097fe0dadl,0xc1e3bddc79eadl,0x08a942e197414l, 0x001ec3cfd94bal }, 0 }, /* 228 */ { { 0x277ebdc9485c2l,0x7922fb10c7ba6l,0x0a28d8a48cc9al,0x64f64f61d60f7l, 0x0d1acb1c04754l }, { 0x902b126f36612l,0x4ee0618d8bd26l,0x08357ee59c3a4l,0x26c24df8a8133l, 0x07dcd079d4056l }, 0 }, /* 229 */ { { 0x7d4d3f05a4b48l,0x52372307725cel,0x12a915aadcd29l,0x19b8d18f79718l, 0x00bf53589377dl }, { 0xcd95a6c68ea73l,0xca823a584d35el,0x473a723c7f3bbl,0x86fc9fb674c6fl, 0x0d28be4d9e166l }, 0 }, /* 230 */ { { 0xb990638fa8e4bl,0x6e893fd8fc5d2l,0x36fb6fc559f18l,0x88ce3a6de2aa4l, 0x0d76007aa510fl }, { 0x0aab6523a4988l,0x4474dd02732d1l,0x3407278b455cfl,0xbb017f467082al, 0x0f2b52f68b303l }, 0 }, /* 231 */ { { 0x7eafa9835b4cal,0xfcbb669cbc0d5l,0x66431982d2232l,0xed3a8eeeb680cl, 0x0d8dbe98ecc5al }, { 0x9be3fc5a02709l,0xe5f5ba1fa8cbal,0x10ea85230be68l,0x9705febd43cdfl, 0x0e01593a3ee55l }, 0 }, /* 232 */ { { 0x5af50ea75a0a6l,0xac57858033d3el,0x0176406512226l,0xef066fe6d50fdl, 0x0afec07b1aeb8l }, { 0x9956780bb0a31l,0xcc37309aae7fbl,0x1abf3896f1af3l,0xbfdd9153a15a0l, 0x0a71b93546e2dl }, 0 }, /* 233 */ { { 0xe12e018f593d2l,0x28a078122bbf8l,0xba4f2add1a904l,0x23d9150505db0l, 0x053a2005c6285l }, { 0x8b639e7f2b935l,0x5ac182961a07cl,0x518ca2c2bff97l,0x8e3d86bceea77l, 0x0bf47d19b3d58l }, 0 }, /* 234 */ { { 0x967a7dd7665d5l,0x572f2f4de5672l,0x0d4903f4e3030l,0xa1b6144005ae8l, 0x0001c2c7f39c9l }, { 0xa801469efc6d6l,0xaa7bc7a724143l,0x78150a4c810bdl,0xb99b5f65670bal, 0x0fdadf8e786ffl }, 0 }, /* 235 */ { { 0x8cb88ffc00785l,0x913b48eb67fd3l,0xf368fbc77fa75l,0x3c940454d055bl, 0x03a838e4d5aa4l }, { 0x663293e97bb9al,0x63441d94d9561l,0xadb2a839eb933l,0x1da3515591a60l, 0x03cdb8257873el }, 0 }, /* 236 */ { { 0x140a97de77eabl,0x0d41648109137l,0xeb1d0dff7e1c5l,0x7fba762dcad2cl, 0x05a60cc89f1f5l }, { 0x3638240d45673l,0x195913c65580bl,0xd64b7411b82bel,0x8fc0057284b8dl, 0x0922ff56fdbfdl }, 0 }, /* 237 */ { { 0x65deec9a129a1l,0x57cc284e041b2l,0xebfbe3ca5b1cel,0xcd6204380c46cl, 0x072919a7df6c5l }, { 0xf453a8fb90f9al,0x0b88e4031b298l,0x96f1856d719c0l,0x089ae32c0e777l, 0x05e7917803624l }, 0 }, /* 238 */ { { 0x6ec557f63cdfbl,0x71f1cae4fd5c1l,0x60597ca8e6a35l,0x2fabfce26bea5l, 0x04e0a5371e24cl }, { 0xa40d3a5765357l,0x440d73a2b4276l,0x1d11a323c89afl,0x04eeb8f370ae4l, 0x0f5ff7818d566l }, 0 }, /* 239 */ { { 0x3e3fe1a09df21l,0x8ee66e8e47fbfl,0x9c8901526d5d2l,0x5e642096bd0a2l, 0x0e41df0e9533fl }, { 0xfda40b3ba9e3fl,0xeb2604d895305l,0xf0367c7f2340cl,0x155f0866e1927l, 0x08edd7d6eac4fl }, 0 }, /* 240 */ { { 0x1dc0e0bfc8ff3l,0x2be936f42fc9al,0xca381ef14efd8l,0xee9667016f7ccl, 0x01432c1caed8al }, { 0x8482970b23c26l,0x730735b273ec6l,0xaef0f5aa64fe8l,0xd2c6e389f6e5el, 0x0caef480b5ac8l }, 0 }, /* 241 */ { { 0x5c97875315922l,0x713063cca5524l,0x64ef2cbd82951l,0xe236f3ce60d0bl, 0x0d0ba177e8efal }, { 0x9ae8fb1b3af60l,0xe53d2da20e53al,0xf9eef281a796al,0xae1601d63605dl, 0x0f31c957c1c54l }, 0 }, /* 242 */ { { 0x58d5249cc4597l,0xb0bae0a028c0fl,0x34a814adc5015l,0x7c3aefc5fc557l, 0x0013404cb96e1l }, { 0xe2585c9a824bfl,0x5e001eaed7b29l,0x1ef68acd59318l,0x3e6c8d6ee6826l, 0x06f377c4b9193l }, 0 }, /* 243 */ { { 0x3bad1a8333fd2l,0x025a2a95b89f9l,0xaf75acea89302l,0x9506211e5037el, 0x06dba3e4ed2d0l }, { 0xef98cd04399cdl,0x6ee6b73adea48l,0x17ecaf31811c6l,0xf4a772f60752cl, 0x0f13cf3423becl }, 0 }, /* 244 */ { { 0xb9ec0a919e2ebl,0x95f62c0f68ceel,0xaba229983a9a1l,0xbad3cfba3bb67l, 0x0c83fa9a9274bl }, { 0xd1b0b62fa1ce0l,0xf53418efbf0d7l,0x2706f04e58b60l,0x2683bfa8ef9e5l, 0x0b49d70f45d70l }, 0 }, /* 245 */ { { 0xc7510fad5513bl,0xecb1751e2d914l,0x9fb9d5905f32el,0xf1cf6d850418dl, 0x059cfadbb0c30l }, { 0x7ac2355cb7fd6l,0xb8820426a3e16l,0x0a78864249367l,0x4b67eaeec58c9l, 0x05babf362354al }, 0 }, /* 246 */ { { 0x981d1ee424865l,0x78f2e5577f37cl,0x9e0c0588b0028l,0xc8f0702970f1bl, 0x06188c6a79026l }, { 0x9a19bd0f244dal,0x5cfb08087306fl,0xf2136371eccedl,0xb9d935470f9b9l, 0x0993fe475df50l }, 0 }, /* 247 */ { { 0x31cdf9b2c3609l,0xc02c46d4ea68el,0xa77510184eb19l,0x616b7ac9ec1a9l, 0x081f764664c80l }, { 0xc2a5a75fbe978l,0xd3f183b3561d7l,0x01dd2bf6743fel,0x060d838d1f045l, 0x0564a812a5fe9l }, 0 }, /* 248 */ { { 0xa64f4fa817d1dl,0x44bea82e0f7a5l,0xd57f9aa55f968l,0x1d6cb5ff5a0fcl, 0x0226bf3cf00e5l }, { 0x1a9f92f2833cfl,0x5a4f4f89a8d6dl,0xf3f7f7720a0a3l,0x783611536c498l, 0x068779f47ff25l }, 0 }, /* 249 */ { { 0x0c1c173043d08l,0x741fc020fa79bl,0xa6d26d0a54467l,0x2e0bd3767e289l, 0x097bcb0d1eb09l }, { 0x6eaa8f32ed3c3l,0x51b281bc482abl,0xfa178f3c8a4f1l,0x46554d1bf4f3bl, 0x0a872ffe80a78l }, 0 }, /* 250 */ { { 0xb7935a32b2086l,0x0e8160f486b1al,0xb6ae6bee1eb71l,0xa36a9bd0cd913l, 0x002812bfcb732l }, { 0xfd7cacf605318l,0x50fdfd6d1da63l,0x102d619646e5dl,0x96afa1d683982l, 0x007391cc9fe53l }, 0 }, /* 251 */ { { 0x157f08b80d02bl,0xd162877f7fc50l,0x8d542ae6b8333l,0x2a087aca1af87l, 0x0355d2adc7e6dl }, { 0xf335a287386e1l,0x94f8e43275b41l,0x79989eafd272al,0x3a79286ca2cdel, 0x03dc2b1e37c2al }, 0 }, /* 252 */ { { 0x9d21c04581352l,0x25376782bed68l,0xfed701f0a00c8l,0x846b203bd5909l, 0x0c47869103ccdl }, { 0xa770824c768edl,0x026841f6575dbl,0xaccce0e72feeal,0x4d3273313ed56l, 0x0ccc42968d5bbl }, 0 }, /* 253 */ { { 0x50de13d7620b9l,0x8a5992a56a94el,0x75487c9d89a5cl,0x71cfdc0076406l, 0x0e147eb42aa48l }, { 0xab4eeacf3ae46l,0xfb50350fbe274l,0x8c840eafd4936l,0x96e3df2afe474l, 0x0239ac047080el }, 0 }, /* 254 */ { { 0xd1f352bfee8d4l,0xcffa7b0fec481l,0xce9af3cce80b5l,0xe59d105c4c9e2l, 0x0c55fa1a3f5f7l }, { 0x6f14e8257c227l,0x3f342be00b318l,0xa904fb2c5b165l,0xb69909afc998al, 0x0094cd99cd4f4l }, 0 }, /* 255 */ { { 0x81c84d703bebal,0x5032ceb2918a9l,0x3bd49ec8631d1l,0xad33a445f2c9el, 0x0b90a30b642abl }, { 0x5404fb4a5abf9l,0xc375db7603b46l,0xa35d89f004750l,0x24f76f9a42cccl, 0x0019f8b9a1b79l }, 0 }, }; /* Multiply the base point of P256 by the scalar and return the result. * If map is true then convert result to affine co-ordinates. * * r Resulting point. * k Scalar to multiply by. * map Indicates whether to convert result to affine. * heap Heap to use for allocation. * returns MEMORY_E when memory allocation fails and MP_OKAY on success. */ static int sp_256_ecc_mulmod_base_5(sp_point* r, sp_digit* k, int map, void* heap) { return sp_256_ecc_mulmod_stripe_5(r, &p256_base, p256_table, k, map, heap); } #endif /* Multiply the base point of P256 by the scalar and return the result. * If map is true then convert result to affine co-ordinates. * * km Scalar to multiply by. * r Resulting point. * map Indicates whether to convert result to affine. * heap Heap to use for allocation. * returns MEMORY_E when memory allocation fails and MP_OKAY on success. */ int sp_ecc_mulmod_base_256(mp_int* km, ecc_point* r, int map, void* heap) { #if !defined(WOLFSSL_SP_SMALL) && !defined(WOLFSSL_SMALL_STACK) sp_point p; sp_digit kd[5]; #endif sp_point* point; sp_digit* k = NULL; int err = MP_OKAY; #ifdef HAVE_INTEL_AVX2 word32 cpuid_flags = cpuid_get_flags(); #endif err = sp_ecc_point_new(heap, p, point); #if defined(WOLFSSL_SP_SMALL) || defined(WOLFSSL_SMALL_STACK) if (err == MP_OKAY) { k = XMALLOC(sizeof(sp_digit) * 5, heap, DYNAMIC_TYPE_ECC); if (k == NULL) err = MEMORY_E; } #else k = kd; #endif if (err == MP_OKAY) { sp_256_from_mp(k, 5, km); #ifdef HAVE_INTEL_AVX2 if (IS_INTEL_BMI2(cpuid_flags) && IS_INTEL_ADX(cpuid_flags)) err = sp_256_ecc_mulmod_base_avx2_5(point, k, map, heap); else #endif err = sp_256_ecc_mulmod_base_5(point, k, map, heap); } if (err == MP_OKAY) err = sp_256_point_to_ecc_point_5(point, r); #if defined(WOLFSSL_SP_SMALL) || defined(WOLFSSL_SMALL_STACK) if (k != NULL) XFREE(k, heap, DYNAMIC_TYPE_ECC); #endif sp_ecc_point_free(point, 0, heap); return err; } #if defined(WOLFSSL_VALIDATE_ECC_KEYGEN) || defined(HAVE_ECC_SIGN) /* Returns 1 if the number of zero. * Implementation is constant time. * * a Number to check. * returns 1 if the number is zero and 0 otherwise. */ static int sp_256_iszero_5(const sp_digit* a) { return (a[0] | a[1] | a[2] | a[3] | a[4]) == 0; } #endif /* WOLFSSL_VALIDATE_ECC_KEYGEN || HAVE_ECC_SIGN */ /* Add 1 to a. (a = a + 1) * * r A single precision integer. * a A single precision integer. */ SP_NOINLINE static void sp_256_add_one_5(sp_digit* a) { a[0]++; sp_256_norm_5(a); } /* Read big endian unsigned byte aray into r. * * r A single precision integer. * a Byte array. * n Number of bytes in array to read. */ static void sp_256_from_bin(sp_digit* r, int max, const byte* a, int n) { int i, j = 0, s = 0; r[0] = 0; for (i = n-1; i >= 0; i--) { r[j] |= ((sp_digit)a[i]) << s; if (s >= 44) { r[j] &= 0xfffffffffffffl; s = 52 - s; if (j + 1 >= max) break; r[++j] = a[i] >> s; s = 8 - s; } else s += 8; } for (j++; j < max; j++) r[j] = 0; } /* Generates a scalar that is in the range 1..order-1. * * rng Random number generator. * k Scalar value. * returns RNG failures, MEMORY_E when memory allocation fails and * MP_OKAY on success. */ static int sp_256_ecc_gen_k_5(WC_RNG* rng, sp_digit* k) { int err; byte buf[32]; do { err = wc_RNG_GenerateBlock(rng, buf, sizeof(buf)); if (err == 0) { sp_256_from_bin(k, 5, buf, sizeof(buf)); if (sp_256_cmp_5(k, p256_order2) < 0) { sp_256_add_one_5(k); break; } } } while (err == 0); return err; } /* Makes a random EC key pair. * * rng Random number generator. * priv Generated private value. * pub Generated public point. * heap Heap to use for allocation. * returns ECC_INF_E when the point does not have the correct order, RNG * failures, MEMORY_E when memory allocation fails and MP_OKAY on success. */ int sp_ecc_make_key_256(WC_RNG* rng, mp_int* priv, ecc_point* pub, void* heap) { #if !defined(WOLFSSL_SP_SMALL) && !defined(WOLFSSL_SMALL_STACK) sp_point p; sp_digit kd[5]; #ifdef WOLFSSL_VALIDATE_ECC_KEYGEN sp_point inf; #endif #endif sp_point* point; sp_digit* k = NULL; #ifdef WOLFSSL_VALIDATE_ECC_KEYGEN sp_point* infinity; #endif int err; #ifdef HAVE_INTEL_AVX2 word32 cpuid_flags = cpuid_get_flags(); #endif (void)heap; err = sp_ecc_point_new(heap, p, point); #ifdef WOLFSSL_VALIDATE_ECC_KEYGEN if (err == MP_OKAY) err = sp_ecc_point_new(heap, inf, infinity); #endif #if defined(WOLFSSL_SP_SMALL) || defined(WOLFSSL_SMALL_STACK) if (err == MP_OKAY) { k = XMALLOC(sizeof(sp_digit) * 5, heap, DYNAMIC_TYPE_ECC); if (k == NULL) err = MEMORY_E; } #else k = kd; #endif if (err == MP_OKAY) err = sp_256_ecc_gen_k_5(rng, k); if (err == MP_OKAY) { #ifdef HAVE_INTEL_AVX2 if (IS_INTEL_BMI2(cpuid_flags) && IS_INTEL_ADX(cpuid_flags)) err = sp_256_ecc_mulmod_base_avx2_5(point, k, 1, NULL); else #endif err = sp_256_ecc_mulmod_base_5(point, k, 1, NULL); } #ifdef WOLFSSL_VALIDATE_ECC_KEYGEN if (err == MP_OKAY) { #ifdef HAVE_INTEL_AVX2 if (IS_INTEL_BMI2(cpuid_flags) && IS_INTEL_ADX(cpuid_flags)) { err = sp_256_ecc_mulmod_avx2_5(infinity, point, p256_order, 1, NULL); } else #endif err = sp_256_ecc_mulmod_5(infinity, point, p256_order, 1, NULL); } if (err == MP_OKAY) { if (!sp_256_iszero_5(point->x) || !sp_256_iszero_5(point->y)) err = ECC_INF_E; } #endif if (err == MP_OKAY) err = sp_256_to_mp(k, priv); if (err == MP_OKAY) err = sp_256_point_to_ecc_point_5(point, pub); #if defined(WOLFSSL_SP_SMALL) || defined(WOLFSSL_SMALL_STACK) if (k != NULL) XFREE(k, heap, DYNAMIC_TYPE_ECC); #endif #ifdef WOLFSSL_VALIDATE_ECC_KEYGEN sp_ecc_point_free(infinity, 1, heap); #endif sp_ecc_point_free(point, 1, heap); return err; } #ifdef HAVE_ECC_DHE /* Write r as big endian to byte aray. * Fixed length number of bytes written: 32 * * r A single precision integer. * a Byte array. */ static void sp_256_to_bin(sp_digit* r, byte* a) { int i, j, s = 0, b; for (i=0; i<4; i++) { r[i+1] += r[i] >> 52; r[i] &= 0xfffffffffffffl; } j = 256 / 8 - 1; a[j] = 0; for (i=0; i<5 && j>=0; i++) { b = 0; a[j--] |= r[i] << s; b += 8 - s; if (j < 0) break; while (b < 52) { a[j--] = r[i] >> b; b += 8; if (j < 0) break; } s = 8 - (b - 52); if (j >= 0) a[j] = 0; if (s != 0) j++; } } /* Multiply the point by the scalar and serialize the X ordinate. * The number is 0 padded to maximum size on output. * * priv Scalar to multiply the point by. * pub Point to multiply. * out Buffer to hold X ordinate. * outLen On entry, size of the buffer in bytes. * On exit, length of data in buffer in bytes. * heap Heap to use for allocation. * returns BUFFER_E if the buffer is to small for output size, * MEMORY_E when memory allocation fails and MP_OKAY on success. */ int sp_ecc_secret_gen_256(mp_int* priv, ecc_point* pub, byte* out, word32* outLen, void* heap) { #if !defined(WOLFSSL_SP_SMALL) && !defined(WOLFSSL_SMALL_STACK) sp_point p; sp_digit kd[5]; #endif sp_point* point = NULL; sp_digit* k = NULL; int err = MP_OKAY; #ifdef HAVE_INTEL_AVX2 word32 cpuid_flags = cpuid_get_flags(); #endif if (*outLen < 32) err = BUFFER_E; if (err == MP_OKAY) err = sp_ecc_point_new(heap, p, point); #if defined(WOLFSSL_SP_SMALL) || defined(WOLFSSL_SMALL_STACK) if (err == MP_OKAY) { k = XMALLOC(sizeof(sp_digit) * 5, heap, DYNAMIC_TYPE_ECC); if (k == NULL) err = MEMORY_E; } #else k = kd; #endif if (err == MP_OKAY) { sp_256_from_mp(k, 5, priv); sp_256_point_from_ecc_point_5(point, pub); #ifdef HAVE_INTEL_AVX2 if (IS_INTEL_BMI2(cpuid_flags) && IS_INTEL_ADX(cpuid_flags)) err = sp_256_ecc_mulmod_avx2_5(point, point, k, 1, heap); else #endif err = sp_256_ecc_mulmod_5(point, point, k, 1, heap); } if (err == MP_OKAY) { sp_256_to_bin(point->x, out); *outLen = 32; } #if defined(WOLFSSL_SP_SMALL) || defined(WOLFSSL_SMALL_STACK) if (k != NULL) XFREE(k, heap, DYNAMIC_TYPE_ECC); #endif sp_ecc_point_free(point, 0, heap); return err; } #endif /* HAVE_ECC_DHE */ #if defined(HAVE_ECC_SIGN) || defined(HAVE_ECC_VERIFY) #ifdef HAVE_INTEL_AVX2 #endif /* HAVE_INTEL_AVX2 */ #endif #if defined(HAVE_ECC_SIGN) || defined(HAVE_ECC_VERIFY) /* Multiply a by scalar b into r. (r = a * b) * * r A single precision integer. * a A single precision integer. * b A scalar. */ SP_NOINLINE static void sp_256_mul_d_5(sp_digit* r, const sp_digit* a, const sp_digit b) { #ifdef WOLFSSL_SP_SMALL int128_t tb = b; int128_t t = 0; int i; for (i = 0; i < 5; i++) { t += tb * a[i]; r[i] = t & 0xfffffffffffffl; t >>= 52; } r[5] = (sp_digit)t; #else int128_t tb = b; int128_t t[5]; t[ 0] = tb * a[ 0]; t[ 1] = tb * a[ 1]; t[ 2] = tb * a[ 2]; t[ 3] = tb * a[ 3]; t[ 4] = tb * a[ 4]; r[ 0] = (t[ 0] & 0xfffffffffffffl); r[ 1] = (sp_digit)(t[ 0] >> 52) + (t[ 1] & 0xfffffffffffffl); r[ 2] = (sp_digit)(t[ 1] >> 52) + (t[ 2] & 0xfffffffffffffl); r[ 3] = (sp_digit)(t[ 2] >> 52) + (t[ 3] & 0xfffffffffffffl); r[ 4] = (sp_digit)(t[ 3] >> 52) + (t[ 4] & 0xfffffffffffffl); r[ 5] = (sp_digit)(t[ 4] >> 52); #endif /* WOLFSSL_SP_SMALL */ } /* Divide d in a and put remainder into r (m*d + r = a) * m is not calculated as it is not needed at this time. * * a Nmber to be divided. * d Number to divide with. * m Multiplier result. * r Remainder from the division. * returns MEMORY_E when unable to allocate memory and MP_OKAY otherwise. */ static int sp_256_div_5(sp_digit* a, sp_digit* d, sp_digit* m, sp_digit* r) { int i; int128_t d1; sp_digit div, r1; #if defined(WOLFSSL_SP_SMALL) || defined(WOLFSSL_SMALL_STACK) sp_digit* td; #else sp_digit t1d[10], t2d[5 + 1]; #endif sp_digit* t1; sp_digit* t2; int err = MP_OKAY; #if defined(WOLFSSL_SP_SMALL) || defined(WOLFSSL_SMALL_STACK) td = XMALLOC(sizeof(sp_digit) * (3 * 5 + 1), NULL, DYNAMIC_TYPE_TMP_BUFFER); if (td != NULL) { t1 = td; t2 = td + 2 * 5; } else err = MEMORY_E; #else t1 = t1d; t2 = t2d; #endif (void)m; if (err == MP_OKAY) { div = d[4]; XMEMCPY(t1, a, sizeof(*t1) * 2 * 5); for (i=4; i>=0; i--) { t1[5 + i] += t1[5 + i - 1] >> 52; t1[5 + i - 1] &= 0xfffffffffffffl; d1 = t1[5 + i]; d1 <<= 52; d1 += t1[5 + i - 1]; r1 = (sp_digit)(d1 / div); sp_256_mul_d_5(t2, d, r1); sp_256_sub_5(&t1[i], &t1[i], t2); t1[5 + i] -= t2[5]; t1[5 + i] += t1[5 + i - 1] >> 52; t1[5 + i - 1] &= 0xfffffffffffffl; r1 = (((-t1[5 + i]) << 52) - t1[5 + i - 1]) / div; r1++; sp_256_mul_d_5(t2, d, r1); sp_256_add_5(&t1[i], &t1[i], t2); t1[5 + i] += t1[5 + i - 1] >> 52; t1[5 + i - 1] &= 0xfffffffffffffl; } t1[5 - 1] += t1[5 - 2] >> 52; t1[5 - 2] &= 0xfffffffffffffl; d1 = t1[5 - 1]; r1 = (sp_digit)(d1 / div); sp_256_mul_d_5(t2, d, r1); sp_256_sub_5(t1, t1, t2); XMEMCPY(r, t1, sizeof(*r) * 2 * 5); for (i=0; i<3; i++) { r[i+1] += r[i] >> 52; r[i] &= 0xfffffffffffffl; } sp_256_cond_add_5(r, r, d, 0 - (r[4] < 0)); } #if defined(WOLFSSL_SP_SMALL) || defined(WOLFSSL_SMALL_STACK) if (td != NULL) XFREE(td, NULL, DYNAMIC_TYPE_TMP_BUFFER); #endif return err; } /* Reduce a modulo m into r. (r = a mod m) * * r A single precision number that is the reduced result. * a A single precision number that is to be reduced. * m A single precision number that is the modulus to reduce with. * returns MEMORY_E when unable to allocate memory and MP_OKAY otherwise. */ static int sp_256_mod_5(sp_digit* r, sp_digit* a, sp_digit* m) { return sp_256_div_5(a, m, NULL, r); } #endif #if defined(HAVE_ECC_SIGN) || defined(HAVE_ECC_VERIFY) #ifdef WOLFSSL_SP_SMALL /* Order-2 for the P256 curve. */ static const uint64_t p256_order_2[4] = { 0xf3b9cac2fc63254f,0xbce6faada7179e84,0xffffffffffffffff, 0xffffffff00000000 }; #else /* The low half of the order-2 of the P256 curve. */ static const uint64_t p256_order_low[2] = { 0xf3b9cac2fc63254f,0xbce6faada7179e84 }; #endif /* WOLFSSL_SP_SMALL */ /* Multiply two number mod the order of P256 curve. (r = a * b mod order) * * r Result of the multiplication. * a First operand of the multiplication. * b Second operand of the multiplication. */ static void sp_256_mont_mul_order_5(sp_digit* r, sp_digit* a, sp_digit* b) { sp_256_mul_5(r, a, b); sp_256_mont_reduce_5(r, p256_order, p256_mp_order); } /* Square number mod the order of P256 curve. (r = a * a mod order) * * r Result of the squaring. * a Number to square. */ static void sp_256_mont_sqr_order_5(sp_digit* r, sp_digit* a) { sp_256_sqr_5(r, a); sp_256_mont_reduce_5(r, p256_order, p256_mp_order); } #ifndef WOLFSSL_SP_SMALL /* Square number mod the order of P256 curve a number of times. * (r = a ^ n mod order) * * r Result of the squaring. * a Number to square. */ static void sp_256_mont_sqr_n_order_5(sp_digit* r, sp_digit* a, int n) { int i; sp_256_mont_sqr_order_5(r, a); for (i=1; i<n; i++) sp_256_mont_sqr_order_5(r, r); } #endif /* !WOLFSSL_SP_SMALL */ /* Invert the number, in Montgomery form, modulo the order of the P256 curve. * (r = 1 / a mod order) * * r Inverse result. * a Number to invert. * td Temporary data. */ static void sp_256_mont_inv_order_5(sp_digit* r, sp_digit* a, sp_digit* td) { #ifdef WOLFSSL_SP_SMALL sp_digit* t = td; int i; XMEMCPY(t, a, sizeof(sp_digit) * 5); for (i=254; i>=0; i--) { sp_256_mont_sqr_order_5(t, t); if (p256_order_2[i / 64] & ((sp_digit)1 << (i % 64))) sp_256_mont_mul_order_5(t, t, a); } XMEMCPY(r, t, sizeof(sp_digit) * 5); #else sp_digit* t = td; sp_digit* t2 = td + 2 * 5; sp_digit* t3 = td + 4 * 5; int i; /* t = a^2 */ sp_256_mont_sqr_order_5(t, a); /* t = a^3 = t * a */ sp_256_mont_mul_order_5(t, t, a); /* t2= a^c = t ^ 2 ^ 2 */ sp_256_mont_sqr_n_order_5(t2, t, 2); /* t3= a^f = t2 * t */ sp_256_mont_mul_order_5(t3, t2, t); /* t2= a^f0 = t3 ^ 2 ^ 4 */ sp_256_mont_sqr_n_order_5(t2, t3, 4); /* t = a^ff = t2 * t3 */ sp_256_mont_mul_order_5(t, t2, t3); /* t3= a^ff00 = t ^ 2 ^ 8 */ sp_256_mont_sqr_n_order_5(t2, t, 8); /* t = a^ffff = t2 * t */ sp_256_mont_mul_order_5(t, t2, t); /* t2= a^ffff0000 = t ^ 2 ^ 16 */ sp_256_mont_sqr_n_order_5(t2, t, 16); /* t = a^ffffffff = t2 * t */ sp_256_mont_mul_order_5(t, t2, t); /* t2= a^ffffffff0000000000000000 = t ^ 2 ^ 64 */ sp_256_mont_sqr_n_order_5(t2, t, 64); /* t2= a^ffffffff00000000ffffffff = t2 * t */ sp_256_mont_mul_order_5(t2, t2, t); /* t2= a^ffffffff00000000ffffffff00000000 = t2 ^ 2 ^ 32 */ sp_256_mont_sqr_n_order_5(t2, t2, 32); /* t2= a^ffffffff00000000ffffffffffffffff = t2 * t */ sp_256_mont_mul_order_5(t2, t2, t); /* t2= a^ffffffff00000000ffffffffffffffffbce6 */ for (i=127; i>=112; i--) { sp_256_mont_sqr_order_5(t2, t2); if (p256_order_low[i / 64] & ((sp_digit)1 << (i % 64))) sp_256_mont_mul_order_5(t2, t2, a); } /* t2= a^ffffffff00000000ffffffffffffffffbce6f */ sp_256_mont_sqr_n_order_5(t2, t2, 4); sp_256_mont_mul_order_5(t2, t2, t3); /* t2= a^ffffffff00000000ffffffffffffffffbce6faada7179e84 */ for (i=107; i>=64; i--) { sp_256_mont_sqr_order_5(t2, t2); if (p256_order_low[i / 64] & ((sp_digit)1 << (i % 64))) sp_256_mont_mul_order_5(t2, t2, a); } /* t2= a^ffffffff00000000ffffffffffffffffbce6faada7179e84f */ sp_256_mont_sqr_n_order_5(t2, t2, 4); sp_256_mont_mul_order_5(t2, t2, t3); /* t2= a^ffffffff00000000ffffffffffffffffbce6faada7179e84f3b9cac2 */ for (i=59; i>=32; i--) { sp_256_mont_sqr_order_5(t2, t2); if (p256_order_low[i / 64] & ((sp_digit)1 << (i % 64))) sp_256_mont_mul_order_5(t2, t2, a); } /* t2= a^ffffffff00000000ffffffffffffffffbce6faada7179e84f3b9cac2f */ sp_256_mont_sqr_n_order_5(t2, t2, 4); sp_256_mont_mul_order_5(t2, t2, t3); /* t2= a^ffffffff00000000ffffffffffffffffbce6faada7179e84f3b9cac2fc63254 */ for (i=27; i>=0; i--) { sp_256_mont_sqr_order_5(t2, t2); if (p256_order_low[i / 64] & ((sp_digit)1 << (i % 64))) sp_256_mont_mul_order_5(t2, t2, a); } /* t2= a^ffffffff00000000ffffffffffffffffbce6faada7179e84f3b9cac2fc632540 */ sp_256_mont_sqr_n_order_5(t2, t2, 4); /* r = a^ffffffff00000000ffffffffffffffffbce6faada7179e84f3b9cac2fc63254f */ sp_256_mont_mul_order_5(r, t2, t3); #endif /* WOLFSSL_SP_SMALL */ } #ifdef HAVE_INTEL_AVX2 /* Multiply two number mod the order of P256 curve. (r = a * b mod order) * * r Result of the multiplication. * a First operand of the multiplication. * b Second operand of the multiplication. */ static void sp_256_mont_mul_order_avx2_5(sp_digit* r, sp_digit* a, sp_digit* b) { sp_256_mul_avx2_5(r, a, b); sp_256_mont_reduce_avx2_5(r, p256_order, p256_mp_order); } /* Square number mod the order of P256 curve. (r = a * a mod order) * * r Result of the squaring. * a Number to square. */ static void sp_256_mont_sqr_order_avx2_5(sp_digit* r, sp_digit* a) { sp_256_sqr_avx2_5(r, a); sp_256_mont_reduce_avx2_5(r, p256_order, p256_mp_order); } #ifndef WOLFSSL_SP_SMALL /* Square number mod the order of P256 curve a number of times. * (r = a ^ n mod order) * * r Result of the squaring. * a Number to square. */ static void sp_256_mont_sqr_n_order_avx2_5(sp_digit* r, sp_digit* a, int n) { int i; sp_256_mont_sqr_order_avx2_5(r, a); for (i=1; i<n; i++) sp_256_mont_sqr_order_avx2_5(r, r); } #endif /* !WOLFSSL_SP_SMALL */ /* Invert the number, in Montgomery form, modulo the order of the P256 curve. * (r = 1 / a mod order) * * r Inverse result. * a Number to invert. * td Temporary data. */ static void sp_256_mont_inv_order_avx2_5(sp_digit* r, sp_digit* a, sp_digit* td) { #ifdef WOLFSSL_SP_SMALL sp_digit* t = td; int i; XMEMCPY(t, a, sizeof(sp_digit) * 5); for (i=254; i>=0; i--) { sp_256_mont_sqr_order_avx2_5(t, t); if (p256_order_2[i / 64] & ((sp_digit)1 << (i % 64))) sp_256_mont_mul_order_avx2_5(t, t, a); } XMEMCPY(r, t, sizeof(sp_digit) * 5); #else sp_digit* t = td; sp_digit* t2 = td + 2 * 5; sp_digit* t3 = td + 4 * 5; int i; /* t = a^2 */ sp_256_mont_sqr_order_avx2_5(t, a); /* t = a^3 = t * a */ sp_256_mont_mul_order_avx2_5(t, t, a); /* t2= a^c = t ^ 2 ^ 2 */ sp_256_mont_sqr_n_order_avx2_5(t2, t, 2); /* t3= a^f = t2 * t */ sp_256_mont_mul_order_avx2_5(t3, t2, t); /* t2= a^f0 = t3 ^ 2 ^ 4 */ sp_256_mont_sqr_n_order_avx2_5(t2, t3, 4); /* t = a^ff = t2 * t3 */ sp_256_mont_mul_order_avx2_5(t, t2, t3); /* t3= a^ff00 = t ^ 2 ^ 8 */ sp_256_mont_sqr_n_order_avx2_5(t2, t, 8); /* t = a^ffff = t2 * t */ sp_256_mont_mul_order_avx2_5(t, t2, t); /* t2= a^ffff0000 = t ^ 2 ^ 16 */ sp_256_mont_sqr_n_order_avx2_5(t2, t, 16); /* t = a^ffffffff = t2 * t */ sp_256_mont_mul_order_avx2_5(t, t2, t); /* t2= a^ffffffff0000000000000000 = t ^ 2 ^ 64 */ sp_256_mont_sqr_n_order_avx2_5(t2, t, 64); /* t2= a^ffffffff00000000ffffffff = t2 * t */ sp_256_mont_mul_order_avx2_5(t2, t2, t); /* t2= a^ffffffff00000000ffffffff00000000 = t2 ^ 2 ^ 32 */ sp_256_mont_sqr_n_order_avx2_5(t2, t2, 32); /* t2= a^ffffffff00000000ffffffffffffffff = t2 * t */ sp_256_mont_mul_order_avx2_5(t2, t2, t); /* t2= a^ffffffff00000000ffffffffffffffffbce6 */ for (i=127; i>=112; i--) { sp_256_mont_sqr_order_avx2_5(t2, t2); if (p256_order_low[i / 64] & ((sp_digit)1 << (i % 64))) sp_256_mont_mul_order_avx2_5(t2, t2, a); } /* t2= a^ffffffff00000000ffffffffffffffffbce6f */ sp_256_mont_sqr_n_order_avx2_5(t2, t2, 4); sp_256_mont_mul_order_avx2_5(t2, t2, t3); /* t2= a^ffffffff00000000ffffffffffffffffbce6faada7179e84 */ for (i=107; i>=64; i--) { sp_256_mont_sqr_order_avx2_5(t2, t2); if (p256_order_low[i / 64] & ((sp_digit)1 << (i % 64))) sp_256_mont_mul_order_avx2_5(t2, t2, a); } /* t2= a^ffffffff00000000ffffffffffffffffbce6faada7179e84f */ sp_256_mont_sqr_n_order_avx2_5(t2, t2, 4); sp_256_mont_mul_order_avx2_5(t2, t2, t3); /* t2= a^ffffffff00000000ffffffffffffffffbce6faada7179e84f3b9cac2 */ for (i=59; i>=32; i--) { sp_256_mont_sqr_order_avx2_5(t2, t2); if (p256_order_low[i / 64] & ((sp_digit)1 << (i % 64))) sp_256_mont_mul_order_avx2_5(t2, t2, a); } /* t2= a^ffffffff00000000ffffffffffffffffbce6faada7179e84f3b9cac2f */ sp_256_mont_sqr_n_order_avx2_5(t2, t2, 4); sp_256_mont_mul_order_avx2_5(t2, t2, t3); /* t2= a^ffffffff00000000ffffffffffffffffbce6faada7179e84f3b9cac2fc63254 */ for (i=27; i>=0; i--) { sp_256_mont_sqr_order_avx2_5(t2, t2); if (p256_order_low[i / 64] & ((sp_digit)1 << (i % 64))) sp_256_mont_mul_order_avx2_5(t2, t2, a); } /* t2= a^ffffffff00000000ffffffffffffffffbce6faada7179e84f3b9cac2fc632540 */ sp_256_mont_sqr_n_order_avx2_5(t2, t2, 4); /* r = a^ffffffff00000000ffffffffffffffffbce6faada7179e84f3b9cac2fc63254f */ sp_256_mont_mul_order_avx2_5(r, t2, t3); #endif /* WOLFSSL_SP_SMALL */ } #endif /* HAVE_INTEL_AVX2 */ #endif /* HAVE_ECC_SIGN || HAVE_ECC_VERIFY */ #ifdef HAVE_ECC_SIGN #ifndef SP_ECC_MAX_SIG_GEN #define SP_ECC_MAX_SIG_GEN 64 #endif /* Sign the hash using the private key. * e = [hash, 256 bits] from binary * r = (k.G)->x mod order * s = (r * x + e) / k mod order * The hash is truncated to the first 256 bits. * * hash Hash to sign. * hashLen Length of the hash data. * rng Random number generator. * priv Private part of key - scalar. * rm First part of result as an mp_int. * sm Sirst part of result as an mp_int. * heap Heap to use for allocation. * returns RNG failures, MEMORY_E when memory allocation fails and * MP_OKAY on success. */ int sp_ecc_sign_256(const byte* hash, word32 hashLen, WC_RNG* rng, mp_int* priv, mp_int* rm, mp_int* sm, void* heap) { #if defined(WOLFSSL_SP_SMALL) || defined(WOLFSSL_SMALL_STACK) sp_digit* d; #else sp_digit ed[2*5]; sp_digit xd[2*5]; sp_digit kd[2*5]; sp_digit rd[2*5]; sp_digit td[3 * 2*5]; sp_point p; #endif sp_digit* e = NULL; sp_digit* x = NULL; sp_digit* k = NULL; sp_digit* r = NULL; sp_digit* tmp = NULL; sp_point* point = NULL; sp_digit carry; sp_digit* s; sp_digit* kInv; int err = MP_OKAY; int64_t c; int i; #ifdef HAVE_INTEL_AVX2 word32 cpuid_flags = cpuid_get_flags(); #endif (void)heap; err = sp_ecc_point_new(heap, p, point); #if defined(WOLFSSL_SP_SMALL) || defined(WOLFSSL_SMALL_STACK) if (err == MP_OKAY) { d = XMALLOC(sizeof(sp_digit) * 7 * 2 * 5, heap, DYNAMIC_TYPE_ECC); if (d != NULL) { e = d + 0 * 5; x = d + 2 * 5; k = d + 4 * 5; r = d + 6 * 5; tmp = d + 8 * 5; } else err = MEMORY_E; } #else e = ed; x = xd; k = kd; r = rd; tmp = td; #endif s = e; kInv = k; if (err == MP_OKAY) { if (hashLen > 32) hashLen = 32; sp_256_from_bin(e, 5, hash, hashLen); sp_256_from_mp(x, 5, priv); } for (i = SP_ECC_MAX_SIG_GEN; err == MP_OKAY && i > 0; i--) { /* New random point. */ err = sp_256_ecc_gen_k_5(rng, k); if (err == MP_OKAY) { #ifdef HAVE_INTEL_AVX2 if (IS_INTEL_BMI2(cpuid_flags) && IS_INTEL_ADX(cpuid_flags)) err = sp_256_ecc_mulmod_base_avx2_5(point, k, 1, heap); else #endif err = sp_256_ecc_mulmod_base_5(point, k, 1, NULL); } if (err == MP_OKAY) { /* r = point->x mod order */ XMEMCPY(r, point->x, sizeof(sp_digit) * 5); sp_256_norm_5(r); c = sp_256_cmp_5(r, p256_order); sp_256_cond_sub_5(r, r, p256_order, 0 - (c >= 0)); sp_256_norm_5(r); /* Conv k to Montgomery form (mod order) */ #ifdef HAVE_INTEL_AVX2 if (IS_INTEL_BMI2(cpuid_flags) && IS_INTEL_ADX(cpuid_flags)) sp_256_mul_avx2_5(k, k, p256_norm_order); else #endif sp_256_mul_5(k, k, p256_norm_order); err = sp_256_mod_5(k, k, p256_order); } if (err == MP_OKAY) { sp_256_norm_5(k); /* kInv = 1/k mod order */ #ifdef HAVE_INTEL_AVX2 if (IS_INTEL_BMI2(cpuid_flags) && IS_INTEL_ADX(cpuid_flags)) sp_256_mont_inv_order_avx2_5(kInv, k, tmp); else #endif sp_256_mont_inv_order_5(kInv, k, tmp); sp_256_norm_5(kInv); /* s = r * x + e */ #ifdef HAVE_INTEL_AVX2 if (IS_INTEL_BMI2(cpuid_flags) && IS_INTEL_ADX(cpuid_flags)) sp_256_mul_avx2_5(x, x, r); else #endif sp_256_mul_5(x, x, r); err = sp_256_mod_5(x, x, p256_order); } if (err == MP_OKAY) { sp_256_norm_5(x); carry = sp_256_add_5(s, e, x); sp_256_cond_sub_5(s, s, p256_order, 0 - carry); sp_256_norm_5(s); c = sp_256_cmp_5(s, p256_order); sp_256_cond_sub_5(s, s, p256_order, 0 - (c >= 0)); sp_256_norm_5(s); /* s = s * k^-1 mod order */ #ifdef HAVE_INTEL_AVX2 if (IS_INTEL_BMI2(cpuid_flags) && IS_INTEL_ADX(cpuid_flags)) sp_256_mont_mul_order_avx2_5(s, s, kInv); else #endif sp_256_mont_mul_order_5(s, s, kInv); sp_256_norm_5(s); /* Check that signature is usable. */ if (!sp_256_iszero_5(s)) break; } } if (i == 0) err = RNG_FAILURE_E; if (err == MP_OKAY) err = sp_256_to_mp(r, rm); if (err == MP_OKAY) err = sp_256_to_mp(s, sm); #if defined(WOLFSSL_SP_SMALL) || defined(WOLFSSL_SMALL_STACK) if (d != NULL) { XMEMSET(d, 0, sizeof(sp_digit) * 8 * 5); XFREE(d, heap, DYNAMIC_TYPE_ECC); } #else XMEMSET(e, 0, sizeof(sp_digit) * 2 * 5); XMEMSET(x, 0, sizeof(sp_digit) * 2 * 5); XMEMSET(k, 0, sizeof(sp_digit) * 2 * 5); XMEMSET(r, 0, sizeof(sp_digit) * 2 * 5); XMEMSET(r, 0, sizeof(sp_digit) * 2 * 5); XMEMSET(tmp, 0, sizeof(sp_digit) * 3 * 2*5); #endif sp_ecc_point_free(point, 1, heap); return err; } #endif /* HAVE_ECC_SIGN */ #ifdef HAVE_ECC_VERIFY /* Verify the signature values with the hash and public key. * e = Truncate(hash, 256) * u1 = e/s mod order * u2 = r/s mod order * r == (u1.G + u2.Q)->x mod order * Optimization: Leave point in projective form. * (x, y, 1) == (x' / z'*z', y' / z'*z'*z', z' / z') * (r + n*order).z'.z' mod prime == (u1.G + u2.Q)->x' * The hash is truncated to the first 256 bits. * * hash Hash to sign. * hashLen Length of the hash data. * rng Random number generator. * priv Private part of key - scalar. * rm First part of result as an mp_int. * sm Sirst part of result as an mp_int. * heap Heap to use for allocation. * returns RNG failures, MEMORY_E when memory allocation fails and * MP_OKAY on success. */ int sp_ecc_verify_256(const byte* hash, word32 hashLen, mp_int* pX, mp_int* pY, mp_int* pZ, mp_int* r, mp_int* sm, int* res, void* heap) { #if defined(WOLFSSL_SP_SMALL) || defined(WOLFSSL_SMALL_STACK) sp_digit* d = NULL; #else sp_digit u1d[2*5]; sp_digit u2d[2*5]; sp_digit sd[2*5]; sp_digit tmpd[2*5 * 5]; sp_point p1d; sp_point p2d; #endif sp_digit* u1; sp_digit* u2; sp_digit* s; sp_digit* tmp; sp_point* p1; sp_point* p2 = NULL; sp_digit carry; int64_t c; int err; #ifdef HAVE_INTEL_AVX2 word32 cpuid_flags = cpuid_get_flags(); #endif err = sp_ecc_point_new(heap, p1d, p1); if (err == MP_OKAY) err = sp_ecc_point_new(heap, p2d, p2); #if defined(WOLFSSL_SP_SMALL) || defined(WOLFSSL_SMALL_STACK) if (err == MP_OKAY) { d = XMALLOC(sizeof(sp_digit) * 16 * 5, heap, DYNAMIC_TYPE_ECC); if (d != NULL) { u1 = d + 0 * 5; u2 = d + 2 * 5; s = d + 4 * 5; tmp = d + 6 * 5; } else err = MEMORY_E; } #else u1 = u1d; u2 = u2d; s = sd; tmp = tmpd; #endif if (err == MP_OKAY) { if (hashLen > 32) hashLen = 32; sp_256_from_bin(u1, 5, hash, hashLen); sp_256_from_mp(u2, 5, r); sp_256_from_mp(s, 5, sm); sp_256_from_mp(p2->x, 5, pX); sp_256_from_mp(p2->y, 5, pY); sp_256_from_mp(p2->z, 5, pZ); #ifdef HAVE_INTEL_AVX2 if (IS_INTEL_BMI2(cpuid_flags) && IS_INTEL_ADX(cpuid_flags)) sp_256_mul_avx2_5(s, s, p256_norm_order); else #endif sp_256_mul_5(s, s, p256_norm_order); err = sp_256_mod_5(s, s, p256_order); } if (err == MP_OKAY) { sp_256_norm_5(s); #ifdef HAVE_INTEL_AVX2 if (IS_INTEL_BMI2(cpuid_flags) && IS_INTEL_ADX(cpuid_flags)) { sp_256_mont_inv_order_avx2_5(s, s, tmp); sp_256_mont_mul_order_avx2_5(u1, u1, s); sp_256_mont_mul_order_avx2_5(u2, u2, s); } else #endif { sp_256_mont_inv_order_5(s, s, tmp); sp_256_mont_mul_order_5(u1, u1, s); sp_256_mont_mul_order_5(u2, u2, s); } #ifdef HAVE_INTEL_AVX2 if (IS_INTEL_BMI2(cpuid_flags) && IS_INTEL_ADX(cpuid_flags)) err = sp_256_ecc_mulmod_base_avx2_5(p1, u1, 0, heap); else #endif err = sp_256_ecc_mulmod_base_5(p1, u1, 0, heap); } if (err == MP_OKAY) { #ifdef HAVE_INTEL_AVX2 if (IS_INTEL_BMI2(cpuid_flags) && IS_INTEL_ADX(cpuid_flags)) err = sp_256_ecc_mulmod_avx2_5(p2, p2, u2, 0, heap); else #endif err = sp_256_ecc_mulmod_5(p2, p2, u2, 0, heap); } if (err == MP_OKAY) { #ifdef HAVE_INTEL_AVX2 if (IS_INTEL_BMI2(cpuid_flags) && IS_INTEL_ADX(cpuid_flags)) sp_256_proj_point_add_avx2_5(p1, p1, p2, tmp); else #endif sp_256_proj_point_add_5(p1, p1, p2, tmp); /* (r + n*order).z'.z' mod prime == (u1.G + u2.Q)->x' */ /* Reload r and convert to Montgomery form. */ sp_256_from_mp(u2, 5, r); err = sp_256_mod_mul_norm_5(u2, u2, p256_mod); } if (err == MP_OKAY) { /* u1 = r.z'.z' mod prime */ sp_256_mont_sqr_5(p1->z, p1->z, p256_mod, p256_mp_mod); sp_256_mont_mul_5(u1, u2, p1->z, p256_mod, p256_mp_mod); *res = sp_256_cmp_5(p1->x, u1) == 0; if (*res == 0) { /* Reload r and add order. */ sp_256_from_mp(u2, 5, r); carry = sp_256_add_5(u2, u2, p256_order); /* Carry means result is greater than mod and is not valid. */ if (!carry) { sp_256_norm_5(u2); /* Compare with mod and if greater or equal then not valid. */ c = sp_256_cmp_5(u2, p256_mod); if (c < 0) { /* Convert to Montogomery form */ err = sp_256_mod_mul_norm_5(u2, u2, p256_mod); if (err == MP_OKAY) { /* u1 = (r + 1*order).z'.z' mod prime */ sp_256_mont_mul_5(u1, u2, p1->z, p256_mod, p256_mp_mod); *res = sp_256_cmp_5(p1->x, u2) == 0; } } } } } #if defined(WOLFSSL_SP_SMALL) || defined(WOLFSSL_SMALL_STACK) if (d != NULL) XFREE(d, heap, DYNAMIC_TYPE_ECC); #endif sp_ecc_point_free(p1, 0, heap); sp_ecc_point_free(p2, 0, heap); return err; } #endif /* HAVE_ECC_VERIFY */ #ifdef HAVE_ECC_CHECK_KEY /* Check that the x and y oridinates are a valid point on the curve. * * point EC point. * heap Heap to use if dynamically allocating. * returns MEMORY_E if dynamic memory allocation fails, MP_VAL if the point is * not on the curve and MP_OKAY otherwise. */ static int sp_256_ecc_is_point_5(sp_point* point, void* heap) { #if defined(WOLFSSL_SP_SMALL) || defined(WOLFSSL_SMALL_STACK) sp_digit* d = NULL; #else sp_digit t1d[2*5]; sp_digit t2d[2*5]; #endif sp_digit* t1; sp_digit* t2; int err = MP_OKAY; #if defined(WOLFSSL_SP_SMALL) || defined(WOLFSSL_SMALL_STACK) d = XMALLOC(sizeof(sp_digit) * 5 * 4, heap, DYNAMIC_TYPE_ECC); if (d != NULL) { t1 = d + 0 * 5; t2 = d + 2 * 5; } else err = MEMORY_E; #else (void)heap; t1 = t1d; t2 = t2d; #endif if (err == MP_OKAY) { sp_256_sqr_5(t1, point->y); sp_256_mod_5(t1, t1, p256_mod); sp_256_sqr_5(t2, point->x); sp_256_mod_5(t2, t2, p256_mod); sp_256_mul_5(t2, t2, point->x); sp_256_mod_5(t2, t2, p256_mod); sp_256_sub_5(t2, p256_mod, t2); sp_256_mont_add_5(t1, t1, t2, p256_mod); sp_256_mont_add_5(t1, t1, point->x, p256_mod); sp_256_mont_add_5(t1, t1, point->x, p256_mod); sp_256_mont_add_5(t1, t1, point->x, p256_mod); if (sp_256_cmp_5(t1, p256_b) != 0) err = MP_VAL; } #if defined(WOLFSSL_SP_SMALL) || defined(WOLFSSL_SMALL_STACK) if (d != NULL) XFREE(d, heap, DYNAMIC_TYPE_ECC); #endif return err; } /* Check that the x and y oridinates are a valid point on the curve. * * pX X ordinate of EC point. * pY Y ordinate of EC point. * returns MEMORY_E if dynamic memory allocation fails, MP_VAL if the point is * not on the curve and MP_OKAY otherwise. */ int sp_ecc_is_point_256(mp_int* pX, mp_int* pY) { #if !defined(WOLFSSL_SP_SMALL) && !defined(WOLFSSL_SMALL_STACK) sp_point pubd; #endif sp_point* pub; byte one[1] = { 1 }; int err; err = sp_ecc_point_new(NULL, pubd, pub); if (err == MP_OKAY) { sp_256_from_mp(pub->x, 5, pX); sp_256_from_mp(pub->y, 5, pY); sp_256_from_bin(pub->z, 5, one, sizeof(one)); err = sp_256_ecc_is_point_5(pub, NULL); } sp_ecc_point_free(pub, 0, NULL); return err; } /* Check that the private scalar generates the EC point (px, py), the point is * on the curve and the point has the correct order. * * pX X ordinate of EC point. * pY Y ordinate of EC point. * privm Private scalar that generates EC point. * returns MEMORY_E if dynamic memory allocation fails, MP_VAL if the point is * not on the curve, ECC_INF_E if the point does not have the correct order, * ECC_PRIV_KEY_E when the private scalar doesn't generate the EC point and * MP_OKAY otherwise. */ int sp_ecc_check_key_256(mp_int* pX, mp_int* pY, mp_int* privm, void* heap) { #if !defined(WOLFSSL_SP_SMALL) && !defined(WOLFSSL_SMALL_STACK) sp_digit privd[5]; sp_point pubd; sp_point pd; #endif sp_digit* priv = NULL; sp_point* pub; sp_point* p = NULL; byte one[1] = { 1 }; int err; #ifdef HAVE_INTEL_AVX2 word32 cpuid_flags = cpuid_get_flags(); #endif err = sp_ecc_point_new(heap, pubd, pub); if (err == MP_OKAY) err = sp_ecc_point_new(heap, pd, p); #if defined(WOLFSSL_SP_SMALL) || defined(WOLFSSL_SMALL_STACK) if (err == MP_OKAY) { priv = XMALLOC(sizeof(sp_digit) * 5, heap, DYNAMIC_TYPE_ECC); if (priv == NULL) err = MEMORY_E; } #else priv = privd; #endif if (err == MP_OKAY) { sp_256_from_mp(pub->x, 5, pX); sp_256_from_mp(pub->y, 5, pY); sp_256_from_bin(pub->z, 5, one, sizeof(one)); sp_256_from_mp(priv, 5, privm); /* Check point at infinitiy. */ if (sp_256_iszero_5(pub->x) && sp_256_iszero_5(pub->y)) err = ECC_INF_E; } if (err == MP_OKAY) { /* Check range of X and Y */ if (sp_256_cmp_5(pub->x, p256_mod) >= 0 || sp_256_cmp_5(pub->y, p256_mod) >= 0) err = ECC_OUT_OF_RANGE_E; } if (err == MP_OKAY) { /* Check point is on curve */ err = sp_256_ecc_is_point_5(pub, heap); } if (err == MP_OKAY) { /* Point * order = infinity */ #ifdef HAVE_INTEL_AVX2 if (IS_INTEL_BMI2(cpuid_flags) && IS_INTEL_ADX(cpuid_flags)) err = sp_256_ecc_mulmod_avx2_5(p, pub, p256_order, 1, heap); else #endif err = sp_256_ecc_mulmod_5(p, pub, p256_order, 1, heap); } if (err == MP_OKAY) { /* Check result is infinity */ if (!sp_256_iszero_5(p->x) || !sp_256_iszero_5(p->y)) { err = ECC_INF_E; } } if (err == MP_OKAY) { /* Base * private = point */ #ifdef HAVE_INTEL_AVX2 if (IS_INTEL_BMI2(cpuid_flags) && IS_INTEL_ADX(cpuid_flags)) err = sp_256_ecc_mulmod_base_avx2_5(p, priv, 1, heap); else #endif err = sp_256_ecc_mulmod_base_5(p, priv, 1, heap); } if (err == MP_OKAY) { /* Check result is public key */ if (sp_256_cmp_5(p->x, pub->x) != 0 || sp_256_cmp_5(p->y, pub->y) != 0) { err = ECC_PRIV_KEY_E; } } #if defined(WOLFSSL_SP_SMALL) || defined(WOLFSSL_SMALL_STACK) if (priv != NULL) XFREE(priv, heap, DYNAMIC_TYPE_ECC); #endif sp_ecc_point_free(p, 0, heap); sp_ecc_point_free(pub, 0, heap); return err; } #endif #ifdef WOLFSSL_PUBLIC_ECC_ADD_DBL /* Add two projective EC points together. * (pX, pY, pZ) + (qX, qY, qZ) = (rX, rY, rZ) * * pX First EC point's X ordinate. * pY First EC point's Y ordinate. * pZ First EC point's Z ordinate. * qX Second EC point's X ordinate. * qY Second EC point's Y ordinate. * qZ Second EC point's Z ordinate. * rX Resultant EC point's X ordinate. * rY Resultant EC point's Y ordinate. * rZ Resultant EC point's Z ordinate. * returns MEMORY_E if dynamic memory allocation fails and MP_OKAY otherwise. */ int sp_ecc_proj_add_point_256(mp_int* pX, mp_int* pY, mp_int* pZ, mp_int* qX, mp_int* qY, mp_int* qZ, mp_int* rX, mp_int* rY, mp_int* rZ) { #if !defined(WOLFSSL_SP_SMALL) && !defined(WOLFSSL_SMALL_STACK) sp_digit tmpd[2 * 5 * 5]; sp_point pd; sp_point qd; #endif sp_digit* tmp; sp_point* p; sp_point* q = NULL; int err; #ifdef HAVE_INTEL_AVX2 word32 cpuid_flags = cpuid_get_flags(); #endif err = sp_ecc_point_new(NULL, pd, p); if (err == MP_OKAY) err = sp_ecc_point_new(NULL, qd, q); #if defined(WOLFSSL_SP_SMALL) || defined(WOLFSSL_SMALL_STACK) if (err == MP_OKAY) { tmp = XMALLOC(sizeof(sp_digit) * 2 * 5 * 5, NULL, DYNAMIC_TYPE_ECC); if (tmp == NULL) err = MEMORY_E; } #else tmp = tmpd; #endif if (err == MP_OKAY) { sp_256_from_mp(p->x, 5, pX); sp_256_from_mp(p->y, 5, pY); sp_256_from_mp(p->z, 5, pZ); sp_256_from_mp(q->x, 5, qX); sp_256_from_mp(q->y, 5, qY); sp_256_from_mp(q->z, 5, qZ); #ifdef HAVE_INTEL_AVX2 if (IS_INTEL_BMI2(cpuid_flags) && IS_INTEL_ADX(cpuid_flags)) sp_256_proj_point_add_avx2_5(p, p, q, tmp); else #endif sp_256_proj_point_add_5(p, p, q, tmp); } if (err == MP_OKAY) err = sp_256_to_mp(p->x, rX); if (err == MP_OKAY) err = sp_256_to_mp(p->y, rY); if (err == MP_OKAY) err = sp_256_to_mp(p->z, rZ); #if defined(WOLFSSL_SP_SMALL) || defined(WOLFSSL_SMALL_STACK) if (tmp != NULL) XFREE(tmp, NULL, DYNAMIC_TYPE_ECC); #endif sp_ecc_point_free(q, 0, NULL); sp_ecc_point_free(p, 0, NULL); return err; } /* Double a projective EC point. * (pX, pY, pZ) + (pX, pY, pZ) = (rX, rY, rZ) * * pX EC point's X ordinate. * pY EC point's Y ordinate. * pZ EC point's Z ordinate. * rX Resultant EC point's X ordinate. * rY Resultant EC point's Y ordinate. * rZ Resultant EC point's Z ordinate. * returns MEMORY_E if dynamic memory allocation fails and MP_OKAY otherwise. */ int sp_ecc_proj_dbl_point_256(mp_int* pX, mp_int* pY, mp_int* pZ, mp_int* rX, mp_int* rY, mp_int* rZ) { #if !defined(WOLFSSL_SP_SMALL) && !defined(WOLFSSL_SMALL_STACK) sp_digit tmpd[2 * 5 * 2]; sp_point pd; #endif sp_digit* tmp; sp_point* p; int err; #ifdef HAVE_INTEL_AVX2 word32 cpuid_flags = cpuid_get_flags(); #endif err = sp_ecc_point_new(NULL, pd, p); #if defined(WOLFSSL_SP_SMALL) || defined(WOLFSSL_SMALL_STACK) if (err == MP_OKAY) { tmp = XMALLOC(sizeof(sp_digit) * 2 * 5 * 2, NULL, DYNAMIC_TYPE_ECC); if (tmp == NULL) err = MEMORY_E; } #else tmp = tmpd; #endif if (err == MP_OKAY) { sp_256_from_mp(p->x, 5, pX); sp_256_from_mp(p->y, 5, pY); sp_256_from_mp(p->z, 5, pZ); #ifdef HAVE_INTEL_AVX2 if (IS_INTEL_BMI2(cpuid_flags) && IS_INTEL_ADX(cpuid_flags)) sp_256_proj_point_dbl_avx2_5(p, p, tmp); else #endif sp_256_proj_point_dbl_5(p, p, tmp); } if (err == MP_OKAY) err = sp_256_to_mp(p->x, rX); if (err == MP_OKAY) err = sp_256_to_mp(p->y, rY); if (err == MP_OKAY) err = sp_256_to_mp(p->z, rZ); #if defined(WOLFSSL_SP_SMALL) || defined(WOLFSSL_SMALL_STACK) if (tmp != NULL) XFREE(tmp, NULL, DYNAMIC_TYPE_ECC); #endif sp_ecc_point_free(p, 0, NULL); return err; } /* Map a projective EC point to affine in place. * pZ will be one. * * pX EC point's X ordinate. * pY EC point's Y ordinate. * pZ EC point's Z ordinate. * returns MEMORY_E if dynamic memory allocation fails and MP_OKAY otherwise. */ int sp_ecc_map_256(mp_int* pX, mp_int* pY, mp_int* pZ) { #if !defined(WOLFSSL_SP_SMALL) && !defined(WOLFSSL_SMALL_STACK) sp_digit tmpd[2 * 5 * 4]; sp_point pd; #endif sp_digit* tmp; sp_point* p; int err; err = sp_ecc_point_new(NULL, pd, p); #if defined(WOLFSSL_SP_SMALL) || defined(WOLFSSL_SMALL_STACK) if (err == MP_OKAY) { tmp = XMALLOC(sizeof(sp_digit) * 2 * 5 * 4, NULL, DYNAMIC_TYPE_ECC); if (tmp == NULL) err = MEMORY_E; } #else tmp = tmpd; #endif if (err == MP_OKAY) { sp_256_from_mp(p->x, 5, pX); sp_256_from_mp(p->y, 5, pY); sp_256_from_mp(p->z, 5, pZ); sp_256_map_5(p, p, tmp); } if (err == MP_OKAY) err = sp_256_to_mp(p->x, pX); if (err == MP_OKAY) err = sp_256_to_mp(p->y, pY); if (err == MP_OKAY) err = sp_256_to_mp(p->z, pZ); #if defined(WOLFSSL_SP_SMALL) || defined(WOLFSSL_SMALL_STACK) if (tmp != NULL) XFREE(tmp, NULL, DYNAMIC_TYPE_ECC); #endif sp_ecc_point_free(p, 0, NULL); return err; } #endif /* WOLFSSL_PUBLIC_ECC_ADD_DBL */ #ifdef HAVE_COMP_KEY /* Find the square root of a number mod the prime of the curve. * * y The number to operate on and the result. * returns MEMORY_E if dynamic memory allocation fails and MP_OKAY otherwise. */ static int sp_256_mont_sqrt_5(sp_digit* y) { #if defined(WOLFSSL_SP_SMALL) || defined(WOLFSSL_SMALL_STACK) sp_digit* d; #else sp_digit t1d[2 * 5]; sp_digit t2d[2 * 5]; #endif sp_digit* t1; sp_digit* t2; int err = MP_OKAY; #ifdef HAVE_INTEL_AVX2 word32 cpuid_flags = cpuid_get_flags(); #endif #if defined(WOLFSSL_SP_SMALL) || defined(WOLFSSL_SMALL_STACK) d = XMALLOC(sizeof(sp_digit) * 4 * 5, NULL, DYNAMIC_TYPE_ECC); if (d != NULL) { t1 = d + 0 * 5; t2 = d + 2 * 5; } else err = MEMORY_E; #else t1 = t1d; t2 = t2d; #endif if (err == MP_OKAY) { #ifdef HAVE_INTEL_AVX2 if (IS_INTEL_BMI2(cpuid_flags) && IS_INTEL_ADX(cpuid_flags)) { /* t2 = y ^ 0x2 */ sp_256_mont_sqr_avx2_5(t2, y, p256_mod, p256_mp_mod); /* t1 = y ^ 0x3 */ sp_256_mont_mul_avx2_5(t1, t2, y, p256_mod, p256_mp_mod); /* t2 = y ^ 0xc */ sp_256_mont_sqr_n_avx2_5(t2, t1, 2, p256_mod, p256_mp_mod); /* t1 = y ^ 0xf */ sp_256_mont_mul_avx2_5(t1, t1, t2, p256_mod, p256_mp_mod); /* t2 = y ^ 0xf0 */ sp_256_mont_sqr_n_avx2_5(t2, t1, 4, p256_mod, p256_mp_mod); /* t1 = y ^ 0xff */ sp_256_mont_mul_avx2_5(t1, t1, t2, p256_mod, p256_mp_mod); /* t2 = y ^ 0xff00 */ sp_256_mont_sqr_n_avx2_5(t2, t1, 8, p256_mod, p256_mp_mod); /* t1 = y ^ 0xffff */ sp_256_mont_mul_avx2_5(t1, t1, t2, p256_mod, p256_mp_mod); /* t2 = y ^ 0xffff0000 */ sp_256_mont_sqr_n_avx2_5(t2, t1, 16, p256_mod, p256_mp_mod); /* t1 = y ^ 0xffffffff */ sp_256_mont_mul_avx2_5(t1, t1, t2, p256_mod, p256_mp_mod); /* t1 = y ^ 0xffffffff00000000 */ sp_256_mont_sqr_n_avx2_5(t1, t1, 32, p256_mod, p256_mp_mod); /* t1 = y ^ 0xffffffff00000001 */ sp_256_mont_mul_avx2_5(t1, t1, y, p256_mod, p256_mp_mod); /* t1 = y ^ 0xffffffff00000001000000000000000000000000 */ sp_256_mont_sqr_n_avx2_5(t1, t1, 96, p256_mod, p256_mp_mod); /* t1 = y ^ 0xffffffff00000001000000000000000000000001 */ sp_256_mont_mul_avx2_5(t1, t1, y, p256_mod, p256_mp_mod); sp_256_mont_sqr_n_avx2_5(y, t1, 94, p256_mod, p256_mp_mod); } else #endif { /* t2 = y ^ 0x2 */ sp_256_mont_sqr_5(t2, y, p256_mod, p256_mp_mod); /* t1 = y ^ 0x3 */ sp_256_mont_mul_5(t1, t2, y, p256_mod, p256_mp_mod); /* t2 = y ^ 0xc */ sp_256_mont_sqr_n_5(t2, t1, 2, p256_mod, p256_mp_mod); /* t1 = y ^ 0xf */ sp_256_mont_mul_5(t1, t1, t2, p256_mod, p256_mp_mod); /* t2 = y ^ 0xf0 */ sp_256_mont_sqr_n_5(t2, t1, 4, p256_mod, p256_mp_mod); /* t1 = y ^ 0xff */ sp_256_mont_mul_5(t1, t1, t2, p256_mod, p256_mp_mod); /* t2 = y ^ 0xff00 */ sp_256_mont_sqr_n_5(t2, t1, 8, p256_mod, p256_mp_mod); /* t1 = y ^ 0xffff */ sp_256_mont_mul_5(t1, t1, t2, p256_mod, p256_mp_mod); /* t2 = y ^ 0xffff0000 */ sp_256_mont_sqr_n_5(t2, t1, 16, p256_mod, p256_mp_mod); /* t1 = y ^ 0xffffffff */ sp_256_mont_mul_5(t1, t1, t2, p256_mod, p256_mp_mod); /* t1 = y ^ 0xffffffff00000000 */ sp_256_mont_sqr_n_5(t1, t1, 32, p256_mod, p256_mp_mod); /* t1 = y ^ 0xffffffff00000001 */ sp_256_mont_mul_5(t1, t1, y, p256_mod, p256_mp_mod); /* t1 = y ^ 0xffffffff00000001000000000000000000000000 */ sp_256_mont_sqr_n_5(t1, t1, 96, p256_mod, p256_mp_mod); /* t1 = y ^ 0xffffffff00000001000000000000000000000001 */ sp_256_mont_mul_5(t1, t1, y, p256_mod, p256_mp_mod); sp_256_mont_sqr_n_5(y, t1, 94, p256_mod, p256_mp_mod); } } #if defined(WOLFSSL_SP_SMALL) || defined(WOLFSSL_SMALL_STACK) if (d != NULL) XFREE(d, NULL, DYNAMIC_TYPE_ECC); #endif return err; } /* Uncompress the point given the X ordinate. * * xm X ordinate. * odd Whether the Y ordinate is odd. * ym Calculated Y ordinate. * returns MEMORY_E if dynamic memory allocation fails and MP_OKAY otherwise. */ int sp_ecc_uncompress_256(mp_int* xm, int odd, mp_int* ym) { #if defined(WOLFSSL_SP_SMALL) || defined(WOLFSSL_SMALL_STACK) sp_digit* d; #else sp_digit xd[2 * 5]; sp_digit yd[2 * 5]; #endif sp_digit* x; sp_digit* y; int err = MP_OKAY; #ifdef HAVE_INTEL_AVX2 word32 cpuid_flags = cpuid_get_flags(); #endif #if defined(WOLFSSL_SP_SMALL) || defined(WOLFSSL_SMALL_STACK) d = XMALLOC(sizeof(sp_digit) * 4 * 5, NULL, DYNAMIC_TYPE_ECC); if (d != NULL) { x = d + 0 * 5; y = d + 2 * 5; } else err = MEMORY_E; #else x = xd; y = yd; #endif if (err == MP_OKAY) { sp_256_from_mp(x, 5, xm); err = sp_256_mod_mul_norm_5(x, x, p256_mod); } if (err == MP_OKAY) { /* y = x^3 */ #ifdef HAVE_INTEL_AVX2 if (IS_INTEL_BMI2(cpuid_flags) && IS_INTEL_ADX(cpuid_flags)) { sp_256_mont_sqr_avx2_5(y, x, p256_mod, p256_mp_mod); sp_256_mont_mul_avx2_5(y, y, x, p256_mod, p256_mp_mod); } else #endif { sp_256_mont_sqr_5(y, x, p256_mod, p256_mp_mod); sp_256_mont_mul_5(y, y, x, p256_mod, p256_mp_mod); } /* y = x^3 - 3x */ sp_256_mont_sub_5(y, y, x, p256_mod); sp_256_mont_sub_5(y, y, x, p256_mod); sp_256_mont_sub_5(y, y, x, p256_mod); /* y = x^3 - 3x + b */ err = sp_256_mod_mul_norm_5(x, p256_b, p256_mod); } if (err == MP_OKAY) { sp_256_mont_add_5(y, y, x, p256_mod); /* y = sqrt(x^3 - 3x + b) */ err = sp_256_mont_sqrt_5(y); } if (err == MP_OKAY) { XMEMSET(y + 5, 0, 5 * sizeof(sp_digit)); sp_256_mont_reduce_5(y, p256_mod, p256_mp_mod); if (((y[0] ^ odd) & 1) != 0) sp_256_mont_sub_5(y, p256_mod, y, p256_mod); err = sp_256_to_mp(y, ym); } #if defined(WOLFSSL_SP_SMALL) || defined(WOLFSSL_SMALL_STACK) if (d != NULL) XFREE(d, NULL, DYNAMIC_TYPE_ECC); #endif return err; } #endif #endif /* WOLFSSL_SP_NO_256 */ #endif /* WOLFSSL_HAVE_SP_ECC */ #endif /* SP_WORD_SIZE == 64 */ #endif /* !WOLFSSL_SP_ASM */ #endif /* WOLFSSL_HAVE_SP_RSA || WOLFSSL_HAVE_SP_DH || WOLFSSL_HAVE_SP_ECC */