Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Diff: wolfcrypt/src/fe_low_mem.c
- Revision:
- 17:ff9d1e86ad5f
- Parent:
- 16:048e5e270a58
--- a/wolfcrypt/src/fe_low_mem.c Tue Nov 19 14:32:16 2019 +0000 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,612 +0,0 @@ -/* fe_low_mem.c - * - * Copyright (C) 2006-2017 wolfSSL Inc. - * - * This file is part of wolfSSL. - * - * wolfSSL is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License as published by - * the Free Software Foundation; either version 2 of the License, or - * (at your option) any later version. - * - * wolfSSL is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - * GNU General Public License for more details. - * - * You should have received a copy of the GNU General Public License - * along with this program; if not, write to the Free Software - * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335, USA - */ - - -/* Based from Daniel Beer's public domain work. */ - -#ifdef HAVE_CONFIG_H - #include <config.h> -#endif - -#include <wolfssl/wolfcrypt/settings.h> - -#if defined(HAVE_CURVE25519) || defined(HAVE_ED25519) -#if defined(CURVE25519_SMALL) || defined(ED25519_SMALL) /* use slower code that takes less memory */ - -#include <wolfssl/wolfcrypt/fe_operations.h> - -#ifdef NO_INLINE - #include <wolfssl/wolfcrypt/misc.h> -#else - #define WOLFSSL_MISC_INCLUDED - #include <wolfcrypt/src/misc.c> -#endif - -void fprime_copy(byte *x, const byte *a) -{ - int i; - for (i = 0; i < F25519_SIZE; i++) - x[i] = a[i]; -} - - -void lm_copy(byte* x, const byte* a) -{ - int i; - for (i = 0; i < F25519_SIZE; i++) - x[i] = a[i]; -} - -#if ((defined(HAVE_CURVE25519) && !defined(CURVE25519_SMALL)) || \ - (defined(HAVE_ED25519) && !defined(ED25519_SMALL))) && \ - !defined(FREESCALE_LTC_ECC) - /* to be Complementary to fe_low_mem.c */ -#else -void fe_init() -{ -} -#endif - -#ifdef CURVE25519_SMALL - -/* Double an X-coordinate */ -static void xc_double(byte *x3, byte *z3, - const byte *x1, const byte *z1) -{ - /* Explicit formulas database: dbl-1987-m - * - * source 1987 Montgomery "Speeding the Pollard and elliptic - * curve methods of factorization", page 261, fourth display - * compute X3 = (X1^2-Z1^2)^2 - * compute Z3 = 4 X1 Z1 (X1^2 + a X1 Z1 + Z1^2) - */ - byte x1sq[F25519_SIZE]; - byte z1sq[F25519_SIZE]; - byte x1z1[F25519_SIZE]; - byte a[F25519_SIZE]; - - fe_mul__distinct(x1sq, x1, x1); - fe_mul__distinct(z1sq, z1, z1); - fe_mul__distinct(x1z1, x1, z1); - - lm_sub(a, x1sq, z1sq); - fe_mul__distinct(x3, a, a); - - fe_mul_c(a, x1z1, 486662); - lm_add(a, x1sq, a); - lm_add(a, z1sq, a); - fe_mul__distinct(x1sq, x1z1, a); - fe_mul_c(z3, x1sq, 4); -} - - -/* Differential addition */ -static void xc_diffadd(byte *x5, byte *z5, - const byte *x1, const byte *z1, - const byte *x2, const byte *z2, - const byte *x3, const byte *z3) -{ - /* Explicit formulas database: dbl-1987-m3 - * - * source 1987 Montgomery "Speeding the Pollard and elliptic curve - * methods of factorization", page 261, fifth display, plus - * common-subexpression elimination - * compute A = X2+Z2 - * compute B = X2-Z2 - * compute C = X3+Z3 - * compute D = X3-Z3 - * compute DA = D A - * compute CB = C B - * compute X5 = Z1(DA+CB)^2 - * compute Z5 = X1(DA-CB)^2 - */ - byte da[F25519_SIZE]; - byte cb[F25519_SIZE]; - byte a[F25519_SIZE]; - byte b[F25519_SIZE]; - - lm_add(a, x2, z2); - lm_sub(b, x3, z3); /* D */ - fe_mul__distinct(da, a, b); - - lm_sub(b, x2, z2); - lm_add(a, x3, z3); /* C */ - fe_mul__distinct(cb, a, b); - - lm_add(a, da, cb); - fe_mul__distinct(b, a, a); - fe_mul__distinct(x5, z1, b); - - lm_sub(a, da, cb); - fe_mul__distinct(b, a, a); - fe_mul__distinct(z5, x1, b); -} - -#ifndef FREESCALE_LTC_ECC -int curve25519(byte *result, byte *e, byte *q) -{ - /* Current point: P_m */ - byte xm[F25519_SIZE]; - byte zm[F25519_SIZE] = {1}; - - /* Predecessor: P_(m-1) */ - byte xm1[F25519_SIZE] = {1}; - byte zm1[F25519_SIZE] = {0}; - - int i; - - /* Note: bit 254 is assumed to be 1 */ - lm_copy(xm, q); - - for (i = 253; i >= 0; i--) { - const int bit = (e[i >> 3] >> (i & 7)) & 1; - byte xms[F25519_SIZE]; - byte zms[F25519_SIZE]; - - /* From P_m and P_(m-1), compute P_(2m) and P_(2m-1) */ - xc_diffadd(xm1, zm1, q, f25519_one, xm, zm, xm1, zm1); - xc_double(xm, zm, xm, zm); - - /* Compute P_(2m+1) */ - xc_diffadd(xms, zms, xm1, zm1, xm, zm, q, f25519_one); - - /* Select: - * bit = 1 --> (P_(2m+1), P_(2m)) - * bit = 0 --> (P_(2m), P_(2m-1)) - */ - fe_select(xm1, xm1, xm, bit); - fe_select(zm1, zm1, zm, bit); - fe_select(xm, xm, xms, bit); - fe_select(zm, zm, zms, bit); - } - - /* Freeze out of projective coordinates */ - fe_inv__distinct(zm1, zm); - fe_mul__distinct(result, zm1, xm); - fe_normalize(result); - return 0; -} -#endif /* !FREESCALE_LTC_ECC */ -#endif /* CURVE25519_SMALL */ - - -static void raw_add(byte *x, const byte *p) -{ - word16 c = 0; - int i; - - for (i = 0; i < F25519_SIZE; i++) { - c += ((word16)x[i]) + ((word16)p[i]); - x[i] = (byte)c; - c >>= 8; - } -} - - -static void raw_try_sub(byte *x, const byte *p) -{ - byte minusp[F25519_SIZE]; - word16 c = 0; - int i; - - for (i = 0; i < F25519_SIZE; i++) { - c = ((word16)x[i]) - ((word16)p[i]) - c; - minusp[i] = (byte)c; - c = (c >> 8) & 1; - } - - fprime_select(x, minusp, x, (byte)c); -} - - -static int prime_msb(const byte *p) -{ - int i; - byte x; - int shift = 1; - int z = F25519_SIZE - 1; - - /* - Test for any hot bits. - As soon as one instance is encountered set shift to 0. - */ - for (i = F25519_SIZE - 1; i >= 0; i--) { - shift &= ((shift ^ ((-p[i] | p[i]) >> 7)) & 1); - z -= shift; - } - x = p[z]; - z <<= 3; - shift = 1; - for (i = 0; i < 8; i++) { - shift &= ((-(x >> i) | (x >> i)) >> (7 - i) & 1); - z += shift; - } - - return z - 1; -} - - -void fprime_select(byte *dst, const byte *zero, const byte *one, byte condition) -{ - const byte mask = -condition; - int i; - - for (i = 0; i < F25519_SIZE; i++) - dst[i] = zero[i] ^ (mask & (one[i] ^ zero[i])); -} - - -void fprime_add(byte *r, const byte *a, const byte *modulus) -{ - raw_add(r, a); - raw_try_sub(r, modulus); -} - - -void fprime_sub(byte *r, const byte *a, const byte *modulus) -{ - raw_add(r, modulus); - raw_try_sub(r, a); - raw_try_sub(r, modulus); -} - - -void fprime_mul(byte *r, const byte *a, const byte *b, - const byte *modulus) -{ - word16 c = 0; - int i,j; - - XMEMSET(r, 0, F25519_SIZE); - - for (i = prime_msb(modulus); i >= 0; i--) { - const byte bit = (b[i >> 3] >> (i & 7)) & 1; - byte plusa[F25519_SIZE]; - - for (j = 0; j < F25519_SIZE; j++) { - c |= ((word16)r[j]) << 1; - r[j] = (byte)c; - c >>= 8; - } - raw_try_sub(r, modulus); - - fprime_copy(plusa, r); - fprime_add(plusa, a, modulus); - - fprime_select(r, r, plusa, bit); - } -} - - -void fe_load(byte *x, word32 c) -{ - word32 i; - - for (i = 0; i < sizeof(c); i++) { - x[i] = c; - c >>= 8; - } - - for (; i < F25519_SIZE; i++) - x[i] = 0; -} - - -void fe_normalize(byte *x) -{ - byte minusp[F25519_SIZE]; - word16 c; - int i; - - /* Reduce using 2^255 = 19 mod p */ - c = (x[31] >> 7) * 19; - x[31] &= 127; - - for (i = 0; i < F25519_SIZE; i++) { - c += x[i]; - x[i] = (byte)c; - c >>= 8; - } - - /* The number is now less than 2^255 + 18, and therefore less than - * 2p. Try subtracting p, and conditionally load the subtracted - * value if underflow did not occur. - */ - c = 19; - - for (i = 0; i + 1 < F25519_SIZE; i++) { - c += x[i]; - minusp[i] = (byte)c; - c >>= 8; - } - - c += ((word16)x[i]) - 128; - minusp[31] = (byte)c; - - /* Load x-p if no underflow */ - fe_select(x, minusp, x, (c >> 15) & 1); -} - - -void fe_select(byte *dst, - const byte *zero, const byte *one, - byte condition) -{ - const byte mask = -condition; - int i; - - for (i = 0; i < F25519_SIZE; i++) - dst[i] = zero[i] ^ (mask & (one[i] ^ zero[i])); -} - - -void lm_add(byte* r, const byte* a, const byte* b) -{ - word16 c = 0; - int i; - - /* Add */ - for (i = 0; i < F25519_SIZE; i++) { - c >>= 8; - c += ((word16)a[i]) + ((word16)b[i]); - r[i] = (byte)c; - } - - /* Reduce with 2^255 = 19 mod p */ - r[31] &= 127; - c = (c >> 7) * 19; - - for (i = 0; i < F25519_SIZE; i++) { - c += r[i]; - r[i] = (byte)c; - c >>= 8; - } -} - - -void lm_sub(byte* r, const byte* a, const byte* b) -{ - word32 c = 0; - int i; - - /* Calculate a + 2p - b, to avoid underflow */ - c = 218; - for (i = 0; i + 1 < F25519_SIZE; i++) { - c += 65280 + ((word32)a[i]) - ((word32)b[i]); - r[i] = c; - c >>= 8; - } - - c += ((word32)a[31]) - ((word32)b[31]); - r[31] = c & 127; - c = (c >> 7) * 19; - - for (i = 0; i < F25519_SIZE; i++) { - c += r[i]; - r[i] = c; - c >>= 8; - } -} - - -void lm_neg(byte* r, const byte* a) -{ - word32 c = 0; - int i; - - /* Calculate 2p - a, to avoid underflow */ - c = 218; - for (i = 0; i + 1 < F25519_SIZE; i++) { - c += 65280 - ((word32)a[i]); - r[i] = c; - c >>= 8; - } - - c -= ((word32)a[31]); - r[31] = c & 127; - c = (c >> 7) * 19; - - for (i = 0; i < F25519_SIZE; i++) { - c += r[i]; - r[i] = c; - c >>= 8; - } -} - - -void fe_mul__distinct(byte *r, const byte *a, const byte *b) -{ - word32 c = 0; - int i; - - for (i = 0; i < F25519_SIZE; i++) { - int j; - - c >>= 8; - for (j = 0; j <= i; j++) - c += ((word32)a[j]) * ((word32)b[i - j]); - - for (; j < F25519_SIZE; j++) - c += ((word32)a[j]) * - ((word32)b[i + F25519_SIZE - j]) * 38; - - r[i] = c; - } - - r[31] &= 127; - c = (c >> 7) * 19; - - for (i = 0; i < F25519_SIZE; i++) { - c += r[i]; - r[i] = c; - c >>= 8; - } -} - - -void lm_mul(byte *r, const byte* a, const byte *b) -{ - byte tmp[F25519_SIZE]; - - fe_mul__distinct(tmp, a, b); - lm_copy(r, tmp); -} - - -void fe_mul_c(byte *r, const byte *a, word32 b) -{ - word32 c = 0; - int i; - - for (i = 0; i < F25519_SIZE; i++) { - c >>= 8; - c += b * ((word32)a[i]); - r[i] = c; - } - - r[31] &= 127; - c >>= 7; - c *= 19; - - for (i = 0; i < F25519_SIZE; i++) { - c += r[i]; - r[i] = c; - c >>= 8; - } -} - - -void fe_inv__distinct(byte *r, const byte *x) -{ - byte s[F25519_SIZE]; - int i; - - /* This is a prime field, so by Fermat's little theorem: - * - * x^(p-1) = 1 mod p - * - * Therefore, raise to (p-2) = 2^255-21 to get a multiplicative - * inverse. - * - * This is a 255-bit binary number with the digits: - * - * 11111111... 01011 - * - * We compute the result by the usual binary chain, but - * alternate between keeping the accumulator in r and s, so as - * to avoid copying temporaries. - */ - - /* 1 1 */ - fe_mul__distinct(s, x, x); - fe_mul__distinct(r, s, x); - - /* 1 x 248 */ - for (i = 0; i < 248; i++) { - fe_mul__distinct(s, r, r); - fe_mul__distinct(r, s, x); - } - - /* 0 */ - fe_mul__distinct(s, r, r); - - /* 1 */ - fe_mul__distinct(r, s, s); - fe_mul__distinct(s, r, x); - - /* 0 */ - fe_mul__distinct(r, s, s); - - /* 1 */ - fe_mul__distinct(s, r, r); - fe_mul__distinct(r, s, x); - - /* 1 */ - fe_mul__distinct(s, r, r); - fe_mul__distinct(r, s, x); -} - - -void lm_invert(byte *r, const byte *x) -{ - byte tmp[F25519_SIZE]; - - fe_inv__distinct(tmp, x); - lm_copy(r, tmp); -} - - -/* Raise x to the power of (p-5)/8 = 2^252-3, using s for temporary - * storage. - */ -static void exp2523(byte *r, const byte *x, byte *s) -{ - int i; - - /* This number is a 252-bit number with the binary expansion: - * - * 111111... 01 - */ - - /* 1 1 */ - fe_mul__distinct(r, x, x); - fe_mul__distinct(s, r, x); - - /* 1 x 248 */ - for (i = 0; i < 248; i++) { - fe_mul__distinct(r, s, s); - fe_mul__distinct(s, r, x); - } - - /* 0 */ - fe_mul__distinct(r, s, s); - - /* 1 */ - fe_mul__distinct(s, r, r); - fe_mul__distinct(r, s, x); -} - - -void fe_sqrt(byte *r, const byte *a) -{ - byte v[F25519_SIZE]; - byte i[F25519_SIZE]; - byte x[F25519_SIZE]; - byte y[F25519_SIZE]; - - /* v = (2a)^((p-5)/8) [x = 2a] */ - fe_mul_c(x, a, 2); - exp2523(v, x, y); - - /* i = 2av^2 - 1 */ - fe_mul__distinct(y, v, v); - fe_mul__distinct(i, x, y); - fe_load(y, 1); - lm_sub(i, i, y); - - /* r = avi */ - fe_mul__distinct(x, v, a); - fe_mul__distinct(r, x, i); -} - -#endif /* CURVE25519_SMALL || ED25519_SMALL */ -#endif /* HAVE_CURVE25519 || HAVE_ED25519 */ -