Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Diff: wolfcrypt/src/integer.c
- Revision:
- 17:ff9d1e86ad5f
- Parent:
- 16:048e5e270a58
--- a/wolfcrypt/src/integer.c Tue Nov 19 14:32:16 2019 +0000 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,4965 +0,0 @@ -/* integer.c - * - * Copyright (C) 2006-2017 wolfSSL Inc. - * - * This file is part of wolfSSL. - * - * wolfSSL is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License as published by - * the Free Software Foundation; either version 2 of the License, or - * (at your option) any later version. - * - * wolfSSL is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - * GNU General Public License for more details. - * - * You should have received a copy of the GNU General Public License - * along with this program; if not, write to the Free Software - * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335, USA - */ - - - -/* - * Based on public domain LibTomMath 0.38 by Tom St Denis, tomstdenis@iahu.ca, - * http://math.libtomcrypt.com - */ - - -#ifdef HAVE_CONFIG_H - #include <config.h> -#endif - -/* in case user set USE_FAST_MATH there */ -#include <wolfssl/wolfcrypt/settings.h> - -#ifdef NO_INLINE - #include <wolfssl/wolfcrypt/misc.h> -#else - #define WOLFSSL_MISC_INCLUDED - #include <wolfcrypt/src/misc.c> -#endif - -#ifndef NO_BIG_INT - -#ifndef USE_FAST_MATH - -#ifndef WOLFSSL_SP_MATH - -#include <wolfssl/wolfcrypt/integer.h> - -#if defined(FREESCALE_LTC_TFM) - #include <wolfssl/wolfcrypt/port/nxp/ksdk_port.h> -#endif -#ifdef WOLFSSL_DEBUG_MATH - #include <stdio.h> -#endif - -#ifndef NO_WOLFSSL_SMALL_STACK - #ifndef WOLFSSL_SMALL_STACK - #define WOLFSSL_SMALL_STACK - #endif -#endif - -#ifdef SHOW_GEN - #if defined(FREESCALE_MQX) || defined(FREESCALE_KSDK_MQX) - #if MQX_USE_IO_OLD - #include <fio.h> - #else - #include <nio.h> - #endif - #else - #include <stdio.h> - #endif -#endif - -/* reverse an array, used for radix code */ -static void -bn_reverse (unsigned char *s, int len) -{ - int ix, iy; - unsigned char t; - - ix = 0; - iy = len - 1; - while (ix < iy) { - t = s[ix]; - s[ix] = s[iy]; - s[iy] = t; - ++ix; - --iy; - } -} - -/* math settings check */ -word32 CheckRunTimeSettings(void) -{ - return CTC_SETTINGS; -} - - -/* handle up to 6 inits */ -int mp_init_multi(mp_int* a, mp_int* b, mp_int* c, mp_int* d, mp_int* e, - mp_int* f) -{ - int res = MP_OKAY; - - if (a) XMEMSET(a, 0, sizeof(mp_int)); - if (b) XMEMSET(b, 0, sizeof(mp_int)); - if (c) XMEMSET(c, 0, sizeof(mp_int)); - if (d) XMEMSET(d, 0, sizeof(mp_int)); - if (e) XMEMSET(e, 0, sizeof(mp_int)); - if (f) XMEMSET(f, 0, sizeof(mp_int)); - - if (a && ((res = mp_init(a)) != MP_OKAY)) - return res; - - if (b && ((res = mp_init(b)) != MP_OKAY)) { - mp_clear(a); - return res; - } - - if (c && ((res = mp_init(c)) != MP_OKAY)) { - mp_clear(a); mp_clear(b); - return res; - } - - if (d && ((res = mp_init(d)) != MP_OKAY)) { - mp_clear(a); mp_clear(b); mp_clear(c); - return res; - } - - if (e && ((res = mp_init(e)) != MP_OKAY)) { - mp_clear(a); mp_clear(b); mp_clear(c); mp_clear(d); - return res; - } - - if (f && ((res = mp_init(f)) != MP_OKAY)) { - mp_clear(a); mp_clear(b); mp_clear(c); mp_clear(d); mp_clear(e); - return res; - } - - return res; -} - - -/* init a new mp_int */ -int mp_init (mp_int * a) -{ - /* Safeguard against passing in a null pointer */ - if (a == NULL) - return MP_VAL; - - /* defer allocation until mp_grow */ - a->dp = NULL; - - /* set the used to zero, allocated digits to the default precision - * and sign to positive */ - a->used = 0; - a->alloc = 0; - a->sign = MP_ZPOS; -#ifdef HAVE_WOLF_BIGINT - wc_bigint_init(&a->raw); -#endif - - return MP_OKAY; -} - - -/* clear one (frees) */ -void mp_clear (mp_int * a) -{ - int i; - - if (a == NULL) - return; - - /* only do anything if a hasn't been freed previously */ - if (a->dp != NULL) { - /* first zero the digits */ - for (i = 0; i < a->used; i++) { - a->dp[i] = 0; - } - - /* free ram */ - mp_free(a); - - /* reset members to make debugging easier */ - a->alloc = a->used = 0; - a->sign = MP_ZPOS; - } -} - -void mp_free (mp_int * a) -{ - /* only do anything if a hasn't been freed previously */ - if (a->dp != NULL) { - /* free ram */ - XFREE(a->dp, 0, DYNAMIC_TYPE_BIGINT); - a->dp = NULL; - } - -#ifdef HAVE_WOLF_BIGINT - wc_bigint_free(&a->raw); -#endif -} - -void mp_forcezero(mp_int * a) -{ - if (a == NULL) - return; - - /* only do anything if a hasn't been freed previously */ - if (a->dp != NULL) { - /* force zero the used digits */ - ForceZero(a->dp, a->used * sizeof(mp_digit)); -#ifdef HAVE_WOLF_BIGINT - wc_bigint_zero(&a->raw); -#endif - /* free ram */ - mp_free(a); - - /* reset members to make debugging easier */ - a->alloc = a->used = 0; - a->sign = MP_ZPOS; - } - - a->sign = MP_ZPOS; - a->used = 0; -} - - -/* get the size for an unsigned equivalent */ -int mp_unsigned_bin_size (mp_int * a) -{ - int size = mp_count_bits (a); - return (size / 8 + ((size & 7) != 0 ? 1 : 0)); -} - - -/* returns the number of bits in an int */ -int mp_count_bits (mp_int * a) -{ - int r; - mp_digit q; - - /* shortcut */ - if (a->used == 0) { - return 0; - } - - /* get number of digits and add that */ - r = (a->used - 1) * DIGIT_BIT; - - /* take the last digit and count the bits in it */ - q = a->dp[a->used - 1]; - while (q > ((mp_digit) 0)) { - ++r; - q >>= ((mp_digit) 1); - } - return r; -} - - -int mp_leading_bit (mp_int * a) -{ - int bit = 0; - mp_int t; - - if (mp_init_copy(&t, a) != MP_OKAY) - return 0; - - while (mp_iszero(&t) == MP_NO) { -#ifndef MP_8BIT - bit = (t.dp[0] & 0x80) != 0; -#else - bit = (t.dp[0] | ((t.dp[1] & 0x01) << 7)) & 0x80 != 0; -#endif - if (mp_div_2d (&t, 8, &t, NULL) != MP_OKAY) - break; - } - mp_clear(&t); - return bit; -} - -int mp_to_unsigned_bin_at_pos(int x, mp_int *t, unsigned char *b) -{ - int res = 0; - while (mp_iszero(t) == MP_NO) { -#ifndef MP_8BIT - b[x++] = (unsigned char) (t->dp[0] & 255); -#else - b[x++] = (unsigned char) (t->dp[0] | ((t->dp[1] & 0x01) << 7)); -#endif - if ((res = mp_div_2d (t, 8, t, NULL)) != MP_OKAY) { - return res; - } - res = x; - } - return res; -} - -/* store in unsigned [big endian] format */ -int mp_to_unsigned_bin (mp_int * a, unsigned char *b) -{ - int x, res; - mp_int t; - - if ((res = mp_init_copy (&t, a)) != MP_OKAY) { - return res; - } - - x = mp_to_unsigned_bin_at_pos(0, &t, b); - if (x < 0) { - mp_clear(&t); - return x; - } - - bn_reverse (b, x); - mp_clear (&t); - return res; -} - - -/* creates "a" then copies b into it */ -int mp_init_copy (mp_int * a, mp_int * b) -{ - int res; - - if ((res = mp_init_size (a, b->used)) != MP_OKAY) { - return res; - } - - if((res = mp_copy (b, a)) != MP_OKAY) { - mp_clear(a); - } - - return res; -} - - -/* copy, b = a */ -int mp_copy (mp_int * a, mp_int * b) -{ - int res, n; - - /* Safeguard against passing in a null pointer */ - if (a == NULL || b == NULL) - return MP_VAL; - - /* if dst == src do nothing */ - if (a == b) { - return MP_OKAY; - } - - /* grow dest */ - if (b->alloc < a->used || b->alloc == 0) { - if ((res = mp_grow (b, a->used)) != MP_OKAY) { - return res; - } - } - - /* zero b and copy the parameters over */ - { - mp_digit *tmpa, *tmpb; - - /* pointer aliases */ - - /* source */ - tmpa = a->dp; - - /* destination */ - tmpb = b->dp; - - /* copy all the digits */ - for (n = 0; n < a->used; n++) { - *tmpb++ = *tmpa++; - } - - /* clear high digits */ - for (; n < b->used && b->dp; n++) { - *tmpb++ = 0; - } - } - - /* copy used count and sign */ - b->used = a->used; - b->sign = a->sign; - return MP_OKAY; -} - - -/* grow as required */ -int mp_grow (mp_int * a, int size) -{ - int i; - mp_digit *tmp; - - /* if the alloc size is smaller alloc more ram */ - if (a->alloc < size || size == 0) { - /* ensure there are always at least MP_PREC digits extra on top */ - size += (MP_PREC * 2) - (size % MP_PREC); - - /* reallocate the array a->dp - * - * We store the return in a temporary variable - * in case the operation failed we don't want - * to overwrite the dp member of a. - */ - tmp = OPT_CAST(mp_digit) XREALLOC (a->dp, sizeof (mp_digit) * size, NULL, - DYNAMIC_TYPE_BIGINT); - if (tmp == NULL) { - /* reallocation failed but "a" is still valid [can be freed] */ - return MP_MEM; - } - - /* reallocation succeeded so set a->dp */ - a->dp = tmp; - - /* zero excess digits */ - i = a->alloc; - a->alloc = size; - for (; i < a->alloc; i++) { - a->dp[i] = 0; - } - } - return MP_OKAY; -} - - -/* shift right by a certain bit count (store quotient in c, optional - remainder in d) */ -int mp_div_2d (mp_int * a, int b, mp_int * c, mp_int * d) -{ - int D, res; - mp_int t; - - - /* if the shift count is <= 0 then we do no work */ - if (b <= 0) { - res = mp_copy (a, c); - if (d != NULL) { - mp_zero (d); - } - return res; - } - - if ((res = mp_init (&t)) != MP_OKAY) { - return res; - } - - /* get the remainder */ - if (d != NULL) { - if ((res = mp_mod_2d (a, b, &t)) != MP_OKAY) { - mp_clear (&t); - return res; - } - } - - /* copy */ - if ((res = mp_copy (a, c)) != MP_OKAY) { - mp_clear (&t); - return res; - } - - /* shift by as many digits in the bit count */ - if (b >= (int)DIGIT_BIT) { - mp_rshd (c, b / DIGIT_BIT); - } - - /* shift any bit count < DIGIT_BIT */ - D = (b % DIGIT_BIT); - if (D != 0) { - mp_rshb(c, D); - } - mp_clamp (c); - if (d != NULL) { - mp_exch (&t, d); - } - mp_clear (&t); - return MP_OKAY; -} - - -/* set to zero */ -void mp_zero (mp_int * a) -{ - int n; - mp_digit *tmp; - - if (a == NULL) - return; - - a->sign = MP_ZPOS; - a->used = 0; - - tmp = a->dp; - for (n = 0; n < a->alloc; n++) { - *tmp++ = 0; - } -} - - -/* trim unused digits - * - * This is used to ensure that leading zero digits are - * trimmed and the leading "used" digit will be non-zero - * Typically very fast. Also fixes the sign if there - * are no more leading digits - */ -void mp_clamp (mp_int * a) -{ - /* decrease used while the most significant digit is - * zero. - */ - while (a->used > 0 && a->dp[a->used - 1] == 0) { - --(a->used); - } - - /* reset the sign flag if used == 0 */ - if (a->used == 0) { - a->sign = MP_ZPOS; - } -} - - -/* swap the elements of two integers, for cases where you can't simply swap the - * mp_int pointers around - */ -void mp_exch (mp_int * a, mp_int * b) -{ - mp_int t; - - t = *a; - *a = *b; - *b = t; -} - - -/* shift right a certain number of bits */ -void mp_rshb (mp_int *c, int x) -{ - mp_digit *tmpc, mask, shift; - mp_digit r, rr; - mp_digit D = x; - - /* mask */ - mask = (((mp_digit)1) << D) - 1; - - /* shift for lsb */ - shift = DIGIT_BIT - D; - - /* alias */ - tmpc = c->dp + (c->used - 1); - - /* carry */ - r = 0; - for (x = c->used - 1; x >= 0; x--) { - /* get the lower bits of this word in a temp */ - rr = *tmpc & mask; - - /* shift the current word and mix in the carry bits from previous word */ - *tmpc = (*tmpc >> D) | (r << shift); - --tmpc; - - /* set the carry to the carry bits of the current word found above */ - r = rr; - } - mp_clamp(c); -} - - -/* shift right a certain amount of digits */ -void mp_rshd (mp_int * a, int b) -{ - int x; - - /* if b <= 0 then ignore it */ - if (b <= 0) { - return; - } - - /* if b > used then simply zero it and return */ - if (a->used <= b) { - mp_zero (a); - return; - } - - { - mp_digit *bottom, *top; - - /* shift the digits down */ - - /* bottom */ - bottom = a->dp; - - /* top [offset into digits] */ - top = a->dp + b; - - /* this is implemented as a sliding window where - * the window is b-digits long and digits from - * the top of the window are copied to the bottom - * - * e.g. - - b-2 | b-1 | b0 | b1 | b2 | ... | bb | ----> - /\ | ----> - \-------------------/ ----> - */ - for (x = 0; x < (a->used - b); x++) { - *bottom++ = *top++; - } - - /* zero the top digits */ - for (; x < a->used; x++) { - *bottom++ = 0; - } - } - - /* remove excess digits */ - a->used -= b; -} - - -/* calc a value mod 2**b */ -int mp_mod_2d (mp_int * a, int b, mp_int * c) -{ - int x, res; - - /* if b is <= 0 then zero the int */ - if (b <= 0) { - mp_zero (c); - return MP_OKAY; - } - - /* if the modulus is larger than the value than return */ - if (b >= (int) (a->used * DIGIT_BIT)) { - res = mp_copy (a, c); - return res; - } - - /* copy */ - if ((res = mp_copy (a, c)) != MP_OKAY) { - return res; - } - - /* zero digits above the last digit of the modulus */ - for (x = (b / DIGIT_BIT) + ((b % DIGIT_BIT) == 0 ? 0 : 1); x < c->used; x++) { - c->dp[x] = 0; - } - /* clear the digit that is not completely outside/inside the modulus */ - c->dp[b / DIGIT_BIT] &= (mp_digit) ((((mp_digit) 1) << - (((mp_digit) b) % DIGIT_BIT)) - ((mp_digit) 1)); - mp_clamp (c); - return MP_OKAY; -} - - -/* reads a unsigned char array, assumes the msb is stored first [big endian] */ -int mp_read_unsigned_bin (mp_int * a, const unsigned char *b, int c) -{ - int res; - - /* make sure there are at least two digits */ - if (a->alloc < 2) { - if ((res = mp_grow(a, 2)) != MP_OKAY) { - return res; - } - } - - /* zero the int */ - mp_zero (a); - - /* read the bytes in */ - while (c-- > 0) { - if ((res = mp_mul_2d (a, 8, a)) != MP_OKAY) { - return res; - } - -#ifndef MP_8BIT - a->dp[0] |= *b++; - a->used += 1; -#else - a->dp[0] = (*b & MP_MASK); - a->dp[1] |= ((*b++ >> 7U) & 1); - a->used += 2; -#endif - } - mp_clamp (a); - return MP_OKAY; -} - - -/* shift left by a certain bit count */ -int mp_mul_2d (mp_int * a, int b, mp_int * c) -{ - mp_digit d; - int res; - - /* copy */ - if (a != c) { - if ((res = mp_copy (a, c)) != MP_OKAY) { - return res; - } - } - - if (c->alloc < (int)(c->used + b/DIGIT_BIT + 1)) { - if ((res = mp_grow (c, c->used + b / DIGIT_BIT + 1)) != MP_OKAY) { - return res; - } - } - - /* shift by as many digits in the bit count */ - if (b >= (int)DIGIT_BIT) { - if ((res = mp_lshd (c, b / DIGIT_BIT)) != MP_OKAY) { - return res; - } - } - - /* shift any bit count < DIGIT_BIT */ - d = (mp_digit) (b % DIGIT_BIT); - if (d != 0) { - mp_digit *tmpc, shift, mask, r, rr; - int x; - - /* bitmask for carries */ - mask = (((mp_digit)1) << d) - 1; - - /* shift for msbs */ - shift = DIGIT_BIT - d; - - /* alias */ - tmpc = c->dp; - - /* carry */ - r = 0; - for (x = 0; x < c->used; x++) { - /* get the higher bits of the current word */ - rr = (*tmpc >> shift) & mask; - - /* shift the current word and OR in the carry */ - *tmpc = (mp_digit)(((*tmpc << d) | r) & MP_MASK); - ++tmpc; - - /* set the carry to the carry bits of the current word */ - r = rr; - } - - /* set final carry */ - if (r != 0) { - c->dp[(c->used)++] = r; - } - } - mp_clamp (c); - return MP_OKAY; -} - - -/* shift left a certain amount of digits */ -int mp_lshd (mp_int * a, int b) -{ - int x, res; - - /* if its less than zero return */ - if (b <= 0) { - return MP_OKAY; - } - - /* grow to fit the new digits */ - if (a->alloc < a->used + b) { - if ((res = mp_grow (a, a->used + b)) != MP_OKAY) { - return res; - } - } - - { - mp_digit *top, *bottom; - - /* increment the used by the shift amount then copy upwards */ - a->used += b; - - /* top */ - top = a->dp + a->used - 1; - - /* base */ - bottom = a->dp + a->used - 1 - b; - - /* much like mp_rshd this is implemented using a sliding window - * except the window goes the other way around. Copying from - * the bottom to the top. see bn_mp_rshd.c for more info. - */ - for (x = a->used - 1; x >= b; x--) { - *top-- = *bottom--; - } - - /* zero the lower digits */ - top = a->dp; - for (x = 0; x < b; x++) { - *top++ = 0; - } - } - return MP_OKAY; -} - - -/* this is a shell function that calls either the normal or Montgomery - * exptmod functions. Originally the call to the montgomery code was - * embedded in the normal function but that wasted a lot of stack space - * for nothing (since 99% of the time the Montgomery code would be called) - */ -#if defined(FREESCALE_LTC_TFM) -int wolfcrypt_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y) -#else -int mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y) -#endif -{ - int dr; - - /* modulus P must be positive */ - if (P->sign == MP_NEG) { - return MP_VAL; - } - - /* if exponent X is negative we have to recurse */ - if (X->sign == MP_NEG) { -#ifdef BN_MP_INVMOD_C - mp_int tmpG, tmpX; - int err; - - /* first compute 1/G mod P */ - if ((err = mp_init(&tmpG)) != MP_OKAY) { - return err; - } - if ((err = mp_invmod(G, P, &tmpG)) != MP_OKAY) { - mp_clear(&tmpG); - return err; - } - - /* now get |X| */ - if ((err = mp_init(&tmpX)) != MP_OKAY) { - mp_clear(&tmpG); - return err; - } - if ((err = mp_abs(X, &tmpX)) != MP_OKAY) { - mp_clear(&tmpG); - mp_clear(&tmpX); - return err; - } - - /* and now compute (1/G)**|X| instead of G**X [X < 0] */ - err = mp_exptmod(&tmpG, &tmpX, P, Y); - mp_clear(&tmpG); - mp_clear(&tmpX); - return err; -#else - /* no invmod */ - return MP_VAL; -#endif - } - -/* modified diminished radix reduction */ -#if defined(BN_MP_REDUCE_IS_2K_L_C) && defined(BN_MP_REDUCE_2K_L_C) && \ - defined(BN_S_MP_EXPTMOD_C) - if (mp_reduce_is_2k_l(P) == MP_YES) { - return s_mp_exptmod(G, X, P, Y, 1); - } -#endif - -#ifdef BN_MP_DR_IS_MODULUS_C - /* is it a DR modulus? */ - dr = mp_dr_is_modulus(P); -#else - /* default to no */ - dr = 0; -#endif - -#ifdef BN_MP_REDUCE_IS_2K_C - /* if not, is it a unrestricted DR modulus? */ - if (dr == 0) { - dr = mp_reduce_is_2k(P) << 1; - } -#endif - - /* if the modulus is odd or dr != 0 use the montgomery method */ -#ifdef BN_MP_EXPTMOD_FAST_C - if (mp_isodd (P) == MP_YES || dr != 0) { - return mp_exptmod_fast (G, X, P, Y, dr); - } else { -#endif -#ifdef BN_S_MP_EXPTMOD_C - /* otherwise use the generic Barrett reduction technique */ - return s_mp_exptmod (G, X, P, Y, 0); -#else - /* no exptmod for evens */ - return MP_VAL; -#endif -#ifdef BN_MP_EXPTMOD_FAST_C - } -#endif -} - - -/* b = |a| - * - * Simple function copies the input and fixes the sign to positive - */ -int mp_abs (mp_int * a, mp_int * b) -{ - int res; - - /* copy a to b */ - if (a != b) { - if ((res = mp_copy (a, b)) != MP_OKAY) { - return res; - } - } - - /* force the sign of b to positive */ - b->sign = MP_ZPOS; - - return MP_OKAY; -} - - -/* hac 14.61, pp608 */ -#if defined(FREESCALE_LTC_TFM) -int wolfcrypt_mp_invmod(mp_int * a, mp_int * b, mp_int * c) -#else -int mp_invmod (mp_int * a, mp_int * b, mp_int * c) -#endif -{ - /* b cannot be negative */ - if (b->sign == MP_NEG || mp_iszero(b) == MP_YES) { - return MP_VAL; - } - -#ifdef BN_FAST_MP_INVMOD_C - /* if the modulus is odd we can use a faster routine instead */ - if ((mp_isodd(b) == MP_YES) && (mp_cmp_d(b, 1) != MP_EQ)) { - return fast_mp_invmod (a, b, c); - } -#endif - -#ifdef BN_MP_INVMOD_SLOW_C - return mp_invmod_slow(a, b, c); -#else - return MP_VAL; -#endif -} - - -/* computes the modular inverse via binary extended euclidean algorithm, - * that is c = 1/a mod b - * - * Based on slow invmod except this is optimized for the case where b is - * odd as per HAC Note 14.64 on pp. 610 - */ -int fast_mp_invmod (mp_int * a, mp_int * b, mp_int * c) -{ - mp_int x, y, u, v, B, D; - int res, neg, loop_check = 0; - - /* 2. [modified] b must be odd */ - if (mp_iseven (b) == MP_YES) { - return MP_VAL; - } - - /* init all our temps */ - if ((res = mp_init_multi(&x, &y, &u, &v, &B, &D)) != MP_OKAY) { - return res; - } - - /* x == modulus, y == value to invert */ - if ((res = mp_copy (b, &x)) != MP_OKAY) { - goto LBL_ERR; - } - - /* we need y = |a| */ - if ((res = mp_mod (a, b, &y)) != MP_OKAY) { - goto LBL_ERR; - } - - /* 3. u=x, v=y, A=1, B=0, C=0,D=1 */ - if ((res = mp_copy (&x, &u)) != MP_OKAY) { - goto LBL_ERR; - } - if ((res = mp_copy (&y, &v)) != MP_OKAY) { - goto LBL_ERR; - } - if ((res = mp_set (&D, 1)) != MP_OKAY) { - goto LBL_ERR; - } - -top: - /* 4. while u is even do */ - while (mp_iseven (&u) == MP_YES) { - /* 4.1 u = u/2 */ - if ((res = mp_div_2 (&u, &u)) != MP_OKAY) { - goto LBL_ERR; - } - /* 4.2 if B is odd then */ - if (mp_isodd (&B) == MP_YES) { - if ((res = mp_sub (&B, &x, &B)) != MP_OKAY) { - goto LBL_ERR; - } - } - /* B = B/2 */ - if ((res = mp_div_2 (&B, &B)) != MP_OKAY) { - goto LBL_ERR; - } - } - - /* 5. while v is even do */ - while (mp_iseven (&v) == MP_YES) { - /* 5.1 v = v/2 */ - if ((res = mp_div_2 (&v, &v)) != MP_OKAY) { - goto LBL_ERR; - } - /* 5.2 if D is odd then */ - if (mp_isodd (&D) == MP_YES) { - /* D = (D-x)/2 */ - if ((res = mp_sub (&D, &x, &D)) != MP_OKAY) { - goto LBL_ERR; - } - } - /* D = D/2 */ - if ((res = mp_div_2 (&D, &D)) != MP_OKAY) { - goto LBL_ERR; - } - } - - /* 6. if u >= v then */ - if (mp_cmp (&u, &v) != MP_LT) { - /* u = u - v, B = B - D */ - if ((res = mp_sub (&u, &v, &u)) != MP_OKAY) { - goto LBL_ERR; - } - - if ((res = mp_sub (&B, &D, &B)) != MP_OKAY) { - goto LBL_ERR; - } - } else { - /* v - v - u, D = D - B */ - if ((res = mp_sub (&v, &u, &v)) != MP_OKAY) { - goto LBL_ERR; - } - - if ((res = mp_sub (&D, &B, &D)) != MP_OKAY) { - goto LBL_ERR; - } - } - - /* if not zero goto step 4 */ - if (mp_iszero (&u) == MP_NO) { - if (++loop_check > MAX_INVMOD_SZ) { - res = MP_VAL; - goto LBL_ERR; - } - goto top; - } - - /* now a = C, b = D, gcd == g*v */ - - /* if v != 1 then there is no inverse */ - if (mp_cmp_d (&v, 1) != MP_EQ) { - res = MP_VAL; - goto LBL_ERR; - } - - /* b is now the inverse */ - neg = a->sign; - while (D.sign == MP_NEG) { - if ((res = mp_add (&D, b, &D)) != MP_OKAY) { - goto LBL_ERR; - } - } - /* too big */ - while (mp_cmp_mag(&D, b) != MP_LT) { - if ((res = mp_sub(&D, b, &D)) != MP_OKAY) { - goto LBL_ERR; - } - } - mp_exch (&D, c); - c->sign = neg; - res = MP_OKAY; - -LBL_ERR:mp_clear(&x); - mp_clear(&y); - mp_clear(&u); - mp_clear(&v); - mp_clear(&B); - mp_clear(&D); - return res; -} - - -/* hac 14.61, pp608 */ -int mp_invmod_slow (mp_int * a, mp_int * b, mp_int * c) -{ - mp_int x, y, u, v, A, B, C, D; - int res; - - /* b cannot be negative */ - if (b->sign == MP_NEG || mp_iszero(b) == MP_YES) { - return MP_VAL; - } - - /* init temps */ - if ((res = mp_init_multi(&x, &y, &u, &v, - &A, &B)) != MP_OKAY) { - return res; - } - - /* init rest of tmps temps */ - if ((res = mp_init_multi(&C, &D, 0, 0, 0, 0)) != MP_OKAY) { - mp_clear(&x); - mp_clear(&y); - mp_clear(&u); - mp_clear(&v); - mp_clear(&A); - mp_clear(&B); - return res; - } - - /* x = a, y = b */ - if ((res = mp_mod(a, b, &x)) != MP_OKAY) { - goto LBL_ERR; - } - if ((res = mp_copy (b, &y)) != MP_OKAY) { - goto LBL_ERR; - } - - /* 2. [modified] if x,y are both even then return an error! */ - if (mp_iseven (&x) == MP_YES && mp_iseven (&y) == MP_YES) { - res = MP_VAL; - goto LBL_ERR; - } - - /* 3. u=x, v=y, A=1, B=0, C=0,D=1 */ - if ((res = mp_copy (&x, &u)) != MP_OKAY) { - goto LBL_ERR; - } - if ((res = mp_copy (&y, &v)) != MP_OKAY) { - goto LBL_ERR; - } - if ((res = mp_set (&A, 1)) != MP_OKAY) { - goto LBL_ERR; - } - if ((res = mp_set (&D, 1)) != MP_OKAY) { - goto LBL_ERR; - } - -top: - /* 4. while u is even do */ - while (mp_iseven (&u) == MP_YES) { - /* 4.1 u = u/2 */ - if ((res = mp_div_2 (&u, &u)) != MP_OKAY) { - goto LBL_ERR; - } - /* 4.2 if A or B is odd then */ - if (mp_isodd (&A) == MP_YES || mp_isodd (&B) == MP_YES) { - /* A = (A+y)/2, B = (B-x)/2 */ - if ((res = mp_add (&A, &y, &A)) != MP_OKAY) { - goto LBL_ERR; - } - if ((res = mp_sub (&B, &x, &B)) != MP_OKAY) { - goto LBL_ERR; - } - } - /* A = A/2, B = B/2 */ - if ((res = mp_div_2 (&A, &A)) != MP_OKAY) { - goto LBL_ERR; - } - if ((res = mp_div_2 (&B, &B)) != MP_OKAY) { - goto LBL_ERR; - } - } - - /* 5. while v is even do */ - while (mp_iseven (&v) == MP_YES) { - /* 5.1 v = v/2 */ - if ((res = mp_div_2 (&v, &v)) != MP_OKAY) { - goto LBL_ERR; - } - /* 5.2 if C or D is odd then */ - if (mp_isodd (&C) == MP_YES || mp_isodd (&D) == MP_YES) { - /* C = (C+y)/2, D = (D-x)/2 */ - if ((res = mp_add (&C, &y, &C)) != MP_OKAY) { - goto LBL_ERR; - } - if ((res = mp_sub (&D, &x, &D)) != MP_OKAY) { - goto LBL_ERR; - } - } - /* C = C/2, D = D/2 */ - if ((res = mp_div_2 (&C, &C)) != MP_OKAY) { - goto LBL_ERR; - } - if ((res = mp_div_2 (&D, &D)) != MP_OKAY) { - goto LBL_ERR; - } - } - - /* 6. if u >= v then */ - if (mp_cmp (&u, &v) != MP_LT) { - /* u = u - v, A = A - C, B = B - D */ - if ((res = mp_sub (&u, &v, &u)) != MP_OKAY) { - goto LBL_ERR; - } - - if ((res = mp_sub (&A, &C, &A)) != MP_OKAY) { - goto LBL_ERR; - } - - if ((res = mp_sub (&B, &D, &B)) != MP_OKAY) { - goto LBL_ERR; - } - } else { - /* v - v - u, C = C - A, D = D - B */ - if ((res = mp_sub (&v, &u, &v)) != MP_OKAY) { - goto LBL_ERR; - } - - if ((res = mp_sub (&C, &A, &C)) != MP_OKAY) { - goto LBL_ERR; - } - - if ((res = mp_sub (&D, &B, &D)) != MP_OKAY) { - goto LBL_ERR; - } - } - - /* if not zero goto step 4 */ - if (mp_iszero (&u) == MP_NO) - goto top; - - /* now a = C, b = D, gcd == g*v */ - - /* if v != 1 then there is no inverse */ - if (mp_cmp_d (&v, 1) != MP_EQ) { - res = MP_VAL; - goto LBL_ERR; - } - - /* if its too low */ - while (mp_cmp_d(&C, 0) == MP_LT) { - if ((res = mp_add(&C, b, &C)) != MP_OKAY) { - goto LBL_ERR; - } - } - - /* too big */ - while (mp_cmp_mag(&C, b) != MP_LT) { - if ((res = mp_sub(&C, b, &C)) != MP_OKAY) { - goto LBL_ERR; - } - } - - /* C is now the inverse */ - mp_exch (&C, c); - res = MP_OKAY; -LBL_ERR:mp_clear(&x); - mp_clear(&y); - mp_clear(&u); - mp_clear(&v); - mp_clear(&A); - mp_clear(&B); - mp_clear(&C); - mp_clear(&D); - return res; -} - - -/* compare magnitude of two ints (unsigned) */ -int mp_cmp_mag (mp_int * a, mp_int * b) -{ - int n; - mp_digit *tmpa, *tmpb; - - /* compare based on # of non-zero digits */ - if (a->used > b->used) { - return MP_GT; - } - - if (a->used < b->used) { - return MP_LT; - } - - /* alias for a */ - tmpa = a->dp + (a->used - 1); - - /* alias for b */ - tmpb = b->dp + (a->used - 1); - - /* compare based on digits */ - for (n = 0; n < a->used; ++n, --tmpa, --tmpb) { - if (*tmpa > *tmpb) { - return MP_GT; - } - - if (*tmpa < *tmpb) { - return MP_LT; - } - } - return MP_EQ; -} - - -/* compare two ints (signed)*/ -int mp_cmp (mp_int * a, mp_int * b) -{ - /* compare based on sign */ - if (a->sign != b->sign) { - if (a->sign == MP_NEG) { - return MP_LT; - } else { - return MP_GT; - } - } - - /* compare digits */ - if (a->sign == MP_NEG) { - /* if negative compare opposite direction */ - return mp_cmp_mag(b, a); - } else { - return mp_cmp_mag(a, b); - } -} - - -/* compare a digit */ -int mp_cmp_d(mp_int * a, mp_digit b) -{ - /* special case for zero*/ - if (a->used == 0 && b == 0) - return MP_EQ; - - /* compare based on sign */ - if ((b && a->used == 0) || a->sign == MP_NEG) { - return MP_LT; - } - - /* compare based on magnitude */ - if (a->used > 1) { - return MP_GT; - } - - /* compare the only digit of a to b */ - if (a->dp[0] > b) { - return MP_GT; - } else if (a->dp[0] < b) { - return MP_LT; - } else { - return MP_EQ; - } -} - - -/* set to a digit */ -int mp_set (mp_int * a, mp_digit b) -{ - int res; - mp_zero (a); - res = mp_grow (a, 1); - if (res == MP_OKAY) { - a->dp[0] = (mp_digit)(b & MP_MASK); - a->used = (a->dp[0] != 0) ? 1 : 0; - } - return res; -} - -/* chek if a bit is set */ -int mp_is_bit_set (mp_int *a, mp_digit b) -{ - if ((mp_digit)a->used < b/DIGIT_BIT) - return 0; - - return (int)((a->dp[b/DIGIT_BIT] >> b%DIGIT_BIT) & (mp_digit)1); -} - -/* c = a mod b, 0 <= c < b */ -#if defined(FREESCALE_LTC_TFM) -int wolfcrypt_mp_mod(mp_int * a, mp_int * b, mp_int * c) -#else -int mp_mod (mp_int * a, mp_int * b, mp_int * c) -#endif -{ - mp_int t; - int res; - - if ((res = mp_init_size (&t, b->used)) != MP_OKAY) { - return res; - } - - if ((res = mp_div (a, b, NULL, &t)) != MP_OKAY) { - mp_clear (&t); - return res; - } - - if ((mp_iszero(&t) != MP_NO) || (t.sign == b->sign)) { - res = MP_OKAY; - mp_exch (&t, c); - } else { - res = mp_add (b, &t, c); - } - - mp_clear (&t); - return res; -} - - -/* slower bit-bang division... also smaller */ -int mp_div(mp_int * a, mp_int * b, mp_int * c, mp_int * d) -{ - mp_int ta, tb, tq, q; - int res, n, n2; - - /* is divisor zero ? */ - if (mp_iszero (b) == MP_YES) { - return MP_VAL; - } - - /* if a < b then q=0, r = a */ - if (mp_cmp_mag (a, b) == MP_LT) { - if (d != NULL) { - res = mp_copy (a, d); - } else { - res = MP_OKAY; - } - if (c != NULL) { - mp_zero (c); - } - return res; - } - - /* init our temps */ - if ((res = mp_init_multi(&ta, &tb, &tq, &q, 0, 0)) != MP_OKAY) { - return res; - } - - if ((res = mp_set(&tq, 1)) != MP_OKAY) { - return res; - } - n = mp_count_bits(a) - mp_count_bits(b); - if (((res = mp_abs(a, &ta)) != MP_OKAY) || - ((res = mp_abs(b, &tb)) != MP_OKAY) || - ((res = mp_mul_2d(&tb, n, &tb)) != MP_OKAY) || - ((res = mp_mul_2d(&tq, n, &tq)) != MP_OKAY)) { - goto LBL_ERR; - } - - while (n-- >= 0) { - if (mp_cmp(&tb, &ta) != MP_GT) { - if (((res = mp_sub(&ta, &tb, &ta)) != MP_OKAY) || - ((res = mp_add(&q, &tq, &q)) != MP_OKAY)) { - goto LBL_ERR; - } - } - if (((res = mp_div_2d(&tb, 1, &tb, NULL)) != MP_OKAY) || - ((res = mp_div_2d(&tq, 1, &tq, NULL)) != MP_OKAY)) { - goto LBL_ERR; - } - } - - /* now q == quotient and ta == remainder */ - n = a->sign; - n2 = (a->sign == b->sign ? MP_ZPOS : MP_NEG); - if (c != NULL) { - mp_exch(c, &q); - c->sign = (mp_iszero(c) == MP_YES) ? MP_ZPOS : n2; - } - if (d != NULL) { - mp_exch(d, &ta); - d->sign = (mp_iszero(d) == MP_YES) ? MP_ZPOS : n; - } -LBL_ERR: - mp_clear(&ta); - mp_clear(&tb); - mp_clear(&tq); - mp_clear(&q); - return res; -} - - -/* b = a/2 */ -int mp_div_2(mp_int * a, mp_int * b) -{ - int x, res, oldused; - - /* copy */ - if (b->alloc < a->used) { - if ((res = mp_grow (b, a->used)) != MP_OKAY) { - return res; - } - } - - oldused = b->used; - b->used = a->used; - { - mp_digit r, rr, *tmpa, *tmpb; - - /* source alias */ - tmpa = a->dp + b->used - 1; - - /* dest alias */ - tmpb = b->dp + b->used - 1; - - /* carry */ - r = 0; - for (x = b->used - 1; x >= 0; x--) { - /* get the carry for the next iteration */ - rr = *tmpa & 1; - - /* shift the current digit, add in carry and store */ - *tmpb-- = (*tmpa-- >> 1) | (r << (DIGIT_BIT - 1)); - - /* forward carry to next iteration */ - r = rr; - } - - /* zero excess digits */ - tmpb = b->dp + b->used; - for (x = b->used; x < oldused; x++) { - *tmpb++ = 0; - } - } - b->sign = a->sign; - mp_clamp (b); - return MP_OKAY; -} - - -/* high level addition (handles signs) */ -int mp_add (mp_int * a, mp_int * b, mp_int * c) -{ - int sa, sb, res; - - /* get sign of both inputs */ - sa = a->sign; - sb = b->sign; - - /* handle two cases, not four */ - if (sa == sb) { - /* both positive or both negative */ - /* add their magnitudes, copy the sign */ - c->sign = sa; - res = s_mp_add (a, b, c); - } else { - /* one positive, the other negative */ - /* subtract the one with the greater magnitude from */ - /* the one of the lesser magnitude. The result gets */ - /* the sign of the one with the greater magnitude. */ - if (mp_cmp_mag (a, b) == MP_LT) { - c->sign = sb; - res = s_mp_sub (b, a, c); - } else { - c->sign = sa; - res = s_mp_sub (a, b, c); - } - } - return res; -} - - -/* low level addition, based on HAC pp.594, Algorithm 14.7 */ -int s_mp_add (mp_int * a, mp_int * b, mp_int * c) -{ - mp_int *x; - int olduse, res, min_ab, max_ab; - - /* find sizes, we let |a| <= |b| which means we have to sort - * them. "x" will point to the input with the most digits - */ - if (a->used > b->used) { - min_ab = b->used; - max_ab = a->used; - x = a; - } else { - min_ab = a->used; - max_ab = b->used; - x = b; - } - - /* init result */ - if (c->alloc < max_ab + 1) { - if ((res = mp_grow (c, max_ab + 1)) != MP_OKAY) { - return res; - } - } - - /* get old used digit count and set new one */ - olduse = c->used; - c->used = max_ab + 1; - - { - mp_digit u, *tmpa, *tmpb, *tmpc; - int i; - - /* alias for digit pointers */ - - /* first input */ - tmpa = a->dp; - - /* second input */ - tmpb = b->dp; - - /* destination */ - tmpc = c->dp; - - /* zero the carry */ - u = 0; - for (i = 0; i < min_ab; i++) { - /* Compute the sum at one digit, T[i] = A[i] + B[i] + U */ - *tmpc = *tmpa++ + *tmpb++ + u; - - /* U = carry bit of T[i] */ - u = *tmpc >> ((mp_digit)DIGIT_BIT); - - /* take away carry bit from T[i] */ - *tmpc++ &= MP_MASK; - } - - /* now copy higher words if any, that is in A+B - * if A or B has more digits add those in - */ - if (min_ab != max_ab) { - for (; i < max_ab; i++) { - /* T[i] = X[i] + U */ - *tmpc = x->dp[i] + u; - - /* U = carry bit of T[i] */ - u = *tmpc >> ((mp_digit)DIGIT_BIT); - - /* take away carry bit from T[i] */ - *tmpc++ &= MP_MASK; - } - } - - /* add carry */ - *tmpc++ = u; - - /* clear digits above olduse */ - for (i = c->used; i < olduse; i++) { - *tmpc++ = 0; - } - } - - mp_clamp (c); - return MP_OKAY; -} - - -/* low level subtraction (assumes |a| > |b|), HAC pp.595 Algorithm 14.9 */ -int s_mp_sub (mp_int * a, mp_int * b, mp_int * c) -{ - int olduse, res, min_b, max_a; - - /* find sizes */ - min_b = b->used; - max_a = a->used; - - /* init result */ - if (c->alloc < max_a) { - if ((res = mp_grow (c, max_a)) != MP_OKAY) { - return res; - } - } - - /* sanity check on destination */ - if (c->dp == NULL) - return MP_VAL; - - olduse = c->used; - c->used = max_a; - - { - mp_digit u, *tmpa, *tmpb, *tmpc; - int i; - - /* alias for digit pointers */ - tmpa = a->dp; - tmpb = b->dp; - tmpc = c->dp; - - /* set carry to zero */ - u = 0; - for (i = 0; i < min_b; i++) { - /* T[i] = A[i] - B[i] - U */ - *tmpc = *tmpa++ - *tmpb++ - u; - - /* U = carry bit of T[i] - * Note this saves performing an AND operation since - * if a carry does occur it will propagate all the way to the - * MSB. As a result a single shift is enough to get the carry - */ - u = *tmpc >> ((mp_digit)(CHAR_BIT * sizeof (mp_digit) - 1)); - - /* Clear carry from T[i] */ - *tmpc++ &= MP_MASK; - } - - /* now copy higher words if any, e.g. if A has more digits than B */ - for (; i < max_a; i++) { - /* T[i] = A[i] - U */ - *tmpc = *tmpa++ - u; - - /* U = carry bit of T[i] */ - u = *tmpc >> ((mp_digit)(CHAR_BIT * sizeof (mp_digit) - 1)); - - /* Clear carry from T[i] */ - *tmpc++ &= MP_MASK; - } - - /* clear digits above used (since we may not have grown result above) */ - for (i = c->used; i < olduse; i++) { - *tmpc++ = 0; - } - } - - mp_clamp (c); - return MP_OKAY; -} - - -/* high level subtraction (handles signs) */ -int mp_sub (mp_int * a, mp_int * b, mp_int * c) -{ - int sa, sb, res; - - sa = a->sign; - sb = b->sign; - - if (sa != sb) { - /* subtract a negative from a positive, OR */ - /* subtract a positive from a negative. */ - /* In either case, ADD their magnitudes, */ - /* and use the sign of the first number. */ - c->sign = sa; - res = s_mp_add (a, b, c); - } else { - /* subtract a positive from a positive, OR */ - /* subtract a negative from a negative. */ - /* First, take the difference between their */ - /* magnitudes, then... */ - if (mp_cmp_mag (a, b) != MP_LT) { - /* Copy the sign from the first */ - c->sign = sa; - /* The first has a larger or equal magnitude */ - res = s_mp_sub (a, b, c); - } else { - /* The result has the *opposite* sign from */ - /* the first number. */ - c->sign = (sa == MP_ZPOS) ? MP_NEG : MP_ZPOS; - /* The second has a larger magnitude */ - res = s_mp_sub (b, a, c); - } - } - return res; -} - - -/* determines if reduce_2k_l can be used */ -int mp_reduce_is_2k_l(mp_int *a) -{ - int ix, iy; - - if (a->used == 0) { - return MP_NO; - } else if (a->used == 1) { - return MP_YES; - } else if (a->used > 1) { - /* if more than half of the digits are -1 we're sold */ - for (iy = ix = 0; ix < a->used; ix++) { - if (a->dp[ix] == MP_MASK) { - ++iy; - } - } - return (iy >= (a->used/2)) ? MP_YES : MP_NO; - - } - return MP_NO; -} - - -/* determines if mp_reduce_2k can be used */ -int mp_reduce_is_2k(mp_int *a) -{ - int ix, iy, iw; - mp_digit iz; - - if (a->used == 0) { - return MP_NO; - } else if (a->used == 1) { - return MP_YES; - } else if (a->used > 1) { - iy = mp_count_bits(a); - iz = 1; - iw = 1; - - /* Test every bit from the second digit up, must be 1 */ - for (ix = DIGIT_BIT; ix < iy; ix++) { - if ((a->dp[iw] & iz) == 0) { - return MP_NO; - } - iz <<= 1; - if (iz > (mp_digit)MP_MASK) { - ++iw; - iz = 1; - } - } - } - return MP_YES; -} - - -/* determines if a number is a valid DR modulus */ -int mp_dr_is_modulus(mp_int *a) -{ - int ix; - - /* must be at least two digits */ - if (a->used < 2) { - return 0; - } - - /* must be of the form b**k - a [a <= b] so all - * but the first digit must be equal to -1 (mod b). - */ - for (ix = 1; ix < a->used; ix++) { - if (a->dp[ix] != MP_MASK) { - return 0; - } - } - return 1; -} - - -/* computes Y == G**X mod P, HAC pp.616, Algorithm 14.85 - * - * Uses a left-to-right k-ary sliding window to compute the modular - * exponentiation. - * The value of k changes based on the size of the exponent. - * - * Uses Montgomery or Diminished Radix reduction [whichever appropriate] - */ - -#ifdef MP_LOW_MEM - #define TAB_SIZE 32 -#else - #define TAB_SIZE 256 -#endif - -int mp_exptmod_fast (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, - int redmode) -{ - mp_int res; - mp_digit buf, mp; - int err, bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize; -#ifdef WOLFSSL_SMALL_STACK - mp_int* M = NULL; -#else - mp_int M[TAB_SIZE]; -#endif - /* use a pointer to the reduction algorithm. This allows us to use - * one of many reduction algorithms without modding the guts of - * the code with if statements everywhere. - */ - int (*redux)(mp_int*,mp_int*,mp_digit); - -#ifdef WOLFSSL_SMALL_STACK - M = (mp_int*) XMALLOC(sizeof(mp_int) * TAB_SIZE, NULL, - DYNAMIC_TYPE_TMP_BUFFER); - if (M == NULL) - return MP_MEM; -#endif - - /* find window size */ - x = mp_count_bits (X); - if (x <= 7) { - winsize = 2; - } else if (x <= 36) { - winsize = 3; - } else if (x <= 140) { - winsize = 4; - } else if (x <= 450) { - winsize = 5; - } else if (x <= 1303) { - winsize = 6; - } else if (x <= 3529) { - winsize = 7; - } else { - winsize = 8; - } - -#ifdef MP_LOW_MEM - if (winsize > 5) { - winsize = 5; - } -#endif - - /* init M array */ - /* init first cell */ - if ((err = mp_init_size(&M[1], P->alloc)) != MP_OKAY) { -#ifdef WOLFSSL_SMALL_STACK - XFREE(M, NULL, DYNAMIC_TYPE_TMP_BUFFER); -#endif - - return err; - } - - /* now init the second half of the array */ - for (x = 1<<(winsize-1); x < (1 << winsize); x++) { - if ((err = mp_init_size(&M[x], P->alloc)) != MP_OKAY) { - for (y = 1<<(winsize-1); y < x; y++) { - mp_clear (&M[y]); - } - mp_clear(&M[1]); - -#ifdef WOLFSSL_SMALL_STACK - XFREE(M, NULL, DYNAMIC_TYPE_TMP_BUFFER); -#endif - - return err; - } - } - - /* determine and setup reduction code */ - if (redmode == 0) { -#ifdef BN_MP_MONTGOMERY_SETUP_C - /* now setup montgomery */ - if ((err = mp_montgomery_setup (P, &mp)) != MP_OKAY) { - goto LBL_M; - } -#else - err = MP_VAL; - goto LBL_M; -#endif - - /* automatically pick the comba one if available (saves quite a few - calls/ifs) */ -#ifdef BN_FAST_MP_MONTGOMERY_REDUCE_C - if (((P->used * 2 + 1) < MP_WARRAY) && - P->used < (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) { - redux = fast_mp_montgomery_reduce; - } else -#endif - { -#ifdef BN_MP_MONTGOMERY_REDUCE_C - /* use slower baseline Montgomery method */ - redux = mp_montgomery_reduce; -#else - err = MP_VAL; - goto LBL_M; -#endif - } - } else if (redmode == 1) { -#if defined(BN_MP_DR_SETUP_C) && defined(BN_MP_DR_REDUCE_C) - /* setup DR reduction for moduli of the form B**k - b */ - mp_dr_setup(P, &mp); - redux = mp_dr_reduce; -#else - err = MP_VAL; - goto LBL_M; -#endif - } else { -#if defined(BN_MP_REDUCE_2K_SETUP_C) && defined(BN_MP_REDUCE_2K_C) - /* setup DR reduction for moduli of the form 2**k - b */ - if ((err = mp_reduce_2k_setup(P, &mp)) != MP_OKAY) { - goto LBL_M; - } - redux = mp_reduce_2k; -#else - err = MP_VAL; - goto LBL_M; -#endif - } - - /* setup result */ - if ((err = mp_init_size (&res, P->alloc)) != MP_OKAY) { - goto LBL_M; - } - - /* create M table - * - - * - * The first half of the table is not computed though accept for M[0] and M[1] - */ - - if (redmode == 0) { -#ifdef BN_MP_MONTGOMERY_CALC_NORMALIZATION_C - /* now we need R mod m */ - if ((err = mp_montgomery_calc_normalization (&res, P)) != MP_OKAY) { - goto LBL_RES; - } - - /* now set M[1] to G * R mod m */ - if ((err = mp_mulmod (G, &res, P, &M[1])) != MP_OKAY) { - goto LBL_RES; - } -#else - err = MP_VAL; - goto LBL_RES; -#endif - } else { - if ((err = mp_set(&res, 1)) != MP_OKAY) { - goto LBL_RES; - } - if ((err = mp_mod(G, P, &M[1])) != MP_OKAY) { - goto LBL_RES; - } - } - - /* compute the value at M[1<<(winsize-1)] by squaring M[1] (winsize-1) times*/ - if ((err = mp_copy (&M[1], &M[(mp_digit)(1 << (winsize - 1))])) != MP_OKAY) { - goto LBL_RES; - } - - for (x = 0; x < (winsize - 1); x++) { - if ((err = mp_sqr (&M[(mp_digit)(1 << (winsize - 1))], - &M[(mp_digit)(1 << (winsize - 1))])) != MP_OKAY) { - goto LBL_RES; - } - if ((err = redux (&M[(mp_digit)(1 << (winsize - 1))], P, mp)) != MP_OKAY) { - goto LBL_RES; - } - } - - /* create upper table */ - for (x = (1 << (winsize - 1)) + 1; x < (1 << winsize); x++) { - if ((err = mp_mul (&M[x - 1], &M[1], &M[x])) != MP_OKAY) { - goto LBL_RES; - } - if ((err = redux (&M[x], P, mp)) != MP_OKAY) { - goto LBL_RES; - } - } - - /* set initial mode and bit cnt */ - mode = 0; - bitcnt = 1; - buf = 0; - digidx = X->used - 1; - bitcpy = 0; - bitbuf = 0; - - for (;;) { - /* grab next digit as required */ - if (--bitcnt == 0) { - /* if digidx == -1 we are out of digits so break */ - if (digidx == -1) { - break; - } - /* read next digit and reset bitcnt */ - buf = X->dp[digidx--]; - bitcnt = (int)DIGIT_BIT; - } - - /* grab the next msb from the exponent */ - y = (int)(buf >> (DIGIT_BIT - 1)) & 1; - buf <<= (mp_digit)1; - - /* if the bit is zero and mode == 0 then we ignore it - * These represent the leading zero bits before the first 1 bit - * in the exponent. Technically this opt is not required but it - * does lower the # of trivial squaring/reductions used - */ - if (mode == 0 && y == 0) { - continue; - } - - /* if the bit is zero and mode == 1 then we square */ - if (mode == 1 && y == 0) { - if ((err = mp_sqr (&res, &res)) != MP_OKAY) { - goto LBL_RES; - } - if ((err = redux (&res, P, mp)) != MP_OKAY) { - goto LBL_RES; - } - continue; - } - - /* else we add it to the window */ - bitbuf |= (y << (winsize - ++bitcpy)); - mode = 2; - - if (bitcpy == winsize) { - /* ok window is filled so square as required and multiply */ - /* square first */ - for (x = 0; x < winsize; x++) { - if ((err = mp_sqr (&res, &res)) != MP_OKAY) { - goto LBL_RES; - } - if ((err = redux (&res, P, mp)) != MP_OKAY) { - goto LBL_RES; - } - } - - /* then multiply */ - if ((err = mp_mul (&res, &M[bitbuf], &res)) != MP_OKAY) { - goto LBL_RES; - } - if ((err = redux (&res, P, mp)) != MP_OKAY) { - goto LBL_RES; - } - - /* empty window and reset */ - bitcpy = 0; - bitbuf = 0; - mode = 1; - } - } - - /* if bits remain then square/multiply */ - if (mode == 2 && bitcpy > 0) { - /* square then multiply if the bit is set */ - for (x = 0; x < bitcpy; x++) { - if ((err = mp_sqr (&res, &res)) != MP_OKAY) { - goto LBL_RES; - } - if ((err = redux (&res, P, mp)) != MP_OKAY) { - goto LBL_RES; - } - - /* get next bit of the window */ - bitbuf <<= 1; - if ((bitbuf & (1 << winsize)) != 0) { - /* then multiply */ - if ((err = mp_mul (&res, &M[1], &res)) != MP_OKAY) { - goto LBL_RES; - } - if ((err = redux (&res, P, mp)) != MP_OKAY) { - goto LBL_RES; - } - } - } - } - - if (redmode == 0) { - /* fixup result if Montgomery reduction is used - * recall that any value in a Montgomery system is - * actually multiplied by R mod n. So we have - * to reduce one more time to cancel out the factor - * of R. - */ - if ((err = redux(&res, P, mp)) != MP_OKAY) { - goto LBL_RES; - } - } - - /* swap res with Y */ - mp_exch (&res, Y); - err = MP_OKAY; -LBL_RES:mp_clear (&res); -LBL_M: - mp_clear(&M[1]); - for (x = 1<<(winsize-1); x < (1 << winsize); x++) { - mp_clear (&M[x]); - } - -#ifdef WOLFSSL_SMALL_STACK - XFREE(M, NULL, DYNAMIC_TYPE_TMP_BUFFER); -#endif - - return err; -} - - -/* setups the montgomery reduction stuff */ -int mp_montgomery_setup (mp_int * n, mp_digit * rho) -{ - mp_digit x, b; - -/* fast inversion mod 2**k - * - * Based on the fact that - * - * XA = 1 (mod 2**n) => (X(2-XA)) A = 1 (mod 2**2n) - * => 2*X*A - X*X*A*A = 1 - * => 2*(1) - (1) = 1 - */ - b = n->dp[0]; - - if ((b & 1) == 0) { - return MP_VAL; - } - - x = (((b + 2) & 4) << 1) + b; /* here x*a==1 mod 2**4 */ - x *= 2 - b * x; /* here x*a==1 mod 2**8 */ -#if !defined(MP_8BIT) - x *= 2 - b * x; /* here x*a==1 mod 2**16 */ -#endif -#if defined(MP_64BIT) || !(defined(MP_8BIT) || defined(MP_16BIT)) - x *= 2 - b * x; /* here x*a==1 mod 2**32 */ -#endif -#ifdef MP_64BIT - x *= 2 - b * x; /* here x*a==1 mod 2**64 */ -#endif - - /* rho = -1/m mod b */ - /* TAO, switched mp_word casts to mp_digit to shut up compiler */ - *rho = (mp_digit)((((mp_digit)1 << ((mp_digit) DIGIT_BIT)) - x) & MP_MASK); - - return MP_OKAY; -} - - -/* computes xR**-1 == x (mod N) via Montgomery Reduction - * - * This is an optimized implementation of montgomery_reduce - * which uses the comba method to quickly calculate the columns of the - * reduction. - * - * Based on Algorithm 14.32 on pp.601 of HAC. -*/ -int fast_mp_montgomery_reduce (mp_int * x, mp_int * n, mp_digit rho) -{ - int ix, res, olduse; -#ifdef WOLFSSL_SMALL_STACK - mp_word* W; /* uses dynamic memory and slower */ -#else - mp_word W[MP_WARRAY]; -#endif - - /* get old used count */ - olduse = x->used; - - /* grow a as required */ - if (x->alloc < n->used + 1) { - if ((res = mp_grow (x, n->used + 1)) != MP_OKAY) { - return res; - } - } - -#ifdef WOLFSSL_SMALL_STACK - W = (mp_word*)XMALLOC(sizeof(mp_word) * MP_WARRAY, NULL, DYNAMIC_TYPE_BIGINT); - if (W == NULL) - return MP_MEM; -#endif - - /* first we have to get the digits of the input into - * an array of double precision words W[...] - */ - { - mp_word *_W; - mp_digit *tmpx; - - /* alias for the W[] array */ - _W = W; - - /* alias for the digits of x*/ - tmpx = x->dp; - - /* copy the digits of a into W[0..a->used-1] */ - for (ix = 0; ix < x->used; ix++) { - *_W++ = *tmpx++; - } - - /* zero the high words of W[a->used..m->used*2] */ - for (; ix < n->used * 2 + 1; ix++) { - *_W++ = 0; - } - } - - /* now we proceed to zero successive digits - * from the least significant upwards - */ - for (ix = 0; ix < n->used; ix++) { - /* mu = ai * m' mod b - * - * We avoid a double precision multiplication (which isn't required) - * by casting the value down to a mp_digit. Note this requires - * that W[ix-1] have the carry cleared (see after the inner loop) - */ - mp_digit mu; - mu = (mp_digit) (((W[ix] & MP_MASK) * rho) & MP_MASK); - - /* a = a + mu * m * b**i - * - * This is computed in place and on the fly. The multiplication - * by b**i is handled by offseting which columns the results - * are added to. - * - * Note the comba method normally doesn't handle carries in the - * inner loop In this case we fix the carry from the previous - * column since the Montgomery reduction requires digits of the - * result (so far) [see above] to work. This is - * handled by fixing up one carry after the inner loop. The - * carry fixups are done in order so after these loops the - * first m->used words of W[] have the carries fixed - */ - { - int iy; - mp_digit *tmpn; - mp_word *_W; - - /* alias for the digits of the modulus */ - tmpn = n->dp; - - /* Alias for the columns set by an offset of ix */ - _W = W + ix; - - /* inner loop */ - for (iy = 0; iy < n->used; iy++) { - *_W++ += ((mp_word)mu) * ((mp_word)*tmpn++); - } - } - - /* now fix carry for next digit, W[ix+1] */ - W[ix + 1] += W[ix] >> ((mp_word) DIGIT_BIT); - } - - /* now we have to propagate the carries and - * shift the words downward [all those least - * significant digits we zeroed]. - */ - { - mp_digit *tmpx; - mp_word *_W, *_W1; - - /* nox fix rest of carries */ - - /* alias for current word */ - _W1 = W + ix; - - /* alias for next word, where the carry goes */ - _W = W + ++ix; - - for (; ix <= n->used * 2 + 1; ix++) { - *_W++ += *_W1++ >> ((mp_word) DIGIT_BIT); - } - - /* copy out, A = A/b**n - * - * The result is A/b**n but instead of converting from an - * array of mp_word to mp_digit than calling mp_rshd - * we just copy them in the right order - */ - - /* alias for destination word */ - tmpx = x->dp; - - /* alias for shifted double precision result */ - _W = W + n->used; - - for (ix = 0; ix < n->used + 1; ix++) { - *tmpx++ = (mp_digit)(*_W++ & ((mp_word) MP_MASK)); - } - - /* zero olduse digits, if the input a was larger than - * m->used+1 we'll have to clear the digits - */ - for (; ix < olduse; ix++) { - *tmpx++ = 0; - } - } - - /* set the max used and clamp */ - x->used = n->used + 1; - mp_clamp (x); - -#ifdef WOLFSSL_SMALL_STACK - XFREE(W, NULL, DYNAMIC_TYPE_BIGINT); -#endif - - /* if A >= m then A = A - m */ - if (mp_cmp_mag (x, n) != MP_LT) { - return s_mp_sub (x, n, x); - } - return MP_OKAY; -} - - -/* computes xR**-1 == x (mod N) via Montgomery Reduction */ -int mp_montgomery_reduce (mp_int * x, mp_int * n, mp_digit rho) -{ - int ix, res, digs; - mp_digit mu; - - /* can the fast reduction [comba] method be used? - * - * Note that unlike in mul you're safely allowed *less* - * than the available columns [255 per default] since carries - * are fixed up in the inner loop. - */ - digs = n->used * 2 + 1; - if ((digs < MP_WARRAY) && - n->used < - (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) { - return fast_mp_montgomery_reduce (x, n, rho); - } - - /* grow the input as required */ - if (x->alloc < digs) { - if ((res = mp_grow (x, digs)) != MP_OKAY) { - return res; - } - } - x->used = digs; - - for (ix = 0; ix < n->used; ix++) { - /* mu = ai * rho mod b - * - * The value of rho must be precalculated via - * montgomery_setup() such that - * it equals -1/n0 mod b this allows the - * following inner loop to reduce the - * input one digit at a time - */ - mu = (mp_digit) (((mp_word)x->dp[ix]) * ((mp_word)rho) & MP_MASK); - - /* a = a + mu * m * b**i */ - { - int iy; - mp_digit *tmpn, *tmpx, u; - mp_word r; - - /* alias for digits of the modulus */ - tmpn = n->dp; - - /* alias for the digits of x [the input] */ - tmpx = x->dp + ix; - - /* set the carry to zero */ - u = 0; - - /* Multiply and add in place */ - for (iy = 0; iy < n->used; iy++) { - /* compute product and sum */ - r = ((mp_word)mu) * ((mp_word)*tmpn++) + - ((mp_word) u) + ((mp_word) * tmpx); - - /* get carry */ - u = (mp_digit)(r >> ((mp_word) DIGIT_BIT)); - - /* fix digit */ - *tmpx++ = (mp_digit)(r & ((mp_word) MP_MASK)); - } - /* At this point the ix'th digit of x should be zero */ - - - /* propagate carries upwards as required*/ - while (u) { - *tmpx += u; - u = *tmpx >> DIGIT_BIT; - *tmpx++ &= MP_MASK; - } - } - } - - /* at this point the n.used'th least - * significant digits of x are all zero - * which means we can shift x to the - * right by n.used digits and the - * residue is unchanged. - */ - - /* x = x/b**n.used */ - mp_clamp(x); - mp_rshd (x, n->used); - - /* if x >= n then x = x - n */ - if (mp_cmp_mag (x, n) != MP_LT) { - return s_mp_sub (x, n, x); - } - - return MP_OKAY; -} - - -/* determines the setup value */ -void mp_dr_setup(mp_int *a, mp_digit *d) -{ - /* the casts are required if DIGIT_BIT is one less than - * the number of bits in a mp_digit [e.g. DIGIT_BIT==31] - */ - *d = (mp_digit)((((mp_word)1) << ((mp_word)DIGIT_BIT)) - - ((mp_word)a->dp[0])); -} - - -/* reduce "x" in place modulo "n" using the Diminished Radix algorithm. - * - * Based on algorithm from the paper - * - * "Generating Efficient Primes for Discrete Log Cryptosystems" - * Chae Hoon Lim, Pil Joong Lee, - * POSTECH Information Research Laboratories - * - * The modulus must be of a special format [see manual] - * - * Has been modified to use algorithm 7.10 from the LTM book instead - * - * Input x must be in the range 0 <= x <= (n-1)**2 - */ -int mp_dr_reduce (mp_int * x, mp_int * n, mp_digit k) -{ - int err, i, m; - mp_word r; - mp_digit mu, *tmpx1, *tmpx2; - - /* m = digits in modulus */ - m = n->used; - - /* ensure that "x" has at least 2m digits */ - if (x->alloc < m + m) { - if ((err = mp_grow (x, m + m)) != MP_OKAY) { - return err; - } - } - -/* top of loop, this is where the code resumes if - * another reduction pass is required. - */ -top: - /* aliases for digits */ - /* alias for lower half of x */ - tmpx1 = x->dp; - - /* alias for upper half of x, or x/B**m */ - tmpx2 = x->dp + m; - - /* set carry to zero */ - mu = 0; - - /* compute (x mod B**m) + k * [x/B**m] inline and inplace */ - for (i = 0; i < m; i++) { - r = ((mp_word)*tmpx2++) * ((mp_word)k) + *tmpx1 + mu; - *tmpx1++ = (mp_digit)(r & MP_MASK); - mu = (mp_digit)(r >> ((mp_word)DIGIT_BIT)); - } - - /* set final carry */ - *tmpx1++ = mu; - - /* zero words above m */ - for (i = m + 1; i < x->used; i++) { - *tmpx1++ = 0; - } - - /* clamp, sub and return */ - mp_clamp (x); - - /* if x >= n then subtract and reduce again - * Each successive "recursion" makes the input smaller and smaller. - */ - if (mp_cmp_mag (x, n) != MP_LT) { - if ((err = s_mp_sub(x, n, x)) != MP_OKAY) { - return err; - } - goto top; - } - return MP_OKAY; -} - - -/* reduces a modulo n where n is of the form 2**p - d */ -int mp_reduce_2k(mp_int *a, mp_int *n, mp_digit d) -{ - mp_int q; - int p, res; - - if ((res = mp_init(&q)) != MP_OKAY) { - return res; - } - - p = mp_count_bits(n); -top: - /* q = a/2**p, a = a mod 2**p */ - if ((res = mp_div_2d(a, p, &q, a)) != MP_OKAY) { - goto ERR; - } - - if (d != 1) { - /* q = q * d */ - if ((res = mp_mul_d(&q, d, &q)) != MP_OKAY) { - goto ERR; - } - } - - /* a = a + q */ - if ((res = s_mp_add(a, &q, a)) != MP_OKAY) { - goto ERR; - } - - if (mp_cmp_mag(a, n) != MP_LT) { - if ((res = s_mp_sub(a, n, a)) != MP_OKAY) { - goto ERR; - } - goto top; - } - -ERR: - mp_clear(&q); - return res; -} - - -/* determines the setup value */ -int mp_reduce_2k_setup(mp_int *a, mp_digit *d) -{ - int res, p; - mp_int tmp; - - if ((res = mp_init(&tmp)) != MP_OKAY) { - return res; - } - - p = mp_count_bits(a); - if ((res = mp_2expt(&tmp, p)) != MP_OKAY) { - mp_clear(&tmp); - return res; - } - - if ((res = s_mp_sub(&tmp, a, &tmp)) != MP_OKAY) { - mp_clear(&tmp); - return res; - } - - *d = tmp.dp[0]; - mp_clear(&tmp); - return MP_OKAY; -} - - -/* set the b bit of a */ -int mp_set_bit (mp_int * a, int b) -{ - int i = b / DIGIT_BIT, res; - - if (a->used < (int)(i + 1)) { - /* grow a to accommodate the single bit */ - if ((res = mp_grow (a, i + 1)) != MP_OKAY) { - return res; - } - - /* set the used count of where the bit will go */ - a->used = (int)(i + 1); - } - - /* put the single bit in its place */ - a->dp[i] |= ((mp_digit)1) << (b % DIGIT_BIT); - - return MP_OKAY; -} - -/* computes a = 2**b - * - * Simple algorithm which zeros the int, set the required bit - */ -int mp_2expt (mp_int * a, int b) -{ - /* zero a as per default */ - mp_zero (a); - - return mp_set_bit(a, b); -} - -/* multiply by a digit */ -int mp_mul_d (mp_int * a, mp_digit b, mp_int * c) -{ - mp_digit u, *tmpa, *tmpc; - mp_word r; - int ix, res, olduse; - - /* make sure c is big enough to hold a*b */ - if (c->alloc < a->used + 1) { - if ((res = mp_grow (c, a->used + 1)) != MP_OKAY) { - return res; - } - } - - /* get the original destinations used count */ - olduse = c->used; - - /* set the sign */ - c->sign = a->sign; - - /* alias for a->dp [source] */ - tmpa = a->dp; - - /* alias for c->dp [dest] */ - tmpc = c->dp; - - /* zero carry */ - u = 0; - - /* compute columns */ - for (ix = 0; ix < a->used; ix++) { - /* compute product and carry sum for this term */ - r = ((mp_word) u) + ((mp_word)*tmpa++) * ((mp_word)b); - - /* mask off higher bits to get a single digit */ - *tmpc++ = (mp_digit) (r & ((mp_word) MP_MASK)); - - /* send carry into next iteration */ - u = (mp_digit) (r >> ((mp_word) DIGIT_BIT)); - } - - /* store final carry [if any] and increment ix offset */ - *tmpc++ = u; - ++ix; - - /* now zero digits above the top */ - while (ix++ < olduse) { - *tmpc++ = 0; - } - - /* set used count */ - c->used = a->used + 1; - mp_clamp(c); - - return MP_OKAY; -} - - -/* d = a * b (mod c) */ -#if defined(FREESCALE_LTC_TFM) -int wolfcrypt_mp_mulmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d) -#else -int mp_mulmod (mp_int * a, mp_int * b, mp_int * c, mp_int * d) -#endif -{ - int res; - mp_int t; - - if ((res = mp_init_size (&t, c->used)) != MP_OKAY) { - return res; - } - - res = mp_mul (a, b, &t); - if (res == MP_OKAY) { - res = mp_mod (&t, c, d); - } - - mp_clear (&t); - return res; -} - - -/* d = a - b (mod c) */ -int mp_submod(mp_int* a, mp_int* b, mp_int* c, mp_int* d) -{ - int res; - mp_int t; - - if ((res = mp_init (&t)) != MP_OKAY) { - return res; - } - - res = mp_sub (a, b, &t); - if (res == MP_OKAY) { - res = mp_mod (&t, c, d); - } - - mp_clear (&t); - - return res; -} - -/* d = a + b (mod c) */ -int mp_addmod(mp_int* a, mp_int* b, mp_int* c, mp_int* d) -{ - int res; - mp_int t; - - if ((res = mp_init (&t)) != MP_OKAY) { - return res; - } - - res = mp_add (a, b, &t); - if (res == MP_OKAY) { - res = mp_mod (&t, c, d); - } - - mp_clear (&t); - - return res; -} - -/* computes b = a*a */ -int mp_sqr (mp_int * a, mp_int * b) -{ - int res; - - { -#ifdef BN_FAST_S_MP_SQR_C - /* can we use the fast comba multiplier? */ - if ((a->used * 2 + 1) < MP_WARRAY && - a->used < - (1 << (sizeof(mp_word) * CHAR_BIT - 2*DIGIT_BIT - 1))) { - res = fast_s_mp_sqr (a, b); - } else -#endif -#ifdef BN_S_MP_SQR_C - res = s_mp_sqr (a, b); -#else - res = MP_VAL; -#endif - } - b->sign = MP_ZPOS; - return res; -} - - -/* high level multiplication (handles sign) */ -#if defined(FREESCALE_LTC_TFM) -int wolfcrypt_mp_mul(mp_int *a, mp_int *b, mp_int *c) -#else -int mp_mul (mp_int * a, mp_int * b, mp_int * c) -#endif -{ - int res, neg; - neg = (a->sign == b->sign) ? MP_ZPOS : MP_NEG; - - { - /* can we use the fast multiplier? - * - * The fast multiplier can be used if the output will - * have less than MP_WARRAY digits and the number of - * digits won't affect carry propagation - */ - int digs = a->used + b->used + 1; - -#ifdef BN_FAST_S_MP_MUL_DIGS_C - if ((digs < MP_WARRAY) && - MIN(a->used, b->used) <= - (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) { - res = fast_s_mp_mul_digs (a, b, c, digs); - } else -#endif -#ifdef BN_S_MP_MUL_DIGS_C - res = s_mp_mul (a, b, c); /* uses s_mp_mul_digs */ -#else - res = MP_VAL; -#endif - - } - c->sign = (c->used > 0) ? neg : MP_ZPOS; - return res; -} - - -/* b = a*2 */ -int mp_mul_2(mp_int * a, mp_int * b) -{ - int x, res, oldused; - - /* grow to accommodate result */ - if (b->alloc < a->used + 1) { - if ((res = mp_grow (b, a->used + 1)) != MP_OKAY) { - return res; - } - } - - oldused = b->used; - b->used = a->used; - - { - mp_digit r, rr, *tmpa, *tmpb; - - /* alias for source */ - tmpa = a->dp; - - /* alias for dest */ - tmpb = b->dp; - - /* carry */ - r = 0; - for (x = 0; x < a->used; x++) { - - /* get what will be the *next* carry bit from the - * MSB of the current digit - */ - rr = *tmpa >> ((mp_digit)(DIGIT_BIT - 1)); - - /* now shift up this digit, add in the carry [from the previous] */ - *tmpb++ = (mp_digit)(((*tmpa++ << ((mp_digit)1)) | r) & MP_MASK); - - /* copy the carry that would be from the source - * digit into the next iteration - */ - r = rr; - } - - /* new leading digit? */ - if (r != 0) { - /* add a MSB which is always 1 at this point */ - *tmpb = 1; - ++(b->used); - } - - /* now zero any excess digits on the destination - * that we didn't write to - */ - tmpb = b->dp + b->used; - for (x = b->used; x < oldused; x++) { - *tmpb++ = 0; - } - } - b->sign = a->sign; - return MP_OKAY; -} - - -/* divide by three (based on routine from MPI and the GMP manual) */ -int mp_div_3 (mp_int * a, mp_int *c, mp_digit * d) -{ - mp_int q; - mp_word w, t; - mp_digit b; - int res, ix; - - /* b = 2**DIGIT_BIT / 3 */ - b = (mp_digit) ( (((mp_word)1) << ((mp_word)DIGIT_BIT)) / ((mp_word)3) ); - - if ((res = mp_init_size(&q, a->used)) != MP_OKAY) { - return res; - } - - q.used = a->used; - q.sign = a->sign; - w = 0; - for (ix = a->used - 1; ix >= 0; ix--) { - w = (w << ((mp_word)DIGIT_BIT)) | ((mp_word)a->dp[ix]); - - if (w >= 3) { - /* multiply w by [1/3] */ - t = (w * ((mp_word)b)) >> ((mp_word)DIGIT_BIT); - - /* now subtract 3 * [w/3] from w, to get the remainder */ - w -= t+t+t; - - /* fixup the remainder as required since - * the optimization is not exact. - */ - while (w >= 3) { - t += 1; - w -= 3; - } - } else { - t = 0; - } - q.dp[ix] = (mp_digit)t; - } - - /* [optional] store the remainder */ - if (d != NULL) { - *d = (mp_digit)w; - } - - /* [optional] store the quotient */ - if (c != NULL) { - mp_clamp(&q); - mp_exch(&q, c); - } - mp_clear(&q); - - return res; -} - - -/* init an mp_init for a given size */ -int mp_init_size (mp_int * a, int size) -{ - int x; - - /* pad size so there are always extra digits */ - size += (MP_PREC * 2) - (size % MP_PREC); - - /* alloc mem */ - a->dp = OPT_CAST(mp_digit) XMALLOC (sizeof (mp_digit) * size, NULL, - DYNAMIC_TYPE_BIGINT); - if (a->dp == NULL) { - return MP_MEM; - } - - /* set the members */ - a->used = 0; - a->alloc = size; - a->sign = MP_ZPOS; -#ifdef HAVE_WOLF_BIGINT - wc_bigint_init(&a->raw); -#endif - - /* zero the digits */ - for (x = 0; x < size; x++) { - a->dp[x] = 0; - } - - return MP_OKAY; -} - - -/* the jist of squaring... - * you do like mult except the offset of the tmpx [one that - * starts closer to zero] can't equal the offset of tmpy. - * So basically you set up iy like before then you min it with - * (ty-tx) so that it never happens. You double all those - * you add in the inner loop - -After that loop you do the squares and add them in. -*/ - -int fast_s_mp_sqr (mp_int * a, mp_int * b) -{ - int olduse, res, pa, ix, iz; -#ifdef WOLFSSL_SMALL_STACK - mp_digit* W; /* uses dynamic memory and slower */ -#else - mp_digit W[MP_WARRAY]; -#endif - mp_digit *tmpx; - mp_word W1; - - /* grow the destination as required */ - pa = a->used + a->used; - if (b->alloc < pa) { - if ((res = mp_grow (b, pa)) != MP_OKAY) { - return res; - } - } - - if (pa > MP_WARRAY) - return MP_RANGE; /* TAO range check */ - -#ifdef WOLFSSL_SMALL_STACK - W = (mp_digit*)XMALLOC(sizeof(mp_digit) * MP_WARRAY, NULL, DYNAMIC_TYPE_BIGINT); - if (W == NULL) - return MP_MEM; -#endif - - /* number of output digits to produce */ - W1 = 0; - for (ix = 0; ix < pa; ix++) { - int tx, ty, iy; - mp_word _W; - mp_digit *tmpy; - - /* clear counter */ - _W = 0; - - /* get offsets into the two bignums */ - ty = MIN(a->used-1, ix); - tx = ix - ty; - - /* setup temp aliases */ - tmpx = a->dp + tx; - tmpy = a->dp + ty; - - /* this is the number of times the loop will iterate, essentially - while (tx++ < a->used && ty-- >= 0) { ... } - */ - iy = MIN(a->used-tx, ty+1); - - /* now for squaring tx can never equal ty - * we halve the distance since they approach at a rate of 2x - * and we have to round because odd cases need to be executed - */ - iy = MIN(iy, (ty-tx+1)>>1); - - /* execute loop */ - for (iz = 0; iz < iy; iz++) { - _W += ((mp_word)*tmpx++)*((mp_word)*tmpy--); - } - - /* double the inner product and add carry */ - _W = _W + _W + W1; - - /* even columns have the square term in them */ - if ((ix&1) == 0) { - _W += ((mp_word)a->dp[ix>>1])*((mp_word)a->dp[ix>>1]); - } - - /* store it */ - W[ix] = (mp_digit)(_W & MP_MASK); - - /* make next carry */ - W1 = _W >> ((mp_word)DIGIT_BIT); - } - - /* setup dest */ - olduse = b->used; - b->used = a->used+a->used; - - { - mp_digit *tmpb; - tmpb = b->dp; - for (ix = 0; ix < pa; ix++) { - *tmpb++ = (mp_digit)(W[ix] & MP_MASK); - } - - /* clear unused digits [that existed in the old copy of c] */ - for (; ix < olduse; ix++) { - *tmpb++ = 0; - } - } - mp_clamp (b); - -#ifdef WOLFSSL_SMALL_STACK - XFREE(W, NULL, DYNAMIC_TYPE_BIGINT); -#endif - - return MP_OKAY; -} - - -/* Fast (comba) multiplier - * - * This is the fast column-array [comba] multiplier. It is - * designed to compute the columns of the product first - * then handle the carries afterwards. This has the effect - * of making the nested loops that compute the columns very - * simple and schedulable on super-scalar processors. - * - * This has been modified to produce a variable number of - * digits of output so if say only a half-product is required - * you don't have to compute the upper half (a feature - * required for fast Barrett reduction). - * - * Based on Algorithm 14.12 on pp.595 of HAC. - * - */ -int fast_s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs) -{ - int olduse, res, pa, ix, iz; -#ifdef WOLFSSL_SMALL_STACK - mp_digit* W; /* uses dynamic memory and slower */ -#else - mp_digit W[MP_WARRAY]; -#endif - mp_word _W; - - /* grow the destination as required */ - if (c->alloc < digs) { - if ((res = mp_grow (c, digs)) != MP_OKAY) { - return res; - } - } - - /* number of output digits to produce */ - pa = MIN(digs, a->used + b->used); - if (pa > MP_WARRAY) - return MP_RANGE; /* TAO range check */ - -#ifdef WOLFSSL_SMALL_STACK - W = (mp_digit*)XMALLOC(sizeof(mp_digit) * MP_WARRAY, NULL, DYNAMIC_TYPE_BIGINT); - if (W == NULL) - return MP_MEM; -#endif - - /* clear the carry */ - _W = 0; - for (ix = 0; ix < pa; ix++) { - int tx, ty; - int iy; - mp_digit *tmpx, *tmpy; - - /* get offsets into the two bignums */ - ty = MIN(b->used-1, ix); - tx = ix - ty; - - /* setup temp aliases */ - tmpx = a->dp + tx; - tmpy = b->dp + ty; - - /* this is the number of times the loop will iterate, essentially - while (tx++ < a->used && ty-- >= 0) { ... } - */ - iy = MIN(a->used-tx, ty+1); - - /* execute loop */ - for (iz = 0; iz < iy; ++iz) { - _W += ((mp_word)*tmpx++)*((mp_word)*tmpy--); - - } - - /* store term */ - W[ix] = (mp_digit)(((mp_digit)_W) & MP_MASK); - - /* make next carry */ - _W = _W >> ((mp_word)DIGIT_BIT); - } - - /* setup dest */ - olduse = c->used; - c->used = pa; - - { - mp_digit *tmpc; - tmpc = c->dp; - for (ix = 0; ix < pa; ix++) { /* JRB, +1 could read uninitialized data */ - /* now extract the previous digit [below the carry] */ - *tmpc++ = W[ix]; - } - - /* clear unused digits [that existed in the old copy of c] */ - for (; ix < olduse; ix++) { - *tmpc++ = 0; - } - } - mp_clamp (c); - -#ifdef WOLFSSL_SMALL_STACK - XFREE(W, NULL, DYNAMIC_TYPE_BIGINT); -#endif - - return MP_OKAY; -} - - -/* low level squaring, b = a*a, HAC pp.596-597, Algorithm 14.16 */ -int s_mp_sqr (mp_int * a, mp_int * b) -{ - mp_int t; - int res, ix, iy, pa; - mp_word r; - mp_digit u, tmpx, *tmpt; - - pa = a->used; - if ((res = mp_init_size (&t, 2*pa + 1)) != MP_OKAY) { - return res; - } - - /* default used is maximum possible size */ - t.used = 2*pa + 1; - - for (ix = 0; ix < pa; ix++) { - /* first calculate the digit at 2*ix */ - /* calculate double precision result */ - r = ((mp_word) t.dp[2*ix]) + - ((mp_word)a->dp[ix])*((mp_word)a->dp[ix]); - - /* store lower part in result */ - t.dp[ix+ix] = (mp_digit) (r & ((mp_word) MP_MASK)); - - /* get the carry */ - u = (mp_digit)(r >> ((mp_word) DIGIT_BIT)); - - /* left hand side of A[ix] * A[iy] */ - tmpx = a->dp[ix]; - - /* alias for where to store the results */ - tmpt = t.dp + (2*ix + 1); - - for (iy = ix + 1; iy < pa; iy++) { - /* first calculate the product */ - r = ((mp_word)tmpx) * ((mp_word)a->dp[iy]); - - /* now calculate the double precision result, note we use - * addition instead of *2 since it's easier to optimize - */ - r = ((mp_word) *tmpt) + r + r + ((mp_word) u); - - /* store lower part */ - *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK)); - - /* get carry */ - u = (mp_digit)(r >> ((mp_word) DIGIT_BIT)); - } - /* propagate upwards */ - while (u != ((mp_digit) 0)) { - r = ((mp_word) *tmpt) + ((mp_word) u); - *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK)); - u = (mp_digit)(r >> ((mp_word) DIGIT_BIT)); - } - } - - mp_clamp (&t); - mp_exch (&t, b); - mp_clear (&t); - return MP_OKAY; -} - - -/* multiplies |a| * |b| and only computes up to digs digits of result - * HAC pp. 595, Algorithm 14.12 Modified so you can control how - * many digits of output are created. - */ -int s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs) -{ - mp_int t; - int res, pa, pb, ix, iy; - mp_digit u; - mp_word r; - mp_digit tmpx, *tmpt, *tmpy; - - /* can we use the fast multiplier? */ - if (((digs) < MP_WARRAY) && - MIN (a->used, b->used) < - (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) { - return fast_s_mp_mul_digs (a, b, c, digs); - } - - if ((res = mp_init_size (&t, digs)) != MP_OKAY) { - return res; - } - t.used = digs; - - /* compute the digits of the product directly */ - pa = a->used; - for (ix = 0; ix < pa; ix++) { - /* set the carry to zero */ - u = 0; - - /* limit ourselves to making digs digits of output */ - pb = MIN (b->used, digs - ix); - - /* setup some aliases */ - /* copy of the digit from a used within the nested loop */ - tmpx = a->dp[ix]; - - /* an alias for the destination shifted ix places */ - tmpt = t.dp + ix; - - /* an alias for the digits of b */ - tmpy = b->dp; - - /* compute the columns of the output and propagate the carry */ - for (iy = 0; iy < pb; iy++) { - /* compute the column as a mp_word */ - r = ((mp_word)*tmpt) + - ((mp_word)tmpx) * ((mp_word)*tmpy++) + - ((mp_word) u); - - /* the new column is the lower part of the result */ - *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK)); - - /* get the carry word from the result */ - u = (mp_digit) (r >> ((mp_word) DIGIT_BIT)); - } - /* set carry if it is placed below digs */ - if (ix + iy < digs) { - *tmpt = u; - } - } - - mp_clamp (&t); - mp_exch (&t, c); - - mp_clear (&t); - return MP_OKAY; -} - - -/* - * shifts with subtractions when the result is greater than b. - * - * The method is slightly modified to shift B unconditionally up to just under - * the leading bit of b. This saves a lot of multiple precision shifting. - */ -int mp_montgomery_calc_normalization (mp_int * a, mp_int * b) -{ - int x, bits, res; - - /* how many bits of last digit does b use */ - bits = mp_count_bits (b) % DIGIT_BIT; - - if (b->used > 1) { - if ((res = mp_2expt (a, (b->used - 1) * DIGIT_BIT + bits - 1)) - != MP_OKAY) { - return res; - } - } else { - if ((res = mp_set(a, 1)) != MP_OKAY) { - return res; - } - bits = 1; - } - - /* now compute C = A * B mod b */ - for (x = bits - 1; x < (int)DIGIT_BIT; x++) { - if ((res = mp_mul_2 (a, a)) != MP_OKAY) { - return res; - } - if (mp_cmp_mag (a, b) != MP_LT) { - if ((res = s_mp_sub (a, b, a)) != MP_OKAY) { - return res; - } - } - } - - return MP_OKAY; -} - - -#ifdef MP_LOW_MEM - #define TAB_SIZE 32 -#else - #define TAB_SIZE 256 -#endif - -int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode) -{ - mp_int M[TAB_SIZE], res, mu; - mp_digit buf; - int err, bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize; - int (*redux)(mp_int*,mp_int*,mp_int*); - - /* find window size */ - x = mp_count_bits (X); - if (x <= 7) { - winsize = 2; - } else if (x <= 36) { - winsize = 3; - } else if (x <= 140) { - winsize = 4; - } else if (x <= 450) { - winsize = 5; - } else if (x <= 1303) { - winsize = 6; - } else if (x <= 3529) { - winsize = 7; - } else { - winsize = 8; - } - -#ifdef MP_LOW_MEM - if (winsize > 5) { - winsize = 5; - } -#endif - - /* init M array */ - /* init first cell */ - if ((err = mp_init(&M[1])) != MP_OKAY) { - return err; - } - - /* now init the second half of the array */ - for (x = 1<<(winsize-1); x < (1 << winsize); x++) { - if ((err = mp_init(&M[x])) != MP_OKAY) { - for (y = 1<<(winsize-1); y < x; y++) { - mp_clear (&M[y]); - } - mp_clear(&M[1]); - return err; - } - } - - /* create mu, used for Barrett reduction */ - if ((err = mp_init (&mu)) != MP_OKAY) { - goto LBL_M; - } - - if (redmode == 0) { - if ((err = mp_reduce_setup (&mu, P)) != MP_OKAY) { - goto LBL_MU; - } - redux = mp_reduce; - } else { - if ((err = mp_reduce_2k_setup_l (P, &mu)) != MP_OKAY) { - goto LBL_MU; - } - redux = mp_reduce_2k_l; - } - - /* create M table - * - * The M table contains powers of the base, - * e.g. M[x] = G**x mod P - * - * The first half of the table is not - * computed though accept for M[0] and M[1] - */ - if ((err = mp_mod (G, P, &M[1])) != MP_OKAY) { - goto LBL_MU; - } - - /* compute the value at M[1<<(winsize-1)] by squaring - * M[1] (winsize-1) times - */ - if ((err = mp_copy (&M[1], &M[(mp_digit)(1 << (winsize - 1))])) != MP_OKAY) { - goto LBL_MU; - } - - for (x = 0; x < (winsize - 1); x++) { - /* square it */ - if ((err = mp_sqr (&M[(mp_digit)(1 << (winsize - 1))], - &M[(mp_digit)(1 << (winsize - 1))])) != MP_OKAY) { - goto LBL_MU; - } - - /* reduce modulo P */ - if ((err = redux (&M[(mp_digit)(1 << (winsize - 1))], P, &mu)) != MP_OKAY) { - goto LBL_MU; - } - } - - /* create upper table, that is M[x] = M[x-1] * M[1] (mod P) - * for x = (2**(winsize - 1) + 1) to (2**winsize - 1) - */ - for (x = (1 << (winsize - 1)) + 1; x < (1 << winsize); x++) { - if ((err = mp_mul (&M[x - 1], &M[1], &M[x])) != MP_OKAY) { - goto LBL_MU; - } - if ((err = redux (&M[x], P, &mu)) != MP_OKAY) { - goto LBL_MU; - } - } - - /* setup result */ - if ((err = mp_init (&res)) != MP_OKAY) { - goto LBL_MU; - } - if ((err = mp_set (&res, 1)) != MP_OKAY) { - goto LBL_MU; - } - - /* set initial mode and bit cnt */ - mode = 0; - bitcnt = 1; - buf = 0; - digidx = X->used - 1; - bitcpy = 0; - bitbuf = 0; - - for (;;) { - /* grab next digit as required */ - if (--bitcnt == 0) { - /* if digidx == -1 we are out of digits */ - if (digidx == -1) { - break; - } - /* read next digit and reset the bitcnt */ - buf = X->dp[digidx--]; - bitcnt = (int) DIGIT_BIT; - } - - /* grab the next msb from the exponent */ - y = (int)(buf >> (mp_digit)(DIGIT_BIT - 1)) & 1; - buf <<= (mp_digit)1; - - /* if the bit is zero and mode == 0 then we ignore it - * These represent the leading zero bits before the first 1 bit - * in the exponent. Technically this opt is not required but it - * does lower the # of trivial squaring/reductions used - */ - if (mode == 0 && y == 0) { - continue; - } - - /* if the bit is zero and mode == 1 then we square */ - if (mode == 1 && y == 0) { - if ((err = mp_sqr (&res, &res)) != MP_OKAY) { - goto LBL_RES; - } - if ((err = redux (&res, P, &mu)) != MP_OKAY) { - goto LBL_RES; - } - continue; - } - - /* else we add it to the window */ - bitbuf |= (y << (winsize - ++bitcpy)); - mode = 2; - - if (bitcpy == winsize) { - /* ok window is filled so square as required and multiply */ - /* square first */ - for (x = 0; x < winsize; x++) { - if ((err = mp_sqr (&res, &res)) != MP_OKAY) { - goto LBL_RES; - } - if ((err = redux (&res, P, &mu)) != MP_OKAY) { - goto LBL_RES; - } - } - - /* then multiply */ - if ((err = mp_mul (&res, &M[bitbuf], &res)) != MP_OKAY) { - goto LBL_RES; - } - if ((err = redux (&res, P, &mu)) != MP_OKAY) { - goto LBL_RES; - } - - /* empty window and reset */ - bitcpy = 0; - bitbuf = 0; - mode = 1; - } - } - - /* if bits remain then square/multiply */ - if (mode == 2 && bitcpy > 0) { - /* square then multiply if the bit is set */ - for (x = 0; x < bitcpy; x++) { - if ((err = mp_sqr (&res, &res)) != MP_OKAY) { - goto LBL_RES; - } - if ((err = redux (&res, P, &mu)) != MP_OKAY) { - goto LBL_RES; - } - - bitbuf <<= 1; - if ((bitbuf & (1 << winsize)) != 0) { - /* then multiply */ - if ((err = mp_mul (&res, &M[1], &res)) != MP_OKAY) { - goto LBL_RES; - } - if ((err = redux (&res, P, &mu)) != MP_OKAY) { - goto LBL_RES; - } - } - } - } - - mp_exch (&res, Y); - err = MP_OKAY; -LBL_RES:mp_clear (&res); -LBL_MU:mp_clear (&mu); -LBL_M: - mp_clear(&M[1]); - for (x = 1<<(winsize-1); x < (1 << winsize); x++) { - mp_clear (&M[x]); - } - return err; -} - - -/* pre-calculate the value required for Barrett reduction - * For a given modulus "b" it calculates the value required in "a" - */ -int mp_reduce_setup (mp_int * a, mp_int * b) -{ - int res; - - if ((res = mp_2expt (a, b->used * 2 * DIGIT_BIT)) != MP_OKAY) { - return res; - } - return mp_div (a, b, a, NULL); -} - - -/* reduces x mod m, assumes 0 < x < m**2, mu is - * precomputed via mp_reduce_setup. - * From HAC pp.604 Algorithm 14.42 - */ -int mp_reduce (mp_int * x, mp_int * m, mp_int * mu) -{ - mp_int q; - int res, um = m->used; - - /* q = x */ - if ((res = mp_init_copy (&q, x)) != MP_OKAY) { - return res; - } - - /* q1 = x / b**(k-1) */ - mp_rshd (&q, um - 1); - - /* according to HAC this optimization is ok */ - if (((mp_word) um) > (((mp_digit)1) << (DIGIT_BIT - 1))) { - if ((res = mp_mul (&q, mu, &q)) != MP_OKAY) { - goto CLEANUP; - } - } else { -#ifdef BN_S_MP_MUL_HIGH_DIGS_C - if ((res = s_mp_mul_high_digs (&q, mu, &q, um)) != MP_OKAY) { - goto CLEANUP; - } -#elif defined(BN_FAST_S_MP_MUL_HIGH_DIGS_C) - if ((res = fast_s_mp_mul_high_digs (&q, mu, &q, um)) != MP_OKAY) { - goto CLEANUP; - } -#else - { - res = MP_VAL; - goto CLEANUP; - } -#endif - } - - /* q3 = q2 / b**(k+1) */ - mp_rshd (&q, um + 1); - - /* x = x mod b**(k+1), quick (no division) */ - if ((res = mp_mod_2d (x, DIGIT_BIT * (um + 1), x)) != MP_OKAY) { - goto CLEANUP; - } - - /* q = q * m mod b**(k+1), quick (no division) */ - if ((res = s_mp_mul_digs (&q, m, &q, um + 1)) != MP_OKAY) { - goto CLEANUP; - } - - /* x = x - q */ - if ((res = mp_sub (x, &q, x)) != MP_OKAY) { - goto CLEANUP; - } - - /* If x < 0, add b**(k+1) to it */ - if (mp_cmp_d (x, 0) == MP_LT) { - if ((res = mp_set (&q, 1)) != MP_OKAY) - goto CLEANUP; - if ((res = mp_lshd (&q, um + 1)) != MP_OKAY) - goto CLEANUP; - if ((res = mp_add (x, &q, x)) != MP_OKAY) - goto CLEANUP; - } - - /* Back off if it's too big */ - while (mp_cmp (x, m) != MP_LT) { - if ((res = s_mp_sub (x, m, x)) != MP_OKAY) { - goto CLEANUP; - } - } - -CLEANUP: - mp_clear (&q); - - return res; -} - - -/* reduces a modulo n where n is of the form 2**p - d - This differs from reduce_2k since "d" can be larger - than a single digit. -*/ -int mp_reduce_2k_l(mp_int *a, mp_int *n, mp_int *d) -{ - mp_int q; - int p, res; - - if ((res = mp_init(&q)) != MP_OKAY) { - return res; - } - - p = mp_count_bits(n); -top: - /* q = a/2**p, a = a mod 2**p */ - if ((res = mp_div_2d(a, p, &q, a)) != MP_OKAY) { - goto ERR; - } - - /* q = q * d */ - if ((res = mp_mul(&q, d, &q)) != MP_OKAY) { - goto ERR; - } - - /* a = a + q */ - if ((res = s_mp_add(a, &q, a)) != MP_OKAY) { - goto ERR; - } - - if (mp_cmp_mag(a, n) != MP_LT) { - if ((res = s_mp_sub(a, n, a)) != MP_OKAY) { - goto ERR; - } - goto top; - } - -ERR: - mp_clear(&q); - return res; -} - - -/* determines the setup value */ -int mp_reduce_2k_setup_l(mp_int *a, mp_int *d) -{ - int res; - mp_int tmp; - - if ((res = mp_init(&tmp)) != MP_OKAY) { - return res; - } - - if ((res = mp_2expt(&tmp, mp_count_bits(a))) != MP_OKAY) { - goto ERR; - } - - if ((res = s_mp_sub(&tmp, a, d)) != MP_OKAY) { - goto ERR; - } - -ERR: - mp_clear(&tmp); - return res; -} - - -/* multiplies |a| * |b| and does not compute the lower digs digits - * [meant to get the higher part of the product] - */ -int s_mp_mul_high_digs (mp_int * a, mp_int * b, mp_int * c, int digs) -{ - mp_int t; - int res, pa, pb, ix, iy; - mp_digit u; - mp_word r; - mp_digit tmpx, *tmpt, *tmpy; - - /* can we use the fast multiplier? */ -#ifdef BN_FAST_S_MP_MUL_HIGH_DIGS_C - if (((a->used + b->used + 1) < MP_WARRAY) - && MIN (a->used, b->used) < - (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) { - return fast_s_mp_mul_high_digs (a, b, c, digs); - } -#endif - - if ((res = mp_init_size (&t, a->used + b->used + 1)) != MP_OKAY) { - return res; - } - t.used = a->used + b->used + 1; - - pa = a->used; - pb = b->used; - for (ix = 0; ix < pa && a->dp; ix++) { - /* clear the carry */ - u = 0; - - /* left hand side of A[ix] * B[iy] */ - tmpx = a->dp[ix]; - - /* alias to the address of where the digits will be stored */ - tmpt = &(t.dp[digs]); - - /* alias for where to read the right hand side from */ - tmpy = b->dp + (digs - ix); - - for (iy = digs - ix; iy < pb; iy++) { - /* calculate the double precision result */ - r = ((mp_word)*tmpt) + - ((mp_word)tmpx) * ((mp_word)*tmpy++) + - ((mp_word) u); - - /* get the lower part */ - *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK)); - - /* carry the carry */ - u = (mp_digit) (r >> ((mp_word) DIGIT_BIT)); - } - *tmpt = u; - } - mp_clamp (&t); - mp_exch (&t, c); - mp_clear (&t); - return MP_OKAY; -} - - -/* this is a modified version of fast_s_mul_digs that only produces - * output digits *above* digs. See the comments for fast_s_mul_digs - * to see how it works. - * - * This is used in the Barrett reduction since for one of the multiplications - * only the higher digits were needed. This essentially halves the work. - * - * Based on Algorithm 14.12 on pp.595 of HAC. - */ -int fast_s_mp_mul_high_digs (mp_int * a, mp_int * b, mp_int * c, int digs) -{ - int olduse, res, pa, ix, iz; -#ifdef WOLFSSL_SMALL_STACK - mp_digit* W; /* uses dynamic memory and slower */ -#else - mp_digit W[MP_WARRAY]; -#endif - mp_word _W; - - if (a->dp == NULL) { /* JRB, avoid reading uninitialized values */ - return MP_VAL; - } - - /* grow the destination as required */ - pa = a->used + b->used; - if (c->alloc < pa) { - if ((res = mp_grow (c, pa)) != MP_OKAY) { - return res; - } - } - - if (pa > MP_WARRAY) - return MP_RANGE; /* TAO range check */ - -#ifdef WOLFSSL_SMALL_STACK - W = (mp_digit*)XMALLOC(sizeof(mp_digit) * MP_WARRAY, NULL, DYNAMIC_TYPE_BIGINT); - if (W == NULL) - return MP_MEM; -#endif - - /* number of output digits to produce */ - pa = a->used + b->used; - _W = 0; - for (ix = digs; ix < pa; ix++) { /* JRB, have a->dp check at top of function*/ - int tx, ty, iy; - mp_digit *tmpx, *tmpy; - - /* get offsets into the two bignums */ - ty = MIN(b->used-1, ix); - tx = ix - ty; - - /* setup temp aliases */ - tmpx = a->dp + tx; - tmpy = b->dp + ty; - - /* this is the number of times the loop will iterate, essentially its - while (tx++ < a->used && ty-- >= 0) { ... } - */ - iy = MIN(a->used-tx, ty+1); - - /* execute loop */ - for (iz = 0; iz < iy; iz++) { - _W += ((mp_word)*tmpx++)*((mp_word)*tmpy--); - } - - /* store term */ - W[ix] = (mp_digit)(((mp_digit)_W) & MP_MASK); - - /* make next carry */ - _W = _W >> ((mp_word)DIGIT_BIT); - } - - /* setup dest */ - olduse = c->used; - c->used = pa; - - { - mp_digit *tmpc; - - tmpc = c->dp + digs; - for (ix = digs; ix < pa; ix++) { /* TAO, <= could potentially overwrite */ - /* now extract the previous digit [below the carry] */ - *tmpc++ = W[ix]; - } - - /* clear unused digits [that existed in the old copy of c] */ - for (; ix < olduse; ix++) { - *tmpc++ = 0; - } - } - mp_clamp (c); - -#ifdef WOLFSSL_SMALL_STACK - XFREE(W, NULL, DYNAMIC_TYPE_BIGINT); -#endif - - return MP_OKAY; -} - - -#ifndef MP_SET_CHUNK_BITS - #define MP_SET_CHUNK_BITS 4 -#endif -int mp_set_int (mp_int * a, unsigned long b) -{ - int x, res; - - /* use direct mp_set if b is less than mp_digit max */ - if (b < MP_DIGIT_MAX) { - return mp_set (a, (mp_digit)b); - } - - mp_zero (a); - - /* set chunk bits at a time */ - for (x = 0; x < (int)(sizeof(b) * 8) / MP_SET_CHUNK_BITS; x++) { - /* shift the number up chunk bits */ - if ((res = mp_mul_2d (a, MP_SET_CHUNK_BITS, a)) != MP_OKAY) { - return res; - } - - /* OR in the top bits of the source */ - a->dp[0] |= (b >> ((sizeof(b) * 8) - MP_SET_CHUNK_BITS)) & - ((1 << MP_SET_CHUNK_BITS) - 1); - - /* shift the source up to the next chunk bits */ - b <<= MP_SET_CHUNK_BITS; - - /* ensure that digits are not clamped off */ - a->used += 1; - } - mp_clamp (a); - return MP_OKAY; -} - - -#if defined(WOLFSSL_KEY_GEN) || defined(HAVE_ECC) - -/* c = a * a (mod b) */ -int mp_sqrmod (mp_int * a, mp_int * b, mp_int * c) -{ - int res; - mp_int t; - - if ((res = mp_init (&t)) != MP_OKAY) { - return res; - } - - if ((res = mp_sqr (a, &t)) != MP_OKAY) { - mp_clear (&t); - return res; - } - res = mp_mod (&t, b, c); - mp_clear (&t); - return res; -} - -#endif - - -#if defined(HAVE_ECC) || !defined(NO_PWDBASED) || defined(WOLFSSL_SNIFFER) || \ - defined(WOLFSSL_HAVE_WOLFSCEP) || defined(WOLFSSL_KEY_GEN) || \ - defined(OPENSSL_EXTRA) || defined(WC_RSA_BLINDING) - -/* single digit addition */ -int mp_add_d (mp_int* a, mp_digit b, mp_int* c) -{ - int res, ix, oldused; - mp_digit *tmpa, *tmpc, mu; - - /* grow c as required */ - if (c->alloc < a->used + 1) { - if ((res = mp_grow(c, a->used + 1)) != MP_OKAY) { - return res; - } - } - - /* if a is negative and |a| >= b, call c = |a| - b */ - if (a->sign == MP_NEG && (a->used > 1 || a->dp[0] >= b)) { - /* temporarily fix sign of a */ - a->sign = MP_ZPOS; - - /* c = |a| - b */ - res = mp_sub_d(a, b, c); - - /* fix sign */ - a->sign = c->sign = MP_NEG; - - /* clamp */ - mp_clamp(c); - - return res; - } - - /* old number of used digits in c */ - oldused = c->used; - - /* sign always positive */ - c->sign = MP_ZPOS; - - /* source alias */ - tmpa = a->dp; - - /* destination alias */ - tmpc = c->dp; - - /* if a is positive */ - if (a->sign == MP_ZPOS) { - /* add digit, after this we're propagating - * the carry. - */ - *tmpc = *tmpa++ + b; - mu = *tmpc >> DIGIT_BIT; - *tmpc++ &= MP_MASK; - - /* now handle rest of the digits */ - for (ix = 1; ix < a->used; ix++) { - *tmpc = *tmpa++ + mu; - mu = *tmpc >> DIGIT_BIT; - *tmpc++ &= MP_MASK; - } - /* set final carry */ - if (ix < c->alloc) { - ix++; - *tmpc++ = mu; - } - - /* setup size */ - c->used = a->used + 1; - } else { - /* a was negative and |a| < b */ - c->used = 1; - - /* the result is a single digit */ - if (a->used == 1) { - *tmpc++ = b - a->dp[0]; - } else { - *tmpc++ = b; - } - - /* setup count so the clearing of oldused - * can fall through correctly - */ - ix = 1; - } - - /* now zero to oldused */ - while (ix++ < oldused) { - *tmpc++ = 0; - } - mp_clamp(c); - - return MP_OKAY; -} - - -/* single digit subtraction */ -int mp_sub_d (mp_int * a, mp_digit b, mp_int * c) -{ - mp_digit *tmpa, *tmpc, mu; - int res, ix, oldused; - - /* grow c as required */ - if (c->alloc < a->used + 1) { - if ((res = mp_grow(c, a->used + 1)) != MP_OKAY) { - return res; - } - } - - /* if a is negative just do an unsigned - * addition [with fudged signs] - */ - if (a->sign == MP_NEG) { - a->sign = MP_ZPOS; - res = mp_add_d(a, b, c); - a->sign = c->sign = MP_NEG; - - /* clamp */ - mp_clamp(c); - - return res; - } - - /* setup regs */ - oldused = c->used; - tmpa = a->dp; - tmpc = c->dp; - - /* if a <= b simply fix the single digit */ - if ((a->used == 1 && a->dp[0] <= b) || a->used == 0) { - if (a->used == 1) { - *tmpc++ = b - *tmpa; - } else { - *tmpc++ = b; - } - ix = 1; - - /* negative/1digit */ - c->sign = MP_NEG; - c->used = 1; - } else { - /* positive/size */ - c->sign = MP_ZPOS; - c->used = a->used; - - /* subtract first digit */ - *tmpc = *tmpa++ - b; - mu = *tmpc >> (sizeof(mp_digit) * CHAR_BIT - 1); - *tmpc++ &= MP_MASK; - - /* handle rest of the digits */ - for (ix = 1; ix < a->used; ix++) { - *tmpc = *tmpa++ - mu; - mu = *tmpc >> (sizeof(mp_digit) * CHAR_BIT - 1); - *tmpc++ &= MP_MASK; - } - } - - /* zero excess digits */ - while (ix++ < oldused) { - *tmpc++ = 0; - } - mp_clamp(c); - return MP_OKAY; -} - -#endif /* defined(HAVE_ECC) || !defined(NO_PWDBASED) */ - - -#if defined(WOLFSSL_KEY_GEN) || defined(HAVE_COMP_KEY) || defined(HAVE_ECC) || \ - defined(DEBUG_WOLFSSL) - -static const int lnz[16] = { - 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0 -}; - -/* Counts the number of lsbs which are zero before the first zero bit */ -int mp_cnt_lsb(mp_int *a) -{ - int x; - mp_digit q = 0, qq; - - /* easy out */ - if (mp_iszero(a) == MP_YES) { - return 0; - } - - /* scan lower digits until non-zero */ - for (x = 0; x < a->used && a->dp[x] == 0; x++) {} - if (a->dp) - q = a->dp[x]; - x *= DIGIT_BIT; - - /* now scan this digit until a 1 is found */ - if ((q & 1) == 0) { - do { - qq = q & 15; - x += lnz[qq]; - q >>= 4; - } while (qq == 0); - } - return x; -} - - - - -static int s_is_power_of_two(mp_digit b, int *p) -{ - int x; - - /* fast return if no power of two */ - if ((b==0) || (b & (b-1))) { - return 0; - } - - for (x = 0; x < DIGIT_BIT; x++) { - if (b == (((mp_digit)1)<<x)) { - *p = x; - return 1; - } - } - return 0; -} - -/* single digit division (based on routine from MPI) */ -static int mp_div_d (mp_int * a, mp_digit b, mp_int * c, mp_digit * d) -{ - mp_int q; - mp_word w; - mp_digit t; - int res = MP_OKAY, ix; - - /* cannot divide by zero */ - if (b == 0) { - return MP_VAL; - } - - /* quick outs */ - if (b == 1 || mp_iszero(a) == MP_YES) { - if (d != NULL) { - *d = 0; - } - if (c != NULL) { - return mp_copy(a, c); - } - return MP_OKAY; - } - - /* power of two ? */ - if (s_is_power_of_two(b, &ix) == 1) { - if (d != NULL) { - *d = a->dp[0] & ((((mp_digit)1)<<ix) - 1); - } - if (c != NULL) { - return mp_div_2d(a, ix, c, NULL); - } - return MP_OKAY; - } - -#ifdef BN_MP_DIV_3_C - /* three? */ - if (b == 3) { - return mp_div_3(a, c, d); - } -#endif - - /* no easy answer [c'est la vie]. Just division */ - if (c != NULL) { - if ((res = mp_init_size(&q, a->used)) != MP_OKAY) { - return res; - } - - q.used = a->used; - q.sign = a->sign; - } - else { - if ((res = mp_init(&q)) != MP_OKAY) { - return res; - } - } - - - w = 0; - for (ix = a->used - 1; ix >= 0; ix--) { - w = (w << ((mp_word)DIGIT_BIT)) | ((mp_word)a->dp[ix]); - - if (w >= b) { - t = (mp_digit)(w / b); - w -= ((mp_word)t) * ((mp_word)b); - } else { - t = 0; - } - if (c != NULL) - q.dp[ix] = (mp_digit)t; - } - - if (d != NULL) { - *d = (mp_digit)w; - } - - if (c != NULL) { - mp_clamp(&q); - mp_exch(&q, c); - } - mp_clear(&q); - - return res; -} - - -int mp_mod_d (mp_int * a, mp_digit b, mp_digit * c) -{ - return mp_div_d(a, b, NULL, c); -} - -#endif /* WOLFSSL_KEY_GEN || HAVE_COMP_KEY || HAVE_ECC || DEBUG_WOLFSSL */ - -#ifdef WOLFSSL_KEY_GEN - -const mp_digit ltm_prime_tab[PRIME_SIZE] = { - 0x0002, 0x0003, 0x0005, 0x0007, 0x000B, 0x000D, 0x0011, 0x0013, - 0x0017, 0x001D, 0x001F, 0x0025, 0x0029, 0x002B, 0x002F, 0x0035, - 0x003B, 0x003D, 0x0043, 0x0047, 0x0049, 0x004F, 0x0053, 0x0059, - 0x0061, 0x0065, 0x0067, 0x006B, 0x006D, 0x0071, 0x007F, -#ifndef MP_8BIT - 0x0083, - 0x0089, 0x008B, 0x0095, 0x0097, 0x009D, 0x00A3, 0x00A7, 0x00AD, - 0x00B3, 0x00B5, 0x00BF, 0x00C1, 0x00C5, 0x00C7, 0x00D3, 0x00DF, - 0x00E3, 0x00E5, 0x00E9, 0x00EF, 0x00F1, 0x00FB, 0x0101, 0x0107, - 0x010D, 0x010F, 0x0115, 0x0119, 0x011B, 0x0125, 0x0133, 0x0137, - - 0x0139, 0x013D, 0x014B, 0x0151, 0x015B, 0x015D, 0x0161, 0x0167, - 0x016F, 0x0175, 0x017B, 0x017F, 0x0185, 0x018D, 0x0191, 0x0199, - 0x01A3, 0x01A5, 0x01AF, 0x01B1, 0x01B7, 0x01BB, 0x01C1, 0x01C9, - 0x01CD, 0x01CF, 0x01D3, 0x01DF, 0x01E7, 0x01EB, 0x01F3, 0x01F7, - 0x01FD, 0x0209, 0x020B, 0x021D, 0x0223, 0x022D, 0x0233, 0x0239, - 0x023B, 0x0241, 0x024B, 0x0251, 0x0257, 0x0259, 0x025F, 0x0265, - 0x0269, 0x026B, 0x0277, 0x0281, 0x0283, 0x0287, 0x028D, 0x0293, - 0x0295, 0x02A1, 0x02A5, 0x02AB, 0x02B3, 0x02BD, 0x02C5, 0x02CF, - - 0x02D7, 0x02DD, 0x02E3, 0x02E7, 0x02EF, 0x02F5, 0x02F9, 0x0301, - 0x0305, 0x0313, 0x031D, 0x0329, 0x032B, 0x0335, 0x0337, 0x033B, - 0x033D, 0x0347, 0x0355, 0x0359, 0x035B, 0x035F, 0x036D, 0x0371, - 0x0373, 0x0377, 0x038B, 0x038F, 0x0397, 0x03A1, 0x03A9, 0x03AD, - 0x03B3, 0x03B9, 0x03C7, 0x03CB, 0x03D1, 0x03D7, 0x03DF, 0x03E5, - 0x03F1, 0x03F5, 0x03FB, 0x03FD, 0x0407, 0x0409, 0x040F, 0x0419, - 0x041B, 0x0425, 0x0427, 0x042D, 0x043F, 0x0443, 0x0445, 0x0449, - 0x044F, 0x0455, 0x045D, 0x0463, 0x0469, 0x047F, 0x0481, 0x048B, - - 0x0493, 0x049D, 0x04A3, 0x04A9, 0x04B1, 0x04BD, 0x04C1, 0x04C7, - 0x04CD, 0x04CF, 0x04D5, 0x04E1, 0x04EB, 0x04FD, 0x04FF, 0x0503, - 0x0509, 0x050B, 0x0511, 0x0515, 0x0517, 0x051B, 0x0527, 0x0529, - 0x052F, 0x0551, 0x0557, 0x055D, 0x0565, 0x0577, 0x0581, 0x058F, - 0x0593, 0x0595, 0x0599, 0x059F, 0x05A7, 0x05AB, 0x05AD, 0x05B3, - 0x05BF, 0x05C9, 0x05CB, 0x05CF, 0x05D1, 0x05D5, 0x05DB, 0x05E7, - 0x05F3, 0x05FB, 0x0607, 0x060D, 0x0611, 0x0617, 0x061F, 0x0623, - 0x062B, 0x062F, 0x063D, 0x0641, 0x0647, 0x0649, 0x064D, 0x0653 -#endif -}; - - -/* Miller-Rabin test of "a" to the base of "b" as described in - * HAC pp. 139 Algorithm 4.24 - * - * Sets result to 0 if definitely composite or 1 if probably prime. - * Randomly the chance of error is no more than 1/4 and often - * very much lower. - */ -static int mp_prime_miller_rabin (mp_int * a, mp_int * b, int *result) -{ - mp_int n1, y, r; - int s, j, err; - - /* default */ - *result = MP_NO; - - /* ensure b > 1 */ - if (mp_cmp_d(b, 1) != MP_GT) { - return MP_VAL; - } - - /* get n1 = a - 1 */ - if ((err = mp_init_copy (&n1, a)) != MP_OKAY) { - return err; - } - if ((err = mp_sub_d (&n1, 1, &n1)) != MP_OKAY) { - goto LBL_N1; - } - - /* set 2**s * r = n1 */ - if ((err = mp_init_copy (&r, &n1)) != MP_OKAY) { - goto LBL_N1; - } - - /* count the number of least significant bits - * which are zero - */ - s = mp_cnt_lsb(&r); - - /* now divide n - 1 by 2**s */ - if ((err = mp_div_2d (&r, s, &r, NULL)) != MP_OKAY) { - goto LBL_R; - } - - /* compute y = b**r mod a */ - if ((err = mp_init (&y)) != MP_OKAY) { - goto LBL_R; - } - if ((err = mp_exptmod (b, &r, a, &y)) != MP_OKAY) { - goto LBL_Y; - } - - /* if y != 1 and y != n1 do */ - if (mp_cmp_d (&y, 1) != MP_EQ && mp_cmp (&y, &n1) != MP_EQ) { - j = 1; - /* while j <= s-1 and y != n1 */ - while ((j <= (s - 1)) && mp_cmp (&y, &n1) != MP_EQ) { - if ((err = mp_sqrmod (&y, a, &y)) != MP_OKAY) { - goto LBL_Y; - } - - /* if y == 1 then composite */ - if (mp_cmp_d (&y, 1) == MP_EQ) { - goto LBL_Y; - } - - ++j; - } - - /* if y != n1 then composite */ - if (mp_cmp (&y, &n1) != MP_EQ) { - goto LBL_Y; - } - } - - /* probably prime now */ - *result = MP_YES; -LBL_Y:mp_clear (&y); -LBL_R:mp_clear (&r); -LBL_N1:mp_clear (&n1); - return err; -} - - -/* determines if an integers is divisible by one - * of the first PRIME_SIZE primes or not - * - * sets result to 0 if not, 1 if yes - */ -static int mp_prime_is_divisible (mp_int * a, int *result) -{ - int err, ix; - mp_digit res; - - /* default to not */ - *result = MP_NO; - - for (ix = 0; ix < PRIME_SIZE; ix++) { - /* what is a mod LBL_prime_tab[ix] */ - if ((err = mp_mod_d (a, ltm_prime_tab[ix], &res)) != MP_OKAY) { - return err; - } - - /* is the residue zero? */ - if (res == 0) { - *result = MP_YES; - return MP_OKAY; - } - } - - return MP_OKAY; -} - -static const int USE_BBS = 1; - -int mp_rand_prime(mp_int* N, int len, WC_RNG* rng, void* heap) -{ - int err, res, type; - byte* buf; - - if (N == NULL || rng == NULL) - return MP_VAL; - - /* get type */ - if (len < 0) { - type = USE_BBS; - len = -len; - } else { - type = 0; - } - - /* allow sizes between 2 and 512 bytes for a prime size */ - if (len < 2 || len > 512) { - return MP_VAL; - } - - /* allocate buffer to work with */ - buf = (byte*)XMALLOC(len, heap, DYNAMIC_TYPE_RSA); - if (buf == NULL) { - return MP_MEM; - } - XMEMSET(buf, 0, len); - - do { -#ifdef SHOW_GEN - printf("."); - fflush(stdout); -#endif - /* generate value */ - err = wc_RNG_GenerateBlock(rng, buf, len); - if (err != 0) { - XFREE(buf, heap, DYNAMIC_TYPE_RSA); - return err; - } - - /* munge bits */ - buf[0] |= 0x80 | 0x40; - buf[len-1] |= 0x01 | ((type & USE_BBS) ? 0x02 : 0x00); - - /* load value */ - if ((err = mp_read_unsigned_bin(N, buf, len)) != MP_OKAY) { - XFREE(buf, heap, DYNAMIC_TYPE_RSA); - return err; - } - - /* test */ - if ((err = mp_prime_is_prime(N, 8, &res)) != MP_OKAY) { - XFREE(buf, heap, DYNAMIC_TYPE_RSA); - return err; - } - } while (res == MP_NO); - - XMEMSET(buf, 0, len); - XFREE(buf, heap, DYNAMIC_TYPE_RSA); - - return MP_OKAY; -} - -/* - * Sets result to 1 if probably prime, 0 otherwise - */ -int mp_prime_is_prime (mp_int * a, int t, int *result) -{ - mp_int b; - int ix, err, res; - - /* default to no */ - *result = MP_NO; - - /* valid value of t? */ - if (t <= 0 || t > PRIME_SIZE) { - return MP_VAL; - } - - /* is the input equal to one of the primes in the table? */ - for (ix = 0; ix < PRIME_SIZE; ix++) { - if (mp_cmp_d(a, ltm_prime_tab[ix]) == MP_EQ) { - *result = 1; - return MP_OKAY; - } - } - - /* first perform trial division */ - if ((err = mp_prime_is_divisible (a, &res)) != MP_OKAY) { - return err; - } - - /* return if it was trivially divisible */ - if (res == MP_YES) { - return MP_OKAY; - } - - /* now perform the miller-rabin rounds */ - if ((err = mp_init (&b)) != MP_OKAY) { - return err; - } - - for (ix = 0; ix < t; ix++) { - /* set the prime */ - if ((err = mp_set (&b, ltm_prime_tab[ix])) != MP_OKAY) { - goto LBL_B; - } - - if ((err = mp_prime_miller_rabin (a, &b, &res)) != MP_OKAY) { - goto LBL_B; - } - - if (res == MP_NO) { - goto LBL_B; - } - } - - /* passed the test */ - *result = MP_YES; -LBL_B:mp_clear (&b); - return err; -} - - -/* computes least common multiple as |a*b|/(a, b) */ -int mp_lcm (mp_int * a, mp_int * b, mp_int * c) -{ - int res; - mp_int t1, t2; - - - if ((res = mp_init_multi (&t1, &t2, NULL, NULL, NULL, NULL)) != MP_OKAY) { - return res; - } - - /* t1 = get the GCD of the two inputs */ - if ((res = mp_gcd (a, b, &t1)) != MP_OKAY) { - goto LBL_T; - } - - /* divide the smallest by the GCD */ - if (mp_cmp_mag(a, b) == MP_LT) { - /* store quotient in t2 such that t2 * b is the LCM */ - if ((res = mp_div(a, &t1, &t2, NULL)) != MP_OKAY) { - goto LBL_T; - } - res = mp_mul(b, &t2, c); - } else { - /* store quotient in t2 such that t2 * a is the LCM */ - if ((res = mp_div(b, &t1, &t2, NULL)) != MP_OKAY) { - goto LBL_T; - } - res = mp_mul(a, &t2, c); - } - - /* fix the sign to positive */ - c->sign = MP_ZPOS; - -LBL_T: - mp_clear(&t1); - mp_clear(&t2); - return res; -} - - - -/* Greatest Common Divisor using the binary method */ -int mp_gcd (mp_int * a, mp_int * b, mp_int * c) -{ - mp_int u, v; - int k, u_lsb, v_lsb, res; - - /* either zero than gcd is the largest */ - if (mp_iszero (a) == MP_YES) { - return mp_abs (b, c); - } - if (mp_iszero (b) == MP_YES) { - return mp_abs (a, c); - } - - /* get copies of a and b we can modify */ - if ((res = mp_init_copy (&u, a)) != MP_OKAY) { - return res; - } - - if ((res = mp_init_copy (&v, b)) != MP_OKAY) { - goto LBL_U; - } - - /* must be positive for the remainder of the algorithm */ - u.sign = v.sign = MP_ZPOS; - - /* B1. Find the common power of two for u and v */ - u_lsb = mp_cnt_lsb(&u); - v_lsb = mp_cnt_lsb(&v); - k = MIN(u_lsb, v_lsb); - - if (k > 0) { - /* divide the power of two out */ - if ((res = mp_div_2d(&u, k, &u, NULL)) != MP_OKAY) { - goto LBL_V; - } - - if ((res = mp_div_2d(&v, k, &v, NULL)) != MP_OKAY) { - goto LBL_V; - } - } - - /* divide any remaining factors of two out */ - if (u_lsb != k) { - if ((res = mp_div_2d(&u, u_lsb - k, &u, NULL)) != MP_OKAY) { - goto LBL_V; - } - } - - if (v_lsb != k) { - if ((res = mp_div_2d(&v, v_lsb - k, &v, NULL)) != MP_OKAY) { - goto LBL_V; - } - } - - while (mp_iszero(&v) == MP_NO) { - /* make sure v is the largest */ - if (mp_cmp_mag(&u, &v) == MP_GT) { - /* swap u and v to make sure v is >= u */ - mp_exch(&u, &v); - } - - /* subtract smallest from largest */ - if ((res = s_mp_sub(&v, &u, &v)) != MP_OKAY) { - goto LBL_V; - } - - /* Divide out all factors of two */ - if ((res = mp_div_2d(&v, mp_cnt_lsb(&v), &v, NULL)) != MP_OKAY) { - goto LBL_V; - } - } - - /* multiply by 2**k which we divided out at the beginning */ - if ((res = mp_mul_2d (&u, k, c)) != MP_OKAY) { - goto LBL_V; - } - c->sign = MP_ZPOS; - res = MP_OKAY; -LBL_V:mp_clear (&u); -LBL_U:mp_clear (&v); - return res; -} - -#endif /* WOLFSSL_KEY_GEN */ - - -#if !defined(NO_DSA) || defined(HAVE_ECC) || defined(WOLFSSL_KEY_GEN) || \ - defined(HAVE_COMP_KEY) || defined(WOLFSSL_DEBUG_MATH) || \ - defined(DEBUG_WOLFSSL) - -/* chars used in radix conversions */ -const char *mp_s_rmap = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ\ - abcdefghijklmnopqrstuvwxyz+/"; -#endif - -#if !defined(NO_DSA) || defined(HAVE_ECC) -/* read a string [ASCII] in a given radix */ -int mp_read_radix (mp_int * a, const char *str, int radix) -{ - int y, res, neg; - char ch; - - /* zero the digit bignum */ - mp_zero(a); - - /* make sure the radix is ok */ - if (radix < MP_RADIX_BIN || radix > MP_RADIX_MAX) { - return MP_VAL; - } - - /* if the leading digit is a - * minus set the sign to negative. - */ - if (*str == '-') { - ++str; - neg = MP_NEG; - } else { - neg = MP_ZPOS; - } - - /* set the integer to the default of zero */ - mp_zero (a); - - /* process each digit of the string */ - while (*str != '\0') { - /* if the radix <= 36 the conversion is case insensitive - * this allows numbers like 1AB and 1ab to represent the same value - * [e.g. in hex] - */ - ch = (radix <= 36) ? (char)XTOUPPER((unsigned char)*str) : *str; - for (y = 0; y < 64; y++) { - if (ch == mp_s_rmap[y]) { - break; - } - } - - /* if the char was found in the map - * and is less than the given radix add it - * to the number, otherwise exit the loop. - */ - if (y < radix) { - if ((res = mp_mul_d (a, (mp_digit) radix, a)) != MP_OKAY) { - return res; - } - if ((res = mp_add_d (a, (mp_digit) y, a)) != MP_OKAY) { - return res; - } - } else { - break; - } - ++str; - } - - /* if digit in isn't null term, then invalid character was found */ - if (*str != '\0') { - mp_zero (a); - return MP_VAL; - } - - /* set the sign only if a != 0 */ - if (mp_iszero(a) != MP_YES) { - a->sign = neg; - } - return MP_OKAY; -} -#endif /* !defined(NO_DSA) || defined(HAVE_ECC) */ - -#if defined(WOLFSSL_KEY_GEN) || defined(HAVE_COMP_KEY) || \ - defined(WOLFSSL_DEBUG_MATH) || defined(DEBUG_WOLFSSL) || \ - defined(WOLFSSL_PUBLIC_MP) - -/* returns size of ASCII representation */ -int mp_radix_size (mp_int *a, int radix, int *size) -{ - int res, digs; - mp_int t; - mp_digit d; - - *size = 0; - - /* special case for binary */ - if (radix == MP_RADIX_BIN) { - *size = mp_count_bits (a) + (a->sign == MP_NEG ? 1 : 0) + 1; - return MP_OKAY; - } - - /* make sure the radix is in range */ - if (radix < MP_RADIX_BIN || radix > MP_RADIX_MAX) { - return MP_VAL; - } - - if (mp_iszero(a) == MP_YES) { - *size = 2; - return MP_OKAY; - } - - /* digs is the digit count */ - digs = 0; - - /* if it's negative add one for the sign */ - if (a->sign == MP_NEG) { - ++digs; - } - - /* init a copy of the input */ - if ((res = mp_init_copy (&t, a)) != MP_OKAY) { - return res; - } - - /* force temp to positive */ - t.sign = MP_ZPOS; - - /* fetch out all of the digits */ - while (mp_iszero (&t) == MP_NO) { - if ((res = mp_div_d (&t, (mp_digit) radix, &t, &d)) != MP_OKAY) { - mp_clear (&t); - return res; - } - ++digs; - } - mp_clear (&t); - - /* return digs + 1, the 1 is for the NULL byte that would be required. */ - *size = digs + 1; - return MP_OKAY; -} - -/* stores a bignum as a ASCII string in a given radix (2..64) */ -int mp_toradix (mp_int *a, char *str, int radix) -{ - int res, digs; - mp_int t; - mp_digit d; - char *_s = str; - - /* check range of the radix */ - if (radix < MP_RADIX_BIN || radix > MP_RADIX_MAX) { - return MP_VAL; - } - - /* quick out if its zero */ - if (mp_iszero(a) == MP_YES) { - *str++ = '0'; - *str = '\0'; - return MP_OKAY; - } - - if ((res = mp_init_copy (&t, a)) != MP_OKAY) { - return res; - } - - /* if it is negative output a - */ - if (t.sign == MP_NEG) { - ++_s; - *str++ = '-'; - t.sign = MP_ZPOS; - } - - digs = 0; - while (mp_iszero (&t) == MP_NO) { - if ((res = mp_div_d (&t, (mp_digit) radix, &t, &d)) != MP_OKAY) { - mp_clear (&t); - return res; - } - *str++ = mp_s_rmap[d]; - ++digs; - } - - /* reverse the digits of the string. In this case _s points - * to the first digit [excluding the sign] of the number] - */ - bn_reverse ((unsigned char *)_s, digs); - - /* append a NULL so the string is properly terminated */ - *str = '\0'; - - mp_clear (&t); - return MP_OKAY; -} - -#ifdef WOLFSSL_DEBUG_MATH -void mp_dump(const char* desc, mp_int* a, byte verbose) -{ - char *buffer; - int size = a->alloc; - - buffer = (char*)XMALLOC(size * sizeof(mp_digit) * 2, NULL, DYNAMIC_TYPE_TMP_BUFFER); - if (buffer == NULL) { - return; - } - - printf("%s: ptr=%p, used=%d, sign=%d, size=%d, mpd=%d\n", - desc, a, a->used, a->sign, size, (int)sizeof(mp_digit)); - - mp_tohex(a, buffer); - printf(" %s\n ", buffer); - - if (verbose) { - int i; - for(i=0; i<a->alloc * (int)sizeof(mp_digit); i++) { - printf("%02x ", *(((byte*)a->dp) + i)); - } - printf("\n"); - } - - XFREE(buffer, NULL, DYNAMIC_TYPE_TMP_BUFFER); -} -#endif /* WOLFSSL_DEBUG_MATH */ - -#endif /* defined(WOLFSSL_KEY_GEN) || defined(HAVE_COMP_KEY) || defined(WOLFSSL_DEBUG_MATH) */ - -#endif /* WOLFSSL_SP_MATH */ - -#endif /* USE_FAST_MATH */ - -#endif /* NO_BIG_INT */ - -