Ryo Od
/
KIK01_Proto01
Kick Machine Prototype
main.cpp
- Committer:
- ryood
- Date:
- 2017-06-04
- Revision:
- 4:9f53a82fc1b6
- Parent:
- 3:f89b400cfe57
- Child:
- 5:846772a77d33
File content as of revision 4:9f53a82fc1b6:
/* * KIK01 * Kick Machine * * 2017.06.04 created. * */ #include "mbed.h" #include "rtos.h" #define TITLE_STR1 ("KIK01 Kick Machine") #define TITLE_STR2 ("20170604") #define PI_F (3.1415926f) #define SAMPLING_RATE (96000) #define SAMPLING_PERIOD (1.0f/SAMPLING_RATE) #define FREQUENCY_ATTACK (5) #define FREQUENCY_RELEASE (300) //#define AMPLITUDE_ATTACK (50) #define AMPLITUDE_RELEASE (200) AnalogOut Dac1(PA_5); AnalogIn AinBpm(PA_0); AnalogIn AinAmplitudeAttack(PA_1); AnalogIn AinFrequencyF0(PA_4); class EnvelopeAR { public: EnvelopeAR(int _attack, int _release, float _v0, float _v1, float _v2, float _attackTauRatio=0.36f, float _releaseTauRatio=0.36f) : amplitude(_v0), v0(_v0), v1(_v1), v2(_v2), vLast(_v0), attackTauRatio(_attackTauRatio), releaseTauRatio(_releaseTauRatio) { setAttack(_attack); setRelease(_release); } ~EnvelopeAR() {} void setAttack(int _attack) { attack = _attack; tau0 = attack * attackTauRatio; } int getAttack() { return attack; } void setRelease(int _release) { release = _release; tau1 = release * releaseTauRatio; } int getRelease() { return release; } void setAttackTauRatio(float _attackTauRatio) { attackTauRatio = _attackTauRatio; } float getAttackTauRatio() { return attackTauRatio; } void setReleaseTauRatio(float _releaseTauRatio) { releaseTauRatio = _releaseTauRatio; } float getReleaseTauRatio() { return releaseTauRatio; } void setV0(float _v0) { v0 = _v0; } float getV0() { return v0; } void setV1(float _v1) { v1 = _v1; } float getV1() { return v1; } void setV2(float _v2) { v2 = _v2; } float getV2() { return v2; } float getAmplitude() { return amplitude; } float getAmplitude(int tick) { if (tick < attack) { // attackの処理 amplitude = v0 + (v1 - v0) * (1 - expf(-(float)tick / tau0)); vLast = amplitude; } else { // releaseの処理 amplitude = (vLast - v2) * (expf(-(float)(tick - attack) / tau1)) + v2; } return amplitude; } private: int attack; int release; float amplitude; float v0; float v1; float v2; float vLast; float tau0; float tau1; float attackTauRatio; float releaseTauRatio; }; EnvelopeAR envelopeFrequency( FREQUENCY_ATTACK, FREQUENCY_RELEASE, 880.0f, 120.0f, 40.0f, 0.36f, 0.1f); EnvelopeAR envelopeAmplitude(50, AMPLITUDE_RELEASE, 0.95f, 1.0f, 0.0f); volatile int ticks; volatile int envelopeTicks; volatile float frequency; volatile float phi; volatile float phiDelta; volatile float amplitude; float bpm; int envelopeLength; int amplitudeAttack; float frequencyF0; void generateWave() { phi += phiDelta; if (phi >= 1.0f) { phi -= 2.0f; } float level = sinf(PI_F * phi) * amplitude; Dac1.write((level * 0.7f + 1.0f) / 2.0f); } void generateEnvelope() { // Frequency Envelope frequency = envelopeFrequency.getAmplitude(envelopeTicks); phiDelta = 2.0f * frequency / SAMPLING_RATE; // Amplitude Envelope amplitude = envelopeAmplitude.getAmplitude(envelopeTicks); envelopeTicks++; if (envelopeTicks == envelopeLength) { envelopeTicks = 0; } } void update() { ticks++; if (ticks == SAMPLING_RATE / 1000) { ticks = 0; generateEnvelope(); } generateWave(); } int main() { printf("%s %s\r\n", TITLE_STR1, TITLE_STR2); frequency = 1000.0f; phiDelta = 2.0f * frequency / SAMPLING_RATE; amplitude = 1.0f; ticks = 0; envelopeTicks = 0; Ticker samplingTicker; samplingTicker.attach(&update, SAMPLING_PERIOD); bpm = 120.0f; for (;;) { bpm = AinBpm.read() * 180.0f + 60.0f; envelopeLength = 60 * 1000 / bpm; amplitudeAttack = AinAmplitudeAttack.read() * envelopeLength * 0.7f; envelopeAmplitude.setAttack(amplitudeAttack); frequencyF0 = AinFrequencyF0.read() * 2000.0f + 50.0f; envelopeFrequency.setV0(frequencyF0); printf("%f\t%d\t%d\t%f\r\n", bpm, envelopeLength, amplitudeAttack, frequencyF0); Thread::wait(500); } }