Library for the MPU9250 9DOF IMU chip.

Dependents:   Xadow-M0_Xadow-OLED_Accelerometer MARe_VT_ble_PeakSearch_Kalman_Inativ

MPU9250.h

Committer:
ruevs
Date:
2019-03-01
Revision:
1:fc94c7336b7c
Parent:
0:2315cd1878a1

File content as of revision 1:fc94c7336b7c:

/*****   
        Library based on MPU-9250_Snowda library. It has been modified by Josué Olmeda Castelló for imasD Tecnología. It uses the 
        mbed I2C class for comunications between the sensor and the master controller.
        Methods related with data filtering have not been tested.
        AD0 should be connected to GND.
                                                            04/05/2015
*****/

#ifndef MPU9250_H
#define MPU9250_H
 
#include "mbed.h"
#include "math.h"

#define M_PI 3.14159265358979323846
 
// See also MPU-9250 Register Map and Descriptions, Revision 4.0, RM-MPU-9250A-00, Rev. 1.4, 9/9/2013 for registers not listed in 
// above document; the MPU9250 and MPU9150 are virtually identical but the latter has a different register map
//
//Magnetometer Registers
#define AK8963_ADDRESS   0x0C<<1
#define WHO_AM_I_AK8963  0x00 // should return 0x48
#define INFO             0x01
#define AK8963_ST1       0x02  // data ready status bit 0
#define AK8963_XOUT_L    0x03  // data
#define AK8963_XOUT_H    0x04
#define AK8963_YOUT_L    0x05
#define AK8963_YOUT_H    0x06
#define AK8963_ZOUT_L    0x07
#define AK8963_ZOUT_H    0x08
#define AK8963_ST2       0x09  // Data overflow bit 3 and data read error status bit 2
#define AK8963_CNTL      0x0A  // Power down (0000), single-measurement (0001), self-test (1000) and Fuse ROM (1111) modes on bits 3:0
#define AK8963_ASTC      0x0C  // Self test control
#define AK8963_I2CDIS    0x0F  // I2C disable
#define AK8963_ASAX      0x10  // Fuse ROM x-axis sensitivity adjustment value
#define AK8963_ASAY      0x11  // Fuse ROM y-axis sensitivity adjustment value
#define AK8963_ASAZ      0x12  // Fuse ROM z-axis sensitivity adjustment value

#define SELF_TEST_X_GYRO 0x00                  
#define SELF_TEST_Y_GYRO 0x01                                                                          
#define SELF_TEST_Z_GYRO 0x02

/*#define X_FINE_GAIN      0x03 // [7:0] fine gain
#define Y_FINE_GAIN      0x04
#define Z_FINE_GAIN      0x05
#define XA_OFFSET_H      0x06 // User-defined trim values for accelerometer
#define XA_OFFSET_L_TC   0x07
#define YA_OFFSET_H      0x08
#define YA_OFFSET_L_TC   0x09
#define ZA_OFFSET_H      0x0A
#define ZA_OFFSET_L_TC   0x0B */

#define SELF_TEST_X_ACCEL 0x0D
#define SELF_TEST_Y_ACCEL 0x0E    
#define SELF_TEST_Z_ACCEL 0x0F

#define SELF_TEST_A      0x10

#define XG_OFFSET_H      0x13  // User-defined trim values for gyroscope
#define XG_OFFSET_L      0x14
#define YG_OFFSET_H      0x15
#define YG_OFFSET_L      0x16
#define ZG_OFFSET_H      0x17
#define ZG_OFFSET_L      0x18
#define SMPLRT_DIV       0x19
#define CONFIG           0x1A
#define GYRO_CONFIG      0x1B
#define ACCEL_CONFIG     0x1C
#define ACCEL_CONFIG2    0x1D
#define LP_ACCEL_ODR     0x1E   
#define WOM_THR          0x1F   

#define MOT_DUR          0x20  // Duration counter threshold for motion interrupt generation, 1 kHz rate, LSB = 1 ms
#define ZMOT_THR         0x21  // Zero-motion detection threshold bits [7:0]
#define ZRMOT_DUR        0x22  // Duration counter threshold for zero motion interrupt generation, 16 Hz rate, LSB = 64 ms

#define FIFO_EN          0x23
#define I2C_MST_CTRL     0x24   
#define I2C_SLV0_ADDR    0x25
#define I2C_SLV0_REG     0x26
#define I2C_SLV0_CTRL    0x27
#define I2C_SLV1_ADDR    0x28
#define I2C_SLV1_REG     0x29
#define I2C_SLV1_CTRL    0x2A
#define I2C_SLV2_ADDR    0x2B
#define I2C_SLV2_REG     0x2C
#define I2C_SLV2_CTRL    0x2D
#define I2C_SLV3_ADDR    0x2E
#define I2C_SLV3_REG     0x2F
#define I2C_SLV3_CTRL    0x30
#define I2C_SLV4_ADDR    0x31
#define I2C_SLV4_REG     0x32
#define I2C_SLV4_DO      0x33
#define I2C_SLV4_CTRL    0x34
#define I2C_SLV4_DI      0x35
#define I2C_MST_STATUS   0x36
#define INT_PIN_CFG      0x37
#define INT_ENABLE       0x38
#define DMP_INT_STATUS   0x39  // Check DMP interrupt
#define INT_STATUS       0x3A
#define ACCEL_XOUT_H     0x3B
#define ACCEL_XOUT_L     0x3C
#define ACCEL_YOUT_H     0x3D
#define ACCEL_YOUT_L     0x3E
#define ACCEL_ZOUT_H     0x3F
#define ACCEL_ZOUT_L     0x40
#define TEMP_OUT_H       0x41
#define TEMP_OUT_L       0x42
#define GYRO_XOUT_H      0x43
#define GYRO_XOUT_L      0x44
#define GYRO_YOUT_H      0x45
#define GYRO_YOUT_L      0x46
#define GYRO_ZOUT_H      0x47
#define GYRO_ZOUT_L      0x48
#define EXT_SENS_DATA_00 0x49
#define EXT_SENS_DATA_01 0x4A
#define EXT_SENS_DATA_02 0x4B
#define EXT_SENS_DATA_03 0x4C
#define EXT_SENS_DATA_04 0x4D
#define EXT_SENS_DATA_05 0x4E
#define EXT_SENS_DATA_06 0x4F
#define EXT_SENS_DATA_07 0x50
#define EXT_SENS_DATA_08 0x51
#define EXT_SENS_DATA_09 0x52
#define EXT_SENS_DATA_10 0x53
#define EXT_SENS_DATA_11 0x54
#define EXT_SENS_DATA_12 0x55
#define EXT_SENS_DATA_13 0x56
#define EXT_SENS_DATA_14 0x57
#define EXT_SENS_DATA_15 0x58
#define EXT_SENS_DATA_16 0x59
#define EXT_SENS_DATA_17 0x5A
#define EXT_SENS_DATA_18 0x5B
#define EXT_SENS_DATA_19 0x5C
#define EXT_SENS_DATA_20 0x5D
#define EXT_SENS_DATA_21 0x5E
#define EXT_SENS_DATA_22 0x5F
#define EXT_SENS_DATA_23 0x60
#define MOT_DETECT_STATUS 0x61
#define I2C_SLV0_DO      0x63
#define I2C_SLV1_DO      0x64
#define I2C_SLV2_DO      0x65
#define I2C_SLV3_DO      0x66
#define I2C_MST_DELAY_CTRL 0x67
#define SIGNAL_PATH_RESET  0x68
#define MOT_DETECT_CTRL  0x69
#define USER_CTRL        0x6A  // Bit 7 enable DMP, bit 3 reset DMP
#define PWR_MGMT_1       0x6B // Device defaults to the SLEEP mode
#define PWR_MGMT_2       0x6C
#define DMP_BANK         0x6D  // Activates a specific bank in the DMP
#define DMP_RW_PNT       0x6E  // Set read/write pointer to a specific start address in specified DMP bank
#define DMP_REG          0x6F  // Register in DMP from which to read or to which to write
#define DMP_REG_1        0x70
#define DMP_REG_2        0x71 
#define FIFO_COUNTH      0x72
#define FIFO_COUNTL      0x73
#define FIFO_R_W         0x74
#define WHO_AM_I_MPU9250 0x75 // Should return 0x71
#define XA_OFFSET_H      0x77
#define XA_OFFSET_L      0x78
#define YA_OFFSET_H      0x7A
#define YA_OFFSET_L      0x7B
#define ZA_OFFSET_H      0x7D
#define ZA_OFFSET_L      0x7E

// Using the MSENSR-9250 breakout board, ADO is set to 0 
// Seven-bit device address is 110100 for ADO = 0 and 110101 for ADO = 1
//mbed uses the eight-bit device address, so shift seven-bit addresses left by one!
#define ADO 0
#if ADO
#define MPU9250_ADDRESS 0x69<<1  // Device address when ADO = 1
#else
#define MPU9250_ADDRESS 0x68<<1  // Device address when ADO = 0
#endif  

// Set initial input parameters
enum Ascale {
  AFS_2G = 0,
  AFS_4G,
  AFS_8G,
  AFS_16G
};

enum Gscale {
  GFS_250DPS = 0,
  GFS_500DPS,
  GFS_1000DPS,
  GFS_2000DPS
};

enum Mscale {
  MFS_14BITS = 0, // 0.6 mG per LSB
  MFS_16BITS      // 0.15 mG per LSB
};

uint8_t Ascale = AFS_2G;     // AFS_2G, AFS_4G, AFS_8G, AFS_16G
uint8_t Gscale = GFS_250DPS; // GFS_250DPS, GFS_500DPS, GFS_1000DPS, GFS_2000DPS
uint8_t Mscale = MFS_16BITS; // MFS_14BITS or MFS_16BITS, 14-bit or 16-bit magnetometer resolution
uint8_t Mmode = 0x06;        // Either 8 Hz 0x02) or 100 Hz (0x06) magnetometer data ODR  
float aRes, gRes, mRes;      // scale resolutions per LSB for the sensors
int I2Cstate=1; // If I2Cstate!=0, I2C read or write operation has failed

//Set up I2C, (SDA,SCL)
//I2C i2c(I2C_SDA, I2C_SCL);

DigitalOut myled(LED1);
    
// Pin definitions
int intPin = 12;  // These can be changed, 2 and 3 are the Arduinos ext int pins

int16_t accelCount[3];  // Stores the 16-bit signed accelerometer sensor output
int16_t gyroCount[3];   // Stores the 16-bit signed gyro sensor output
int16_t magCount[3];    // Stores the 16-bit signed magnetometer sensor output
int16_t minMagCount[3] = {INT16_MAX, INT16_MAX, INT16_MAX};
int16_t maxMagCount[3] = {INT16_MIN, INT16_MIN, INT16_MIN};    // Stores the 16-bit signed magnetometer minimum and maximum sensor output

float magCalibration[3] = {0, 0, 0}, magbias[3] = {0, 0, 0};  // Factory mag calibration and mag bias
float magScale[3] = {1, 1, 1}; // Magnetometer scalig for x, y and z axis
float gyroBias[3] = {0, 0, 0}, accelBias[3] = {0, 0, 0}; // Bias corrections for gyro and accelerometer
float ax, ay, az, gx, gy, gz, mx, my, mz; // variables to hold latest sensor data values 
int16_t tempCount;   // Stores the real internal chip temperature in degrees Celsius
float temperature;
float SelfTest[6];
float orientation[1];
float magn_x, magn_y;

int delt_t = 0; // used to control display output rate
int count = 0;  // used to control display output rate

// parameters for 6 DoF sensor fusion calculations
float PI = 3.14159265358979323846f;
float GyroMeasError = PI * (60.0f / 180.0f);     // gyroscope measurement error in rads/s (start at 60 deg/s), then reduce after ~10 s to 3
float beta = sqrt(3.0f / 4.0f) * GyroMeasError;  // compute beta
float GyroMeasDrift = PI * (1.0f / 180.0f);      // gyroscope measurement drift in rad/s/s (start at 0.0 deg/s/s)
float zeta = sqrt(3.0f / 4.0f) * GyroMeasDrift;  // compute zeta, the other free parameter in the Madgwick scheme usually set to a small or zero value
#define Kp 2.0f * 5.0f // these are the free parameters in the Mahony filter and fusion scheme, Kp for proportional feedback, Ki for integral
#define Ki 0.0f

float pitch, yaw, roll;
float deltat = 0.0f;                             // integration interval for both filter schemes
int lastUpdate = 0, firstUpdate = 0, Now = 0;    // used to calculate integration interval                               // used to calculate integration interval
float q[4] = {1.0f, 0.0f, 0.0f, 0.0f};           // vector to hold quaternion
float eInt[3] = {0.0f, 0.0f, 0.0f};              // vector to hold integral error for Mahony method

class MPU9250 {

    private:
    
    I2C i2c;

    protected:
 
    public:
    
    MPU9250(I2C &i2c_ref) : i2c(i2c_ref)
    {
        
    }

    //===================================================================================================================
    //====== Set of useful function to access acceleration, gyroscope, and temperature data
    //===================================================================================================================

    void writeByte(uint8_t address, uint8_t subAddress, uint8_t data)
    {
        char data_write[2];
        data_write[0] = subAddress;
        data_write[1] = data;
        I2Cstate = i2c.write(address, data_write, 2, 0);
    }

    char readByte(uint8_t address, uint8_t subAddress)
    {
        char data[1]; // `data` will store the register data     
        char data_write[1];
        data_write[0] = subAddress;
        I2Cstate = i2c.write(address, data_write, 1, 1); // no stop
        I2Cstate = i2c.read(address, data, 1, 0);
        return data[0];
    }

    void readBytes(uint8_t address, uint8_t subAddress, uint8_t count, uint8_t * dest) // count=nº of bytes to read / dest=destiny where data is stored
    {     
        char data[14];
        char data_write[1];
        data_write[0] = subAddress;
        I2Cstate = i2c.write(address, data_write, 1, 1); // no stop
        I2Cstate = i2c.read(address, data, count, 0);
        for(int ii = 0; ii < count; ii++) {
            dest[ii] = data[ii];
        }
    } 

    void getMres() {
        switch (Mscale)
        {
            // Possible magnetometer scales (and their register bit settings) are:
            // 14 bit resolution (0) and 16 bit resolution (1)
            case MFS_14BITS:
                mRes = 10.0*4219.0/8190.0; // Proper scale to return milliGauss
            break;
            case MFS_16BITS:
                mRes = 10.0*4219.0/32760.0; // Proper scale to return milliGauss
            break;
        }
    }

    void getGres() {
        switch (Gscale)
        {
            // Possible gyro scales (and their register bit settings) are:
            // 250 DPS (00), 500 DPS (01), 1000 DPS (10), and 2000 DPS  (11). 
            // Here's a bit of an algorith to calculate DPS/(ADC tick) based on that 2-bit value:
            case GFS_250DPS:
                gRes = 250.0/32768.0;
            break;
            case GFS_500DPS:
                gRes = 500.0/32768.0;
            break;
            case GFS_1000DPS:
                gRes = 1000.0/32768.0;
            break;
            case GFS_2000DPS:
                gRes = 2000.0/32768.0;
            break;
        }
    }

    void getAres() {
        switch (Ascale)
        {
            // Possible accelerometer scales (and their register bit settings) are:
            // 2 Gs (00), 4 Gs (01), 8 Gs (10), and 16 Gs  (11). 
            // Here's a bit of an algorith to calculate DPS/(ADC tick) based on that 2-bit value:
            case AFS_2G:
                aRes = 2.0/32768.0;
            break;
            case AFS_4G:
                aRes = 4.0/32768.0;
            break;
            case AFS_8G:
                aRes = 8.0/32768.0;
            break;
            case AFS_16G:
                aRes = 16.0/32768.0;
            break;
        }
    }

    void readAccelData(int16_t * destination){
        
        uint8_t rawData[6];  // x/y/z accel register data stored here
        readBytes(MPU9250_ADDRESS, ACCEL_XOUT_H, 6, &rawData[0]);  // Read the six raw data registers into data array
        destination[0] = (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ;  // Turn the MSB and LSB into a signed 16-bit value
        destination[1] = (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;  
        destination[2] = (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ; 
    }

    void readGyroData(int16_t * destination){
        uint8_t rawData[6];  // x/y/z gyro register data stored here    
        readBytes(MPU9250_ADDRESS, GYRO_XOUT_H, 6, &rawData[0]);  // Read the six raw data registers sequentially into data array
        destination[0] = (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ;  // Turn the MSB and LSB into a signed 16-bit value
        destination[1] = (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;  
        destination[2] = (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
    }

    void readMagData(int16_t * destination){
        uint8_t rawData[7];  // x/y/z gyro register data, ST2 register stored here, must read ST2 at end of data acquisition
        if(readByte(AK8963_ADDRESS, AK8963_ST1) & 0x01) { // wait for magnetometer data ready bit to be set
            readBytes(AK8963_ADDRESS, AK8963_XOUT_L, 7, &rawData[0]);  // Read the six raw data and ST2 registers sequentially into data array
            uint8_t c = rawData[6]; // End data read by reading ST2 register
            if(!(c & 0x08)) { // Check if magnetic sensor overflow set, if not then report data
                destination[0] = (int16_t)(((int16_t)rawData[1] << 8) | rawData[0]);  // Turn the MSB and LSB into a signed 16-bit value
                destination[1] = (int16_t)(((int16_t)rawData[3] << 8) | rawData[2]) ;  // Data stored as little Endian
                destination[2] = (int16_t)(((int16_t)rawData[5] << 8) | rawData[4]) ; 
            }
        }
    }

    int16_t readTempData(){
        uint8_t rawData[2];  // x/y/z gyro register data stored here
        readBytes(MPU9250_ADDRESS, TEMP_OUT_H, 2, &rawData[0]);  // Read the two raw data registers sequentially into data array 
        return (int16_t)(((int16_t)rawData[0]) << 8 | rawData[1]) ;  // Turn the MSB and LSB into a 16-bit value
    }

    void resetMPU9250(){
        // reset device
        writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x80); // Write a one to bit 7 reset bit; toggle reset device
        wait(0.1);
    }
  
    void initAK8963(float * destination){
        // First extract the factory calibration for each magnetometer axis
        uint8_t rawData[3];  // x/y/z gyro calibration data stored here
        writeByte(AK8963_ADDRESS, AK8963_CNTL, 0x00); // Power down magnetometer  
        wait(0.01);
        writeByte(AK8963_ADDRESS, AK8963_CNTL, 0x0F); // Enter Fuse ROM access mode
        wait(0.01);
        readBytes(AK8963_ADDRESS, AK8963_ASAX, 3, &rawData[0]);  // Read the x-, y-, and z-axis calibration values
        destination[0] =  (float)(rawData[0] - 128)/256.0f + 1.0f;   // Return x-axis sensitivity adjustment values, etc.
        destination[1] =  (float)(rawData[1] - 128)/256.0f + 1.0f;  
        destination[2] =  (float)(rawData[2] - 128)/256.0f + 1.0f; 
        writeByte(AK8963_ADDRESS, AK8963_CNTL, 0x00); // Power down magnetometer  
        wait(0.01);
        // Configure the magnetometer for continuous read and highest resolution
        // set Mscale bit 4 to 1 (0) to enable 16 (14) bit resolution in CNTL register,
        // and enable continuous mode data acquisition Mmode (bits [3:0]), 0010 for 8 Hz and 0110 for 100 Hz sample rates
        writeByte(AK8963_ADDRESS, AK8963_CNTL, Mscale << 4 | Mmode); // Set magnetometer data resolution and sample ODR
        wait(0.01);
    }

    void initMPU9250(){  
        // Initialize MPU9250 device
        // wake up device
        writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x00); // Clear sleep mode bit (6), enable all sensors 
        wait(0.1); // Delay 100 ms for PLL to get established on x-axis gyro; should check for PLL ready interrupt  

        // get stable time source
        writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x01);  // Set clock source to be PLL with x-axis gyroscope reference, bits 2:0 = 001

        // Configure Gyro and Accelerometer
        // Disable FSYNC and set accelerometer and gyro bandwidth to 44 and 42 Hz, respectively; 
        // DLPF_CFG = bits 2:0 = 010; this sets the sample rate at 1 kHz for both
        // Maximum delay is 4.9 ms which is just over a 200 Hz maximum rate
        writeByte(MPU9250_ADDRESS, CONFIG, 0x03);  
 
         // Set sample rate = gyroscope output rate/(1 + SMPLRT_DIV)
        writeByte(MPU9250_ADDRESS, SMPLRT_DIV, 0x04);  // Use a 200 Hz rate; the same rate set in CONFIG above
 
        // Set gyroscope full scale range
        // Range selects FS_SEL and AFS_SEL are 0 - 3, so 2-bit values are left-shifted into positions 4:3
        uint8_t c =  readByte(MPU9250_ADDRESS, GYRO_CONFIG);
        writeByte(MPU9250_ADDRESS, GYRO_CONFIG, c & ~0xE0); // Clear self-test bits [7:5] 
        writeByte(MPU9250_ADDRESS, GYRO_CONFIG, c & ~0x18); // Clear AFS bits [4:3]
        writeByte(MPU9250_ADDRESS, GYRO_CONFIG, c | Gscale << 3); // Set full scale range for the gyro
   
        // Set accelerometer configuration
        c = readByte(MPU9250_ADDRESS, ACCEL_CONFIG);
        writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, c & ~0xE0); // Clear self-test bits [7:5] 
        writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, c & ~0x18); // Clear AFS bits [4:3]
        writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, c | Ascale << 3); // Set full scale range for the accelerometer 

        // Set accelerometer sample rate configuration
        // It is possible to get a 4 kHz sample rate from the accelerometer by choosing 1 for
        // accel_fchoice_b bit [3]; in this case the bandwidth is 1.13 kHz
        c = readByte(MPU9250_ADDRESS, ACCEL_CONFIG2);
        writeByte(MPU9250_ADDRESS, ACCEL_CONFIG2, c & ~0x0F); // Clear accel_fchoice_b (bit 3) and A_DLPFG (bits [2:0])  
        writeByte(MPU9250_ADDRESS, ACCEL_CONFIG2, c | 0x03); // Set accelerometer rate to 1 kHz and bandwidth to 41 Hz

        // The accelerometer, gyro, and thermometer are set to 1 kHz sample rates, 
        // but all these rates are further reduced by a factor of 5 to 200 Hz because of the SMPLRT_DIV setting

        // Configure Interrupts and Bypass Enable
        // Set interrupt pin active high, push-pull, and clear on read of INT_STATUS, enable I2C_BYPASS_EN so additional chips 
        // can join the I2C bus and all can be controlled by the Arduino as master
        writeByte(MPU9250_ADDRESS, INT_PIN_CFG, 0x22);    
        writeByte(MPU9250_ADDRESS, INT_ENABLE, 0x01);  // Enable data ready (bit 0) interrupt
    }

    // Function which accumulates gyro and accelerometer data after device initialization. It calculates the average
    // of the at-rest readings and then loads the resulting offsets into accelerometer and gyro bias registers.
    void calibrateMPU9250(float * dest1, float * dest2)
    {  
        uint8_t data[12]; // data array to hold accelerometer and gyro x, y, z, data
        uint16_t ii, packet_count, fifo_count;
        int32_t gyro_bias[3] = {0, 0, 0}, accel_bias[3] = {0, 0, 0};
  
        // reset device, reset all registers, clear gyro and accelerometer bias registers
        writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x80); // Write a one to bit 7 reset bit; toggle reset device
        wait(0.1);
   
        // get stable time source
        // Set clock source to be PLL with x-axis gyroscope reference, bits 2:0 = 001
        writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x01);  
        writeByte(MPU9250_ADDRESS, PWR_MGMT_2, 0x00); 
        wait(0.2);
  
        // Configure device for bias calculation
        writeByte(MPU9250_ADDRESS, INT_ENABLE, 0x00);   // Disable all interrupts
        writeByte(MPU9250_ADDRESS, FIFO_EN, 0x00);      // Disable FIFO
        writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x00);   // Turn on internal clock source
        writeByte(MPU9250_ADDRESS, I2C_MST_CTRL, 0x00); // Disable I2C master
        writeByte(MPU9250_ADDRESS, USER_CTRL, 0x00);    // Disable FIFO and I2C master modes
        writeByte(MPU9250_ADDRESS, USER_CTRL, 0x0C);    // Reset FIFO and DMP
        wait(0.015);
  
        // Configure MPU9250 gyro and accelerometer for bias calculation
        writeByte(MPU9250_ADDRESS, CONFIG, 0x01);      // Set low-pass filter to 188 Hz
        writeByte(MPU9250_ADDRESS, SMPLRT_DIV, 0x00);  // Set sample rate to 1 kHz
        writeByte(MPU9250_ADDRESS, GYRO_CONFIG, 0x00);  // Set gyro full-scale to 250 degrees per second, maximum sensitivity
        writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, 0x00); // Set accelerometer full-scale to 2 g, maximum sensitivity
 
        uint16_t  gyrosensitivity  = 131;   // = 131 LSB/degrees/sec
        uint16_t  accelsensitivity = 16384;  // = 16384 LSB/g

        // Configure FIFO to capture accelerometer and gyro data. This data will be used for bias calculation
        writeByte(MPU9250_ADDRESS, USER_CTRL, 0x40);   // Enable FIFO  
        writeByte(MPU9250_ADDRESS, FIFO_EN, 0x78);     // Enable gyro and accelerometer sensors for FIFO (max size 512 bytes in MPU-9250)
        wait(0.04); // accumulate 40 samples in 80 milliseconds = 480 bytes

        // At end of sample accumulation, turn off FIFO sensor read
        writeByte(MPU9250_ADDRESS, FIFO_EN, 0x00);        // Disable gyro and accelerometer sensors for FIFO
        readBytes(MPU9250_ADDRESS, FIFO_COUNTH, 2, &data[0]); // read FIFO sample count
        fifo_count = ((uint16_t)data[0] << 8) | data[1];
        packet_count = fifo_count/12;// How many sets of full gyro and accelerometer data for averaging

        for (ii = 0; ii < packet_count; ii++) {
            int16_t accel_temp[3] = {0, 0, 0}, gyro_temp[3] = {0, 0, 0};
            readBytes(MPU9250_ADDRESS, FIFO_R_W, 12, &data[0]); // read data for averaging
            accel_temp[0] = (int16_t) (((int16_t)data[0] << 8) | data[1]  ) ;  // Form signed 16-bit integer for each sample in FIFO
            accel_temp[1] = (int16_t) (((int16_t)data[2] << 8) | data[3]  ) ;
            accel_temp[2] = (int16_t) (((int16_t)data[4] << 8) | data[5]  ) ;    
            gyro_temp[0]  = (int16_t) (((int16_t)data[6] << 8) | data[7]  ) ;
            gyro_temp[1]  = (int16_t) (((int16_t)data[8] << 8) | data[9]  ) ;
            gyro_temp[2]  = (int16_t) (((int16_t)data[10] << 8) | data[11]) ;
    
            accel_bias[0] += (int32_t) accel_temp[0]; // Sum individual signed 16-bit biases to get accumulated signed 32-bit biases
            accel_bias[1] += (int32_t) accel_temp[1];
            accel_bias[2] += (int32_t) accel_temp[2];
            gyro_bias[0]  += (int32_t) gyro_temp[0];
            gyro_bias[1]  += (int32_t) gyro_temp[1];
            gyro_bias[2]  += (int32_t) gyro_temp[2];
            
        }
        accel_bias[0] /= (int32_t) packet_count; // Normalize sums to get average count biases
        accel_bias[1] /= (int32_t) packet_count;
        accel_bias[2] /= (int32_t) packet_count;
        gyro_bias[0]  /= (int32_t) packet_count;
        gyro_bias[1]  /= (int32_t) packet_count;
        gyro_bias[2]  /= (int32_t) packet_count;
    
        if(accel_bias[2] > 0L) {accel_bias[2] -= (int32_t) accelsensitivity;}  // Remove gravity from the z-axis accelerometer bias calculation
        else {accel_bias[2] += (int32_t) accelsensitivity;}
 
        // Construct the gyro biases for push to the hardware gyro bias registers, which are reset to zero upon device startup
        data[0] = (-gyro_bias[0]/4  >> 8) & 0xFF; // Divide by 4 to get 32.9 LSB per deg/s to conform to expected bias input format
        data[1] = (-gyro_bias[0]/4)       & 0xFF; // Biases are additive, so change sign on calculated average gyro biases
        data[2] = (-gyro_bias[1]/4  >> 8) & 0xFF;
        data[3] = (-gyro_bias[1]/4)       & 0xFF;
        data[4] = (-gyro_bias[2]/4  >> 8) & 0xFF;
        data[5] = (-gyro_bias[2]/4)       & 0xFF;

        /// Push gyro biases to hardware registers
        /*  writeByte(MPU9250_ADDRESS, XG_OFFSET_H, data[0]);
        writeByte(MPU9250_ADDRESS, XG_OFFSET_L, data[1]);
        writeByte(MPU9250_ADDRESS, YG_OFFSET_H, data[2]);
        writeByte(MPU9250_ADDRESS, YG_OFFSET_L, data[3]);
        writeByte(MPU9250_ADDRESS, ZG_OFFSET_H, data[4]);
        writeByte(MPU9250_ADDRESS, ZG_OFFSET_L, data[5]);
        */
        dest1[0] = (float) gyro_bias[0]/(float) gyrosensitivity; // construct gyro bias in deg/s for later manual subtraction
        dest1[1] = (float) gyro_bias[1]/(float) gyrosensitivity;
        dest1[2] = (float) gyro_bias[2]/(float) gyrosensitivity;

        // Construct the accelerometer biases for push to the hardware accelerometer bias registers. These registers contain
        // factory trim values which must be added to the calculated accelerometer biases; on boot up these registers will hold
        // non-zero values. In addition, bit 0 of the lower byte must be preserved since it is used for temperature
        // compensation calculations. Accelerometer bias registers expect bias input as 2048 LSB per g, so that
        // the accelerometer biases calculated above must be divided by 8.

        int32_t accel_bias_reg[3] = {0, 0, 0}; // A place to hold the factory accelerometer trim biases
        readBytes(MPU9250_ADDRESS, XA_OFFSET_H, 2, &data[0]); // Read factory accelerometer trim values
        accel_bias_reg[0] = (int16_t) ((int16_t)data[0] << 8) | data[1];
        readBytes(MPU9250_ADDRESS, YA_OFFSET_H, 2, &data[0]);
        accel_bias_reg[1] = (int16_t) ((int16_t)data[0] << 8) | data[1];
        readBytes(MPU9250_ADDRESS, ZA_OFFSET_H, 2, &data[0]);
        accel_bias_reg[2] = (int16_t) ((int16_t)data[0] << 8) | data[1];
  
        uint32_t mask = 1uL; // Define mask for temperature compensation bit 0 of lower byte of accelerometer bias registers
        uint8_t mask_bit[3] = {0, 0, 0}; // Define array to hold mask bit for each accelerometer bias axis
  
        for(ii = 0; ii < 3; ii++) {
            if(accel_bias_reg[ii] & mask) mask_bit[ii] = 0x01; // If temperature compensation bit is set, record that fact in mask_bit
        }

        // Construct total accelerometer bias, including calculated average accelerometer bias from above
        accel_bias_reg[0] -= (accel_bias[0]/8); // Subtract calculated averaged accelerometer bias scaled to 2048 LSB/g (16 g full scale)
        accel_bias_reg[1] -= (accel_bias[1]/8);
        accel_bias_reg[2] -= (accel_bias[2]/8);
 
        data[0] = (accel_bias_reg[0] >> 8) & 0xFF;
        data[1] = (accel_bias_reg[0])      & 0xFF;
        data[1] = data[1] | mask_bit[0]; // preserve temperature compensation bit when writing back to accelerometer bias registers
        data[2] = (accel_bias_reg[1] >> 8) & 0xFF;
        data[3] = (accel_bias_reg[1])      & 0xFF;
        data[3] = data[3] | mask_bit[1]; // preserve temperature compensation bit when writing back to accelerometer bias registers
        data[4] = (accel_bias_reg[2] >> 8) & 0xFF;
        data[5] = (accel_bias_reg[2])      & 0xFF;
        data[5] = data[5] | mask_bit[2]; // preserve temperature compensation bit when writing back to accelerometer bias registers

        // Apparently this is not working for the acceleration biases in the MPU-9250
        // Are we handling the temperature correction bit properly?
        // Push accelerometer biases to hardware registers
        /*  writeByte(MPU9250_ADDRESS, XA_OFFSET_H, data[0]);
        writeByte(MPU9250_ADDRESS, XA_OFFSET_L, data[1]);
        writeByte(MPU9250_ADDRESS, YA_OFFSET_H, data[2]);
        writeByte(MPU9250_ADDRESS, YA_OFFSET_L, data[3]);
        writeByte(MPU9250_ADDRESS, ZA_OFFSET_H, data[4]);
        writeByte(MPU9250_ADDRESS, ZA_OFFSET_L, data[5]);
        */
        // Output scaled accelerometer biases for manual subtraction in the main program
        dest2[0] = (float)accel_bias[0]/(float)accelsensitivity; 
        dest2[1] = (float)accel_bias[1]/(float)accelsensitivity;
        dest2[2] = (float)accel_bias[2]/(float)accelsensitivity;
    }


    // Accelerometer and gyroscope self test; check calibration wrt factory settings
    void MPU9250SelfTest(float * destination) // Should return percent deviation from factory trim values, +/- 14 or less deviation is a pass
    {
        uint8_t rawData[6] = {0, 0, 0, 0, 0, 0};
        uint8_t selfTest[6];
        int16_t gAvg[3], aAvg[3], aSTAvg[3], gSTAvg[3];
        float factoryTrim[6];
        uint8_t FS = 0;
   
        writeByte(MPU9250_ADDRESS, SMPLRT_DIV, 0x00); // Set gyro sample rate to 1 kHz
        writeByte(MPU9250_ADDRESS, CONFIG, 0x02); // Set gyro sample rate to 1 kHz and DLPF to 92 Hz
        writeByte(MPU9250_ADDRESS, GYRO_CONFIG, 1<<FS); // Set full scale range for the gyro to 250 dps
        writeByte(MPU9250_ADDRESS, ACCEL_CONFIG2, 0x02); // Set accelerometer rate to 1 kHz and bandwidth to 92 Hz
        writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, 1<<FS); // Set full scale range for the accelerometer to 2 g

        for( int ii = 0; ii < 200; ii++) { // get average current values of gyro and acclerometer
  
            readBytes(MPU9250_ADDRESS, ACCEL_XOUT_H, 6, &rawData[0]); // Read the six raw data registers into data array
            aAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value
            aAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
            aAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
  
            readBytes(MPU9250_ADDRESS, GYRO_XOUT_H, 6, &rawData[0]); // Read the six raw data registers sequentially into data array
            gAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value
            gAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
            gAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
        }
  
        for (int ii =0; ii < 3; ii++) { // Get average of 200 values and store as average current readings
            aAvg[ii] /= 200;
            gAvg[ii] /= 200;
        }
  
        // Configure the accelerometer for self-test
        writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, 0xE0); // Enable self test on all three axes and set accelerometer range to +/- 2 g
        writeByte(MPU9250_ADDRESS, GYRO_CONFIG, 0xE0); // Enable self test on all three axes and set gyro range to +/- 250 degrees/s
        wait_ms(25); // Delay a while to let the device stabilize

        for( int ii = 0; ii < 200; ii++) { // get average self-test values of gyro and acclerometer
  
            readBytes(MPU9250_ADDRESS, ACCEL_XOUT_H, 6, &rawData[0]); // Read the six raw data registers into data array
            aSTAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value
            aSTAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
            aSTAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
  
            readBytes(MPU9250_ADDRESS, GYRO_XOUT_H, 6, &rawData[0]); // Read the six raw data registers sequentially into data array
            gSTAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value
            gSTAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
            gSTAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
        }
  
        for (int ii =0; ii < 3; ii++) { // Get average of 200 values and store as average self-test readings
            aSTAvg[ii] /= 200;
            gSTAvg[ii] /= 200;
        }
  
        // Configure the gyro and accelerometer for normal operation
        writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, 0x00);
        writeByte(MPU9250_ADDRESS, GYRO_CONFIG, 0x00);
        //delay(25); // Delay a while to let the device stabilize
        wait_ms(25); // Delay a while to let the device stabilize
   
        // Retrieve accelerometer and gyro factory Self-Test Code from USR_Reg
        selfTest[0] = readByte(MPU9250_ADDRESS, SELF_TEST_X_ACCEL); // X-axis accel self-test results
        selfTest[1] = readByte(MPU9250_ADDRESS, SELF_TEST_Y_ACCEL); // Y-axis accel self-test results
        selfTest[2] = readByte(MPU9250_ADDRESS, SELF_TEST_Z_ACCEL); // Z-axis accel self-test results
        selfTest[3] = readByte(MPU9250_ADDRESS, SELF_TEST_X_GYRO); // X-axis gyro self-test results
        selfTest[4] = readByte(MPU9250_ADDRESS, SELF_TEST_Y_GYRO); // Y-axis gyro self-test results
        selfTest[5] = readByte(MPU9250_ADDRESS, SELF_TEST_Z_GYRO); // Z-axis gyro self-test results

        // Retrieve factory self-test value from self-test code reads
        factoryTrim[0] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[0] - 1.0) )); // FT[Xa] factory trim calculation
        factoryTrim[1] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[1] - 1.0) )); // FT[Ya] factory trim calculation
        factoryTrim[2] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[2] - 1.0) )); // FT[Za] factory trim calculation
        factoryTrim[3] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[3] - 1.0) )); // FT[Xg] factory trim calculation
        factoryTrim[4] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[4] - 1.0) )); // FT[Yg] factory trim calculation
        factoryTrim[5] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[5] - 1.0) )); // FT[Zg] factory trim calculation
 
        // Report results as a ratio of (STR - FT)/FT; the change from Factory Trim of the Self-Test Response
        // To get percent, must multiply by 100
        for (int i = 0; i < 3; i++) {
            destination[i] = 100.0*((float)(aSTAvg[i] - aAvg[i]))/factoryTrim[i]; // Report percent differences
            destination[i+3] = 100.0*((float)(gSTAvg[i] - gAvg[i]))/factoryTrim[i+3]; // Report percent differences
        }   
    }


    
    void getCompassOrientation(float * orient){ // Obtains the orientation of the device in degrees. 0 degrees North. 180 degrees South.
        /*
        Remember that it is the earth's rotational axis that defines the geographic north and south poles that we use for map references.
        It turns out that there is a discrepancy of about 11.5 degrees between the geographic poles and the magnetic poles. The last is 
        what the magnetometer will read. A value, called the declination angle, can be applied to the magnetic direction to correct for this.
        On Valencia (Spain) this value is about 0 degrees.
        */
                
        // First of all measure 3 axis magnetometer values (only X and Y axis is used):        
        readMagData(magCount);  // Read the x/y/z adc values   
                                // Calculate the magnetometer values in milliGauss
                                // Include factory calibration per data sheet and user environmental corrections
        if (I2Cstate == 0){ // no error on I2C            
            I2Cstate = 1;
            magn_x = (float)magCount[0]*mRes*magCalibration[0] - magbias[0];  // get actual magnetometer value, this depends on scale being set
            magn_y = (float)magCount[1]*mRes*magCalibration[1] - magbias[1];
        }
        
        // Now obtains the orientation value:
        if (magn_y>0)
            orient[0] = 90.0 - (float) ( atan(magn_x/magn_y)*180/M_PI );
        else if (magn_y<0)
            orient[0] = 270.0 - (float) ( atan(magn_x/magn_y)*180/M_PI );
        else if (magn_y == 0){
            if (magn_x<0)
                orient[0] = 180.0;
            else
                orient[0] = 0.0;
        }
    }

            
        
    
    

// Implementation of Sebastian Madgwick's "...efficient orientation filter for... inertial/magnetic sensor arrays"
// (see http://www.x-io.co.uk/category/open-source/ for examples and more details)
// which fuses acceleration, rotation rate, and magnetic moments to produce a quaternion-based estimate of absolute
// device orientation -- which can be converted to yaw, pitch, and roll. Useful for stabilizing quadcopters, etc.
// The performance of the orientation filter is at least as good as conventional Kalman-based filtering algorithms
// but is much less computationally intensive---it can be performed on a 3.3 V Pro Mini operating at 8 MHz!
        void MadgwickQuaternionUpdate(float ax, float ay, float az, float gx, float gy, float gz, float mx, float my, float mz)
        {
            float q1 = q[0], q2 = q[1], q3 = q[2], q4 = q[3];   // short name local variable for readability
            float norm;
            float hx, hy, _2bx, _2bz;
            float s1, s2, s3, s4;
            float qDot1, qDot2, qDot3, qDot4;

            // Auxiliary variables to avoid repeated arithmetic
            float _2q1mx;
            float _2q1my;
            float _2q1mz;
            float _2q2mx;
            float _4bx;
            float _4bz;
            float _2q1 = 2.0f * q1;
            float _2q2 = 2.0f * q2;
            float _2q3 = 2.0f * q3;
            float _2q4 = 2.0f * q4;
            float _2q1q3 = 2.0f * q1 * q3;
            float _2q3q4 = 2.0f * q3 * q4;
            float q1q1 = q1 * q1;
            float q1q2 = q1 * q2;
            float q1q3 = q1 * q3;
            float q1q4 = q1 * q4;
            float q2q2 = q2 * q2;
            float q2q3 = q2 * q3;
            float q2q4 = q2 * q4;
            float q3q3 = q3 * q3;
            float q3q4 = q3 * q4;
            float q4q4 = q4 * q4;

            // Normalise accelerometer measurement
            norm = sqrt(ax * ax + ay * ay + az * az);
            if (norm == 0.0f) return; // handle NaN
            norm = 1.0f/norm;
            ax *= norm;
            ay *= norm;
            az *= norm;

            // Normalise magnetometer measurement
            norm = sqrt(mx * mx + my * my + mz * mz);
            if (norm == 0.0f) return; // handle NaN
            norm = 1.0f/norm;
            mx *= norm;
            my *= norm;
            mz *= norm;

            // Reference direction of Earth's magnetic field
            _2q1mx = 2.0f * q1 * mx;
            _2q1my = 2.0f * q1 * my;
            _2q1mz = 2.0f * q1 * mz;
            _2q2mx = 2.0f * q2 * mx;
            hx = mx * q1q1 - _2q1my * q4 + _2q1mz * q3 + mx * q2q2 + _2q2 * my * q3 + _2q2 * mz * q4 - mx * q3q3 - mx * q4q4;
            hy = _2q1mx * q4 + my * q1q1 - _2q1mz * q2 + _2q2mx * q3 - my * q2q2 + my * q3q3 + _2q3 * mz * q4 - my * q4q4;
            _2bx = sqrt(hx * hx + hy * hy);
            _2bz = -_2q1mx * q3 + _2q1my * q2 + mz * q1q1 + _2q2mx * q4 - mz * q2q2 + _2q3 * my * q4 - mz * q3q3 + mz * q4q4;
            _4bx = 2.0f * _2bx;
            _4bz = 2.0f * _2bz;

            // Gradient decent algorithm corrective step
            s1 = -_2q3 * (2.0f * q2q4 - _2q1q3 - ax) + _2q2 * (2.0f * q1q2 + _2q3q4 - ay) - _2bz * q3 * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (-_2bx * q4 + _2bz * q2) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + _2bx * q3 * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz);
            s2 = _2q4 * (2.0f * q2q4 - _2q1q3 - ax) + _2q1 * (2.0f * q1q2 + _2q3q4 - ay) - 4.0f * q2 * (1.0f - 2.0f * q2q2 - 2.0f * q3q3 - az) + _2bz * q4 * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (_2bx * q3 + _2bz * q1) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + (_2bx * q4 - _4bz * q2) * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz);
            s3 = -_2q1 * (2.0f * q2q4 - _2q1q3 - ax) + _2q4 * (2.0f * q1q2 + _2q3q4 - ay) - 4.0f * q3 * (1.0f - 2.0f * q2q2 - 2.0f * q3q3 - az) + (-_4bx * q3 - _2bz * q1) * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (_2bx * q2 + _2bz * q4) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + (_2bx * q1 - _4bz * q3) * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz);
            s4 = _2q2 * (2.0f * q2q4 - _2q1q3 - ax) + _2q3 * (2.0f * q1q2 + _2q3q4 - ay) + (-_4bx * q4 + _2bz * q2) * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (-_2bx * q1 + _2bz * q3) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + _2bx * q2 * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz);
            norm = sqrt(s1 * s1 + s2 * s2 + s3 * s3 + s4 * s4);    // normalise step magnitude
            norm = 1.0f/norm;
            s1 *= norm;
            s2 *= norm;
            s3 *= norm;
            s4 *= norm;

            // Compute rate of change of quaternion
            qDot1 = 0.5f * (-q2 * gx - q3 * gy - q4 * gz) - beta * s1;
            qDot2 = 0.5f * (q1 * gx + q3 * gz - q4 * gy) - beta * s2;
            qDot3 = 0.5f * (q1 * gy - q2 * gz + q4 * gx) - beta * s3;
            qDot4 = 0.5f * (q1 * gz + q2 * gy - q3 * gx) - beta * s4;

            // Integrate to yield quaternion
            q1 += qDot1 * deltat;
            q2 += qDot2 * deltat;
            q3 += qDot3 * deltat;
            q4 += qDot4 * deltat;
            norm = sqrt(q1 * q1 + q2 * q2 + q3 * q3 + q4 * q4);    // normalise quaternion
            norm = 1.0f/norm;
            q[0] = q1 * norm;
            q[1] = q2 * norm;
            q[2] = q3 * norm;
            q[3] = q4 * norm;

        }
  
  
  
 // Similar to Madgwick scheme but uses proportional and integral filtering on the error between estimated reference vectors and
 // measured ones. 
            void MahonyQuaternionUpdate(float ax, float ay, float az, float gx, float gy, float gz, float mx, float my, float mz)
        {
            float q1 = q[0], q2 = q[1], q3 = q[2], q4 = q[3];   // short name local variable for readability
            float norm;
            float hx, hy, bx, bz;
            float vx, vy, vz, wx, wy, wz;
            float ex, ey, ez;
            float pa, pb, pc;

            // Auxiliary variables to avoid repeated arithmetic
            float q1q1 = q1 * q1;
            float q1q2 = q1 * q2;
            float q1q3 = q1 * q3;
            float q1q4 = q1 * q4;
            float q2q2 = q2 * q2;
            float q2q3 = q2 * q3;
            float q2q4 = q2 * q4;
            float q3q3 = q3 * q3;
            float q3q4 = q3 * q4;
            float q4q4 = q4 * q4;   

            // Normalise accelerometer measurement
            norm = sqrt(ax * ax + ay * ay + az * az);
            if (norm == 0.0f) return; // handle NaN
            norm = 1.0f / norm;        // use reciprocal for division
            ax *= norm;
            ay *= norm;
            az *= norm;

            // Normalise magnetometer measurement
            norm = sqrt(mx * mx + my * my + mz * mz);
            if (norm == 0.0f) return; // handle NaN
            norm = 1.0f / norm;        // use reciprocal for division
            mx *= norm;
            my *= norm;
            mz *= norm;

            // Reference direction of Earth's magnetic field
            hx = 2.0f * mx * (0.5f - q3q3 - q4q4) + 2.0f * my * (q2q3 - q1q4) + 2.0f * mz * (q2q4 + q1q3);
            hy = 2.0f * mx * (q2q3 + q1q4) + 2.0f * my * (0.5f - q2q2 - q4q4) + 2.0f * mz * (q3q4 - q1q2);
            bx = sqrt((hx * hx) + (hy * hy));
            bz = 2.0f * mx * (q2q4 - q1q3) + 2.0f * my * (q3q4 + q1q2) + 2.0f * mz * (0.5f - q2q2 - q3q3);

            // Estimated direction of gravity and magnetic field
            vx = 2.0f * (q2q4 - q1q3);
            vy = 2.0f * (q1q2 + q3q4);
            vz = q1q1 - q2q2 - q3q3 + q4q4;
            wx = 2.0f * bx * (0.5f - q3q3 - q4q4) + 2.0f * bz * (q2q4 - q1q3);
            wy = 2.0f * bx * (q2q3 - q1q4) + 2.0f * bz * (q1q2 + q3q4);
            wz = 2.0f * bx * (q1q3 + q2q4) + 2.0f * bz * (0.5f - q2q2 - q3q3);  

            // Error is cross product between estimated direction and measured direction of gravity
            ex = (ay * vz - az * vy) + (my * wz - mz * wy);
            ey = (az * vx - ax * vz) + (mz * wx - mx * wz);
            ez = (ax * vy - ay * vx) + (mx * wy - my * wx);
            if (Ki > 0.0f)
            {
                eInt[0] += ex;      // accumulate integral error
                eInt[1] += ey;
                eInt[2] += ez;
            }
            else
            {
                eInt[0] = 0.0f;     // prevent integral wind up
                eInt[1] = 0.0f;
                eInt[2] = 0.0f;
            }

            // Apply feedback terms
            gx = gx + Kp * ex + Ki * eInt[0];
            gy = gy + Kp * ey + Ki * eInt[1];
            gz = gz + Kp * ez + Ki * eInt[2];

            // Integrate rate of change of quaternion
            pa = q2;
            pb = q3;
            pc = q4;
            q1 = q1 + (-q2 * gx - q3 * gy - q4 * gz) * (0.5f * deltat);
            q2 = pa + (q1 * gx + pb * gz - pc * gy) * (0.5f * deltat);
            q3 = pb + (q1 * gy - pa * gz + pc * gx) * (0.5f * deltat);
            q4 = pc + (q1 * gz + pa * gy - pb * gx) * (0.5f * deltat);

            // Normalise quaternion
            norm = sqrt(q1 * q1 + q2 * q2 + q3 * q3 + q4 * q4);
            norm = 1.0f / norm;
            q[0] = q1 * norm;
            q[1] = q2 * norm;
            q[2] = q3 * norm;
            q[3] = q4 * norm;
 
        }
  };
#endif