Xuyi Wang / wolfSSL

Dependents:   OS

Revision:
17:ff9d1e86ad5f
Parent:
16:048e5e270a58
--- a/wolfcrypt/src/integer.c	Tue Nov 19 14:32:16 2019 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,4965 +0,0 @@
-/* integer.c
- *
- * Copyright (C) 2006-2017 wolfSSL Inc.
- *
- * This file is part of wolfSSL.
- *
- * wolfSSL is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation; either version 2 of the License, or
- * (at your option) any later version.
- *
- * wolfSSL is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program; if not, write to the Free Software
- * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335, USA
- */
-
-
-
-/*
- * Based on public domain LibTomMath 0.38 by Tom St Denis, tomstdenis@iahu.ca,
- * http://math.libtomcrypt.com
- */
-
-
-#ifdef HAVE_CONFIG_H
-    #include <config.h>
-#endif
-
-/* in case user set USE_FAST_MATH there */
-#include <wolfssl/wolfcrypt/settings.h>
-
-#ifdef NO_INLINE
-    #include <wolfssl/wolfcrypt/misc.h>
-#else
-    #define WOLFSSL_MISC_INCLUDED
-    #include <wolfcrypt/src/misc.c>
-#endif
-
-#ifndef NO_BIG_INT
-
-#ifndef USE_FAST_MATH
-
-#ifndef WOLFSSL_SP_MATH
-
-#include <wolfssl/wolfcrypt/integer.h>
-
-#if defined(FREESCALE_LTC_TFM)
-    #include <wolfssl/wolfcrypt/port/nxp/ksdk_port.h>
-#endif
-#ifdef WOLFSSL_DEBUG_MATH
-    #include <stdio.h>
-#endif
-
-#ifndef NO_WOLFSSL_SMALL_STACK
-    #ifndef WOLFSSL_SMALL_STACK
-        #define WOLFSSL_SMALL_STACK
-    #endif
-#endif
-
-#ifdef SHOW_GEN
-    #if defined(FREESCALE_MQX) || defined(FREESCALE_KSDK_MQX)
-        #if MQX_USE_IO_OLD
-            #include <fio.h>
-        #else
-            #include <nio.h>
-        #endif
-    #else
-        #include <stdio.h>
-    #endif
-#endif
-
-/* reverse an array, used for radix code */
-static void
-bn_reverse (unsigned char *s, int len)
-{
-    int     ix, iy;
-    unsigned char t;
-
-    ix = 0;
-    iy = len - 1;
-    while (ix < iy) {
-        t     = s[ix];
-        s[ix] = s[iy];
-        s[iy] = t;
-        ++ix;
-        --iy;
-    }
-}
-
-/* math settings check */
-word32 CheckRunTimeSettings(void)
-{
-    return CTC_SETTINGS;
-}
-
-
-/* handle up to 6 inits */
-int mp_init_multi(mp_int* a, mp_int* b, mp_int* c, mp_int* d, mp_int* e,
-                  mp_int* f)
-{
-    int res = MP_OKAY;
-
-    if (a) XMEMSET(a, 0, sizeof(mp_int));
-    if (b) XMEMSET(b, 0, sizeof(mp_int));
-    if (c) XMEMSET(c, 0, sizeof(mp_int));
-    if (d) XMEMSET(d, 0, sizeof(mp_int));
-    if (e) XMEMSET(e, 0, sizeof(mp_int));
-    if (f) XMEMSET(f, 0, sizeof(mp_int));
-
-    if (a && ((res = mp_init(a)) != MP_OKAY))
-        return res;
-
-    if (b && ((res = mp_init(b)) != MP_OKAY)) {
-        mp_clear(a);
-        return res;
-    }
-
-    if (c && ((res = mp_init(c)) != MP_OKAY)) {
-        mp_clear(a); mp_clear(b);
-        return res;
-    }
-
-    if (d && ((res = mp_init(d)) != MP_OKAY)) {
-        mp_clear(a); mp_clear(b); mp_clear(c);
-        return res;
-    }
-
-    if (e && ((res = mp_init(e)) != MP_OKAY)) {
-        mp_clear(a); mp_clear(b); mp_clear(c); mp_clear(d);
-        return res;
-    }
-
-    if (f && ((res = mp_init(f)) != MP_OKAY)) {
-        mp_clear(a); mp_clear(b); mp_clear(c); mp_clear(d); mp_clear(e);
-        return res;
-    }
-
-    return res;
-}
-
-
-/* init a new mp_int */
-int mp_init (mp_int * a)
-{
-  /* Safeguard against passing in a null pointer */
-  if (a == NULL)
-    return MP_VAL;
-
-  /* defer allocation until mp_grow */
-  a->dp = NULL;
-
-  /* set the used to zero, allocated digits to the default precision
-   * and sign to positive */
-  a->used  = 0;
-  a->alloc = 0;
-  a->sign  = MP_ZPOS;
-#ifdef HAVE_WOLF_BIGINT
-  wc_bigint_init(&a->raw);
-#endif
-
-  return MP_OKAY;
-}
-
-
-/* clear one (frees)  */
-void mp_clear (mp_int * a)
-{
-  int i;
-
-  if (a == NULL)
-      return;
-
-  /* only do anything if a hasn't been freed previously */
-  if (a->dp != NULL) {
-    /* first zero the digits */
-    for (i = 0; i < a->used; i++) {
-        a->dp[i] = 0;
-    }
-
-    /* free ram */
-    mp_free(a);
-
-    /* reset members to make debugging easier */
-    a->alloc = a->used = 0;
-    a->sign  = MP_ZPOS;
-  }
-}
-
-void mp_free (mp_int * a)
-{
-  /* only do anything if a hasn't been freed previously */
-  if (a->dp != NULL) {
-    /* free ram */
-    XFREE(a->dp, 0, DYNAMIC_TYPE_BIGINT);
-    a->dp    = NULL;
-  }
-
-#ifdef HAVE_WOLF_BIGINT
-  wc_bigint_free(&a->raw);
-#endif
-}
-
-void mp_forcezero(mp_int * a)
-{
-    if (a == NULL)
-        return;
-
-    /* only do anything if a hasn't been freed previously */
-    if (a->dp != NULL) {
-      /* force zero the used digits */
-      ForceZero(a->dp, a->used * sizeof(mp_digit));
-#ifdef HAVE_WOLF_BIGINT
-      wc_bigint_zero(&a->raw);
-#endif
-      /* free ram */
-      mp_free(a);
-
-      /* reset members to make debugging easier */
-      a->alloc = a->used = 0;
-      a->sign  = MP_ZPOS;
-    }
-
-    a->sign = MP_ZPOS;
-    a->used = 0;
-}
-
-
-/* get the size for an unsigned equivalent */
-int mp_unsigned_bin_size (mp_int * a)
-{
-  int     size = mp_count_bits (a);
-  return (size / 8 + ((size & 7) != 0 ? 1 : 0));
-}
-
-
-/* returns the number of bits in an int */
-int mp_count_bits (mp_int * a)
-{
-  int     r;
-  mp_digit q;
-
-  /* shortcut */
-  if (a->used == 0) {
-    return 0;
-  }
-
-  /* get number of digits and add that */
-  r = (a->used - 1) * DIGIT_BIT;
-
-  /* take the last digit and count the bits in it */
-  q = a->dp[a->used - 1];
-  while (q > ((mp_digit) 0)) {
-    ++r;
-    q >>= ((mp_digit) 1);
-  }
-  return r;
-}
-
-
-int mp_leading_bit (mp_int * a)
-{
-    int bit = 0;
-    mp_int t;
-
-    if (mp_init_copy(&t, a) != MP_OKAY)
-        return 0;
-
-    while (mp_iszero(&t) == MP_NO) {
-#ifndef MP_8BIT
-        bit = (t.dp[0] & 0x80) != 0;
-#else
-        bit = (t.dp[0] | ((t.dp[1] & 0x01) << 7)) & 0x80 != 0;
-#endif
-        if (mp_div_2d (&t, 8, &t, NULL) != MP_OKAY)
-            break;
-    }
-    mp_clear(&t);
-    return bit;
-}
-
-int mp_to_unsigned_bin_at_pos(int x, mp_int *t, unsigned char *b)
-{
-  int res = 0;
-  while (mp_iszero(t) == MP_NO) {
-#ifndef MP_8BIT
-      b[x++] = (unsigned char) (t->dp[0] & 255);
-#else
-      b[x++] = (unsigned char) (t->dp[0] | ((t->dp[1] & 0x01) << 7));
-#endif
-    if ((res = mp_div_2d (t, 8, t, NULL)) != MP_OKAY) {
-      return res;
-    }
-    res = x;
-  }
-  return res;
-}
-
-/* store in unsigned [big endian] format */
-int mp_to_unsigned_bin (mp_int * a, unsigned char *b)
-{
-  int     x, res;
-  mp_int  t;
-
-  if ((res = mp_init_copy (&t, a)) != MP_OKAY) {
-    return res;
-  }
-
-  x = mp_to_unsigned_bin_at_pos(0, &t, b);
-  if (x < 0) {
-    mp_clear(&t);
-    return x;
-  }
-
-  bn_reverse (b, x);
-  mp_clear (&t);
-  return res;
-}
-
-
-/* creates "a" then copies b into it */
-int mp_init_copy (mp_int * a, mp_int * b)
-{
-  int     res;
-
-  if ((res = mp_init_size (a, b->used)) != MP_OKAY) {
-    return res;
-  }
-
-  if((res = mp_copy (b, a)) != MP_OKAY) {
-    mp_clear(a);
-  }
-
-  return res;
-}
-
-
-/* copy, b = a */
-int mp_copy (mp_int * a, mp_int * b)
-{
-  int     res, n;
-
-  /* Safeguard against passing in a null pointer */
-  if (a == NULL || b == NULL)
-    return MP_VAL;
-
-  /* if dst == src do nothing */
-  if (a == b) {
-    return MP_OKAY;
-  }
-
-  /* grow dest */
-  if (b->alloc < a->used || b->alloc == 0) {
-     if ((res = mp_grow (b, a->used)) != MP_OKAY) {
-        return res;
-     }
-  }
-
-  /* zero b and copy the parameters over */
-  {
-    mp_digit *tmpa, *tmpb;
-
-    /* pointer aliases */
-
-    /* source */
-    tmpa = a->dp;
-
-    /* destination */
-    tmpb = b->dp;
-
-    /* copy all the digits */
-    for (n = 0; n < a->used; n++) {
-      *tmpb++ = *tmpa++;
-    }
-
-    /* clear high digits */
-    for (; n < b->used && b->dp; n++) {
-      *tmpb++ = 0;
-    }
-  }
-
-  /* copy used count and sign */
-  b->used = a->used;
-  b->sign = a->sign;
-  return MP_OKAY;
-}
-
-
-/* grow as required */
-int mp_grow (mp_int * a, int size)
-{
-  int     i;
-  mp_digit *tmp;
-
-  /* if the alloc size is smaller alloc more ram */
-  if (a->alloc < size || size == 0) {
-    /* ensure there are always at least MP_PREC digits extra on top */
-    size += (MP_PREC * 2) - (size % MP_PREC);
-
-    /* reallocate the array a->dp
-     *
-     * We store the return in a temporary variable
-     * in case the operation failed we don't want
-     * to overwrite the dp member of a.
-     */
-    tmp = OPT_CAST(mp_digit) XREALLOC (a->dp, sizeof (mp_digit) * size, NULL,
-                                                           DYNAMIC_TYPE_BIGINT);
-    if (tmp == NULL) {
-      /* reallocation failed but "a" is still valid [can be freed] */
-      return MP_MEM;
-    }
-
-    /* reallocation succeeded so set a->dp */
-    a->dp = tmp;
-
-    /* zero excess digits */
-    i        = a->alloc;
-    a->alloc = size;
-    for (; i < a->alloc; i++) {
-      a->dp[i] = 0;
-    }
-  }
-  return MP_OKAY;
-}
-
-
-/* shift right by a certain bit count (store quotient in c, optional
-   remainder in d) */
-int mp_div_2d (mp_int * a, int b, mp_int * c, mp_int * d)
-{
-  int     D, res;
-  mp_int  t;
-
-
-  /* if the shift count is <= 0 then we do no work */
-  if (b <= 0) {
-    res = mp_copy (a, c);
-    if (d != NULL) {
-      mp_zero (d);
-    }
-    return res;
-  }
-
-  if ((res = mp_init (&t)) != MP_OKAY) {
-    return res;
-  }
-
-  /* get the remainder */
-  if (d != NULL) {
-    if ((res = mp_mod_2d (a, b, &t)) != MP_OKAY) {
-      mp_clear (&t);
-      return res;
-    }
-  }
-
-  /* copy */
-  if ((res = mp_copy (a, c)) != MP_OKAY) {
-    mp_clear (&t);
-    return res;
-  }
-
-  /* shift by as many digits in the bit count */
-  if (b >= (int)DIGIT_BIT) {
-    mp_rshd (c, b / DIGIT_BIT);
-  }
-
-  /* shift any bit count < DIGIT_BIT */
-  D = (b % DIGIT_BIT);
-  if (D != 0) {
-    mp_rshb(c, D);
-  }
-  mp_clamp (c);
-  if (d != NULL) {
-    mp_exch (&t, d);
-  }
-  mp_clear (&t);
-  return MP_OKAY;
-}
-
-
-/* set to zero */
-void mp_zero (mp_int * a)
-{
-  int       n;
-  mp_digit *tmp;
-
-  if (a == NULL)
-      return;
-
-  a->sign = MP_ZPOS;
-  a->used = 0;
-
-  tmp = a->dp;
-  for (n = 0; n < a->alloc; n++) {
-     *tmp++ = 0;
-  }
-}
-
-
-/* trim unused digits
- *
- * This is used to ensure that leading zero digits are
- * trimmed and the leading "used" digit will be non-zero
- * Typically very fast.  Also fixes the sign if there
- * are no more leading digits
- */
-void mp_clamp (mp_int * a)
-{
-  /* decrease used while the most significant digit is
-   * zero.
-   */
-  while (a->used > 0 && a->dp[a->used - 1] == 0) {
-    --(a->used);
-  }
-
-  /* reset the sign flag if used == 0 */
-  if (a->used == 0) {
-    a->sign = MP_ZPOS;
-  }
-}
-
-
-/* swap the elements of two integers, for cases where you can't simply swap the
- * mp_int pointers around
- */
-void mp_exch (mp_int * a, mp_int * b)
-{
-  mp_int  t;
-
-  t  = *a;
-  *a = *b;
-  *b = t;
-}
-
-
-/* shift right a certain number of bits */
-void mp_rshb (mp_int *c, int x)
-{
-    mp_digit *tmpc, mask, shift;
-    mp_digit r, rr;
-    mp_digit D = x;
-
-    /* mask */
-    mask = (((mp_digit)1) << D) - 1;
-
-    /* shift for lsb */
-    shift = DIGIT_BIT - D;
-
-    /* alias */
-    tmpc = c->dp + (c->used - 1);
-
-    /* carry */
-    r = 0;
-    for (x = c->used - 1; x >= 0; x--) {
-      /* get the lower  bits of this word in a temp */
-      rr = *tmpc & mask;
-
-      /* shift the current word and mix in the carry bits from previous word */
-      *tmpc = (*tmpc >> D) | (r << shift);
-      --tmpc;
-
-      /* set the carry to the carry bits of the current word found above */
-      r = rr;
-    }
-    mp_clamp(c);
-}
-
-
-/* shift right a certain amount of digits */
-void mp_rshd (mp_int * a, int b)
-{
-  int     x;
-
-  /* if b <= 0 then ignore it */
-  if (b <= 0) {
-    return;
-  }
-
-  /* if b > used then simply zero it and return */
-  if (a->used <= b) {
-    mp_zero (a);
-    return;
-  }
-
-  {
-    mp_digit *bottom, *top;
-
-    /* shift the digits down */
-
-    /* bottom */
-    bottom = a->dp;
-
-    /* top [offset into digits] */
-    top = a->dp + b;
-
-    /* this is implemented as a sliding window where
-     * the window is b-digits long and digits from
-     * the top of the window are copied to the bottom
-     *
-     * e.g.
-
-     b-2 | b-1 | b0 | b1 | b2 | ... | bb |   ---->
-                 /\                   |      ---->
-                  \-------------------/      ---->
-     */
-    for (x = 0; x < (a->used - b); x++) {
-      *bottom++ = *top++;
-    }
-
-    /* zero the top digits */
-    for (; x < a->used; x++) {
-      *bottom++ = 0;
-    }
-  }
-
-  /* remove excess digits */
-  a->used -= b;
-}
-
-
-/* calc a value mod 2**b */
-int mp_mod_2d (mp_int * a, int b, mp_int * c)
-{
-  int     x, res;
-
-  /* if b is <= 0 then zero the int */
-  if (b <= 0) {
-    mp_zero (c);
-    return MP_OKAY;
-  }
-
-  /* if the modulus is larger than the value than return */
-  if (b >= (int) (a->used * DIGIT_BIT)) {
-    res = mp_copy (a, c);
-    return res;
-  }
-
-  /* copy */
-  if ((res = mp_copy (a, c)) != MP_OKAY) {
-    return res;
-  }
-
-  /* zero digits above the last digit of the modulus */
-  for (x = (b / DIGIT_BIT) + ((b % DIGIT_BIT) == 0 ? 0 : 1); x < c->used; x++) {
-    c->dp[x] = 0;
-  }
-  /* clear the digit that is not completely outside/inside the modulus */
-  c->dp[b / DIGIT_BIT] &= (mp_digit) ((((mp_digit) 1) <<
-              (((mp_digit) b) % DIGIT_BIT)) - ((mp_digit) 1));
-  mp_clamp (c);
-  return MP_OKAY;
-}
-
-
-/* reads a unsigned char array, assumes the msb is stored first [big endian] */
-int mp_read_unsigned_bin (mp_int * a, const unsigned char *b, int c)
-{
-  int     res;
-
-  /* make sure there are at least two digits */
-  if (a->alloc < 2) {
-     if ((res = mp_grow(a, 2)) != MP_OKAY) {
-        return res;
-     }
-  }
-
-  /* zero the int */
-  mp_zero (a);
-
-  /* read the bytes in */
-  while (c-- > 0) {
-    if ((res = mp_mul_2d (a, 8, a)) != MP_OKAY) {
-      return res;
-    }
-
-#ifndef MP_8BIT
-      a->dp[0] |= *b++;
-      a->used += 1;
-#else
-      a->dp[0] = (*b & MP_MASK);
-      a->dp[1] |= ((*b++ >> 7U) & 1);
-      a->used += 2;
-#endif
-  }
-  mp_clamp (a);
-  return MP_OKAY;
-}
-
-
-/* shift left by a certain bit count */
-int mp_mul_2d (mp_int * a, int b, mp_int * c)
-{
-  mp_digit d;
-  int      res;
-
-  /* copy */
-  if (a != c) {
-     if ((res = mp_copy (a, c)) != MP_OKAY) {
-       return res;
-     }
-  }
-
-  if (c->alloc < (int)(c->used + b/DIGIT_BIT + 1)) {
-     if ((res = mp_grow (c, c->used + b / DIGIT_BIT + 1)) != MP_OKAY) {
-       return res;
-     }
-  }
-
-  /* shift by as many digits in the bit count */
-  if (b >= (int)DIGIT_BIT) {
-    if ((res = mp_lshd (c, b / DIGIT_BIT)) != MP_OKAY) {
-      return res;
-    }
-  }
-
-  /* shift any bit count < DIGIT_BIT */
-  d = (mp_digit) (b % DIGIT_BIT);
-  if (d != 0) {
-    mp_digit *tmpc, shift, mask, r, rr;
-    int x;
-
-    /* bitmask for carries */
-    mask = (((mp_digit)1) << d) - 1;
-
-    /* shift for msbs */
-    shift = DIGIT_BIT - d;
-
-    /* alias */
-    tmpc = c->dp;
-
-    /* carry */
-    r    = 0;
-    for (x = 0; x < c->used; x++) {
-      /* get the higher bits of the current word */
-      rr = (*tmpc >> shift) & mask;
-
-      /* shift the current word and OR in the carry */
-      *tmpc = (mp_digit)(((*tmpc << d) | r) & MP_MASK);
-      ++tmpc;
-
-      /* set the carry to the carry bits of the current word */
-      r = rr;
-    }
-
-    /* set final carry */
-    if (r != 0) {
-       c->dp[(c->used)++] = r;
-    }
-  }
-  mp_clamp (c);
-  return MP_OKAY;
-}
-
-
-/* shift left a certain amount of digits */
-int mp_lshd (mp_int * a, int b)
-{
-  int     x, res;
-
-  /* if its less than zero return */
-  if (b <= 0) {
-    return MP_OKAY;
-  }
-
-  /* grow to fit the new digits */
-  if (a->alloc < a->used + b) {
-     if ((res = mp_grow (a, a->used + b)) != MP_OKAY) {
-       return res;
-     }
-  }
-
-  {
-    mp_digit *top, *bottom;
-
-    /* increment the used by the shift amount then copy upwards */
-    a->used += b;
-
-    /* top */
-    top = a->dp + a->used - 1;
-
-    /* base */
-    bottom = a->dp + a->used - 1 - b;
-
-    /* much like mp_rshd this is implemented using a sliding window
-     * except the window goes the other way around.  Copying from
-     * the bottom to the top.  see bn_mp_rshd.c for more info.
-     */
-    for (x = a->used - 1; x >= b; x--) {
-      *top-- = *bottom--;
-    }
-
-    /* zero the lower digits */
-    top = a->dp;
-    for (x = 0; x < b; x++) {
-      *top++ = 0;
-    }
-  }
-  return MP_OKAY;
-}
-
-
-/* this is a shell function that calls either the normal or Montgomery
- * exptmod functions.  Originally the call to the montgomery code was
- * embedded in the normal function but that wasted a lot of stack space
- * for nothing (since 99% of the time the Montgomery code would be called)
- */
-#if defined(FREESCALE_LTC_TFM)
-int wolfcrypt_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
-#else
-int mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
-#endif
-{
-  int dr;
-
-  /* modulus P must be positive */
-  if (P->sign == MP_NEG) {
-     return MP_VAL;
-  }
-
-  /* if exponent X is negative we have to recurse */
-  if (X->sign == MP_NEG) {
-#ifdef BN_MP_INVMOD_C
-     mp_int tmpG, tmpX;
-     int err;
-
-     /* first compute 1/G mod P */
-     if ((err = mp_init(&tmpG)) != MP_OKAY) {
-        return err;
-     }
-     if ((err = mp_invmod(G, P, &tmpG)) != MP_OKAY) {
-        mp_clear(&tmpG);
-        return err;
-     }
-
-     /* now get |X| */
-     if ((err = mp_init(&tmpX)) != MP_OKAY) {
-        mp_clear(&tmpG);
-        return err;
-     }
-     if ((err = mp_abs(X, &tmpX)) != MP_OKAY) {
-        mp_clear(&tmpG);
-        mp_clear(&tmpX);
-        return err;
-     }
-
-     /* and now compute (1/G)**|X| instead of G**X [X < 0] */
-     err = mp_exptmod(&tmpG, &tmpX, P, Y);
-     mp_clear(&tmpG);
-     mp_clear(&tmpX);
-     return err;
-#else
-     /* no invmod */
-     return MP_VAL;
-#endif
-  }
-
-/* modified diminished radix reduction */
-#if defined(BN_MP_REDUCE_IS_2K_L_C) && defined(BN_MP_REDUCE_2K_L_C) && \
-  defined(BN_S_MP_EXPTMOD_C)
-  if (mp_reduce_is_2k_l(P) == MP_YES) {
-     return s_mp_exptmod(G, X, P, Y, 1);
-  }
-#endif
-
-#ifdef BN_MP_DR_IS_MODULUS_C
-  /* is it a DR modulus? */
-  dr = mp_dr_is_modulus(P);
-#else
-  /* default to no */
-  dr = 0;
-#endif
-
-#ifdef BN_MP_REDUCE_IS_2K_C
-  /* if not, is it a unrestricted DR modulus? */
-  if (dr == 0) {
-     dr = mp_reduce_is_2k(P) << 1;
-  }
-#endif
-
-  /* if the modulus is odd or dr != 0 use the montgomery method */
-#ifdef BN_MP_EXPTMOD_FAST_C
-  if (mp_isodd (P) == MP_YES || dr !=  0) {
-    return mp_exptmod_fast (G, X, P, Y, dr);
-  } else {
-#endif
-#ifdef BN_S_MP_EXPTMOD_C
-    /* otherwise use the generic Barrett reduction technique */
-    return s_mp_exptmod (G, X, P, Y, 0);
-#else
-    /* no exptmod for evens */
-    return MP_VAL;
-#endif
-#ifdef BN_MP_EXPTMOD_FAST_C
-  }
-#endif
-}
-
-
-/* b = |a|
- *
- * Simple function copies the input and fixes the sign to positive
- */
-int mp_abs (mp_int * a, mp_int * b)
-{
-  int     res;
-
-  /* copy a to b */
-  if (a != b) {
-     if ((res = mp_copy (a, b)) != MP_OKAY) {
-       return res;
-     }
-  }
-
-  /* force the sign of b to positive */
-  b->sign = MP_ZPOS;
-
-  return MP_OKAY;
-}
-
-
-/* hac 14.61, pp608 */
-#if defined(FREESCALE_LTC_TFM)
-int wolfcrypt_mp_invmod(mp_int * a, mp_int * b, mp_int * c)
-#else
-int mp_invmod (mp_int * a, mp_int * b, mp_int * c)
-#endif
-{
-  /* b cannot be negative */
-  if (b->sign == MP_NEG || mp_iszero(b) == MP_YES) {
-    return MP_VAL;
-  }
-
-#ifdef BN_FAST_MP_INVMOD_C
-  /* if the modulus is odd we can use a faster routine instead */
-  if ((mp_isodd(b) == MP_YES) && (mp_cmp_d(b, 1) != MP_EQ)) {
-    return fast_mp_invmod (a, b, c);
-  }
-#endif
-
-#ifdef BN_MP_INVMOD_SLOW_C
-  return mp_invmod_slow(a, b, c);
-#else
-  return MP_VAL;
-#endif
-}
-
-
-/* computes the modular inverse via binary extended euclidean algorithm,
- * that is c = 1/a mod b
- *
- * Based on slow invmod except this is optimized for the case where b is
- * odd as per HAC Note 14.64 on pp. 610
- */
-int fast_mp_invmod (mp_int * a, mp_int * b, mp_int * c)
-{
-  mp_int  x, y, u, v, B, D;
-  int     res, neg, loop_check = 0;
-
-  /* 2. [modified] b must be odd   */
-  if (mp_iseven (b) == MP_YES) {
-    return MP_VAL;
-  }
-
-  /* init all our temps */
-  if ((res = mp_init_multi(&x, &y, &u, &v, &B, &D)) != MP_OKAY) {
-     return res;
-  }
-
-  /* x == modulus, y == value to invert */
-  if ((res = mp_copy (b, &x)) != MP_OKAY) {
-    goto LBL_ERR;
-  }
-
-  /* we need y = |a| */
-  if ((res = mp_mod (a, b, &y)) != MP_OKAY) {
-    goto LBL_ERR;
-  }
-
-  /* 3. u=x, v=y, A=1, B=0, C=0,D=1 */
-  if ((res = mp_copy (&x, &u)) != MP_OKAY) {
-    goto LBL_ERR;
-  }
-  if ((res = mp_copy (&y, &v)) != MP_OKAY) {
-    goto LBL_ERR;
-  }
-  if ((res = mp_set (&D, 1)) != MP_OKAY) {
-    goto LBL_ERR;
-  }
-
-top:
-  /* 4.  while u is even do */
-  while (mp_iseven (&u) == MP_YES) {
-    /* 4.1 u = u/2 */
-    if ((res = mp_div_2 (&u, &u)) != MP_OKAY) {
-      goto LBL_ERR;
-    }
-    /* 4.2 if B is odd then */
-    if (mp_isodd (&B) == MP_YES) {
-      if ((res = mp_sub (&B, &x, &B)) != MP_OKAY) {
-        goto LBL_ERR;
-      }
-    }
-    /* B = B/2 */
-    if ((res = mp_div_2 (&B, &B)) != MP_OKAY) {
-      goto LBL_ERR;
-    }
-  }
-
-  /* 5.  while v is even do */
-  while (mp_iseven (&v) == MP_YES) {
-    /* 5.1 v = v/2 */
-    if ((res = mp_div_2 (&v, &v)) != MP_OKAY) {
-      goto LBL_ERR;
-    }
-    /* 5.2 if D is odd then */
-    if (mp_isodd (&D) == MP_YES) {
-      /* D = (D-x)/2 */
-      if ((res = mp_sub (&D, &x, &D)) != MP_OKAY) {
-        goto LBL_ERR;
-      }
-    }
-    /* D = D/2 */
-    if ((res = mp_div_2 (&D, &D)) != MP_OKAY) {
-      goto LBL_ERR;
-    }
-  }
-
-  /* 6.  if u >= v then */
-  if (mp_cmp (&u, &v) != MP_LT) {
-    /* u = u - v, B = B - D */
-    if ((res = mp_sub (&u, &v, &u)) != MP_OKAY) {
-      goto LBL_ERR;
-    }
-
-    if ((res = mp_sub (&B, &D, &B)) != MP_OKAY) {
-      goto LBL_ERR;
-    }
-  } else {
-    /* v - v - u, D = D - B */
-    if ((res = mp_sub (&v, &u, &v)) != MP_OKAY) {
-      goto LBL_ERR;
-    }
-
-    if ((res = mp_sub (&D, &B, &D)) != MP_OKAY) {
-      goto LBL_ERR;
-    }
-  }
-
-  /* if not zero goto step 4 */
-  if (mp_iszero (&u) == MP_NO) {
-    if (++loop_check > MAX_INVMOD_SZ) {
-        res = MP_VAL;
-        goto LBL_ERR;
-    }
-    goto top;
-  }
-
-  /* now a = C, b = D, gcd == g*v */
-
-  /* if v != 1 then there is no inverse */
-  if (mp_cmp_d (&v, 1) != MP_EQ) {
-    res = MP_VAL;
-    goto LBL_ERR;
-  }
-
-  /* b is now the inverse */
-  neg = a->sign;
-  while (D.sign == MP_NEG) {
-    if ((res = mp_add (&D, b, &D)) != MP_OKAY) {
-      goto LBL_ERR;
-    }
-  }
-  /* too big */
-  while (mp_cmp_mag(&D, b) != MP_LT) {
-      if ((res = mp_sub(&D, b, &D)) != MP_OKAY) {
-         goto LBL_ERR;
-      }
-  }
-  mp_exch (&D, c);
-  c->sign = neg;
-  res = MP_OKAY;
-
-LBL_ERR:mp_clear(&x);
-        mp_clear(&y);
-        mp_clear(&u);
-        mp_clear(&v);
-        mp_clear(&B);
-        mp_clear(&D);
-  return res;
-}
-
-
-/* hac 14.61, pp608 */
-int mp_invmod_slow (mp_int * a, mp_int * b, mp_int * c)
-{
-  mp_int  x, y, u, v, A, B, C, D;
-  int     res;
-
-  /* b cannot be negative */
-  if (b->sign == MP_NEG || mp_iszero(b) == MP_YES) {
-    return MP_VAL;
-  }
-
-  /* init temps */
-  if ((res = mp_init_multi(&x, &y, &u, &v,
-                           &A, &B)) != MP_OKAY) {
-     return res;
-  }
-
-  /* init rest of tmps temps */
-  if ((res = mp_init_multi(&C, &D, 0, 0, 0, 0)) != MP_OKAY) {
-     mp_clear(&x);
-     mp_clear(&y);
-     mp_clear(&u);
-     mp_clear(&v);
-     mp_clear(&A);
-     mp_clear(&B);
-     return res;
-  }
-
-  /* x = a, y = b */
-  if ((res = mp_mod(a, b, &x)) != MP_OKAY) {
-      goto LBL_ERR;
-  }
-  if ((res = mp_copy (b, &y)) != MP_OKAY) {
-    goto LBL_ERR;
-  }
-
-  /* 2. [modified] if x,y are both even then return an error! */
-  if (mp_iseven (&x) == MP_YES && mp_iseven (&y) == MP_YES) {
-    res = MP_VAL;
-    goto LBL_ERR;
-  }
-
-  /* 3. u=x, v=y, A=1, B=0, C=0,D=1 */
-  if ((res = mp_copy (&x, &u)) != MP_OKAY) {
-    goto LBL_ERR;
-  }
-  if ((res = mp_copy (&y, &v)) != MP_OKAY) {
-    goto LBL_ERR;
-  }
-  if ((res = mp_set (&A, 1)) != MP_OKAY) {
-    goto LBL_ERR;
-  }
-  if ((res = mp_set (&D, 1)) != MP_OKAY) {
-    goto LBL_ERR;
-  }
-
-top:
-  /* 4.  while u is even do */
-  while (mp_iseven (&u) == MP_YES) {
-    /* 4.1 u = u/2 */
-    if ((res = mp_div_2 (&u, &u)) != MP_OKAY) {
-      goto LBL_ERR;
-    }
-    /* 4.2 if A or B is odd then */
-    if (mp_isodd (&A) == MP_YES || mp_isodd (&B) == MP_YES) {
-      /* A = (A+y)/2, B = (B-x)/2 */
-      if ((res = mp_add (&A, &y, &A)) != MP_OKAY) {
-         goto LBL_ERR;
-      }
-      if ((res = mp_sub (&B, &x, &B)) != MP_OKAY) {
-         goto LBL_ERR;
-      }
-    }
-    /* A = A/2, B = B/2 */
-    if ((res = mp_div_2 (&A, &A)) != MP_OKAY) {
-      goto LBL_ERR;
-    }
-    if ((res = mp_div_2 (&B, &B)) != MP_OKAY) {
-      goto LBL_ERR;
-    }
-  }
-
-  /* 5.  while v is even do */
-  while (mp_iseven (&v) == MP_YES) {
-    /* 5.1 v = v/2 */
-    if ((res = mp_div_2 (&v, &v)) != MP_OKAY) {
-      goto LBL_ERR;
-    }
-    /* 5.2 if C or D is odd then */
-    if (mp_isodd (&C) == MP_YES || mp_isodd (&D) == MP_YES) {
-      /* C = (C+y)/2, D = (D-x)/2 */
-      if ((res = mp_add (&C, &y, &C)) != MP_OKAY) {
-         goto LBL_ERR;
-      }
-      if ((res = mp_sub (&D, &x, &D)) != MP_OKAY) {
-         goto LBL_ERR;
-      }
-    }
-    /* C = C/2, D = D/2 */
-    if ((res = mp_div_2 (&C, &C)) != MP_OKAY) {
-      goto LBL_ERR;
-    }
-    if ((res = mp_div_2 (&D, &D)) != MP_OKAY) {
-      goto LBL_ERR;
-    }
-  }
-
-  /* 6.  if u >= v then */
-  if (mp_cmp (&u, &v) != MP_LT) {
-    /* u = u - v, A = A - C, B = B - D */
-    if ((res = mp_sub (&u, &v, &u)) != MP_OKAY) {
-      goto LBL_ERR;
-    }
-
-    if ((res = mp_sub (&A, &C, &A)) != MP_OKAY) {
-      goto LBL_ERR;
-    }
-
-    if ((res = mp_sub (&B, &D, &B)) != MP_OKAY) {
-      goto LBL_ERR;
-    }
-  } else {
-    /* v - v - u, C = C - A, D = D - B */
-    if ((res = mp_sub (&v, &u, &v)) != MP_OKAY) {
-      goto LBL_ERR;
-    }
-
-    if ((res = mp_sub (&C, &A, &C)) != MP_OKAY) {
-      goto LBL_ERR;
-    }
-
-    if ((res = mp_sub (&D, &B, &D)) != MP_OKAY) {
-      goto LBL_ERR;
-    }
-  }
-
-  /* if not zero goto step 4 */
-  if (mp_iszero (&u) == MP_NO)
-    goto top;
-
-  /* now a = C, b = D, gcd == g*v */
-
-  /* if v != 1 then there is no inverse */
-  if (mp_cmp_d (&v, 1) != MP_EQ) {
-    res = MP_VAL;
-    goto LBL_ERR;
-  }
-
-  /* if its too low */
-  while (mp_cmp_d(&C, 0) == MP_LT) {
-      if ((res = mp_add(&C, b, &C)) != MP_OKAY) {
-         goto LBL_ERR;
-      }
-  }
-
-  /* too big */
-  while (mp_cmp_mag(&C, b) != MP_LT) {
-      if ((res = mp_sub(&C, b, &C)) != MP_OKAY) {
-         goto LBL_ERR;
-      }
-  }
-
-  /* C is now the inverse */
-  mp_exch (&C, c);
-  res = MP_OKAY;
-LBL_ERR:mp_clear(&x);
-        mp_clear(&y);
-        mp_clear(&u);
-        mp_clear(&v);
-        mp_clear(&A);
-        mp_clear(&B);
-        mp_clear(&C);
-        mp_clear(&D);
-  return res;
-}
-
-
-/* compare magnitude of two ints (unsigned) */
-int mp_cmp_mag (mp_int * a, mp_int * b)
-{
-  int     n;
-  mp_digit *tmpa, *tmpb;
-
-  /* compare based on # of non-zero digits */
-  if (a->used > b->used) {
-    return MP_GT;
-  }
-
-  if (a->used < b->used) {
-    return MP_LT;
-  }
-
-  /* alias for a */
-  tmpa = a->dp + (a->used - 1);
-
-  /* alias for b */
-  tmpb = b->dp + (a->used - 1);
-
-  /* compare based on digits  */
-  for (n = 0; n < a->used; ++n, --tmpa, --tmpb) {
-    if (*tmpa > *tmpb) {
-      return MP_GT;
-    }
-
-    if (*tmpa < *tmpb) {
-      return MP_LT;
-    }
-  }
-  return MP_EQ;
-}
-
-
-/* compare two ints (signed)*/
-int mp_cmp (mp_int * a, mp_int * b)
-{
-  /* compare based on sign */
-  if (a->sign != b->sign) {
-     if (a->sign == MP_NEG) {
-        return MP_LT;
-     } else {
-        return MP_GT;
-     }
-  }
-
-  /* compare digits */
-  if (a->sign == MP_NEG) {
-     /* if negative compare opposite direction */
-     return mp_cmp_mag(b, a);
-  } else {
-     return mp_cmp_mag(a, b);
-  }
-}
-
-
-/* compare a digit */
-int mp_cmp_d(mp_int * a, mp_digit b)
-{
-  /* special case for zero*/
-  if (a->used == 0 && b == 0)
-    return MP_EQ;
-
-  /* compare based on sign */
-  if ((b && a->used == 0) || a->sign == MP_NEG) {
-    return MP_LT;
-  }
-
-  /* compare based on magnitude */
-  if (a->used > 1) {
-    return MP_GT;
-  }
-
-  /* compare the only digit of a to b */
-  if (a->dp[0] > b) {
-    return MP_GT;
-  } else if (a->dp[0] < b) {
-    return MP_LT;
-  } else {
-    return MP_EQ;
-  }
-}
-
-
-/* set to a digit */
-int mp_set (mp_int * a, mp_digit b)
-{
-  int res;
-  mp_zero (a);
-  res = mp_grow (a, 1);
-  if (res == MP_OKAY) {
-    a->dp[0] = (mp_digit)(b & MP_MASK);
-    a->used  = (a->dp[0] != 0) ? 1 : 0;
-  }
-  return res;
-}
-
-/* chek if a bit is set */
-int mp_is_bit_set (mp_int *a, mp_digit b)
-{
-    if ((mp_digit)a->used < b/DIGIT_BIT)
-        return 0;
-
-    return (int)((a->dp[b/DIGIT_BIT] >> b%DIGIT_BIT) & (mp_digit)1);
-}
-
-/* c = a mod b, 0 <= c < b */
-#if defined(FREESCALE_LTC_TFM)
-int wolfcrypt_mp_mod(mp_int * a, mp_int * b, mp_int * c)
-#else
-int mp_mod (mp_int * a, mp_int * b, mp_int * c)
-#endif
-{
-  mp_int  t;
-  int     res;
-
-  if ((res = mp_init_size (&t, b->used)) != MP_OKAY) {
-    return res;
-  }
-
-  if ((res = mp_div (a, b, NULL, &t)) != MP_OKAY) {
-    mp_clear (&t);
-    return res;
-  }
-
-  if ((mp_iszero(&t) != MP_NO) || (t.sign == b->sign)) {
-    res = MP_OKAY;
-    mp_exch (&t, c);
-  } else {
-    res = mp_add (b, &t, c);
-  }
-
-  mp_clear (&t);
-  return res;
-}
-
-
-/* slower bit-bang division... also smaller */
-int mp_div(mp_int * a, mp_int * b, mp_int * c, mp_int * d)
-{
-   mp_int ta, tb, tq, q;
-   int    res, n, n2;
-
-  /* is divisor zero ? */
-  if (mp_iszero (b) == MP_YES) {
-    return MP_VAL;
-  }
-
-  /* if a < b then q=0, r = a */
-  if (mp_cmp_mag (a, b) == MP_LT) {
-    if (d != NULL) {
-      res = mp_copy (a, d);
-    } else {
-      res = MP_OKAY;
-    }
-    if (c != NULL) {
-      mp_zero (c);
-    }
-    return res;
-  }
-
-  /* init our temps */
-  if ((res = mp_init_multi(&ta, &tb, &tq, &q, 0, 0)) != MP_OKAY) {
-     return res;
-  }
-
-  if ((res = mp_set(&tq, 1)) != MP_OKAY) {
-     return res;
-  }
-  n = mp_count_bits(a) - mp_count_bits(b);
-  if (((res = mp_abs(a, &ta)) != MP_OKAY) ||
-      ((res = mp_abs(b, &tb)) != MP_OKAY) ||
-      ((res = mp_mul_2d(&tb, n, &tb)) != MP_OKAY) ||
-      ((res = mp_mul_2d(&tq, n, &tq)) != MP_OKAY)) {
-      goto LBL_ERR;
-  }
-
-  while (n-- >= 0) {
-     if (mp_cmp(&tb, &ta) != MP_GT) {
-        if (((res = mp_sub(&ta, &tb, &ta)) != MP_OKAY) ||
-            ((res = mp_add(&q, &tq, &q)) != MP_OKAY)) {
-           goto LBL_ERR;
-        }
-     }
-     if (((res = mp_div_2d(&tb, 1, &tb, NULL)) != MP_OKAY) ||
-         ((res = mp_div_2d(&tq, 1, &tq, NULL)) != MP_OKAY)) {
-           goto LBL_ERR;
-     }
-  }
-
-  /* now q == quotient and ta == remainder */
-  n  = a->sign;
-  n2 = (a->sign == b->sign ? MP_ZPOS : MP_NEG);
-  if (c != NULL) {
-     mp_exch(c, &q);
-     c->sign  = (mp_iszero(c) == MP_YES) ? MP_ZPOS : n2;
-  }
-  if (d != NULL) {
-     mp_exch(d, &ta);
-     d->sign = (mp_iszero(d) == MP_YES) ? MP_ZPOS : n;
-  }
-LBL_ERR:
-   mp_clear(&ta);
-   mp_clear(&tb);
-   mp_clear(&tq);
-   mp_clear(&q);
-   return res;
-}
-
-
-/* b = a/2 */
-int mp_div_2(mp_int * a, mp_int * b)
-{
-  int     x, res, oldused;
-
-  /* copy */
-  if (b->alloc < a->used) {
-    if ((res = mp_grow (b, a->used)) != MP_OKAY) {
-      return res;
-    }
-  }
-
-  oldused = b->used;
-  b->used = a->used;
-  {
-    mp_digit r, rr, *tmpa, *tmpb;
-
-    /* source alias */
-    tmpa = a->dp + b->used - 1;
-
-    /* dest alias */
-    tmpb = b->dp + b->used - 1;
-
-    /* carry */
-    r = 0;
-    for (x = b->used - 1; x >= 0; x--) {
-      /* get the carry for the next iteration */
-      rr = *tmpa & 1;
-
-      /* shift the current digit, add in carry and store */
-      *tmpb-- = (*tmpa-- >> 1) | (r << (DIGIT_BIT - 1));
-
-      /* forward carry to next iteration */
-      r = rr;
-    }
-
-    /* zero excess digits */
-    tmpb = b->dp + b->used;
-    for (x = b->used; x < oldused; x++) {
-      *tmpb++ = 0;
-    }
-  }
-  b->sign = a->sign;
-  mp_clamp (b);
-  return MP_OKAY;
-}
-
-
-/* high level addition (handles signs) */
-int mp_add (mp_int * a, mp_int * b, mp_int * c)
-{
-  int sa, sb, res;
-
-  /* get sign of both inputs */
-  sa = a->sign;
-  sb = b->sign;
-
-  /* handle two cases, not four */
-  if (sa == sb) {
-    /* both positive or both negative */
-    /* add their magnitudes, copy the sign */
-    c->sign = sa;
-    res = s_mp_add (a, b, c);
-  } else {
-    /* one positive, the other negative */
-    /* subtract the one with the greater magnitude from */
-    /* the one of the lesser magnitude.  The result gets */
-    /* the sign of the one with the greater magnitude. */
-    if (mp_cmp_mag (a, b) == MP_LT) {
-      c->sign = sb;
-      res = s_mp_sub (b, a, c);
-    } else {
-      c->sign = sa;
-      res = s_mp_sub (a, b, c);
-    }
-  }
-  return res;
-}
-
-
-/* low level addition, based on HAC pp.594, Algorithm 14.7 */
-int s_mp_add (mp_int * a, mp_int * b, mp_int * c)
-{
-  mp_int *x;
-  int     olduse, res, min_ab, max_ab;
-
-  /* find sizes, we let |a| <= |b| which means we have to sort
-   * them.  "x" will point to the input with the most digits
-   */
-  if (a->used > b->used) {
-    min_ab = b->used;
-    max_ab = a->used;
-    x = a;
-  } else {
-    min_ab = a->used;
-    max_ab = b->used;
-    x = b;
-  }
-
-  /* init result */
-  if (c->alloc < max_ab + 1) {
-    if ((res = mp_grow (c, max_ab + 1)) != MP_OKAY) {
-      return res;
-    }
-  }
-
-  /* get old used digit count and set new one */
-  olduse = c->used;
-  c->used = max_ab + 1;
-
-  {
-    mp_digit u, *tmpa, *tmpb, *tmpc;
-    int i;
-
-    /* alias for digit pointers */
-
-    /* first input */
-    tmpa = a->dp;
-
-    /* second input */
-    tmpb = b->dp;
-
-    /* destination */
-    tmpc = c->dp;
-
-    /* zero the carry */
-    u = 0;
-    for (i = 0; i < min_ab; i++) {
-      /* Compute the sum at one digit, T[i] = A[i] + B[i] + U */
-      *tmpc = *tmpa++ + *tmpb++ + u;
-
-      /* U = carry bit of T[i] */
-      u = *tmpc >> ((mp_digit)DIGIT_BIT);
-
-      /* take away carry bit from T[i] */
-      *tmpc++ &= MP_MASK;
-    }
-
-    /* now copy higher words if any, that is in A+B
-     * if A or B has more digits add those in
-     */
-    if (min_ab != max_ab) {
-      for (; i < max_ab; i++) {
-        /* T[i] = X[i] + U */
-        *tmpc = x->dp[i] + u;
-
-        /* U = carry bit of T[i] */
-        u = *tmpc >> ((mp_digit)DIGIT_BIT);
-
-        /* take away carry bit from T[i] */
-        *tmpc++ &= MP_MASK;
-      }
-    }
-
-    /* add carry */
-    *tmpc++ = u;
-
-    /* clear digits above olduse */
-    for (i = c->used; i < olduse; i++) {
-      *tmpc++ = 0;
-    }
-  }
-
-  mp_clamp (c);
-  return MP_OKAY;
-}
-
-
-/* low level subtraction (assumes |a| > |b|), HAC pp.595 Algorithm 14.9 */
-int s_mp_sub (mp_int * a, mp_int * b, mp_int * c)
-{
-  int     olduse, res, min_b, max_a;
-
-  /* find sizes */
-  min_b = b->used;
-  max_a = a->used;
-
-  /* init result */
-  if (c->alloc < max_a) {
-    if ((res = mp_grow (c, max_a)) != MP_OKAY) {
-      return res;
-    }
-  }
-
-  /* sanity check on destination */
-  if (c->dp == NULL)
-     return MP_VAL;
-
-  olduse = c->used;
-  c->used = max_a;
-
-  {
-    mp_digit u, *tmpa, *tmpb, *tmpc;
-    int i;
-
-    /* alias for digit pointers */
-    tmpa = a->dp;
-    tmpb = b->dp;
-    tmpc = c->dp;
-
-    /* set carry to zero */
-    u = 0;
-    for (i = 0; i < min_b; i++) {
-      /* T[i] = A[i] - B[i] - U */
-      *tmpc = *tmpa++ - *tmpb++ - u;
-
-      /* U = carry bit of T[i]
-       * Note this saves performing an AND operation since
-       * if a carry does occur it will propagate all the way to the
-       * MSB.  As a result a single shift is enough to get the carry
-       */
-      u = *tmpc >> ((mp_digit)(CHAR_BIT * sizeof (mp_digit) - 1));
-
-      /* Clear carry from T[i] */
-      *tmpc++ &= MP_MASK;
-    }
-
-    /* now copy higher words if any, e.g. if A has more digits than B  */
-    for (; i < max_a; i++) {
-      /* T[i] = A[i] - U */
-      *tmpc = *tmpa++ - u;
-
-      /* U = carry bit of T[i] */
-      u = *tmpc >> ((mp_digit)(CHAR_BIT * sizeof (mp_digit) - 1));
-
-      /* Clear carry from T[i] */
-      *tmpc++ &= MP_MASK;
-    }
-
-    /* clear digits above used (since we may not have grown result above) */
-    for (i = c->used; i < olduse; i++) {
-      *tmpc++ = 0;
-    }
-  }
-
-  mp_clamp (c);
-  return MP_OKAY;
-}
-
-
-/* high level subtraction (handles signs) */
-int mp_sub (mp_int * a, mp_int * b, mp_int * c)
-{
-  int     sa, sb, res;
-
-  sa = a->sign;
-  sb = b->sign;
-
-  if (sa != sb) {
-    /* subtract a negative from a positive, OR */
-    /* subtract a positive from a negative. */
-    /* In either case, ADD their magnitudes, */
-    /* and use the sign of the first number. */
-    c->sign = sa;
-    res = s_mp_add (a, b, c);
-  } else {
-    /* subtract a positive from a positive, OR */
-    /* subtract a negative from a negative. */
-    /* First, take the difference between their */
-    /* magnitudes, then... */
-    if (mp_cmp_mag (a, b) != MP_LT) {
-      /* Copy the sign from the first */
-      c->sign = sa;
-      /* The first has a larger or equal magnitude */
-      res = s_mp_sub (a, b, c);
-    } else {
-      /* The result has the *opposite* sign from */
-      /* the first number. */
-      c->sign = (sa == MP_ZPOS) ? MP_NEG : MP_ZPOS;
-      /* The second has a larger magnitude */
-      res = s_mp_sub (b, a, c);
-    }
-  }
-  return res;
-}
-
-
-/* determines if reduce_2k_l can be used */
-int mp_reduce_is_2k_l(mp_int *a)
-{
-   int ix, iy;
-
-   if (a->used == 0) {
-      return MP_NO;
-   } else if (a->used == 1) {
-      return MP_YES;
-   } else if (a->used > 1) {
-      /* if more than half of the digits are -1 we're sold */
-      for (iy = ix = 0; ix < a->used; ix++) {
-          if (a->dp[ix] == MP_MASK) {
-              ++iy;
-          }
-      }
-      return (iy >= (a->used/2)) ? MP_YES : MP_NO;
-
-   }
-   return MP_NO;
-}
-
-
-/* determines if mp_reduce_2k can be used */
-int mp_reduce_is_2k(mp_int *a)
-{
-   int ix, iy, iw;
-   mp_digit iz;
-
-   if (a->used == 0) {
-      return MP_NO;
-   } else if (a->used == 1) {
-      return MP_YES;
-   } else if (a->used > 1) {
-      iy = mp_count_bits(a);
-      iz = 1;
-      iw = 1;
-
-      /* Test every bit from the second digit up, must be 1 */
-      for (ix = DIGIT_BIT; ix < iy; ix++) {
-          if ((a->dp[iw] & iz) == 0) {
-             return MP_NO;
-          }
-          iz <<= 1;
-          if (iz > (mp_digit)MP_MASK) {
-             ++iw;
-             iz = 1;
-          }
-      }
-   }
-   return MP_YES;
-}
-
-
-/* determines if a number is a valid DR modulus */
-int mp_dr_is_modulus(mp_int *a)
-{
-   int ix;
-
-   /* must be at least two digits */
-   if (a->used < 2) {
-      return 0;
-   }
-
-   /* must be of the form b**k - a [a <= b] so all
-    * but the first digit must be equal to -1 (mod b).
-    */
-   for (ix = 1; ix < a->used; ix++) {
-       if (a->dp[ix] != MP_MASK) {
-          return 0;
-       }
-   }
-   return 1;
-}
-
-
-/* computes Y == G**X mod P, HAC pp.616, Algorithm 14.85
- *
- * Uses a left-to-right k-ary sliding window to compute the modular
- * exponentiation.
- * The value of k changes based on the size of the exponent.
- *
- * Uses Montgomery or Diminished Radix reduction [whichever appropriate]
- */
-
-#ifdef MP_LOW_MEM
-   #define TAB_SIZE 32
-#else
-   #define TAB_SIZE 256
-#endif
-
-int mp_exptmod_fast (mp_int * G, mp_int * X, mp_int * P, mp_int * Y,
-                     int redmode)
-{
-  mp_int res;
-  mp_digit buf, mp;
-  int     err, bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize;
-#ifdef WOLFSSL_SMALL_STACK
-  mp_int* M = NULL;
-#else
-  mp_int M[TAB_SIZE];
-#endif
-  /* use a pointer to the reduction algorithm.  This allows us to use
-   * one of many reduction algorithms without modding the guts of
-   * the code with if statements everywhere.
-   */
-  int     (*redux)(mp_int*,mp_int*,mp_digit);
-
-#ifdef WOLFSSL_SMALL_STACK
-  M = (mp_int*) XMALLOC(sizeof(mp_int) * TAB_SIZE, NULL,
-                                                       DYNAMIC_TYPE_TMP_BUFFER);
-  if (M == NULL)
-    return MP_MEM;
-#endif
-
-  /* find window size */
-  x = mp_count_bits (X);
-  if (x <= 7) {
-    winsize = 2;
-  } else if (x <= 36) {
-    winsize = 3;
-  } else if (x <= 140) {
-    winsize = 4;
-  } else if (x <= 450) {
-    winsize = 5;
-  } else if (x <= 1303) {
-    winsize = 6;
-  } else if (x <= 3529) {
-    winsize = 7;
-  } else {
-    winsize = 8;
-  }
-
-#ifdef MP_LOW_MEM
-  if (winsize > 5) {
-     winsize = 5;
-  }
-#endif
-
-  /* init M array */
-  /* init first cell */
-  if ((err = mp_init_size(&M[1], P->alloc)) != MP_OKAY) {
-#ifdef WOLFSSL_SMALL_STACK
-     XFREE(M, NULL, DYNAMIC_TYPE_TMP_BUFFER);
-#endif
-
-     return err;
-  }
-
-  /* now init the second half of the array */
-  for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
-    if ((err = mp_init_size(&M[x], P->alloc)) != MP_OKAY) {
-      for (y = 1<<(winsize-1); y < x; y++) {
-        mp_clear (&M[y]);
-      }
-      mp_clear(&M[1]);
-
-#ifdef WOLFSSL_SMALL_STACK
-      XFREE(M, NULL, DYNAMIC_TYPE_TMP_BUFFER);
-#endif
-
-      return err;
-    }
-  }
-
-  /* determine and setup reduction code */
-  if (redmode == 0) {
-#ifdef BN_MP_MONTGOMERY_SETUP_C
-     /* now setup montgomery  */
-     if ((err = mp_montgomery_setup (P, &mp)) != MP_OKAY) {
-        goto LBL_M;
-     }
-#else
-     err = MP_VAL;
-     goto LBL_M;
-#endif
-
-     /* automatically pick the comba one if available (saves quite a few
-        calls/ifs) */
-#ifdef BN_FAST_MP_MONTGOMERY_REDUCE_C
-     if (((P->used * 2 + 1) < MP_WARRAY) &&
-          P->used < (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
-        redux = fast_mp_montgomery_reduce;
-     } else
-#endif
-     {
-#ifdef BN_MP_MONTGOMERY_REDUCE_C
-        /* use slower baseline Montgomery method */
-        redux = mp_montgomery_reduce;
-#else
-        err = MP_VAL;
-        goto LBL_M;
-#endif
-     }
-  } else if (redmode == 1) {
-#if defined(BN_MP_DR_SETUP_C) && defined(BN_MP_DR_REDUCE_C)
-     /* setup DR reduction for moduli of the form B**k - b */
-     mp_dr_setup(P, &mp);
-     redux = mp_dr_reduce;
-#else
-     err = MP_VAL;
-     goto LBL_M;
-#endif
-  } else {
-#if defined(BN_MP_REDUCE_2K_SETUP_C) && defined(BN_MP_REDUCE_2K_C)
-     /* setup DR reduction for moduli of the form 2**k - b */
-     if ((err = mp_reduce_2k_setup(P, &mp)) != MP_OKAY) {
-        goto LBL_M;
-     }
-     redux = mp_reduce_2k;
-#else
-     err = MP_VAL;
-     goto LBL_M;
-#endif
-  }
-
-  /* setup result */
-  if ((err = mp_init_size (&res, P->alloc)) != MP_OKAY) {
-    goto LBL_M;
-  }
-
-  /* create M table
-   *
-
-   *
-   * The first half of the table is not computed though accept for M[0] and M[1]
-   */
-
-  if (redmode == 0) {
-#ifdef BN_MP_MONTGOMERY_CALC_NORMALIZATION_C
-     /* now we need R mod m */
-     if ((err = mp_montgomery_calc_normalization (&res, P)) != MP_OKAY) {
-       goto LBL_RES;
-     }
-
-     /* now set M[1] to G * R mod m */
-     if ((err = mp_mulmod (G, &res, P, &M[1])) != MP_OKAY) {
-       goto LBL_RES;
-     }
-#else
-     err = MP_VAL;
-     goto LBL_RES;
-#endif
-  } else {
-     if ((err = mp_set(&res, 1)) != MP_OKAY) {
-        goto LBL_RES;
-     }
-     if ((err = mp_mod(G, P, &M[1])) != MP_OKAY) {
-        goto LBL_RES;
-     }
-  }
-
-  /* compute the value at M[1<<(winsize-1)] by squaring M[1] (winsize-1) times*/
-  if ((err = mp_copy (&M[1], &M[(mp_digit)(1 << (winsize - 1))])) != MP_OKAY) {
-    goto LBL_RES;
-  }
-
-  for (x = 0; x < (winsize - 1); x++) {
-    if ((err = mp_sqr (&M[(mp_digit)(1 << (winsize - 1))],
-                       &M[(mp_digit)(1 << (winsize - 1))])) != MP_OKAY) {
-      goto LBL_RES;
-    }
-    if ((err = redux (&M[(mp_digit)(1 << (winsize - 1))], P, mp)) != MP_OKAY) {
-      goto LBL_RES;
-    }
-  }
-
-  /* create upper table */
-  for (x = (1 << (winsize - 1)) + 1; x < (1 << winsize); x++) {
-    if ((err = mp_mul (&M[x - 1], &M[1], &M[x])) != MP_OKAY) {
-      goto LBL_RES;
-    }
-    if ((err = redux (&M[x], P, mp)) != MP_OKAY) {
-      goto LBL_RES;
-    }
-  }
-
-  /* set initial mode and bit cnt */
-  mode   = 0;
-  bitcnt = 1;
-  buf    = 0;
-  digidx = X->used - 1;
-  bitcpy = 0;
-  bitbuf = 0;
-
-  for (;;) {
-    /* grab next digit as required */
-    if (--bitcnt == 0) {
-      /* if digidx == -1 we are out of digits so break */
-      if (digidx == -1) {
-        break;
-      }
-      /* read next digit and reset bitcnt */
-      buf    = X->dp[digidx--];
-      bitcnt = (int)DIGIT_BIT;
-    }
-
-    /* grab the next msb from the exponent */
-    y     = (int)(buf >> (DIGIT_BIT - 1)) & 1;
-    buf <<= (mp_digit)1;
-
-    /* if the bit is zero and mode == 0 then we ignore it
-     * These represent the leading zero bits before the first 1 bit
-     * in the exponent.  Technically this opt is not required but it
-     * does lower the # of trivial squaring/reductions used
-     */
-    if (mode == 0 && y == 0) {
-      continue;
-    }
-
-    /* if the bit is zero and mode == 1 then we square */
-    if (mode == 1 && y == 0) {
-      if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
-        goto LBL_RES;
-      }
-      if ((err = redux (&res, P, mp)) != MP_OKAY) {
-        goto LBL_RES;
-      }
-      continue;
-    }
-
-    /* else we add it to the window */
-    bitbuf |= (y << (winsize - ++bitcpy));
-    mode    = 2;
-
-    if (bitcpy == winsize) {
-      /* ok window is filled so square as required and multiply  */
-      /* square first */
-      for (x = 0; x < winsize; x++) {
-        if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
-          goto LBL_RES;
-        }
-        if ((err = redux (&res, P, mp)) != MP_OKAY) {
-          goto LBL_RES;
-        }
-      }
-
-      /* then multiply */
-      if ((err = mp_mul (&res, &M[bitbuf], &res)) != MP_OKAY) {
-        goto LBL_RES;
-      }
-      if ((err = redux (&res, P, mp)) != MP_OKAY) {
-        goto LBL_RES;
-      }
-
-      /* empty window and reset */
-      bitcpy = 0;
-      bitbuf = 0;
-      mode   = 1;
-    }
-  }
-
-  /* if bits remain then square/multiply */
-  if (mode == 2 && bitcpy > 0) {
-    /* square then multiply if the bit is set */
-    for (x = 0; x < bitcpy; x++) {
-      if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
-        goto LBL_RES;
-      }
-      if ((err = redux (&res, P, mp)) != MP_OKAY) {
-        goto LBL_RES;
-      }
-
-      /* get next bit of the window */
-      bitbuf <<= 1;
-      if ((bitbuf & (1 << winsize)) != 0) {
-        /* then multiply */
-        if ((err = mp_mul (&res, &M[1], &res)) != MP_OKAY) {
-          goto LBL_RES;
-        }
-        if ((err = redux (&res, P, mp)) != MP_OKAY) {
-          goto LBL_RES;
-        }
-      }
-    }
-  }
-
-  if (redmode == 0) {
-     /* fixup result if Montgomery reduction is used
-      * recall that any value in a Montgomery system is
-      * actually multiplied by R mod n.  So we have
-      * to reduce one more time to cancel out the factor
-      * of R.
-      */
-     if ((err = redux(&res, P, mp)) != MP_OKAY) {
-       goto LBL_RES;
-     }
-  }
-
-  /* swap res with Y */
-  mp_exch (&res, Y);
-  err = MP_OKAY;
-LBL_RES:mp_clear (&res);
-LBL_M:
-  mp_clear(&M[1]);
-  for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
-    mp_clear (&M[x]);
-  }
-
-#ifdef WOLFSSL_SMALL_STACK
-  XFREE(M, NULL, DYNAMIC_TYPE_TMP_BUFFER);
-#endif
-
-  return err;
-}
-
-
-/* setups the montgomery reduction stuff */
-int mp_montgomery_setup (mp_int * n, mp_digit * rho)
-{
-  mp_digit x, b;
-
-/* fast inversion mod 2**k
- *
- * Based on the fact that
- *
- * XA = 1 (mod 2**n)  =>  (X(2-XA)) A = 1 (mod 2**2n)
- *                    =>  2*X*A - X*X*A*A = 1
- *                    =>  2*(1) - (1)     = 1
- */
-  b = n->dp[0];
-
-  if ((b & 1) == 0) {
-    return MP_VAL;
-  }
-
-  x = (((b + 2) & 4) << 1) + b; /* here x*a==1 mod 2**4 */
-  x *= 2 - b * x;               /* here x*a==1 mod 2**8 */
-#if !defined(MP_8BIT)
-  x *= 2 - b * x;               /* here x*a==1 mod 2**16 */
-#endif
-#if defined(MP_64BIT) || !(defined(MP_8BIT) || defined(MP_16BIT))
-  x *= 2 - b * x;               /* here x*a==1 mod 2**32 */
-#endif
-#ifdef MP_64BIT
-  x *= 2 - b * x;               /* here x*a==1 mod 2**64 */
-#endif
-
-  /* rho = -1/m mod b */
-  /* TAO, switched mp_word casts to mp_digit to shut up compiler */
-  *rho = (mp_digit)((((mp_digit)1 << ((mp_digit) DIGIT_BIT)) - x) & MP_MASK);
-
-  return MP_OKAY;
-}
-
-
-/* computes xR**-1 == x (mod N) via Montgomery Reduction
- *
- * This is an optimized implementation of montgomery_reduce
- * which uses the comba method to quickly calculate the columns of the
- * reduction.
- *
- * Based on Algorithm 14.32 on pp.601 of HAC.
-*/
-int fast_mp_montgomery_reduce (mp_int * x, mp_int * n, mp_digit rho)
-{
-  int     ix, res, olduse;
-#ifdef WOLFSSL_SMALL_STACK
-  mp_word* W;    /* uses dynamic memory and slower */
-#else
-  mp_word W[MP_WARRAY];
-#endif
-
-  /* get old used count */
-  olduse = x->used;
-
-  /* grow a as required */
-  if (x->alloc < n->used + 1) {
-    if ((res = mp_grow (x, n->used + 1)) != MP_OKAY) {
-      return res;
-    }
-  }
-
-#ifdef WOLFSSL_SMALL_STACK
-  W = (mp_word*)XMALLOC(sizeof(mp_word) * MP_WARRAY, NULL, DYNAMIC_TYPE_BIGINT);
-  if (W == NULL)
-    return MP_MEM;
-#endif
-
-  /* first we have to get the digits of the input into
-   * an array of double precision words W[...]
-   */
-  {
-    mp_word *_W;
-    mp_digit *tmpx;
-
-    /* alias for the W[] array */
-    _W   = W;
-
-    /* alias for the digits of  x*/
-    tmpx = x->dp;
-
-    /* copy the digits of a into W[0..a->used-1] */
-    for (ix = 0; ix < x->used; ix++) {
-      *_W++ = *tmpx++;
-    }
-
-    /* zero the high words of W[a->used..m->used*2] */
-    for (; ix < n->used * 2 + 1; ix++) {
-      *_W++ = 0;
-    }
-  }
-
-  /* now we proceed to zero successive digits
-   * from the least significant upwards
-   */
-  for (ix = 0; ix < n->used; ix++) {
-    /* mu = ai * m' mod b
-     *
-     * We avoid a double precision multiplication (which isn't required)
-     * by casting the value down to a mp_digit.  Note this requires
-     * that W[ix-1] have  the carry cleared (see after the inner loop)
-     */
-    mp_digit mu;
-    mu = (mp_digit) (((W[ix] & MP_MASK) * rho) & MP_MASK);
-
-    /* a = a + mu * m * b**i
-     *
-     * This is computed in place and on the fly.  The multiplication
-     * by b**i is handled by offseting which columns the results
-     * are added to.
-     *
-     * Note the comba method normally doesn't handle carries in the
-     * inner loop In this case we fix the carry from the previous
-     * column since the Montgomery reduction requires digits of the
-     * result (so far) [see above] to work.  This is
-     * handled by fixing up one carry after the inner loop.  The
-     * carry fixups are done in order so after these loops the
-     * first m->used words of W[] have the carries fixed
-     */
-    {
-      int iy;
-      mp_digit *tmpn;
-      mp_word *_W;
-
-      /* alias for the digits of the modulus */
-      tmpn = n->dp;
-
-      /* Alias for the columns set by an offset of ix */
-      _W = W + ix;
-
-      /* inner loop */
-      for (iy = 0; iy < n->used; iy++) {
-          *_W++ += ((mp_word)mu) * ((mp_word)*tmpn++);
-      }
-    }
-
-    /* now fix carry for next digit, W[ix+1] */
-    W[ix + 1] += W[ix] >> ((mp_word) DIGIT_BIT);
-  }
-
-  /* now we have to propagate the carries and
-   * shift the words downward [all those least
-   * significant digits we zeroed].
-   */
-  {
-    mp_digit *tmpx;
-    mp_word *_W, *_W1;
-
-    /* nox fix rest of carries */
-
-    /* alias for current word */
-    _W1 = W + ix;
-
-    /* alias for next word, where the carry goes */
-    _W = W + ++ix;
-
-    for (; ix <= n->used * 2 + 1; ix++) {
-      *_W++ += *_W1++ >> ((mp_word) DIGIT_BIT);
-    }
-
-    /* copy out, A = A/b**n
-     *
-     * The result is A/b**n but instead of converting from an
-     * array of mp_word to mp_digit than calling mp_rshd
-     * we just copy them in the right order
-     */
-
-    /* alias for destination word */
-    tmpx = x->dp;
-
-    /* alias for shifted double precision result */
-    _W = W + n->used;
-
-    for (ix = 0; ix < n->used + 1; ix++) {
-      *tmpx++ = (mp_digit)(*_W++ & ((mp_word) MP_MASK));
-    }
-
-    /* zero olduse digits, if the input a was larger than
-     * m->used+1 we'll have to clear the digits
-     */
-    for (; ix < olduse; ix++) {
-      *tmpx++ = 0;
-    }
-  }
-
-  /* set the max used and clamp */
-  x->used = n->used + 1;
-  mp_clamp (x);
-
-#ifdef WOLFSSL_SMALL_STACK
-  XFREE(W, NULL, DYNAMIC_TYPE_BIGINT);
-#endif
-
-  /* if A >= m then A = A - m */
-  if (mp_cmp_mag (x, n) != MP_LT) {
-    return s_mp_sub (x, n, x);
-  }
-  return MP_OKAY;
-}
-
-
-/* computes xR**-1 == x (mod N) via Montgomery Reduction */
-int mp_montgomery_reduce (mp_int * x, mp_int * n, mp_digit rho)
-{
-  int     ix, res, digs;
-  mp_digit mu;
-
-  /* can the fast reduction [comba] method be used?
-   *
-   * Note that unlike in mul you're safely allowed *less*
-   * than the available columns [255 per default] since carries
-   * are fixed up in the inner loop.
-   */
-  digs = n->used * 2 + 1;
-  if ((digs < MP_WARRAY) &&
-      n->used <
-      (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
-    return fast_mp_montgomery_reduce (x, n, rho);
-  }
-
-  /* grow the input as required */
-  if (x->alloc < digs) {
-    if ((res = mp_grow (x, digs)) != MP_OKAY) {
-      return res;
-    }
-  }
-  x->used = digs;
-
-  for (ix = 0; ix < n->used; ix++) {
-    /* mu = ai * rho mod b
-     *
-     * The value of rho must be precalculated via
-     * montgomery_setup() such that
-     * it equals -1/n0 mod b this allows the
-     * following inner loop to reduce the
-     * input one digit at a time
-     */
-    mu = (mp_digit) (((mp_word)x->dp[ix]) * ((mp_word)rho) & MP_MASK);
-
-    /* a = a + mu * m * b**i */
-    {
-      int iy;
-      mp_digit *tmpn, *tmpx, u;
-      mp_word r;
-
-      /* alias for digits of the modulus */
-      tmpn = n->dp;
-
-      /* alias for the digits of x [the input] */
-      tmpx = x->dp + ix;
-
-      /* set the carry to zero */
-      u = 0;
-
-      /* Multiply and add in place */
-      for (iy = 0; iy < n->used; iy++) {
-        /* compute product and sum */
-        r       = ((mp_word)mu) * ((mp_word)*tmpn++) +
-                  ((mp_word) u) + ((mp_word) * tmpx);
-
-        /* get carry */
-        u       = (mp_digit)(r >> ((mp_word) DIGIT_BIT));
-
-        /* fix digit */
-        *tmpx++ = (mp_digit)(r & ((mp_word) MP_MASK));
-      }
-      /* At this point the ix'th digit of x should be zero */
-
-
-      /* propagate carries upwards as required*/
-      while (u) {
-        *tmpx   += u;
-        u        = *tmpx >> DIGIT_BIT;
-        *tmpx++ &= MP_MASK;
-      }
-    }
-  }
-
-  /* at this point the n.used'th least
-   * significant digits of x are all zero
-   * which means we can shift x to the
-   * right by n.used digits and the
-   * residue is unchanged.
-   */
-
-  /* x = x/b**n.used */
-  mp_clamp(x);
-  mp_rshd (x, n->used);
-
-  /* if x >= n then x = x - n */
-  if (mp_cmp_mag (x, n) != MP_LT) {
-    return s_mp_sub (x, n, x);
-  }
-
-  return MP_OKAY;
-}
-
-
-/* determines the setup value */
-void mp_dr_setup(mp_int *a, mp_digit *d)
-{
-   /* the casts are required if DIGIT_BIT is one less than
-    * the number of bits in a mp_digit [e.g. DIGIT_BIT==31]
-    */
-   *d = (mp_digit)((((mp_word)1) << ((mp_word)DIGIT_BIT)) -
-        ((mp_word)a->dp[0]));
-}
-
-
-/* reduce "x" in place modulo "n" using the Diminished Radix algorithm.
- *
- * Based on algorithm from the paper
- *
- * "Generating Efficient Primes for Discrete Log Cryptosystems"
- *                 Chae Hoon Lim, Pil Joong Lee,
- *          POSTECH Information Research Laboratories
- *
- * The modulus must be of a special format [see manual]
- *
- * Has been modified to use algorithm 7.10 from the LTM book instead
- *
- * Input x must be in the range 0 <= x <= (n-1)**2
- */
-int mp_dr_reduce (mp_int * x, mp_int * n, mp_digit k)
-{
-  int      err, i, m;
-  mp_word  r;
-  mp_digit mu, *tmpx1, *tmpx2;
-
-  /* m = digits in modulus */
-  m = n->used;
-
-  /* ensure that "x" has at least 2m digits */
-  if (x->alloc < m + m) {
-    if ((err = mp_grow (x, m + m)) != MP_OKAY) {
-      return err;
-    }
-  }
-
-/* top of loop, this is where the code resumes if
- * another reduction pass is required.
- */
-top:
-  /* aliases for digits */
-  /* alias for lower half of x */
-  tmpx1 = x->dp;
-
-  /* alias for upper half of x, or x/B**m */
-  tmpx2 = x->dp + m;
-
-  /* set carry to zero */
-  mu = 0;
-
-  /* compute (x mod B**m) + k * [x/B**m] inline and inplace */
-  for (i = 0; i < m; i++) {
-      r         = ((mp_word)*tmpx2++) * ((mp_word)k) + *tmpx1 + mu;
-      *tmpx1++  = (mp_digit)(r & MP_MASK);
-      mu        = (mp_digit)(r >> ((mp_word)DIGIT_BIT));
-  }
-
-  /* set final carry */
-  *tmpx1++ = mu;
-
-  /* zero words above m */
-  for (i = m + 1; i < x->used; i++) {
-      *tmpx1++ = 0;
-  }
-
-  /* clamp, sub and return */
-  mp_clamp (x);
-
-  /* if x >= n then subtract and reduce again
-   * Each successive "recursion" makes the input smaller and smaller.
-   */
-  if (mp_cmp_mag (x, n) != MP_LT) {
-    if ((err = s_mp_sub(x, n, x)) != MP_OKAY) {
-        return err;
-    }
-    goto top;
-  }
-  return MP_OKAY;
-}
-
-
-/* reduces a modulo n where n is of the form 2**p - d */
-int mp_reduce_2k(mp_int *a, mp_int *n, mp_digit d)
-{
-   mp_int q;
-   int    p, res;
-
-   if ((res = mp_init(&q)) != MP_OKAY) {
-      return res;
-   }
-
-   p = mp_count_bits(n);
-top:
-   /* q = a/2**p, a = a mod 2**p */
-   if ((res = mp_div_2d(a, p, &q, a)) != MP_OKAY) {
-      goto ERR;
-   }
-
-   if (d != 1) {
-      /* q = q * d */
-      if ((res = mp_mul_d(&q, d, &q)) != MP_OKAY) {
-         goto ERR;
-      }
-   }
-
-   /* a = a + q */
-   if ((res = s_mp_add(a, &q, a)) != MP_OKAY) {
-      goto ERR;
-   }
-
-   if (mp_cmp_mag(a, n) != MP_LT) {
-      if ((res = s_mp_sub(a, n, a)) != MP_OKAY) {
-         goto ERR;
-      }
-      goto top;
-   }
-
-ERR:
-   mp_clear(&q);
-   return res;
-}
-
-
-/* determines the setup value */
-int mp_reduce_2k_setup(mp_int *a, mp_digit *d)
-{
-   int res, p;
-   mp_int tmp;
-
-   if ((res = mp_init(&tmp)) != MP_OKAY) {
-      return res;
-   }
-
-   p = mp_count_bits(a);
-   if ((res = mp_2expt(&tmp, p)) != MP_OKAY) {
-      mp_clear(&tmp);
-      return res;
-   }
-
-   if ((res = s_mp_sub(&tmp, a, &tmp)) != MP_OKAY) {
-      mp_clear(&tmp);
-      return res;
-   }
-
-   *d = tmp.dp[0];
-   mp_clear(&tmp);
-   return MP_OKAY;
-}
-
-
-/* set the b bit of a */
-int mp_set_bit (mp_int * a, int b)
-{
-    int i = b / DIGIT_BIT, res;
-
-    if (a->used < (int)(i + 1)) {
-        /* grow a to accommodate the single bit */
-        if ((res = mp_grow (a, i + 1)) != MP_OKAY) {
-            return res;
-        }
-
-        /* set the used count of where the bit will go */
-        a->used = (int)(i + 1);
-    }
-
-    /* put the single bit in its place */
-    a->dp[i] |= ((mp_digit)1) << (b % DIGIT_BIT);
-
-    return MP_OKAY;
-}
-
-/* computes a = 2**b
- *
- * Simple algorithm which zeros the int, set the required bit
- */
-int mp_2expt (mp_int * a, int b)
-{
-    /* zero a as per default */
-    mp_zero (a);
-
-    return mp_set_bit(a, b);
-}
-
-/* multiply by a digit */
-int mp_mul_d (mp_int * a, mp_digit b, mp_int * c)
-{
-  mp_digit u, *tmpa, *tmpc;
-  mp_word  r;
-  int      ix, res, olduse;
-
-  /* make sure c is big enough to hold a*b */
-  if (c->alloc < a->used + 1) {
-    if ((res = mp_grow (c, a->used + 1)) != MP_OKAY) {
-      return res;
-    }
-  }
-
-  /* get the original destinations used count */
-  olduse = c->used;
-
-  /* set the sign */
-  c->sign = a->sign;
-
-  /* alias for a->dp [source] */
-  tmpa = a->dp;
-
-  /* alias for c->dp [dest] */
-  tmpc = c->dp;
-
-  /* zero carry */
-  u = 0;
-
-  /* compute columns */
-  for (ix = 0; ix < a->used; ix++) {
-    /* compute product and carry sum for this term */
-    r       = ((mp_word) u) + ((mp_word)*tmpa++) * ((mp_word)b);
-
-    /* mask off higher bits to get a single digit */
-    *tmpc++ = (mp_digit) (r & ((mp_word) MP_MASK));
-
-    /* send carry into next iteration */
-    u       = (mp_digit) (r >> ((mp_word) DIGIT_BIT));
-  }
-
-  /* store final carry [if any] and increment ix offset  */
-  *tmpc++ = u;
-  ++ix;
-
-  /* now zero digits above the top */
-  while (ix++ < olduse) {
-     *tmpc++ = 0;
-  }
-
-  /* set used count */
-  c->used = a->used + 1;
-  mp_clamp(c);
-
-  return MP_OKAY;
-}
-
-
-/* d = a * b (mod c) */
-#if defined(FREESCALE_LTC_TFM)
-int wolfcrypt_mp_mulmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d)
-#else
-int mp_mulmod (mp_int * a, mp_int * b, mp_int * c, mp_int * d)
-#endif
-{
-  int     res;
-  mp_int  t;
-
-  if ((res = mp_init_size (&t, c->used)) != MP_OKAY) {
-    return res;
-  }
-
-  res = mp_mul (a, b, &t);
-  if (res == MP_OKAY) {
-      res = mp_mod (&t, c, d);
-  }
-
-  mp_clear (&t);
-  return res;
-}
-
-
-/* d = a - b (mod c) */
-int mp_submod(mp_int* a, mp_int* b, mp_int* c, mp_int* d)
-{
-  int     res;
-  mp_int  t;
-
-  if ((res = mp_init (&t)) != MP_OKAY) {
-    return res;
-  }
-
-  res = mp_sub (a, b, &t);
-  if (res == MP_OKAY) {
-      res = mp_mod (&t, c, d);
-  }
-
-  mp_clear (&t);
-
-  return res;
-}
-
-/* d = a + b (mod c) */
-int mp_addmod(mp_int* a, mp_int* b, mp_int* c, mp_int* d)
-{
-   int     res;
-   mp_int  t;
-
-   if ((res = mp_init (&t)) != MP_OKAY) {
-     return res;
-   }
-
-   res = mp_add (a, b, &t);
-   if (res == MP_OKAY) {
-       res = mp_mod (&t, c, d);
-   }
-
-   mp_clear (&t);
-
-   return res;
-}
-
-/* computes b = a*a */
-int mp_sqr (mp_int * a, mp_int * b)
-{
-  int     res;
-
-  {
-#ifdef BN_FAST_S_MP_SQR_C
-    /* can we use the fast comba multiplier? */
-    if ((a->used * 2 + 1) < MP_WARRAY &&
-         a->used <
-         (1 << (sizeof(mp_word) * CHAR_BIT - 2*DIGIT_BIT - 1))) {
-      res = fast_s_mp_sqr (a, b);
-    } else
-#endif
-#ifdef BN_S_MP_SQR_C
-      res = s_mp_sqr (a, b);
-#else
-      res = MP_VAL;
-#endif
-  }
-  b->sign = MP_ZPOS;
-  return res;
-}
-
-
-/* high level multiplication (handles sign) */
-#if defined(FREESCALE_LTC_TFM)
-int wolfcrypt_mp_mul(mp_int *a, mp_int *b, mp_int *c)
-#else
-int mp_mul (mp_int * a, mp_int * b, mp_int * c)
-#endif
-{
-  int     res, neg;
-  neg = (a->sign == b->sign) ? MP_ZPOS : MP_NEG;
-
-  {
-    /* can we use the fast multiplier?
-     *
-     * The fast multiplier can be used if the output will
-     * have less than MP_WARRAY digits and the number of
-     * digits won't affect carry propagation
-     */
-    int     digs = a->used + b->used + 1;
-
-#ifdef BN_FAST_S_MP_MUL_DIGS_C
-    if ((digs < MP_WARRAY) &&
-        MIN(a->used, b->used) <=
-        (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
-      res = fast_s_mp_mul_digs (a, b, c, digs);
-    } else
-#endif
-#ifdef BN_S_MP_MUL_DIGS_C
-      res = s_mp_mul (a, b, c); /* uses s_mp_mul_digs */
-#else
-      res = MP_VAL;
-#endif
-
-  }
-  c->sign = (c->used > 0) ? neg : MP_ZPOS;
-  return res;
-}
-
-
-/* b = a*2 */
-int mp_mul_2(mp_int * a, mp_int * b)
-{
-  int     x, res, oldused;
-
-  /* grow to accommodate result */
-  if (b->alloc < a->used + 1) {
-    if ((res = mp_grow (b, a->used + 1)) != MP_OKAY) {
-      return res;
-    }
-  }
-
-  oldused = b->used;
-  b->used = a->used;
-
-  {
-    mp_digit r, rr, *tmpa, *tmpb;
-
-    /* alias for source */
-    tmpa = a->dp;
-
-    /* alias for dest */
-    tmpb = b->dp;
-
-    /* carry */
-    r = 0;
-    for (x = 0; x < a->used; x++) {
-
-      /* get what will be the *next* carry bit from the
-       * MSB of the current digit
-       */
-      rr = *tmpa >> ((mp_digit)(DIGIT_BIT - 1));
-
-      /* now shift up this digit, add in the carry [from the previous] */
-      *tmpb++ = (mp_digit)(((*tmpa++ << ((mp_digit)1)) | r) & MP_MASK);
-
-      /* copy the carry that would be from the source
-       * digit into the next iteration
-       */
-      r = rr;
-    }
-
-    /* new leading digit? */
-    if (r != 0) {
-      /* add a MSB which is always 1 at this point */
-      *tmpb = 1;
-      ++(b->used);
-    }
-
-    /* now zero any excess digits on the destination
-     * that we didn't write to
-     */
-    tmpb = b->dp + b->used;
-    for (x = b->used; x < oldused; x++) {
-      *tmpb++ = 0;
-    }
-  }
-  b->sign = a->sign;
-  return MP_OKAY;
-}
-
-
-/* divide by three (based on routine from MPI and the GMP manual) */
-int mp_div_3 (mp_int * a, mp_int *c, mp_digit * d)
-{
-  mp_int   q;
-  mp_word  w, t;
-  mp_digit b;
-  int      res, ix;
-
-  /* b = 2**DIGIT_BIT / 3 */
-  b = (mp_digit) ( (((mp_word)1) << ((mp_word)DIGIT_BIT)) / ((mp_word)3) );
-
-  if ((res = mp_init_size(&q, a->used)) != MP_OKAY) {
-     return res;
-  }
-
-  q.used = a->used;
-  q.sign = a->sign;
-  w = 0;
-  for (ix = a->used - 1; ix >= 0; ix--) {
-     w = (w << ((mp_word)DIGIT_BIT)) | ((mp_word)a->dp[ix]);
-
-     if (w >= 3) {
-        /* multiply w by [1/3] */
-        t = (w * ((mp_word)b)) >> ((mp_word)DIGIT_BIT);
-
-        /* now subtract 3 * [w/3] from w, to get the remainder */
-        w -= t+t+t;
-
-        /* fixup the remainder as required since
-         * the optimization is not exact.
-         */
-        while (w >= 3) {
-           t += 1;
-           w -= 3;
-        }
-      } else {
-        t = 0;
-      }
-      q.dp[ix] = (mp_digit)t;
-  }
-
-  /* [optional] store the remainder */
-  if (d != NULL) {
-     *d = (mp_digit)w;
-  }
-
-  /* [optional] store the quotient */
-  if (c != NULL) {
-     mp_clamp(&q);
-     mp_exch(&q, c);
-  }
-  mp_clear(&q);
-
-  return res;
-}
-
-
-/* init an mp_init for a given size */
-int mp_init_size (mp_int * a, int size)
-{
-  int x;
-
-  /* pad size so there are always extra digits */
-  size += (MP_PREC * 2) - (size % MP_PREC);
-
-  /* alloc mem */
-  a->dp = OPT_CAST(mp_digit) XMALLOC (sizeof (mp_digit) * size, NULL,
-                                      DYNAMIC_TYPE_BIGINT);
-  if (a->dp == NULL) {
-    return MP_MEM;
-  }
-
-  /* set the members */
-  a->used  = 0;
-  a->alloc = size;
-  a->sign  = MP_ZPOS;
-#ifdef HAVE_WOLF_BIGINT
-  wc_bigint_init(&a->raw);
-#endif
-
-  /* zero the digits */
-  for (x = 0; x < size; x++) {
-      a->dp[x] = 0;
-  }
-
-  return MP_OKAY;
-}
-
-
-/* the jist of squaring...
- * you do like mult except the offset of the tmpx [one that
- * starts closer to zero] can't equal the offset of tmpy.
- * So basically you set up iy like before then you min it with
- * (ty-tx) so that it never happens.  You double all those
- * you add in the inner loop
-
-After that loop you do the squares and add them in.
-*/
-
-int fast_s_mp_sqr (mp_int * a, mp_int * b)
-{
-  int       olduse, res, pa, ix, iz;
-#ifdef WOLFSSL_SMALL_STACK
-  mp_digit* W;    /* uses dynamic memory and slower */
-#else
-  mp_digit W[MP_WARRAY];
-#endif
-  mp_digit  *tmpx;
-  mp_word   W1;
-
-  /* grow the destination as required */
-  pa = a->used + a->used;
-  if (b->alloc < pa) {
-    if ((res = mp_grow (b, pa)) != MP_OKAY) {
-      return res;
-    }
-  }
-
-  if (pa > MP_WARRAY)
-    return MP_RANGE;  /* TAO range check */
-
-#ifdef WOLFSSL_SMALL_STACK
-  W = (mp_digit*)XMALLOC(sizeof(mp_digit) * MP_WARRAY, NULL, DYNAMIC_TYPE_BIGINT);
-  if (W == NULL)
-    return MP_MEM;
-#endif
-
-  /* number of output digits to produce */
-  W1 = 0;
-  for (ix = 0; ix < pa; ix++) {
-      int      tx, ty, iy;
-      mp_word  _W;
-      mp_digit *tmpy;
-
-      /* clear counter */
-      _W = 0;
-
-      /* get offsets into the two bignums */
-      ty = MIN(a->used-1, ix);
-      tx = ix - ty;
-
-      /* setup temp aliases */
-      tmpx = a->dp + tx;
-      tmpy = a->dp + ty;
-
-      /* this is the number of times the loop will iterate, essentially
-         while (tx++ < a->used && ty-- >= 0) { ... }
-       */
-      iy = MIN(a->used-tx, ty+1);
-
-      /* now for squaring tx can never equal ty
-       * we halve the distance since they approach at a rate of 2x
-       * and we have to round because odd cases need to be executed
-       */
-      iy = MIN(iy, (ty-tx+1)>>1);
-
-      /* execute loop */
-      for (iz = 0; iz < iy; iz++) {
-         _W += ((mp_word)*tmpx++)*((mp_word)*tmpy--);
-      }
-
-      /* double the inner product and add carry */
-      _W = _W + _W + W1;
-
-      /* even columns have the square term in them */
-      if ((ix&1) == 0) {
-         _W += ((mp_word)a->dp[ix>>1])*((mp_word)a->dp[ix>>1]);
-      }
-
-      /* store it */
-      W[ix] = (mp_digit)(_W & MP_MASK);
-
-      /* make next carry */
-      W1 = _W >> ((mp_word)DIGIT_BIT);
-  }
-
-  /* setup dest */
-  olduse  = b->used;
-  b->used = a->used+a->used;
-
-  {
-    mp_digit *tmpb;
-    tmpb = b->dp;
-    for (ix = 0; ix < pa; ix++) {
-      *tmpb++ = (mp_digit)(W[ix] & MP_MASK);
-    }
-
-    /* clear unused digits [that existed in the old copy of c] */
-    for (; ix < olduse; ix++) {
-      *tmpb++ = 0;
-    }
-  }
-  mp_clamp (b);
-
-#ifdef WOLFSSL_SMALL_STACK
-  XFREE(W, NULL, DYNAMIC_TYPE_BIGINT);
-#endif
-
-  return MP_OKAY;
-}
-
-
-/* Fast (comba) multiplier
- *
- * This is the fast column-array [comba] multiplier.  It is
- * designed to compute the columns of the product first
- * then handle the carries afterwards.  This has the effect
- * of making the nested loops that compute the columns very
- * simple and schedulable on super-scalar processors.
- *
- * This has been modified to produce a variable number of
- * digits of output so if say only a half-product is required
- * you don't have to compute the upper half (a feature
- * required for fast Barrett reduction).
- *
- * Based on Algorithm 14.12 on pp.595 of HAC.
- *
- */
-int fast_s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
-{
-  int     olduse, res, pa, ix, iz;
-#ifdef WOLFSSL_SMALL_STACK
-  mp_digit* W;    /* uses dynamic memory and slower */
-#else
-  mp_digit W[MP_WARRAY];
-#endif
-  mp_word  _W;
-
-  /* grow the destination as required */
-  if (c->alloc < digs) {
-    if ((res = mp_grow (c, digs)) != MP_OKAY) {
-      return res;
-    }
-  }
-
-  /* number of output digits to produce */
-  pa = MIN(digs, a->used + b->used);
-  if (pa > MP_WARRAY)
-    return MP_RANGE;  /* TAO range check */
-
-#ifdef WOLFSSL_SMALL_STACK
-  W = (mp_digit*)XMALLOC(sizeof(mp_digit) * MP_WARRAY, NULL, DYNAMIC_TYPE_BIGINT);
-  if (W == NULL)
-    return MP_MEM;
-#endif
-
-  /* clear the carry */
-  _W = 0;
-  for (ix = 0; ix < pa; ix++) {
-      int      tx, ty;
-      int      iy;
-      mp_digit *tmpx, *tmpy;
-
-      /* get offsets into the two bignums */
-      ty = MIN(b->used-1, ix);
-      tx = ix - ty;
-
-      /* setup temp aliases */
-      tmpx = a->dp + tx;
-      tmpy = b->dp + ty;
-
-      /* this is the number of times the loop will iterate, essentially
-         while (tx++ < a->used && ty-- >= 0) { ... }
-       */
-      iy = MIN(a->used-tx, ty+1);
-
-      /* execute loop */
-      for (iz = 0; iz < iy; ++iz) {
-         _W += ((mp_word)*tmpx++)*((mp_word)*tmpy--);
-
-      }
-
-      /* store term */
-      W[ix] = (mp_digit)(((mp_digit)_W) & MP_MASK);
-
-      /* make next carry */
-      _W = _W >> ((mp_word)DIGIT_BIT);
- }
-
-  /* setup dest */
-  olduse  = c->used;
-  c->used = pa;
-
-  {
-    mp_digit *tmpc;
-    tmpc = c->dp;
-    for (ix = 0; ix < pa; ix++) { /* JRB, +1 could read uninitialized data */
-      /* now extract the previous digit [below the carry] */
-      *tmpc++ = W[ix];
-    }
-
-    /* clear unused digits [that existed in the old copy of c] */
-    for (; ix < olduse; ix++) {
-      *tmpc++ = 0;
-    }
-  }
-  mp_clamp (c);
-
-#ifdef WOLFSSL_SMALL_STACK
-  XFREE(W, NULL, DYNAMIC_TYPE_BIGINT);
-#endif
-
-  return MP_OKAY;
-}
-
-
-/* low level squaring, b = a*a, HAC pp.596-597, Algorithm 14.16 */
-int s_mp_sqr (mp_int * a, mp_int * b)
-{
-  mp_int  t;
-  int     res, ix, iy, pa;
-  mp_word r;
-  mp_digit u, tmpx, *tmpt;
-
-  pa = a->used;
-  if ((res = mp_init_size (&t, 2*pa + 1)) != MP_OKAY) {
-    return res;
-  }
-
-  /* default used is maximum possible size */
-  t.used = 2*pa + 1;
-
-  for (ix = 0; ix < pa; ix++) {
-    /* first calculate the digit at 2*ix */
-    /* calculate double precision result */
-    r = ((mp_word) t.dp[2*ix]) +
-        ((mp_word)a->dp[ix])*((mp_word)a->dp[ix]);
-
-    /* store lower part in result */
-    t.dp[ix+ix] = (mp_digit) (r & ((mp_word) MP_MASK));
-
-    /* get the carry */
-    u           = (mp_digit)(r >> ((mp_word) DIGIT_BIT));
-
-    /* left hand side of A[ix] * A[iy] */
-    tmpx        = a->dp[ix];
-
-    /* alias for where to store the results */
-    tmpt        = t.dp + (2*ix + 1);
-
-    for (iy = ix + 1; iy < pa; iy++) {
-      /* first calculate the product */
-      r       = ((mp_word)tmpx) * ((mp_word)a->dp[iy]);
-
-      /* now calculate the double precision result, note we use
-       * addition instead of *2 since it's easier to optimize
-       */
-      r       = ((mp_word) *tmpt) + r + r + ((mp_word) u);
-
-      /* store lower part */
-      *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK));
-
-      /* get carry */
-      u       = (mp_digit)(r >> ((mp_word) DIGIT_BIT));
-    }
-    /* propagate upwards */
-    while (u != ((mp_digit) 0)) {
-      r       = ((mp_word) *tmpt) + ((mp_word) u);
-      *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK));
-      u       = (mp_digit)(r >> ((mp_word) DIGIT_BIT));
-    }
-  }
-
-  mp_clamp (&t);
-  mp_exch (&t, b);
-  mp_clear (&t);
-  return MP_OKAY;
-}
-
-
-/* multiplies |a| * |b| and only computes up to digs digits of result
- * HAC pp. 595, Algorithm 14.12  Modified so you can control how
- * many digits of output are created.
- */
-int s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
-{
-  mp_int  t;
-  int     res, pa, pb, ix, iy;
-  mp_digit u;
-  mp_word r;
-  mp_digit tmpx, *tmpt, *tmpy;
-
-  /* can we use the fast multiplier? */
-  if (((digs) < MP_WARRAY) &&
-      MIN (a->used, b->used) <
-          (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
-    return fast_s_mp_mul_digs (a, b, c, digs);
-  }
-
-  if ((res = mp_init_size (&t, digs)) != MP_OKAY) {
-    return res;
-  }
-  t.used = digs;
-
-  /* compute the digits of the product directly */
-  pa = a->used;
-  for (ix = 0; ix < pa; ix++) {
-    /* set the carry to zero */
-    u = 0;
-
-    /* limit ourselves to making digs digits of output */
-    pb = MIN (b->used, digs - ix);
-
-    /* setup some aliases */
-    /* copy of the digit from a used within the nested loop */
-    tmpx = a->dp[ix];
-
-    /* an alias for the destination shifted ix places */
-    tmpt = t.dp + ix;
-
-    /* an alias for the digits of b */
-    tmpy = b->dp;
-
-    /* compute the columns of the output and propagate the carry */
-    for (iy = 0; iy < pb; iy++) {
-      /* compute the column as a mp_word */
-      r       = ((mp_word)*tmpt) +
-                ((mp_word)tmpx) * ((mp_word)*tmpy++) +
-                ((mp_word) u);
-
-      /* the new column is the lower part of the result */
-      *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK));
-
-      /* get the carry word from the result */
-      u       = (mp_digit) (r >> ((mp_word) DIGIT_BIT));
-    }
-    /* set carry if it is placed below digs */
-    if (ix + iy < digs) {
-      *tmpt = u;
-    }
-  }
-
-  mp_clamp (&t);
-  mp_exch (&t, c);
-
-  mp_clear (&t);
-  return MP_OKAY;
-}
-
-
-/*
- * shifts with subtractions when the result is greater than b.
- *
- * The method is slightly modified to shift B unconditionally up to just under
- * the leading bit of b.  This saves a lot of multiple precision shifting.
- */
-int mp_montgomery_calc_normalization (mp_int * a, mp_int * b)
-{
-  int     x, bits, res;
-
-  /* how many bits of last digit does b use */
-  bits = mp_count_bits (b) % DIGIT_BIT;
-
-  if (b->used > 1) {
-     if ((res = mp_2expt (a, (b->used - 1) * DIGIT_BIT + bits - 1))
-         != MP_OKAY) {
-        return res;
-     }
-  } else {
-     if ((res = mp_set(a, 1)) != MP_OKAY) {
-        return res;
-     }
-     bits = 1;
-  }
-
-  /* now compute C = A * B mod b */
-  for (x = bits - 1; x < (int)DIGIT_BIT; x++) {
-    if ((res = mp_mul_2 (a, a)) != MP_OKAY) {
-      return res;
-    }
-    if (mp_cmp_mag (a, b) != MP_LT) {
-      if ((res = s_mp_sub (a, b, a)) != MP_OKAY) {
-        return res;
-      }
-    }
-  }
-
-  return MP_OKAY;
-}
-
-
-#ifdef MP_LOW_MEM
-   #define TAB_SIZE 32
-#else
-   #define TAB_SIZE 256
-#endif
-
-int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode)
-{
-  mp_int  M[TAB_SIZE], res, mu;
-  mp_digit buf;
-  int     err, bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize;
-  int (*redux)(mp_int*,mp_int*,mp_int*);
-
-  /* find window size */
-  x = mp_count_bits (X);
-  if (x <= 7) {
-    winsize = 2;
-  } else if (x <= 36) {
-    winsize = 3;
-  } else if (x <= 140) {
-    winsize = 4;
-  } else if (x <= 450) {
-    winsize = 5;
-  } else if (x <= 1303) {
-    winsize = 6;
-  } else if (x <= 3529) {
-    winsize = 7;
-  } else {
-    winsize = 8;
-  }
-
-#ifdef MP_LOW_MEM
-    if (winsize > 5) {
-       winsize = 5;
-    }
-#endif
-
-  /* init M array */
-  /* init first cell */
-  if ((err = mp_init(&M[1])) != MP_OKAY) {
-     return err;
-  }
-
-  /* now init the second half of the array */
-  for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
-    if ((err = mp_init(&M[x])) != MP_OKAY) {
-      for (y = 1<<(winsize-1); y < x; y++) {
-        mp_clear (&M[y]);
-      }
-      mp_clear(&M[1]);
-      return err;
-    }
-  }
-
-  /* create mu, used for Barrett reduction */
-  if ((err = mp_init (&mu)) != MP_OKAY) {
-    goto LBL_M;
-  }
-
-  if (redmode == 0) {
-     if ((err = mp_reduce_setup (&mu, P)) != MP_OKAY) {
-        goto LBL_MU;
-     }
-     redux = mp_reduce;
-  } else {
-     if ((err = mp_reduce_2k_setup_l (P, &mu)) != MP_OKAY) {
-        goto LBL_MU;
-     }
-     redux = mp_reduce_2k_l;
-  }
-
-  /* create M table
-   *
-   * The M table contains powers of the base,
-   * e.g. M[x] = G**x mod P
-   *
-   * The first half of the table is not
-   * computed though accept for M[0] and M[1]
-   */
-  if ((err = mp_mod (G, P, &M[1])) != MP_OKAY) {
-    goto LBL_MU;
-  }
-
-  /* compute the value at M[1<<(winsize-1)] by squaring
-   * M[1] (winsize-1) times
-   */
-  if ((err = mp_copy (&M[1], &M[(mp_digit)(1 << (winsize - 1))])) != MP_OKAY) {
-    goto LBL_MU;
-  }
-
-  for (x = 0; x < (winsize - 1); x++) {
-    /* square it */
-    if ((err = mp_sqr (&M[(mp_digit)(1 << (winsize - 1))],
-                       &M[(mp_digit)(1 << (winsize - 1))])) != MP_OKAY) {
-      goto LBL_MU;
-    }
-
-    /* reduce modulo P */
-    if ((err = redux (&M[(mp_digit)(1 << (winsize - 1))], P, &mu)) != MP_OKAY) {
-      goto LBL_MU;
-    }
-  }
-
-  /* create upper table, that is M[x] = M[x-1] * M[1] (mod P)
-   * for x = (2**(winsize - 1) + 1) to (2**winsize - 1)
-   */
-  for (x = (1 << (winsize - 1)) + 1; x < (1 << winsize); x++) {
-    if ((err = mp_mul (&M[x - 1], &M[1], &M[x])) != MP_OKAY) {
-      goto LBL_MU;
-    }
-    if ((err = redux (&M[x], P, &mu)) != MP_OKAY) {
-      goto LBL_MU;
-    }
-  }
-
-  /* setup result */
-  if ((err = mp_init (&res)) != MP_OKAY) {
-    goto LBL_MU;
-  }
-  if ((err = mp_set (&res, 1)) != MP_OKAY) {
-    goto LBL_MU;
-  }
-
-  /* set initial mode and bit cnt */
-  mode   = 0;
-  bitcnt = 1;
-  buf    = 0;
-  digidx = X->used - 1;
-  bitcpy = 0;
-  bitbuf = 0;
-
-  for (;;) {
-    /* grab next digit as required */
-    if (--bitcnt == 0) {
-      /* if digidx == -1 we are out of digits */
-      if (digidx == -1) {
-        break;
-      }
-      /* read next digit and reset the bitcnt */
-      buf    = X->dp[digidx--];
-      bitcnt = (int) DIGIT_BIT;
-    }
-
-    /* grab the next msb from the exponent */
-    y     = (int)(buf >> (mp_digit)(DIGIT_BIT - 1)) & 1;
-    buf <<= (mp_digit)1;
-
-    /* if the bit is zero and mode == 0 then we ignore it
-     * These represent the leading zero bits before the first 1 bit
-     * in the exponent.  Technically this opt is not required but it
-     * does lower the # of trivial squaring/reductions used
-     */
-    if (mode == 0 && y == 0) {
-      continue;
-    }
-
-    /* if the bit is zero and mode == 1 then we square */
-    if (mode == 1 && y == 0) {
-      if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
-        goto LBL_RES;
-      }
-      if ((err = redux (&res, P, &mu)) != MP_OKAY) {
-        goto LBL_RES;
-      }
-      continue;
-    }
-
-    /* else we add it to the window */
-    bitbuf |= (y << (winsize - ++bitcpy));
-    mode    = 2;
-
-    if (bitcpy == winsize) {
-      /* ok window is filled so square as required and multiply  */
-      /* square first */
-      for (x = 0; x < winsize; x++) {
-        if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
-          goto LBL_RES;
-        }
-        if ((err = redux (&res, P, &mu)) != MP_OKAY) {
-          goto LBL_RES;
-        }
-      }
-
-      /* then multiply */
-      if ((err = mp_mul (&res, &M[bitbuf], &res)) != MP_OKAY) {
-        goto LBL_RES;
-      }
-      if ((err = redux (&res, P, &mu)) != MP_OKAY) {
-        goto LBL_RES;
-      }
-
-      /* empty window and reset */
-      bitcpy = 0;
-      bitbuf = 0;
-      mode   = 1;
-    }
-  }
-
-  /* if bits remain then square/multiply */
-  if (mode == 2 && bitcpy > 0) {
-    /* square then multiply if the bit is set */
-    for (x = 0; x < bitcpy; x++) {
-      if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
-        goto LBL_RES;
-      }
-      if ((err = redux (&res, P, &mu)) != MP_OKAY) {
-        goto LBL_RES;
-      }
-
-      bitbuf <<= 1;
-      if ((bitbuf & (1 << winsize)) != 0) {
-        /* then multiply */
-        if ((err = mp_mul (&res, &M[1], &res)) != MP_OKAY) {
-          goto LBL_RES;
-        }
-        if ((err = redux (&res, P, &mu)) != MP_OKAY) {
-          goto LBL_RES;
-        }
-      }
-    }
-  }
-
-  mp_exch (&res, Y);
-  err = MP_OKAY;
-LBL_RES:mp_clear (&res);
-LBL_MU:mp_clear (&mu);
-LBL_M:
-  mp_clear(&M[1]);
-  for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
-    mp_clear (&M[x]);
-  }
-  return err;
-}
-
-
-/* pre-calculate the value required for Barrett reduction
- * For a given modulus "b" it calculates the value required in "a"
- */
-int mp_reduce_setup (mp_int * a, mp_int * b)
-{
-  int     res;
-
-  if ((res = mp_2expt (a, b->used * 2 * DIGIT_BIT)) != MP_OKAY) {
-    return res;
-  }
-  return mp_div (a, b, a, NULL);
-}
-
-
-/* reduces x mod m, assumes 0 < x < m**2, mu is
- * precomputed via mp_reduce_setup.
- * From HAC pp.604 Algorithm 14.42
- */
-int mp_reduce (mp_int * x, mp_int * m, mp_int * mu)
-{
-  mp_int  q;
-  int     res, um = m->used;
-
-  /* q = x */
-  if ((res = mp_init_copy (&q, x)) != MP_OKAY) {
-    return res;
-  }
-
-  /* q1 = x / b**(k-1)  */
-  mp_rshd (&q, um - 1);
-
-  /* according to HAC this optimization is ok */
-  if (((mp_word) um) > (((mp_digit)1) << (DIGIT_BIT - 1))) {
-    if ((res = mp_mul (&q, mu, &q)) != MP_OKAY) {
-      goto CLEANUP;
-    }
-  } else {
-#ifdef BN_S_MP_MUL_HIGH_DIGS_C
-    if ((res = s_mp_mul_high_digs (&q, mu, &q, um)) != MP_OKAY) {
-      goto CLEANUP;
-    }
-#elif defined(BN_FAST_S_MP_MUL_HIGH_DIGS_C)
-    if ((res = fast_s_mp_mul_high_digs (&q, mu, &q, um)) != MP_OKAY) {
-      goto CLEANUP;
-    }
-#else
-    {
-      res = MP_VAL;
-      goto CLEANUP;
-    }
-#endif
-  }
-
-  /* q3 = q2 / b**(k+1) */
-  mp_rshd (&q, um + 1);
-
-  /* x = x mod b**(k+1), quick (no division) */
-  if ((res = mp_mod_2d (x, DIGIT_BIT * (um + 1), x)) != MP_OKAY) {
-    goto CLEANUP;
-  }
-
-  /* q = q * m mod b**(k+1), quick (no division) */
-  if ((res = s_mp_mul_digs (&q, m, &q, um + 1)) != MP_OKAY) {
-    goto CLEANUP;
-  }
-
-  /* x = x - q */
-  if ((res = mp_sub (x, &q, x)) != MP_OKAY) {
-    goto CLEANUP;
-  }
-
-  /* If x < 0, add b**(k+1) to it */
-  if (mp_cmp_d (x, 0) == MP_LT) {
-    if ((res = mp_set (&q, 1)) != MP_OKAY)
-        goto CLEANUP;
-    if ((res = mp_lshd (&q, um + 1)) != MP_OKAY)
-      goto CLEANUP;
-    if ((res = mp_add (x, &q, x)) != MP_OKAY)
-      goto CLEANUP;
-  }
-
-  /* Back off if it's too big */
-  while (mp_cmp (x, m) != MP_LT) {
-    if ((res = s_mp_sub (x, m, x)) != MP_OKAY) {
-      goto CLEANUP;
-    }
-  }
-
-CLEANUP:
-  mp_clear (&q);
-
-  return res;
-}
-
-
-/* reduces a modulo n where n is of the form 2**p - d
-   This differs from reduce_2k since "d" can be larger
-   than a single digit.
-*/
-int mp_reduce_2k_l(mp_int *a, mp_int *n, mp_int *d)
-{
-   mp_int q;
-   int    p, res;
-
-   if ((res = mp_init(&q)) != MP_OKAY) {
-      return res;
-   }
-
-   p = mp_count_bits(n);
-top:
-   /* q = a/2**p, a = a mod 2**p */
-   if ((res = mp_div_2d(a, p, &q, a)) != MP_OKAY) {
-      goto ERR;
-   }
-
-   /* q = q * d */
-   if ((res = mp_mul(&q, d, &q)) != MP_OKAY) {
-      goto ERR;
-   }
-
-   /* a = a + q */
-   if ((res = s_mp_add(a, &q, a)) != MP_OKAY) {
-      goto ERR;
-   }
-
-   if (mp_cmp_mag(a, n) != MP_LT) {
-      if ((res = s_mp_sub(a, n, a)) != MP_OKAY) {
-         goto ERR;
-      }
-      goto top;
-   }
-
-ERR:
-   mp_clear(&q);
-   return res;
-}
-
-
-/* determines the setup value */
-int mp_reduce_2k_setup_l(mp_int *a, mp_int *d)
-{
-   int    res;
-   mp_int tmp;
-
-   if ((res = mp_init(&tmp)) != MP_OKAY) {
-      return res;
-   }
-
-   if ((res = mp_2expt(&tmp, mp_count_bits(a))) != MP_OKAY) {
-      goto ERR;
-   }
-
-   if ((res = s_mp_sub(&tmp, a, d)) != MP_OKAY) {
-      goto ERR;
-   }
-
-ERR:
-   mp_clear(&tmp);
-   return res;
-}
-
-
-/* multiplies |a| * |b| and does not compute the lower digs digits
- * [meant to get the higher part of the product]
- */
-int s_mp_mul_high_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
-{
-  mp_int  t;
-  int     res, pa, pb, ix, iy;
-  mp_digit u;
-  mp_word r;
-  mp_digit tmpx, *tmpt, *tmpy;
-
-  /* can we use the fast multiplier? */
-#ifdef BN_FAST_S_MP_MUL_HIGH_DIGS_C
-  if (((a->used + b->used + 1) < MP_WARRAY)
-      && MIN (a->used, b->used) <
-      (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
-    return fast_s_mp_mul_high_digs (a, b, c, digs);
-  }
-#endif
-
-  if ((res = mp_init_size (&t, a->used + b->used + 1)) != MP_OKAY) {
-    return res;
-  }
-  t.used = a->used + b->used + 1;
-
-  pa = a->used;
-  pb = b->used;
-  for (ix = 0; ix < pa && a->dp; ix++) {
-    /* clear the carry */
-    u = 0;
-
-    /* left hand side of A[ix] * B[iy] */
-    tmpx = a->dp[ix];
-
-    /* alias to the address of where the digits will be stored */
-    tmpt = &(t.dp[digs]);
-
-    /* alias for where to read the right hand side from */
-    tmpy = b->dp + (digs - ix);
-
-    for (iy = digs - ix; iy < pb; iy++) {
-      /* calculate the double precision result */
-      r       = ((mp_word)*tmpt) +
-                ((mp_word)tmpx) * ((mp_word)*tmpy++) +
-                ((mp_word) u);
-
-      /* get the lower part */
-      *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK));
-
-      /* carry the carry */
-      u       = (mp_digit) (r >> ((mp_word) DIGIT_BIT));
-    }
-    *tmpt = u;
-  }
-  mp_clamp (&t);
-  mp_exch (&t, c);
-  mp_clear (&t);
-  return MP_OKAY;
-}
-
-
-/* this is a modified version of fast_s_mul_digs that only produces
- * output digits *above* digs.  See the comments for fast_s_mul_digs
- * to see how it works.
- *
- * This is used in the Barrett reduction since for one of the multiplications
- * only the higher digits were needed.  This essentially halves the work.
- *
- * Based on Algorithm 14.12 on pp.595 of HAC.
- */
-int fast_s_mp_mul_high_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
-{
-  int     olduse, res, pa, ix, iz;
-#ifdef WOLFSSL_SMALL_STACK
-  mp_digit* W;    /* uses dynamic memory and slower */
-#else
-  mp_digit W[MP_WARRAY];
-#endif
-  mp_word  _W;
-
-  if (a->dp == NULL) { /* JRB, avoid reading uninitialized values */
-      return MP_VAL;
-  }
-
-  /* grow the destination as required */
-  pa = a->used + b->used;
-  if (c->alloc < pa) {
-    if ((res = mp_grow (c, pa)) != MP_OKAY) {
-      return res;
-    }
-  }
-
-  if (pa > MP_WARRAY)
-    return MP_RANGE;  /* TAO range check */
-
-#ifdef WOLFSSL_SMALL_STACK
-  W = (mp_digit*)XMALLOC(sizeof(mp_digit) * MP_WARRAY, NULL, DYNAMIC_TYPE_BIGINT);
-  if (W == NULL)
-    return MP_MEM;
-#endif
-
-  /* number of output digits to produce */
-  pa = a->used + b->used;
-  _W = 0;
-  for (ix = digs; ix < pa; ix++) { /* JRB, have a->dp check at top of function*/
-      int      tx, ty, iy;
-      mp_digit *tmpx, *tmpy;
-
-      /* get offsets into the two bignums */
-      ty = MIN(b->used-1, ix);
-      tx = ix - ty;
-
-      /* setup temp aliases */
-      tmpx = a->dp + tx;
-      tmpy = b->dp + ty;
-
-      /* this is the number of times the loop will iterate, essentially its
-         while (tx++ < a->used && ty-- >= 0) { ... }
-       */
-      iy = MIN(a->used-tx, ty+1);
-
-      /* execute loop */
-      for (iz = 0; iz < iy; iz++) {
-         _W += ((mp_word)*tmpx++)*((mp_word)*tmpy--);
-      }
-
-      /* store term */
-      W[ix] = (mp_digit)(((mp_digit)_W) & MP_MASK);
-
-      /* make next carry */
-      _W = _W >> ((mp_word)DIGIT_BIT);
-  }
-
-  /* setup dest */
-  olduse  = c->used;
-  c->used = pa;
-
-  {
-    mp_digit *tmpc;
-
-    tmpc = c->dp + digs;
-    for (ix = digs; ix < pa; ix++) {   /* TAO, <= could potentially overwrite */
-      /* now extract the previous digit [below the carry] */
-      *tmpc++ = W[ix];
-    }
-
-    /* clear unused digits [that existed in the old copy of c] */
-    for (; ix < olduse; ix++) {
-      *tmpc++ = 0;
-    }
-  }
-  mp_clamp (c);
-
-#ifdef WOLFSSL_SMALL_STACK
-  XFREE(W, NULL, DYNAMIC_TYPE_BIGINT);
-#endif
-
-  return MP_OKAY;
-}
-
-
-#ifndef MP_SET_CHUNK_BITS
-    #define MP_SET_CHUNK_BITS 4
-#endif
-int mp_set_int (mp_int * a, unsigned long b)
-{
-  int x, res;
-
-  /* use direct mp_set if b is less than mp_digit max */
-  if (b < MP_DIGIT_MAX) {
-    return mp_set (a, (mp_digit)b);
-  }
-
-  mp_zero (a);
-
-  /* set chunk bits at a time */
-  for (x = 0; x < (int)(sizeof(b) * 8) / MP_SET_CHUNK_BITS; x++) {
-    /* shift the number up chunk bits */
-    if ((res = mp_mul_2d (a, MP_SET_CHUNK_BITS, a)) != MP_OKAY) {
-      return res;
-    }
-
-    /* OR in the top bits of the source */
-    a->dp[0] |= (b >> ((sizeof(b) * 8) - MP_SET_CHUNK_BITS)) &
-                                  ((1 << MP_SET_CHUNK_BITS) - 1);
-
-    /* shift the source up to the next chunk bits */
-    b <<= MP_SET_CHUNK_BITS;
-
-    /* ensure that digits are not clamped off */
-    a->used += 1;
-  }
-  mp_clamp (a);
-  return MP_OKAY;
-}
-
-
-#if defined(WOLFSSL_KEY_GEN) || defined(HAVE_ECC)
-
-/* c = a * a (mod b) */
-int mp_sqrmod (mp_int * a, mp_int * b, mp_int * c)
-{
-  int     res;
-  mp_int  t;
-
-  if ((res = mp_init (&t)) != MP_OKAY) {
-    return res;
-  }
-
-  if ((res = mp_sqr (a, &t)) != MP_OKAY) {
-    mp_clear (&t);
-    return res;
-  }
-  res = mp_mod (&t, b, c);
-  mp_clear (&t);
-  return res;
-}
-
-#endif
-
-
-#if defined(HAVE_ECC) || !defined(NO_PWDBASED) || defined(WOLFSSL_SNIFFER) || \
-    defined(WOLFSSL_HAVE_WOLFSCEP) || defined(WOLFSSL_KEY_GEN) || \
-    defined(OPENSSL_EXTRA) || defined(WC_RSA_BLINDING)
-
-/* single digit addition */
-int mp_add_d (mp_int* a, mp_digit b, mp_int* c)
-{
-  int     res, ix, oldused;
-  mp_digit *tmpa, *tmpc, mu;
-
-  /* grow c as required */
-  if (c->alloc < a->used + 1) {
-     if ((res = mp_grow(c, a->used + 1)) != MP_OKAY) {
-        return res;
-     }
-  }
-
-  /* if a is negative and |a| >= b, call c = |a| - b */
-  if (a->sign == MP_NEG && (a->used > 1 || a->dp[0] >= b)) {
-     /* temporarily fix sign of a */
-     a->sign = MP_ZPOS;
-
-     /* c = |a| - b */
-     res = mp_sub_d(a, b, c);
-
-     /* fix sign  */
-     a->sign = c->sign = MP_NEG;
-
-     /* clamp */
-     mp_clamp(c);
-
-     return res;
-  }
-
-  /* old number of used digits in c */
-  oldused = c->used;
-
-  /* sign always positive */
-  c->sign = MP_ZPOS;
-
-  /* source alias */
-  tmpa    = a->dp;
-
-  /* destination alias */
-  tmpc    = c->dp;
-
-  /* if a is positive */
-  if (a->sign == MP_ZPOS) {
-     /* add digit, after this we're propagating
-      * the carry.
-      */
-     *tmpc   = *tmpa++ + b;
-     mu      = *tmpc >> DIGIT_BIT;
-     *tmpc++ &= MP_MASK;
-
-     /* now handle rest of the digits */
-     for (ix = 1; ix < a->used; ix++) {
-        *tmpc   = *tmpa++ + mu;
-        mu      = *tmpc >> DIGIT_BIT;
-        *tmpc++ &= MP_MASK;
-     }
-     /* set final carry */
-     if (ix < c->alloc) {
-        ix++;
-        *tmpc++  = mu;
-     }
-
-     /* setup size */
-     c->used = a->used + 1;
-  } else {
-     /* a was negative and |a| < b */
-     c->used  = 1;
-
-     /* the result is a single digit */
-     if (a->used == 1) {
-        *tmpc++  =  b - a->dp[0];
-     } else {
-        *tmpc++  =  b;
-     }
-
-     /* setup count so the clearing of oldused
-      * can fall through correctly
-      */
-     ix       = 1;
-  }
-
-  /* now zero to oldused */
-  while (ix++ < oldused) {
-     *tmpc++ = 0;
-  }
-  mp_clamp(c);
-
-  return MP_OKAY;
-}
-
-
-/* single digit subtraction */
-int mp_sub_d (mp_int * a, mp_digit b, mp_int * c)
-{
-  mp_digit *tmpa, *tmpc, mu;
-  int       res, ix, oldused;
-
-  /* grow c as required */
-  if (c->alloc < a->used + 1) {
-     if ((res = mp_grow(c, a->used + 1)) != MP_OKAY) {
-        return res;
-     }
-  }
-
-  /* if a is negative just do an unsigned
-   * addition [with fudged signs]
-   */
-  if (a->sign == MP_NEG) {
-     a->sign = MP_ZPOS;
-     res     = mp_add_d(a, b, c);
-     a->sign = c->sign = MP_NEG;
-
-     /* clamp */
-     mp_clamp(c);
-
-     return res;
-  }
-
-  /* setup regs */
-  oldused = c->used;
-  tmpa    = a->dp;
-  tmpc    = c->dp;
-
-  /* if a <= b simply fix the single digit */
-  if ((a->used == 1 && a->dp[0] <= b) || a->used == 0) {
-     if (a->used == 1) {
-        *tmpc++ = b - *tmpa;
-     } else {
-        *tmpc++ = b;
-     }
-     ix      = 1;
-
-     /* negative/1digit */
-     c->sign = MP_NEG;
-     c->used = 1;
-  } else {
-     /* positive/size */
-     c->sign = MP_ZPOS;
-     c->used = a->used;
-
-     /* subtract first digit */
-     *tmpc    = *tmpa++ - b;
-     mu       = *tmpc >> (sizeof(mp_digit) * CHAR_BIT - 1);
-     *tmpc++ &= MP_MASK;
-
-     /* handle rest of the digits */
-     for (ix = 1; ix < a->used; ix++) {
-        *tmpc    = *tmpa++ - mu;
-        mu       = *tmpc >> (sizeof(mp_digit) * CHAR_BIT - 1);
-        *tmpc++ &= MP_MASK;
-     }
-  }
-
-  /* zero excess digits */
-  while (ix++ < oldused) {
-     *tmpc++ = 0;
-  }
-  mp_clamp(c);
-  return MP_OKAY;
-}
-
-#endif /* defined(HAVE_ECC) || !defined(NO_PWDBASED) */
-
-
-#if defined(WOLFSSL_KEY_GEN) || defined(HAVE_COMP_KEY) || defined(HAVE_ECC) || \
-    defined(DEBUG_WOLFSSL)
-
-static const int lnz[16] = {
-   4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0
-};
-
-/* Counts the number of lsbs which are zero before the first zero bit */
-int mp_cnt_lsb(mp_int *a)
-{
-    int x;
-    mp_digit q = 0, qq;
-
-    /* easy out */
-    if (mp_iszero(a) == MP_YES) {
-        return 0;
-    }
-
-    /* scan lower digits until non-zero */
-    for (x = 0; x < a->used && a->dp[x] == 0; x++) {}
-    if (a->dp)
-        q = a->dp[x];
-    x *= DIGIT_BIT;
-
-    /* now scan this digit until a 1 is found */
-    if ((q & 1) == 0) {
-        do {
-            qq  = q & 15;
-            x  += lnz[qq];
-            q >>= 4;
-        } while (qq == 0);
-    }
-    return x;
-}
-
-
-
-
-static int s_is_power_of_two(mp_digit b, int *p)
-{
-   int x;
-
-   /* fast return if no power of two */
-   if ((b==0) || (b & (b-1))) {
-      return 0;
-   }
-
-   for (x = 0; x < DIGIT_BIT; x++) {
-      if (b == (((mp_digit)1)<<x)) {
-         *p = x;
-         return 1;
-      }
-   }
-   return 0;
-}
-
-/* single digit division (based on routine from MPI) */
-static int mp_div_d (mp_int * a, mp_digit b, mp_int * c, mp_digit * d)
-{
-  mp_int  q;
-  mp_word w;
-  mp_digit t;
-  int     res = MP_OKAY, ix;
-
-  /* cannot divide by zero */
-  if (b == 0) {
-     return MP_VAL;
-  }
-
-  /* quick outs */
-  if (b == 1 || mp_iszero(a) == MP_YES) {
-     if (d != NULL) {
-        *d = 0;
-     }
-     if (c != NULL) {
-        return mp_copy(a, c);
-     }
-     return MP_OKAY;
-  }
-
-  /* power of two ? */
-  if (s_is_power_of_two(b, &ix) == 1) {
-     if (d != NULL) {
-        *d = a->dp[0] & ((((mp_digit)1)<<ix) - 1);
-     }
-     if (c != NULL) {
-        return mp_div_2d(a, ix, c, NULL);
-     }
-     return MP_OKAY;
-  }
-
-#ifdef BN_MP_DIV_3_C
-  /* three? */
-  if (b == 3) {
-     return mp_div_3(a, c, d);
-  }
-#endif
-
-  /* no easy answer [c'est la vie].  Just division */
-  if (c != NULL) {
-      if ((res = mp_init_size(&q, a->used)) != MP_OKAY) {
-         return res;
-      }
-
-      q.used = a->used;
-      q.sign = a->sign;
-  }
-  else {
-      if ((res = mp_init(&q)) != MP_OKAY) {
-         return res;
-      }
-  }
-
-
-  w = 0;
-  for (ix = a->used - 1; ix >= 0; ix--) {
-     w = (w << ((mp_word)DIGIT_BIT)) | ((mp_word)a->dp[ix]);
-
-     if (w >= b) {
-        t = (mp_digit)(w / b);
-        w -= ((mp_word)t) * ((mp_word)b);
-      } else {
-        t = 0;
-      }
-      if (c != NULL)
-        q.dp[ix] = (mp_digit)t;
-  }
-
-  if (d != NULL) {
-     *d = (mp_digit)w;
-  }
-
-  if (c != NULL) {
-     mp_clamp(&q);
-     mp_exch(&q, c);
-  }
-  mp_clear(&q);
-
-  return res;
-}
-
-
-int mp_mod_d (mp_int * a, mp_digit b, mp_digit * c)
-{
-  return mp_div_d(a, b, NULL, c);
-}
-
-#endif /* WOLFSSL_KEY_GEN || HAVE_COMP_KEY || HAVE_ECC || DEBUG_WOLFSSL */
-
-#ifdef WOLFSSL_KEY_GEN
-
-const mp_digit ltm_prime_tab[PRIME_SIZE] = {
-  0x0002, 0x0003, 0x0005, 0x0007, 0x000B, 0x000D, 0x0011, 0x0013,
-  0x0017, 0x001D, 0x001F, 0x0025, 0x0029, 0x002B, 0x002F, 0x0035,
-  0x003B, 0x003D, 0x0043, 0x0047, 0x0049, 0x004F, 0x0053, 0x0059,
-  0x0061, 0x0065, 0x0067, 0x006B, 0x006D, 0x0071, 0x007F,
-#ifndef MP_8BIT
-  0x0083,
-  0x0089, 0x008B, 0x0095, 0x0097, 0x009D, 0x00A3, 0x00A7, 0x00AD,
-  0x00B3, 0x00B5, 0x00BF, 0x00C1, 0x00C5, 0x00C7, 0x00D3, 0x00DF,
-  0x00E3, 0x00E5, 0x00E9, 0x00EF, 0x00F1, 0x00FB, 0x0101, 0x0107,
-  0x010D, 0x010F, 0x0115, 0x0119, 0x011B, 0x0125, 0x0133, 0x0137,
-
-  0x0139, 0x013D, 0x014B, 0x0151, 0x015B, 0x015D, 0x0161, 0x0167,
-  0x016F, 0x0175, 0x017B, 0x017F, 0x0185, 0x018D, 0x0191, 0x0199,
-  0x01A3, 0x01A5, 0x01AF, 0x01B1, 0x01B7, 0x01BB, 0x01C1, 0x01C9,
-  0x01CD, 0x01CF, 0x01D3, 0x01DF, 0x01E7, 0x01EB, 0x01F3, 0x01F7,
-  0x01FD, 0x0209, 0x020B, 0x021D, 0x0223, 0x022D, 0x0233, 0x0239,
-  0x023B, 0x0241, 0x024B, 0x0251, 0x0257, 0x0259, 0x025F, 0x0265,
-  0x0269, 0x026B, 0x0277, 0x0281, 0x0283, 0x0287, 0x028D, 0x0293,
-  0x0295, 0x02A1, 0x02A5, 0x02AB, 0x02B3, 0x02BD, 0x02C5, 0x02CF,
-
-  0x02D7, 0x02DD, 0x02E3, 0x02E7, 0x02EF, 0x02F5, 0x02F9, 0x0301,
-  0x0305, 0x0313, 0x031D, 0x0329, 0x032B, 0x0335, 0x0337, 0x033B,
-  0x033D, 0x0347, 0x0355, 0x0359, 0x035B, 0x035F, 0x036D, 0x0371,
-  0x0373, 0x0377, 0x038B, 0x038F, 0x0397, 0x03A1, 0x03A9, 0x03AD,
-  0x03B3, 0x03B9, 0x03C7, 0x03CB, 0x03D1, 0x03D7, 0x03DF, 0x03E5,
-  0x03F1, 0x03F5, 0x03FB, 0x03FD, 0x0407, 0x0409, 0x040F, 0x0419,
-  0x041B, 0x0425, 0x0427, 0x042D, 0x043F, 0x0443, 0x0445, 0x0449,
-  0x044F, 0x0455, 0x045D, 0x0463, 0x0469, 0x047F, 0x0481, 0x048B,
-
-  0x0493, 0x049D, 0x04A3, 0x04A9, 0x04B1, 0x04BD, 0x04C1, 0x04C7,
-  0x04CD, 0x04CF, 0x04D5, 0x04E1, 0x04EB, 0x04FD, 0x04FF, 0x0503,
-  0x0509, 0x050B, 0x0511, 0x0515, 0x0517, 0x051B, 0x0527, 0x0529,
-  0x052F, 0x0551, 0x0557, 0x055D, 0x0565, 0x0577, 0x0581, 0x058F,
-  0x0593, 0x0595, 0x0599, 0x059F, 0x05A7, 0x05AB, 0x05AD, 0x05B3,
-  0x05BF, 0x05C9, 0x05CB, 0x05CF, 0x05D1, 0x05D5, 0x05DB, 0x05E7,
-  0x05F3, 0x05FB, 0x0607, 0x060D, 0x0611, 0x0617, 0x061F, 0x0623,
-  0x062B, 0x062F, 0x063D, 0x0641, 0x0647, 0x0649, 0x064D, 0x0653
-#endif
-};
-
-
-/* Miller-Rabin test of "a" to the base of "b" as described in
- * HAC pp. 139 Algorithm 4.24
- *
- * Sets result to 0 if definitely composite or 1 if probably prime.
- * Randomly the chance of error is no more than 1/4 and often
- * very much lower.
- */
-static int mp_prime_miller_rabin (mp_int * a, mp_int * b, int *result)
-{
-  mp_int  n1, y, r;
-  int     s, j, err;
-
-  /* default */
-  *result = MP_NO;
-
-  /* ensure b > 1 */
-  if (mp_cmp_d(b, 1) != MP_GT) {
-     return MP_VAL;
-  }
-
-  /* get n1 = a - 1 */
-  if ((err = mp_init_copy (&n1, a)) != MP_OKAY) {
-    return err;
-  }
-  if ((err = mp_sub_d (&n1, 1, &n1)) != MP_OKAY) {
-    goto LBL_N1;
-  }
-
-  /* set 2**s * r = n1 */
-  if ((err = mp_init_copy (&r, &n1)) != MP_OKAY) {
-    goto LBL_N1;
-  }
-
-  /* count the number of least significant bits
-   * which are zero
-   */
-  s = mp_cnt_lsb(&r);
-
-  /* now divide n - 1 by 2**s */
-  if ((err = mp_div_2d (&r, s, &r, NULL)) != MP_OKAY) {
-    goto LBL_R;
-  }
-
-  /* compute y = b**r mod a */
-  if ((err = mp_init (&y)) != MP_OKAY) {
-    goto LBL_R;
-  }
-  if ((err = mp_exptmod (b, &r, a, &y)) != MP_OKAY) {
-    goto LBL_Y;
-  }
-
-  /* if y != 1 and y != n1 do */
-  if (mp_cmp_d (&y, 1) != MP_EQ && mp_cmp (&y, &n1) != MP_EQ) {
-    j = 1;
-    /* while j <= s-1 and y != n1 */
-    while ((j <= (s - 1)) && mp_cmp (&y, &n1) != MP_EQ) {
-      if ((err = mp_sqrmod (&y, a, &y)) != MP_OKAY) {
-         goto LBL_Y;
-      }
-
-      /* if y == 1 then composite */
-      if (mp_cmp_d (&y, 1) == MP_EQ) {
-         goto LBL_Y;
-      }
-
-      ++j;
-    }
-
-    /* if y != n1 then composite */
-    if (mp_cmp (&y, &n1) != MP_EQ) {
-      goto LBL_Y;
-    }
-  }
-
-  /* probably prime now */
-  *result = MP_YES;
-LBL_Y:mp_clear (&y);
-LBL_R:mp_clear (&r);
-LBL_N1:mp_clear (&n1);
-  return err;
-}
-
-
-/* determines if an integers is divisible by one
- * of the first PRIME_SIZE primes or not
- *
- * sets result to 0 if not, 1 if yes
- */
-static int mp_prime_is_divisible (mp_int * a, int *result)
-{
-  int     err, ix;
-  mp_digit res;
-
-  /* default to not */
-  *result = MP_NO;
-
-  for (ix = 0; ix < PRIME_SIZE; ix++) {
-    /* what is a mod LBL_prime_tab[ix] */
-    if ((err = mp_mod_d (a, ltm_prime_tab[ix], &res)) != MP_OKAY) {
-      return err;
-    }
-
-    /* is the residue zero? */
-    if (res == 0) {
-      *result = MP_YES;
-      return MP_OKAY;
-    }
-  }
-
-  return MP_OKAY;
-}
-
-static const int USE_BBS = 1;
-
-int mp_rand_prime(mp_int* N, int len, WC_RNG* rng, void* heap)
-{
-    int   err, res, type;
-    byte* buf;
-
-    if (N == NULL || rng == NULL)
-        return MP_VAL;
-
-    /* get type */
-    if (len < 0) {
-        type = USE_BBS;
-        len = -len;
-    } else {
-        type = 0;
-    }
-
-    /* allow sizes between 2 and 512 bytes for a prime size */
-    if (len < 2 || len > 512) {
-        return MP_VAL;
-    }
-
-    /* allocate buffer to work with */
-    buf = (byte*)XMALLOC(len, heap, DYNAMIC_TYPE_RSA);
-    if (buf == NULL) {
-        return MP_MEM;
-    }
-    XMEMSET(buf, 0, len);
-
-    do {
-#ifdef SHOW_GEN
-        printf(".");
-        fflush(stdout);
-#endif
-        /* generate value */
-        err = wc_RNG_GenerateBlock(rng, buf, len);
-        if (err != 0) {
-            XFREE(buf, heap, DYNAMIC_TYPE_RSA);
-            return err;
-        }
-
-        /* munge bits */
-        buf[0]     |= 0x80 | 0x40;
-        buf[len-1] |= 0x01 | ((type & USE_BBS) ? 0x02 : 0x00);
-
-        /* load value */
-        if ((err = mp_read_unsigned_bin(N, buf, len)) != MP_OKAY) {
-            XFREE(buf, heap, DYNAMIC_TYPE_RSA);
-            return err;
-        }
-
-        /* test */
-        if ((err = mp_prime_is_prime(N, 8, &res)) != MP_OKAY) {
-            XFREE(buf, heap, DYNAMIC_TYPE_RSA);
-            return err;
-        }
-    } while (res == MP_NO);
-
-    XMEMSET(buf, 0, len);
-    XFREE(buf, heap, DYNAMIC_TYPE_RSA);
-
-    return MP_OKAY;
-}
-
-/*
- * Sets result to 1 if probably prime, 0 otherwise
- */
-int mp_prime_is_prime (mp_int * a, int t, int *result)
-{
-  mp_int  b;
-  int     ix, err, res;
-
-  /* default to no */
-  *result = MP_NO;
-
-  /* valid value of t? */
-  if (t <= 0 || t > PRIME_SIZE) {
-    return MP_VAL;
-  }
-
-  /* is the input equal to one of the primes in the table? */
-  for (ix = 0; ix < PRIME_SIZE; ix++) {
-      if (mp_cmp_d(a, ltm_prime_tab[ix]) == MP_EQ) {
-         *result = 1;
-         return MP_OKAY;
-      }
-  }
-
-  /* first perform trial division */
-  if ((err = mp_prime_is_divisible (a, &res)) != MP_OKAY) {
-    return err;
-  }
-
-  /* return if it was trivially divisible */
-  if (res == MP_YES) {
-    return MP_OKAY;
-  }
-
-  /* now perform the miller-rabin rounds */
-  if ((err = mp_init (&b)) != MP_OKAY) {
-    return err;
-  }
-
-  for (ix = 0; ix < t; ix++) {
-    /* set the prime */
-    if ((err = mp_set (&b, ltm_prime_tab[ix])) != MP_OKAY) {
-        goto LBL_B;
-    }
-
-    if ((err = mp_prime_miller_rabin (a, &b, &res)) != MP_OKAY) {
-      goto LBL_B;
-    }
-
-    if (res == MP_NO) {
-      goto LBL_B;
-    }
-  }
-
-  /* passed the test */
-  *result = MP_YES;
-LBL_B:mp_clear (&b);
-  return err;
-}
-
-
-/* computes least common multiple as |a*b|/(a, b) */
-int mp_lcm (mp_int * a, mp_int * b, mp_int * c)
-{
-  int     res;
-  mp_int  t1, t2;
-
-
-  if ((res = mp_init_multi (&t1, &t2, NULL, NULL, NULL, NULL)) != MP_OKAY) {
-    return res;
-  }
-
-  /* t1 = get the GCD of the two inputs */
-  if ((res = mp_gcd (a, b, &t1)) != MP_OKAY) {
-    goto LBL_T;
-  }
-
-  /* divide the smallest by the GCD */
-  if (mp_cmp_mag(a, b) == MP_LT) {
-     /* store quotient in t2 such that t2 * b is the LCM */
-     if ((res = mp_div(a, &t1, &t2, NULL)) != MP_OKAY) {
-        goto LBL_T;
-     }
-     res = mp_mul(b, &t2, c);
-  } else {
-     /* store quotient in t2 such that t2 * a is the LCM */
-     if ((res = mp_div(b, &t1, &t2, NULL)) != MP_OKAY) {
-        goto LBL_T;
-     }
-     res = mp_mul(a, &t2, c);
-  }
-
-  /* fix the sign to positive */
-  c->sign = MP_ZPOS;
-
-LBL_T:
-  mp_clear(&t1);
-  mp_clear(&t2);
-  return res;
-}
-
-
-
-/* Greatest Common Divisor using the binary method */
-int mp_gcd (mp_int * a, mp_int * b, mp_int * c)
-{
-    mp_int  u, v;
-    int     k, u_lsb, v_lsb, res;
-
-    /* either zero than gcd is the largest */
-    if (mp_iszero (a) == MP_YES) {
-        return mp_abs (b, c);
-    }
-    if (mp_iszero (b) == MP_YES) {
-        return mp_abs (a, c);
-    }
-
-    /* get copies of a and b we can modify */
-    if ((res = mp_init_copy (&u, a)) != MP_OKAY) {
-        return res;
-    }
-
-    if ((res = mp_init_copy (&v, b)) != MP_OKAY) {
-        goto LBL_U;
-    }
-
-    /* must be positive for the remainder of the algorithm */
-    u.sign = v.sign = MP_ZPOS;
-
-    /* B1.  Find the common power of two for u and v */
-    u_lsb = mp_cnt_lsb(&u);
-    v_lsb = mp_cnt_lsb(&v);
-    k     = MIN(u_lsb, v_lsb);
-
-    if (k > 0) {
-        /* divide the power of two out */
-        if ((res = mp_div_2d(&u, k, &u, NULL)) != MP_OKAY) {
-            goto LBL_V;
-        }
-
-        if ((res = mp_div_2d(&v, k, &v, NULL)) != MP_OKAY) {
-            goto LBL_V;
-        }
-    }
-
-    /* divide any remaining factors of two out */
-    if (u_lsb != k) {
-        if ((res = mp_div_2d(&u, u_lsb - k, &u, NULL)) != MP_OKAY) {
-            goto LBL_V;
-        }
-    }
-
-    if (v_lsb != k) {
-        if ((res = mp_div_2d(&v, v_lsb - k, &v, NULL)) != MP_OKAY) {
-            goto LBL_V;
-        }
-    }
-
-    while (mp_iszero(&v) == MP_NO) {
-        /* make sure v is the largest */
-        if (mp_cmp_mag(&u, &v) == MP_GT) {
-            /* swap u and v to make sure v is >= u */
-            mp_exch(&u, &v);
-        }
-
-        /* subtract smallest from largest */
-        if ((res = s_mp_sub(&v, &u, &v)) != MP_OKAY) {
-            goto LBL_V;
-        }
-
-        /* Divide out all factors of two */
-        if ((res = mp_div_2d(&v, mp_cnt_lsb(&v), &v, NULL)) != MP_OKAY) {
-            goto LBL_V;
-        }
-    }
-
-    /* multiply by 2**k which we divided out at the beginning */
-    if ((res = mp_mul_2d (&u, k, c)) != MP_OKAY) {
-        goto LBL_V;
-    }
-    c->sign = MP_ZPOS;
-    res = MP_OKAY;
-LBL_V:mp_clear (&u);
-LBL_U:mp_clear (&v);
-    return res;
-}
-
-#endif /* WOLFSSL_KEY_GEN */
-
-
-#if !defined(NO_DSA) || defined(HAVE_ECC) || defined(WOLFSSL_KEY_GEN) || \
-    defined(HAVE_COMP_KEY) || defined(WOLFSSL_DEBUG_MATH) || \
-    defined(DEBUG_WOLFSSL)
-
-/* chars used in radix conversions */
-const char *mp_s_rmap = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ\
-                         abcdefghijklmnopqrstuvwxyz+/";
-#endif
-
-#if !defined(NO_DSA) || defined(HAVE_ECC)
-/* read a string [ASCII] in a given radix */
-int mp_read_radix (mp_int * a, const char *str, int radix)
-{
-  int     y, res, neg;
-  char    ch;
-
-  /* zero the digit bignum */
-  mp_zero(a);
-
-  /* make sure the radix is ok */
-  if (radix < MP_RADIX_BIN || radix > MP_RADIX_MAX) {
-    return MP_VAL;
-  }
-
-  /* if the leading digit is a
-   * minus set the sign to negative.
-   */
-  if (*str == '-') {
-    ++str;
-    neg = MP_NEG;
-  } else {
-    neg = MP_ZPOS;
-  }
-
-  /* set the integer to the default of zero */
-  mp_zero (a);
-
-  /* process each digit of the string */
-  while (*str != '\0') {
-    /* if the radix <= 36 the conversion is case insensitive
-     * this allows numbers like 1AB and 1ab to represent the same  value
-     * [e.g. in hex]
-     */
-    ch = (radix <= 36) ? (char)XTOUPPER((unsigned char)*str) : *str;
-    for (y = 0; y < 64; y++) {
-      if (ch == mp_s_rmap[y]) {
-         break;
-      }
-    }
-
-    /* if the char was found in the map
-     * and is less than the given radix add it
-     * to the number, otherwise exit the loop.
-     */
-    if (y < radix) {
-      if ((res = mp_mul_d (a, (mp_digit) radix, a)) != MP_OKAY) {
-         return res;
-      }
-      if ((res = mp_add_d (a, (mp_digit) y, a)) != MP_OKAY) {
-         return res;
-      }
-    } else {
-      break;
-    }
-    ++str;
-  }
-
-  /* if digit in isn't null term, then invalid character was found */
-  if (*str != '\0') {
-     mp_zero (a);
-     return MP_VAL;
-  }
-
-  /* set the sign only if a != 0 */
-  if (mp_iszero(a) != MP_YES) {
-     a->sign = neg;
-  }
-  return MP_OKAY;
-}
-#endif /* !defined(NO_DSA) || defined(HAVE_ECC) */
-
-#if defined(WOLFSSL_KEY_GEN) || defined(HAVE_COMP_KEY) || \
-    defined(WOLFSSL_DEBUG_MATH) || defined(DEBUG_WOLFSSL) || \
-    defined(WOLFSSL_PUBLIC_MP)
-
-/* returns size of ASCII representation */
-int mp_radix_size (mp_int *a, int radix, int *size)
-{
-    int     res, digs;
-    mp_int  t;
-    mp_digit d;
-
-    *size = 0;
-
-    /* special case for binary */
-    if (radix == MP_RADIX_BIN) {
-        *size = mp_count_bits (a) + (a->sign == MP_NEG ? 1 : 0) + 1;
-        return MP_OKAY;
-    }
-
-    /* make sure the radix is in range */
-    if (radix < MP_RADIX_BIN || radix > MP_RADIX_MAX) {
-        return MP_VAL;
-    }
-
-    if (mp_iszero(a) == MP_YES) {
-        *size = 2;
-        return MP_OKAY;
-    }
-
-    /* digs is the digit count */
-    digs = 0;
-
-    /* if it's negative add one for the sign */
-    if (a->sign == MP_NEG) {
-        ++digs;
-    }
-
-    /* init a copy of the input */
-    if ((res = mp_init_copy (&t, a)) != MP_OKAY) {
-        return res;
-    }
-
-    /* force temp to positive */
-    t.sign = MP_ZPOS;
-
-    /* fetch out all of the digits */
-    while (mp_iszero (&t) == MP_NO) {
-        if ((res = mp_div_d (&t, (mp_digit) radix, &t, &d)) != MP_OKAY) {
-            mp_clear (&t);
-            return res;
-        }
-        ++digs;
-    }
-    mp_clear (&t);
-
-    /* return digs + 1, the 1 is for the NULL byte that would be required. */
-    *size = digs + 1;
-    return MP_OKAY;
-}
-
-/* stores a bignum as a ASCII string in a given radix (2..64) */
-int mp_toradix (mp_int *a, char *str, int radix)
-{
-    int     res, digs;
-    mp_int  t;
-    mp_digit d;
-    char   *_s = str;
-
-    /* check range of the radix */
-    if (radix < MP_RADIX_BIN || radix > MP_RADIX_MAX) {
-        return MP_VAL;
-    }
-
-    /* quick out if its zero */
-    if (mp_iszero(a) == MP_YES) {
-        *str++ = '0';
-        *str = '\0';
-        return MP_OKAY;
-    }
-
-    if ((res = mp_init_copy (&t, a)) != MP_OKAY) {
-        return res;
-    }
-
-    /* if it is negative output a - */
-    if (t.sign == MP_NEG) {
-        ++_s;
-        *str++ = '-';
-        t.sign = MP_ZPOS;
-    }
-
-    digs = 0;
-    while (mp_iszero (&t) == MP_NO) {
-        if ((res = mp_div_d (&t, (mp_digit) radix, &t, &d)) != MP_OKAY) {
-            mp_clear (&t);
-            return res;
-        }
-        *str++ = mp_s_rmap[d];
-        ++digs;
-    }
-
-    /* reverse the digits of the string.  In this case _s points
-     * to the first digit [excluding the sign] of the number]
-     */
-    bn_reverse ((unsigned char *)_s, digs);
-
-    /* append a NULL so the string is properly terminated */
-    *str = '\0';
-
-    mp_clear (&t);
-    return MP_OKAY;
-}
-
-#ifdef WOLFSSL_DEBUG_MATH
-void mp_dump(const char* desc, mp_int* a, byte verbose)
-{
-  char *buffer;
-  int size = a->alloc;
-
-  buffer = (char*)XMALLOC(size * sizeof(mp_digit) * 2, NULL, DYNAMIC_TYPE_TMP_BUFFER);
-  if (buffer == NULL) {
-    return;
-  }
-
-  printf("%s: ptr=%p, used=%d, sign=%d, size=%d, mpd=%d\n",
-    desc, a, a->used, a->sign, size, (int)sizeof(mp_digit));
-
-  mp_tohex(a, buffer);
-  printf("  %s\n  ", buffer);
-
-  if (verbose) {
-    int i;
-    for(i=0; i<a->alloc * (int)sizeof(mp_digit); i++) {
-      printf("%02x ", *(((byte*)a->dp) + i));
-    }
-    printf("\n");
-  }
-
-  XFREE(buffer, NULL, DYNAMIC_TYPE_TMP_BUFFER);
-}
-#endif /* WOLFSSL_DEBUG_MATH */
-
-#endif /* defined(WOLFSSL_KEY_GEN) || defined(HAVE_COMP_KEY) || defined(WOLFSSL_DEBUG_MATH) */
-
-#endif /* WOLFSSL_SP_MATH */
-
-#endif /* USE_FAST_MATH */
-
-#endif /* NO_BIG_INT */
-
-