Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Diff: wolfcrypt/src/hc128.c
- Revision:
- 17:ff9d1e86ad5f
- Parent:
- 16:048e5e270a58
--- a/wolfcrypt/src/hc128.c Tue Nov 19 14:32:16 2019 +0000 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,431 +0,0 @@ -/* hc128.c - * - * Copyright (C) 2006-2017 wolfSSL Inc. - * - * This file is part of wolfSSL. - * - * wolfSSL is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License as published by - * the Free Software Foundation; either version 2 of the License, or - * (at your option) any later version. - * - * wolfSSL is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - * GNU General Public License for more details. - * - * You should have received a copy of the GNU General Public License - * along with this program; if not, write to the Free Software - * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335, USA - */ - - -#ifdef HAVE_CONFIG_H - #include <config.h> -#endif - -#include <wolfssl/wolfcrypt/settings.h> - -#ifdef HAVE_HC128 - -#include <wolfssl/wolfcrypt/hc128.h> -#include <wolfssl/wolfcrypt/error-crypt.h> -#include <wolfssl/wolfcrypt/logging.h> -#ifdef NO_INLINE - #include <wolfssl/wolfcrypt/hc128.h> - #include <wolfssl/wolfcrypt/misc.h> -#else - #define WOLFSSL_MISC_INCLUDED - #include <wolfcrypt/src/misc.c> -#endif - - -#ifdef BIG_ENDIAN_ORDER - #define LITTLE32(x) ByteReverseWord32(x) -#else - #define LITTLE32(x) (x) -#endif - - -/*h1 function*/ -#define h1(ctx, x, y) { \ - byte a,c; \ - a = (byte) (x); \ - c = (byte) ((x) >> 16); \ - y = (ctx->T[512+a])+(ctx->T[512+256+c]); \ -} - -/*h2 function*/ -#define h2(ctx, x, y) { \ - byte a,c; \ - a = (byte) (x); \ - c = (byte) ((x) >> 16); \ - y = (ctx->T[a])+(ctx->T[256+c]); \ -} - -/*one step of HC-128, update P and generate 32 bits keystream*/ -#define step_P(ctx,u,v,a,b,c,d,n){ \ - word32 tem0,tem1,tem2,tem3; \ - h1((ctx),(ctx->X[(d)]),tem3); \ - tem0 = rotrFixed((ctx->T[(v)]),23); \ - tem1 = rotrFixed((ctx->X[(c)]),10); \ - tem2 = rotrFixed((ctx->X[(b)]),8); \ - (ctx->T[(u)]) += tem2+(tem0 ^ tem1); \ - (ctx->X[(a)]) = (ctx->T[(u)]); \ - (n) = tem3 ^ (ctx->T[(u)]) ; \ -} - -/*one step of HC-128, update Q and generate 32 bits keystream*/ -#define step_Q(ctx,u,v,a,b,c,d,n){ \ - word32 tem0,tem1,tem2,tem3; \ - h2((ctx),(ctx->Y[(d)]),tem3); \ - tem0 = rotrFixed((ctx->T[(v)]),(32-23)); \ - tem1 = rotrFixed((ctx->Y[(c)]),(32-10)); \ - tem2 = rotrFixed((ctx->Y[(b)]),(32-8)); \ - (ctx->T[(u)]) += tem2 + (tem0 ^ tem1); \ - (ctx->Y[(a)]) = (ctx->T[(u)]); \ - (n) = tem3 ^ (ctx->T[(u)]) ; \ -} - -/*16 steps of HC-128, generate 512 bits keystream*/ -static void generate_keystream(HC128* ctx, word32* keystream) -{ - word32 cc,dd; - cc = ctx->counter1024 & 0x1ff; - dd = (cc+16)&0x1ff; - - if (ctx->counter1024 < 512) - { - ctx->counter1024 = (ctx->counter1024 + 16) & 0x3ff; - step_P(ctx, cc+0, cc+1, 0, 6, 13,4, keystream[0]); - step_P(ctx, cc+1, cc+2, 1, 7, 14,5, keystream[1]); - step_P(ctx, cc+2, cc+3, 2, 8, 15,6, keystream[2]); - step_P(ctx, cc+3, cc+4, 3, 9, 0, 7, keystream[3]); - step_P(ctx, cc+4, cc+5, 4, 10,1, 8, keystream[4]); - step_P(ctx, cc+5, cc+6, 5, 11,2, 9, keystream[5]); - step_P(ctx, cc+6, cc+7, 6, 12,3, 10,keystream[6]); - step_P(ctx, cc+7, cc+8, 7, 13,4, 11,keystream[7]); - step_P(ctx, cc+8, cc+9, 8, 14,5, 12,keystream[8]); - step_P(ctx, cc+9, cc+10,9, 15,6, 13,keystream[9]); - step_P(ctx, cc+10,cc+11,10,0, 7, 14,keystream[10]); - step_P(ctx, cc+11,cc+12,11,1, 8, 15,keystream[11]); - step_P(ctx, cc+12,cc+13,12,2, 9, 0, keystream[12]); - step_P(ctx, cc+13,cc+14,13,3, 10,1, keystream[13]); - step_P(ctx, cc+14,cc+15,14,4, 11,2, keystream[14]); - step_P(ctx, cc+15,dd+0, 15,5, 12,3, keystream[15]); - } - else - { - ctx->counter1024 = (ctx->counter1024 + 16) & 0x3ff; - step_Q(ctx, 512+cc+0, 512+cc+1, 0, 6, 13,4, keystream[0]); - step_Q(ctx, 512+cc+1, 512+cc+2, 1, 7, 14,5, keystream[1]); - step_Q(ctx, 512+cc+2, 512+cc+3, 2, 8, 15,6, keystream[2]); - step_Q(ctx, 512+cc+3, 512+cc+4, 3, 9, 0, 7, keystream[3]); - step_Q(ctx, 512+cc+4, 512+cc+5, 4, 10,1, 8, keystream[4]); - step_Q(ctx, 512+cc+5, 512+cc+6, 5, 11,2, 9, keystream[5]); - step_Q(ctx, 512+cc+6, 512+cc+7, 6, 12,3, 10,keystream[6]); - step_Q(ctx, 512+cc+7, 512+cc+8, 7, 13,4, 11,keystream[7]); - step_Q(ctx, 512+cc+8, 512+cc+9, 8, 14,5, 12,keystream[8]); - step_Q(ctx, 512+cc+9, 512+cc+10,9, 15,6, 13,keystream[9]); - step_Q(ctx, 512+cc+10,512+cc+11,10,0, 7, 14,keystream[10]); - step_Q(ctx, 512+cc+11,512+cc+12,11,1, 8, 15,keystream[11]); - step_Q(ctx, 512+cc+12,512+cc+13,12,2, 9, 0, keystream[12]); - step_Q(ctx, 512+cc+13,512+cc+14,13,3, 10,1, keystream[13]); - step_Q(ctx, 512+cc+14,512+cc+15,14,4, 11,2, keystream[14]); - step_Q(ctx, 512+cc+15,512+dd+0, 15,5, 12,3, keystream[15]); - } -} - - -/* The following defines the initialization functions */ -#define f1(x) (rotrFixed((x),7) ^ rotrFixed((x),18) ^ ((x) >> 3)) -#define f2(x) (rotrFixed((x),17) ^ rotrFixed((x),19) ^ ((x) >> 10)) - -/*update table P*/ -#define update_P(ctx,u,v,a,b,c,d){ \ - word32 tem0,tem1,tem2,tem3; \ - tem0 = rotrFixed((ctx->T[(v)]),23); \ - tem1 = rotrFixed((ctx->X[(c)]),10); \ - tem2 = rotrFixed((ctx->X[(b)]),8); \ - h1((ctx),(ctx->X[(d)]),tem3); \ - (ctx->T[(u)]) = ((ctx->T[(u)]) + tem2+(tem0^tem1)) ^ tem3; \ - (ctx->X[(a)]) = (ctx->T[(u)]); \ -} - -/*update table Q*/ -#define update_Q(ctx,u,v,a,b,c,d){ \ - word32 tem0,tem1,tem2,tem3; \ - tem0 = rotrFixed((ctx->T[(v)]),(32-23)); \ - tem1 = rotrFixed((ctx->Y[(c)]),(32-10)); \ - tem2 = rotrFixed((ctx->Y[(b)]),(32-8)); \ - h2((ctx),(ctx->Y[(d)]),tem3); \ - (ctx->T[(u)]) = ((ctx->T[(u)]) + tem2+(tem0^tem1)) ^ tem3; \ - (ctx->Y[(a)]) = (ctx->T[(u)]); \ -} - -/*16 steps of HC-128, without generating keystream, */ -/*but use the outputs to update P and Q*/ -static void setup_update(HC128* ctx) /*each time 16 steps*/ -{ - word32 cc,dd; - cc = ctx->counter1024 & 0x1ff; - dd = (cc+16)&0x1ff; - - if (ctx->counter1024 < 512) - { - ctx->counter1024 = (ctx->counter1024 + 16) & 0x3ff; - update_P(ctx, cc+0, cc+1, 0, 6, 13, 4); - update_P(ctx, cc+1, cc+2, 1, 7, 14, 5); - update_P(ctx, cc+2, cc+3, 2, 8, 15, 6); - update_P(ctx, cc+3, cc+4, 3, 9, 0, 7); - update_P(ctx, cc+4, cc+5, 4, 10,1, 8); - update_P(ctx, cc+5, cc+6, 5, 11,2, 9); - update_P(ctx, cc+6, cc+7, 6, 12,3, 10); - update_P(ctx, cc+7, cc+8, 7, 13,4, 11); - update_P(ctx, cc+8, cc+9, 8, 14,5, 12); - update_P(ctx, cc+9, cc+10,9, 15,6, 13); - update_P(ctx, cc+10,cc+11,10,0, 7, 14); - update_P(ctx, cc+11,cc+12,11,1, 8, 15); - update_P(ctx, cc+12,cc+13,12,2, 9, 0); - update_P(ctx, cc+13,cc+14,13,3, 10, 1); - update_P(ctx, cc+14,cc+15,14,4, 11, 2); - update_P(ctx, cc+15,dd+0, 15,5, 12, 3); - } - else - { - ctx->counter1024 = (ctx->counter1024 + 16) & 0x3ff; - update_Q(ctx, 512+cc+0, 512+cc+1, 0, 6, 13, 4); - update_Q(ctx, 512+cc+1, 512+cc+2, 1, 7, 14, 5); - update_Q(ctx, 512+cc+2, 512+cc+3, 2, 8, 15, 6); - update_Q(ctx, 512+cc+3, 512+cc+4, 3, 9, 0, 7); - update_Q(ctx, 512+cc+4, 512+cc+5, 4, 10,1, 8); - update_Q(ctx, 512+cc+5, 512+cc+6, 5, 11,2, 9); - update_Q(ctx, 512+cc+6, 512+cc+7, 6, 12,3, 10); - update_Q(ctx, 512+cc+7, 512+cc+8, 7, 13,4, 11); - update_Q(ctx, 512+cc+8, 512+cc+9, 8, 14,5, 12); - update_Q(ctx, 512+cc+9, 512+cc+10,9, 15,6, 13); - update_Q(ctx, 512+cc+10,512+cc+11,10,0, 7, 14); - update_Q(ctx, 512+cc+11,512+cc+12,11,1, 8, 15); - update_Q(ctx, 512+cc+12,512+cc+13,12,2, 9, 0); - update_Q(ctx, 512+cc+13,512+cc+14,13,3, 10, 1); - update_Q(ctx, 512+cc+14,512+cc+15,14,4, 11, 2); - update_Q(ctx, 512+cc+15,512+dd+0, 15,5, 12, 3); - } -} - - -/* for the 128-bit key: key[0]...key[15] -* key[0] is the least significant byte of ctx->key[0] (K_0); -* key[3] is the most significant byte of ctx->key[0] (K_0); -* ... -* key[12] is the least significant byte of ctx->key[3] (K_3) -* key[15] is the most significant byte of ctx->key[3] (K_3) -* -* for the 128-bit iv: iv[0]...iv[15] -* iv[0] is the least significant byte of ctx->iv[0] (IV_0); -* iv[3] is the most significant byte of ctx->iv[0] (IV_0); -* ... -* iv[12] is the least significant byte of ctx->iv[3] (IV_3) -* iv[15] is the most significant byte of ctx->iv[3] (IV_3) -*/ - - - -static void Hc128_SetIV(HC128* ctx, const byte* inIv) -{ - word32 i; - word32 iv[4]; - - if (inIv) - XMEMCPY(iv, inIv, sizeof(iv)); - else - XMEMSET(iv, 0, sizeof(iv)); - - for (i = 0; i < (128 >> 5); i++) - ctx->iv[i] = LITTLE32(iv[i]); - - for (; i < 8; i++) ctx->iv[i] = ctx->iv[i-4]; - - /* expand the key and IV into the table T */ - /* (expand the key and IV into the table P and Q) */ - - for (i = 0; i < 8; i++) ctx->T[i] = ctx->key[i]; - for (i = 8; i < 16; i++) ctx->T[i] = ctx->iv[i-8]; - - for (i = 16; i < (256+16); i++) - ctx->T[i] = f2(ctx->T[i-2]) + ctx->T[i-7] + f1(ctx->T[i-15]) + - ctx->T[i-16]+i; - - for (i = 0; i < 16; i++) ctx->T[i] = ctx->T[256+i]; - - for (i = 16; i < 1024; i++) - ctx->T[i] = f2(ctx->T[i-2]) + ctx->T[i-7] + f1(ctx->T[i-15]) + - ctx->T[i-16]+256+i; - - /* initialize counter1024, X and Y */ - ctx->counter1024 = 0; - for (i = 0; i < 16; i++) ctx->X[i] = ctx->T[512-16+i]; - for (i = 0; i < 16; i++) ctx->Y[i] = ctx->T[512+512-16+i]; - - /* run the cipher 1024 steps before generating the output */ - for (i = 0; i < 64; i++) setup_update(ctx); -} - - -static WC_INLINE int DoKey(HC128* ctx, const byte* key, const byte* iv) -{ - word32 i; - - /* Key size in bits 128 */ - for (i = 0; i < (128 >> 5); i++) - ctx->key[i] = LITTLE32(((word32*)key)[i]); - - for ( ; i < 8 ; i++) ctx->key[i] = ctx->key[i-4]; - - Hc128_SetIV(ctx, iv); - - return 0; -} - - -int wc_Hc128_SetHeap(HC128* ctx, void* heap) -{ - if (ctx == NULL) { - return BAD_FUNC_ARG; - } - -#ifdef XSTREAM_ALIGN - ctx->heap = heap; -#endif - - (void)heap; - return 0; -} - -/* Key setup */ -int wc_Hc128_SetKey(HC128* ctx, const byte* key, const byte* iv) -{ - if (ctx == NULL || key == NULL) { - return BAD_FUNC_ARG; - } - -#ifdef XSTREAM_ALIGN - /* default heap to NULL or heap test value */ - #ifdef WOLFSSL_HEAP_TEST - ctx->heap = (void*)WOLFSSL_HEAP_TEST; - #else - ctx->heap = NULL; - #endif /* WOLFSSL_HEAP_TEST */ - - if ((wolfssl_word)key % 4) { - int alignKey[4]; - - /* iv gets aligned in SetIV */ - WOLFSSL_MSG("Hc128SetKey unaligned key"); - - XMEMCPY(alignKey, key, sizeof(alignKey)); - - return DoKey(ctx, (const byte*)alignKey, iv); - } -#endif /* XSTREAM_ALIGN */ - - return DoKey(ctx, key, iv); -} - - - -/* The following defines the encryption of data stream */ -static WC_INLINE int DoProcess(HC128* ctx, byte* output, const byte* input, - word32 msglen) -{ - word32 i, keystream[16]; - - for ( ; msglen >= 64; msglen -= 64, input += 64, output += 64) - { - generate_keystream(ctx, keystream); - - /* unroll loop */ - ((word32*)output)[0] = ((word32*)input)[0] ^ LITTLE32(keystream[0]); - ((word32*)output)[1] = ((word32*)input)[1] ^ LITTLE32(keystream[1]); - ((word32*)output)[2] = ((word32*)input)[2] ^ LITTLE32(keystream[2]); - ((word32*)output)[3] = ((word32*)input)[3] ^ LITTLE32(keystream[3]); - ((word32*)output)[4] = ((word32*)input)[4] ^ LITTLE32(keystream[4]); - ((word32*)output)[5] = ((word32*)input)[5] ^ LITTLE32(keystream[5]); - ((word32*)output)[6] = ((word32*)input)[6] ^ LITTLE32(keystream[6]); - ((word32*)output)[7] = ((word32*)input)[7] ^ LITTLE32(keystream[7]); - ((word32*)output)[8] = ((word32*)input)[8] ^ LITTLE32(keystream[8]); - ((word32*)output)[9] = ((word32*)input)[9] ^ LITTLE32(keystream[9]); - ((word32*)output)[10] = ((word32*)input)[10] ^ LITTLE32(keystream[10]); - ((word32*)output)[11] = ((word32*)input)[11] ^ LITTLE32(keystream[11]); - ((word32*)output)[12] = ((word32*)input)[12] ^ LITTLE32(keystream[12]); - ((word32*)output)[13] = ((word32*)input)[13] ^ LITTLE32(keystream[13]); - ((word32*)output)[14] = ((word32*)input)[14] ^ LITTLE32(keystream[14]); - ((word32*)output)[15] = ((word32*)input)[15] ^ LITTLE32(keystream[15]); - } - - if (msglen > 0) - { - XMEMSET(keystream, 0, sizeof(keystream)); /* hush the static analysis */ - generate_keystream(ctx, keystream); - -#ifdef BIG_ENDIAN_ORDER - { - word32 wordsLeft = msglen / sizeof(word32); - if (msglen % sizeof(word32)) wordsLeft++; - - ByteReverseWords(keystream, keystream, wordsLeft * sizeof(word32)); - } -#endif - - for (i = 0; i < msglen; i++) - output[i] = input[i] ^ ((byte*)keystream)[i]; - } - - return 0; -} - - -/* Encrypt/decrypt a message of any size */ -int wc_Hc128_Process(HC128* ctx, byte* output, const byte* input, word32 msglen) -{ - if (ctx == NULL || output == NULL || input == NULL) { - return BAD_FUNC_ARG; - } - -#ifdef XSTREAM_ALIGN - if ((wolfssl_word)input % 4 || (wolfssl_word)output % 4) { - #ifndef NO_WOLFSSL_ALLOC_ALIGN - byte* tmp; - WOLFSSL_MSG("Hc128Process unaligned"); - - tmp = (byte*)XMALLOC(msglen, ctx->heap, DYNAMIC_TYPE_TMP_BUFFER); - if (tmp == NULL) return MEMORY_E; - - XMEMCPY(tmp, input, msglen); - DoProcess(ctx, tmp, tmp, msglen); - XMEMCPY(output, tmp, msglen); - - XFREE(tmp, ctx->heap, DYNAMIC_TYPE_TMP_BUFFER); - - return 0; - #else - return BAD_ALIGN_E; - #endif - } -#endif /* XSTREAM_ALIGN */ - - return DoProcess(ctx, output, input, msglen); -} - - -#else /* HAVE_HC128 */ - - -#ifdef _MSC_VER - /* 4206 warning for blank file */ - #pragma warning(disable: 4206) -#endif - - -#endif /* HAVE_HC128 */ -