This is the Heart Rate demo program, testing and verifying the functionality of the HR sensor.

Dependencies:   mbed

Revision:
0:92d3ea9d3e67
diff -r 000000000000 -r 92d3ea9d3e67 HeartRate.cpp
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/HeartRate.cpp	Wed Feb 24 17:43:56 2016 +0000
@@ -0,0 +1,202 @@
+#include "PulseSensor.h"
+#include "mbed.h"
+//#include "AnalogIn.h"
+
+DigitalOut led_red(LED_RED);
+DigitalOut led_green(LED_GREEN);
+DigitalOut led_blue(LED_BLUE);
+DigitalIn sw2(SW2);
+DigitalIn sw3(SW3);
+Serial pc(USBTX, USBRX);
+
+AnalogIn Pulse_Signal(A0);              //Initialize analog input for pulse signal
+
+bool Button_Pressed = true;     //Initialize flag for output on terminal
+ 
+PulseSensor::PulseSensor(PinName analogPin, void (*printDataCallback)(char,int), int callbackRateMs)
+{
+    _started = false;
+    
+    _pAin = new AnalogIn(analogPin);
+    
+    _callbackRateMs = callbackRateMs;
+    
+    _printDataCallback = printDataCallback;
+}
+ 
+ 
+PulseSensor::~PulseSensor()
+{
+    delete _pAin;
+}
+ 
+ 
+void PulseSensor::process_data_ticker_callback(void)
+{
+    _printDataCallback('S', Signal);        // send Processing the raw Pulse Sensor data
+    if (QS == true) {                       // Quantified Self flag is true when a heartbeat is found
+        //fadeRate = 255;                  // Set 'fadeRate' Variable to 255 to fade LED with pulse
+        _printDataCallback('B',BPM);        // send heart rate with a 'B' prefix
+        _printDataCallback('Q',IBI);        // send time between beats with a 'Q' prefix
+        QS = false;                         // reset the Quantified Self flag for next time
+    }
+}
+ 
+ 
+void PulseSensor::sensor_ticker_callback(void)
+{
+    Signal = 1023 * _pAin->read();              // read the Pulse Sensor
+    
+    
+    sampleCounter += 2;                         // keep track of the time in mS with this variable
+    int N = sampleCounter - lastBeatTime;       // monitor the time since the last beat to avoid noise
+ 
+    //  find the peak and trough of the pulse wave
+    if(Signal < thresh && N > (IBI/5)*3) {      // avoid dichrotic noise by waiting 3/5 of last IBI
+        if (Signal < T) {                       // T is the trough
+            T = Signal;                         // keep track of lowest point in pulse wave
+        }
+    }
+ 
+    if(Signal > thresh && Signal > P) {         // thresh condition helps avoid noise
+        P = Signal;                             // P is the peak
+    }                                        // keep track of highest point in pulse wave
+ 
+    //  NOW IT'S TIME TO LOOK FOR THE HEART BEAT
+    // signal surges up in value every time there is a pulse
+    if (N > 250) {                                  // avoid high frequency noise by waiting 
+                                                    //this also sets limit to HR sensor to max =240 BPMs
+        if ( (Signal > thresh) && (Pulse == false) && (N > (IBI/5)*3) ) {
+            Pulse = true;                               // set the Pulse flag when we think there is a pulse
+            //digitalWrite(blinkPin,HIGH);                // turn on pin 13 LED
+            IBI = sampleCounter - lastBeatTime;         // measure time between beats in mS
+            lastBeatTime = sampleCounter;               // keep track of time for next pulse
+ 
+            if(firstBeat) {                        // if it's the first time we found a beat, if firstBeat == TRUE
+                firstBeat = false;                 // clear firstBeat flag
+                return;                            // IBI value is unreliable so discard it
+            }
+            if(secondBeat) {                       // if this is the second beat, if secondBeat == TRUE
+                secondBeat = false;                 // clear secondBeat flag
+                for(int i=0; i<=9; i++) {        // seed the running total to get a realisitic BPM at startup
+                    rate[i] = IBI;
+                }
+            }
+ 
+            // keep a running total of the last 10 IBI values
+            long runningTotal = 0;                   // clear the runningTotal variable
+ 
+            for(int i=0; i<=8; i++) {               // shift data in the rate array
+                rate[i] = rate[i+1];                // and drop the oldest IBI value
+                runningTotal += rate[i];            // add up the 9 oldest IBI values
+            }
+ 
+            rate[9] = IBI;                          // add the latest IBI to the rate array
+            runningTotal += rate[9];                // add the latest IBI to runningTotal
+            runningTotal /= 10;                     // average the last 10 IBI values
+            BPM = 60000/runningTotal;               // how many beats can fit into a minute? that's BPM!
+            QS = true;                              // set Quantified Self flag
+            // QS FLAG IS NOT CLEARED INSIDE THIS ISR
+        }
+    }
+ 
+    if (Signal < thresh && Pulse == true) {    // when the values are going down, the beat is over
+        Pulse = false;                         // reset the Pulse flag so we can do it again
+        amp = P - T;                           // get amplitude of the pulse wave
+        thresh = amp/2 + T;                    // set thresh at 50% of the amplitude
+        P = thresh;                            // reset these for next time
+        T = thresh;
+    }
+ 
+    if (N > 2500) {                            // if 2.5 seconds go by without a beat
+        thresh = 512;                          // set thresh default
+        P = 512;                               // set P default
+        T = 512;                               // set T default
+        lastBeatTime = sampleCounter;          // bring the lastBeatTime up to date
+        firstBeat = true;                      // set these to avoid noise
+        secondBeat = true;                     // when we get the heartbeat back
+    }
+}
+
+void sendDataToProcessing(char symbol, int data)
+{
+    pc.printf("%c%d\r\n", symbol, data);
+}
+
+int main()
+{
+    pc.baud(9600);
+    pc.printf("Hello World from FRDM-K64F board. This is the Heart Rate Demo Program. ");
+    pc.printf("Press SW2 (Button Near FRDM Logo) to see current Heart Rate.\n ");
+    
+    led_blue =  1;                                       //LED is off
+    led_green = 1;
+    led_red =   1;
+    
+    PulseSensor Pulse_Signal(A0, sendDataToProcessing);
+    Pulse_Signal.start();
+    while(1)
+    {
+        
+        if (sw2 == 0 && Button_Pressed == true)
+        {
+          Pulse_Signal.stop();                 //stops the continuous signal
+          pc.printf("Current Heart Rate is: %d BPM \t", Pulse_Signal.BPM); 
+           Button_Pressed= false; 
+          
+         
+           wait(1);
+        }
+        else if (sw3 == 0 && Button_Pressed == true)
+        {
+            Pulse_Signal.start();               //restarts the pulse signal
+           // Button_Pressed= false; 
+        }
+        Button_Pressed = true;
+    }                                   
+}
+ 
+bool PulseSensor::start()
+{
+    if (_started == false)
+    {
+        sampleCounter = 0;
+        lastBeatTime = 0;
+        P =512;
+        T = 512;
+        thresh = 512;
+        amp = 100;
+        firstBeat = true;
+        secondBeat = true;
+        
+        BPM=0;
+        Signal=0;
+        IBI = 600;
+        Pulse = false;
+        QS = false;
+        
+        _pulseSensorTicker.attach(this, &PulseSensor::sensor_ticker_callback, ((float)_sensorTickRateMs/1000));
+        _processDataTicker.attach(this, &PulseSensor::process_data_ticker_callback,  ((float)_callbackRateMs/1000));
+        _started = true;
+        return true;
+    }
+    else
+    {
+        return false;
+    }
+}
+ 
+bool PulseSensor::stop()
+{
+    if(_started == true)
+    {
+        _pulseSensorTicker.detach();
+        _processDataTicker.detach();
+        _started = false;
+        return true;
+    }
+    else
+    {
+        return false;
+    }
+}
\ No newline at end of file