Forked mbed-dev as I use an 20 pins stm32F042 and not the 32 pins version

Dependents:   Numitron_clock

Fork of mbed-dev by mbed official

Committer:
<>
Date:
Thu Nov 24 17:03:03 2016 +0000
Revision:
151:5eaa88a5bcc7
Parent:
149:156823d33999
This updates the lib to the mbed lib v130

Who changed what in which revision?

UserRevisionLine numberNew contents of line
<> 144:ef7eb2e8f9f7 1 /**************************************************************************//**
<> 144:ef7eb2e8f9f7 2 * @file core_caFunc.h
<> 144:ef7eb2e8f9f7 3 * @brief CMSIS Cortex-A Core Function Access Header File
<> 144:ef7eb2e8f9f7 4 * @version V3.10
<> 144:ef7eb2e8f9f7 5 * @date 30 Oct 2013
<> 144:ef7eb2e8f9f7 6 *
<> 144:ef7eb2e8f9f7 7 * @note
<> 144:ef7eb2e8f9f7 8 *
<> 144:ef7eb2e8f9f7 9 ******************************************************************************/
<> 144:ef7eb2e8f9f7 10 /* Copyright (c) 2009 - 2013 ARM LIMITED
<> 144:ef7eb2e8f9f7 11
<> 144:ef7eb2e8f9f7 12 All rights reserved.
<> 144:ef7eb2e8f9f7 13 Redistribution and use in source and binary forms, with or without
<> 144:ef7eb2e8f9f7 14 modification, are permitted provided that the following conditions are met:
<> 144:ef7eb2e8f9f7 15 - Redistributions of source code must retain the above copyright
<> 144:ef7eb2e8f9f7 16 notice, this list of conditions and the following disclaimer.
<> 144:ef7eb2e8f9f7 17 - Redistributions in binary form must reproduce the above copyright
<> 144:ef7eb2e8f9f7 18 notice, this list of conditions and the following disclaimer in the
<> 144:ef7eb2e8f9f7 19 documentation and/or other materials provided with the distribution.
<> 144:ef7eb2e8f9f7 20 - Neither the name of ARM nor the names of its contributors may be used
<> 144:ef7eb2e8f9f7 21 to endorse or promote products derived from this software without
<> 144:ef7eb2e8f9f7 22 specific prior written permission.
<> 144:ef7eb2e8f9f7 23 *
<> 144:ef7eb2e8f9f7 24 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
<> 144:ef7eb2e8f9f7 25 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
<> 144:ef7eb2e8f9f7 26 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
<> 144:ef7eb2e8f9f7 27 ARE DISCLAIMED. IN NO EVENT SHALL COPYRIGHT HOLDERS AND CONTRIBUTORS BE
<> 144:ef7eb2e8f9f7 28 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
<> 144:ef7eb2e8f9f7 29 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
<> 144:ef7eb2e8f9f7 30 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
<> 144:ef7eb2e8f9f7 31 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
<> 144:ef7eb2e8f9f7 32 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
<> 144:ef7eb2e8f9f7 33 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
<> 144:ef7eb2e8f9f7 34 POSSIBILITY OF SUCH DAMAGE.
<> 144:ef7eb2e8f9f7 35 ---------------------------------------------------------------------------*/
<> 144:ef7eb2e8f9f7 36
<> 144:ef7eb2e8f9f7 37
<> 144:ef7eb2e8f9f7 38 #ifndef __CORE_CAFUNC_H__
<> 144:ef7eb2e8f9f7 39 #define __CORE_CAFUNC_H__
<> 144:ef7eb2e8f9f7 40
<> 144:ef7eb2e8f9f7 41
<> 144:ef7eb2e8f9f7 42 /* ########################### Core Function Access ########################### */
<> 144:ef7eb2e8f9f7 43 /** \ingroup CMSIS_Core_FunctionInterface
<> 144:ef7eb2e8f9f7 44 \defgroup CMSIS_Core_RegAccFunctions CMSIS Core Register Access Functions
<> 144:ef7eb2e8f9f7 45 @{
<> 144:ef7eb2e8f9f7 46 */
<> 144:ef7eb2e8f9f7 47
<> 144:ef7eb2e8f9f7 48 #if defined ( __CC_ARM ) /*------------------RealView Compiler -----------------*/
<> 144:ef7eb2e8f9f7 49 /* ARM armcc specific functions */
<> 144:ef7eb2e8f9f7 50
<> 144:ef7eb2e8f9f7 51 #if (__ARMCC_VERSION < 400677)
<> 144:ef7eb2e8f9f7 52 #error "Please use ARM Compiler Toolchain V4.0.677 or later!"
<> 144:ef7eb2e8f9f7 53 #endif
<> 144:ef7eb2e8f9f7 54
<> 144:ef7eb2e8f9f7 55 #define MODE_USR 0x10
<> 144:ef7eb2e8f9f7 56 #define MODE_FIQ 0x11
<> 144:ef7eb2e8f9f7 57 #define MODE_IRQ 0x12
<> 144:ef7eb2e8f9f7 58 #define MODE_SVC 0x13
<> 144:ef7eb2e8f9f7 59 #define MODE_MON 0x16
<> 144:ef7eb2e8f9f7 60 #define MODE_ABT 0x17
<> 144:ef7eb2e8f9f7 61 #define MODE_HYP 0x1A
<> 144:ef7eb2e8f9f7 62 #define MODE_UND 0x1B
<> 144:ef7eb2e8f9f7 63 #define MODE_SYS 0x1F
<> 144:ef7eb2e8f9f7 64
<> 144:ef7eb2e8f9f7 65 /** \brief Get APSR Register
<> 144:ef7eb2e8f9f7 66
<> 144:ef7eb2e8f9f7 67 This function returns the content of the APSR Register.
<> 144:ef7eb2e8f9f7 68
<> 144:ef7eb2e8f9f7 69 \return APSR Register value
<> 144:ef7eb2e8f9f7 70 */
<> 144:ef7eb2e8f9f7 71 __STATIC_INLINE uint32_t __get_APSR(void)
<> 144:ef7eb2e8f9f7 72 {
<> 144:ef7eb2e8f9f7 73 register uint32_t __regAPSR __ASM("apsr");
<> 144:ef7eb2e8f9f7 74 return(__regAPSR);
<> 144:ef7eb2e8f9f7 75 }
<> 144:ef7eb2e8f9f7 76
<> 144:ef7eb2e8f9f7 77
<> 144:ef7eb2e8f9f7 78 /** \brief Get CPSR Register
<> 144:ef7eb2e8f9f7 79
<> 144:ef7eb2e8f9f7 80 This function returns the content of the CPSR Register.
<> 144:ef7eb2e8f9f7 81
<> 144:ef7eb2e8f9f7 82 \return CPSR Register value
<> 144:ef7eb2e8f9f7 83 */
<> 144:ef7eb2e8f9f7 84 __STATIC_INLINE uint32_t __get_CPSR(void)
<> 144:ef7eb2e8f9f7 85 {
<> 144:ef7eb2e8f9f7 86 register uint32_t __regCPSR __ASM("cpsr");
<> 144:ef7eb2e8f9f7 87 return(__regCPSR);
<> 144:ef7eb2e8f9f7 88 }
<> 144:ef7eb2e8f9f7 89
<> 144:ef7eb2e8f9f7 90 /** \brief Set Stack Pointer
<> 144:ef7eb2e8f9f7 91
<> 144:ef7eb2e8f9f7 92 This function assigns the given value to the current stack pointer.
<> 144:ef7eb2e8f9f7 93
<> 144:ef7eb2e8f9f7 94 \param [in] topOfStack Stack Pointer value to set
<> 144:ef7eb2e8f9f7 95 */
<> 144:ef7eb2e8f9f7 96 register uint32_t __regSP __ASM("sp");
<> 144:ef7eb2e8f9f7 97 __STATIC_INLINE void __set_SP(uint32_t topOfStack)
<> 144:ef7eb2e8f9f7 98 {
<> 144:ef7eb2e8f9f7 99 __regSP = topOfStack;
<> 144:ef7eb2e8f9f7 100 }
<> 144:ef7eb2e8f9f7 101
<> 144:ef7eb2e8f9f7 102
<> 144:ef7eb2e8f9f7 103 /** \brief Get link register
<> 144:ef7eb2e8f9f7 104
<> 144:ef7eb2e8f9f7 105 This function returns the value of the link register
<> 144:ef7eb2e8f9f7 106
<> 144:ef7eb2e8f9f7 107 \return Value of link register
<> 144:ef7eb2e8f9f7 108 */
<> 144:ef7eb2e8f9f7 109 register uint32_t __reglr __ASM("lr");
<> 144:ef7eb2e8f9f7 110 __STATIC_INLINE uint32_t __get_LR(void)
<> 144:ef7eb2e8f9f7 111 {
<> 144:ef7eb2e8f9f7 112 return(__reglr);
<> 144:ef7eb2e8f9f7 113 }
<> 144:ef7eb2e8f9f7 114
<> 144:ef7eb2e8f9f7 115 /** \brief Set link register
<> 144:ef7eb2e8f9f7 116
<> 144:ef7eb2e8f9f7 117 This function sets the value of the link register
<> 144:ef7eb2e8f9f7 118
<> 144:ef7eb2e8f9f7 119 \param [in] lr LR value to set
<> 144:ef7eb2e8f9f7 120 */
<> 144:ef7eb2e8f9f7 121 __STATIC_INLINE void __set_LR(uint32_t lr)
<> 144:ef7eb2e8f9f7 122 {
<> 144:ef7eb2e8f9f7 123 __reglr = lr;
<> 144:ef7eb2e8f9f7 124 }
<> 144:ef7eb2e8f9f7 125
<> 144:ef7eb2e8f9f7 126 /** \brief Set Process Stack Pointer
<> 144:ef7eb2e8f9f7 127
<> 144:ef7eb2e8f9f7 128 This function assigns the given value to the USR/SYS Stack Pointer (PSP).
<> 144:ef7eb2e8f9f7 129
<> 144:ef7eb2e8f9f7 130 \param [in] topOfProcStack USR/SYS Stack Pointer value to set
<> 144:ef7eb2e8f9f7 131 */
<> 144:ef7eb2e8f9f7 132 __STATIC_ASM void __set_PSP(uint32_t topOfProcStack)
<> 144:ef7eb2e8f9f7 133 {
<> 144:ef7eb2e8f9f7 134 ARM
<> 144:ef7eb2e8f9f7 135 PRESERVE8
<> 144:ef7eb2e8f9f7 136
<> 144:ef7eb2e8f9f7 137 BIC R0, R0, #7 ;ensure stack is 8-byte aligned
<> 144:ef7eb2e8f9f7 138 MRS R1, CPSR
<> 144:ef7eb2e8f9f7 139 CPS #MODE_SYS ;no effect in USR mode
<> 144:ef7eb2e8f9f7 140 MOV SP, R0
<> 144:ef7eb2e8f9f7 141 MSR CPSR_c, R1 ;no effect in USR mode
<> 144:ef7eb2e8f9f7 142 ISB
<> 144:ef7eb2e8f9f7 143 BX LR
<> 144:ef7eb2e8f9f7 144
<> 144:ef7eb2e8f9f7 145 }
<> 144:ef7eb2e8f9f7 146
<> 144:ef7eb2e8f9f7 147 /** \brief Set User Mode
<> 144:ef7eb2e8f9f7 148
<> 144:ef7eb2e8f9f7 149 This function changes the processor state to User Mode
<> 144:ef7eb2e8f9f7 150 */
<> 144:ef7eb2e8f9f7 151 __STATIC_ASM void __set_CPS_USR(void)
<> 144:ef7eb2e8f9f7 152 {
<> 144:ef7eb2e8f9f7 153 ARM
<> 144:ef7eb2e8f9f7 154
<> 144:ef7eb2e8f9f7 155 CPS #MODE_USR
<> 144:ef7eb2e8f9f7 156 BX LR
<> 144:ef7eb2e8f9f7 157 }
<> 144:ef7eb2e8f9f7 158
<> 144:ef7eb2e8f9f7 159
<> 144:ef7eb2e8f9f7 160 /** \brief Enable FIQ
<> 144:ef7eb2e8f9f7 161
<> 144:ef7eb2e8f9f7 162 This function enables FIQ interrupts by clearing the F-bit in the CPSR.
<> 144:ef7eb2e8f9f7 163 Can only be executed in Privileged modes.
<> 144:ef7eb2e8f9f7 164 */
<> 144:ef7eb2e8f9f7 165 #define __enable_fault_irq __enable_fiq
<> 144:ef7eb2e8f9f7 166
<> 144:ef7eb2e8f9f7 167
<> 144:ef7eb2e8f9f7 168 /** \brief Disable FIQ
<> 144:ef7eb2e8f9f7 169
<> 144:ef7eb2e8f9f7 170 This function disables FIQ interrupts by setting the F-bit in the CPSR.
<> 144:ef7eb2e8f9f7 171 Can only be executed in Privileged modes.
<> 144:ef7eb2e8f9f7 172 */
<> 144:ef7eb2e8f9f7 173 #define __disable_fault_irq __disable_fiq
<> 144:ef7eb2e8f9f7 174
<> 144:ef7eb2e8f9f7 175
<> 144:ef7eb2e8f9f7 176 /** \brief Get FPSCR
<> 144:ef7eb2e8f9f7 177
<> 144:ef7eb2e8f9f7 178 This function returns the current value of the Floating Point Status/Control register.
<> 144:ef7eb2e8f9f7 179
<> 144:ef7eb2e8f9f7 180 \return Floating Point Status/Control register value
<> 144:ef7eb2e8f9f7 181 */
<> 144:ef7eb2e8f9f7 182 __STATIC_INLINE uint32_t __get_FPSCR(void)
<> 144:ef7eb2e8f9f7 183 {
<> 144:ef7eb2e8f9f7 184 #if (__FPU_PRESENT == 1) && (__FPU_USED == 1)
<> 144:ef7eb2e8f9f7 185 register uint32_t __regfpscr __ASM("fpscr");
<> 144:ef7eb2e8f9f7 186 return(__regfpscr);
<> 144:ef7eb2e8f9f7 187 #else
<> 144:ef7eb2e8f9f7 188 return(0);
<> 144:ef7eb2e8f9f7 189 #endif
<> 144:ef7eb2e8f9f7 190 }
<> 144:ef7eb2e8f9f7 191
<> 144:ef7eb2e8f9f7 192
<> 144:ef7eb2e8f9f7 193 /** \brief Set FPSCR
<> 144:ef7eb2e8f9f7 194
<> 144:ef7eb2e8f9f7 195 This function assigns the given value to the Floating Point Status/Control register.
<> 144:ef7eb2e8f9f7 196
<> 144:ef7eb2e8f9f7 197 \param [in] fpscr Floating Point Status/Control value to set
<> 144:ef7eb2e8f9f7 198 */
<> 144:ef7eb2e8f9f7 199 __STATIC_INLINE void __set_FPSCR(uint32_t fpscr)
<> 144:ef7eb2e8f9f7 200 {
<> 144:ef7eb2e8f9f7 201 #if (__FPU_PRESENT == 1) && (__FPU_USED == 1)
<> 144:ef7eb2e8f9f7 202 register uint32_t __regfpscr __ASM("fpscr");
<> 144:ef7eb2e8f9f7 203 __regfpscr = (fpscr);
<> 144:ef7eb2e8f9f7 204 #endif
<> 144:ef7eb2e8f9f7 205 }
<> 144:ef7eb2e8f9f7 206
<> 144:ef7eb2e8f9f7 207 /** \brief Get FPEXC
<> 144:ef7eb2e8f9f7 208
<> 144:ef7eb2e8f9f7 209 This function returns the current value of the Floating Point Exception Control register.
<> 144:ef7eb2e8f9f7 210
<> 144:ef7eb2e8f9f7 211 \return Floating Point Exception Control register value
<> 144:ef7eb2e8f9f7 212 */
<> 144:ef7eb2e8f9f7 213 __STATIC_INLINE uint32_t __get_FPEXC(void)
<> 144:ef7eb2e8f9f7 214 {
<> 144:ef7eb2e8f9f7 215 #if (__FPU_PRESENT == 1)
<> 144:ef7eb2e8f9f7 216 register uint32_t __regfpexc __ASM("fpexc");
<> 144:ef7eb2e8f9f7 217 return(__regfpexc);
<> 144:ef7eb2e8f9f7 218 #else
<> 144:ef7eb2e8f9f7 219 return(0);
<> 144:ef7eb2e8f9f7 220 #endif
<> 144:ef7eb2e8f9f7 221 }
<> 144:ef7eb2e8f9f7 222
<> 144:ef7eb2e8f9f7 223
<> 144:ef7eb2e8f9f7 224 /** \brief Set FPEXC
<> 144:ef7eb2e8f9f7 225
<> 144:ef7eb2e8f9f7 226 This function assigns the given value to the Floating Point Exception Control register.
<> 144:ef7eb2e8f9f7 227
<> 144:ef7eb2e8f9f7 228 \param [in] fpscr Floating Point Exception Control value to set
<> 144:ef7eb2e8f9f7 229 */
<> 144:ef7eb2e8f9f7 230 __STATIC_INLINE void __set_FPEXC(uint32_t fpexc)
<> 144:ef7eb2e8f9f7 231 {
<> 144:ef7eb2e8f9f7 232 #if (__FPU_PRESENT == 1)
<> 144:ef7eb2e8f9f7 233 register uint32_t __regfpexc __ASM("fpexc");
<> 144:ef7eb2e8f9f7 234 __regfpexc = (fpexc);
<> 144:ef7eb2e8f9f7 235 #endif
<> 144:ef7eb2e8f9f7 236 }
<> 144:ef7eb2e8f9f7 237
<> 144:ef7eb2e8f9f7 238 /** \brief Get CPACR
<> 144:ef7eb2e8f9f7 239
<> 144:ef7eb2e8f9f7 240 This function returns the current value of the Coprocessor Access Control register.
<> 144:ef7eb2e8f9f7 241
<> 144:ef7eb2e8f9f7 242 \return Coprocessor Access Control register value
<> 144:ef7eb2e8f9f7 243 */
<> 144:ef7eb2e8f9f7 244 __STATIC_INLINE uint32_t __get_CPACR(void)
<> 144:ef7eb2e8f9f7 245 {
<> 144:ef7eb2e8f9f7 246 register uint32_t __regCPACR __ASM("cp15:0:c1:c0:2");
<> 144:ef7eb2e8f9f7 247 return __regCPACR;
<> 144:ef7eb2e8f9f7 248 }
<> 144:ef7eb2e8f9f7 249
<> 144:ef7eb2e8f9f7 250 /** \brief Set CPACR
<> 144:ef7eb2e8f9f7 251
<> 144:ef7eb2e8f9f7 252 This function assigns the given value to the Coprocessor Access Control register.
<> 144:ef7eb2e8f9f7 253
<> 144:ef7eb2e8f9f7 254 \param [in] cpacr Coprocessor Acccess Control value to set
<> 144:ef7eb2e8f9f7 255 */
<> 144:ef7eb2e8f9f7 256 __STATIC_INLINE void __set_CPACR(uint32_t cpacr)
<> 144:ef7eb2e8f9f7 257 {
<> 144:ef7eb2e8f9f7 258 register uint32_t __regCPACR __ASM("cp15:0:c1:c0:2");
<> 144:ef7eb2e8f9f7 259 __regCPACR = cpacr;
<> 144:ef7eb2e8f9f7 260 __ISB();
<> 144:ef7eb2e8f9f7 261 }
<> 144:ef7eb2e8f9f7 262
<> 144:ef7eb2e8f9f7 263 /** \brief Get CBAR
<> 144:ef7eb2e8f9f7 264
<> 144:ef7eb2e8f9f7 265 This function returns the value of the Configuration Base Address register.
<> 144:ef7eb2e8f9f7 266
<> 144:ef7eb2e8f9f7 267 \return Configuration Base Address register value
<> 144:ef7eb2e8f9f7 268 */
<> 144:ef7eb2e8f9f7 269 __STATIC_INLINE uint32_t __get_CBAR() {
<> 144:ef7eb2e8f9f7 270 register uint32_t __regCBAR __ASM("cp15:4:c15:c0:0");
<> 144:ef7eb2e8f9f7 271 return(__regCBAR);
<> 144:ef7eb2e8f9f7 272 }
<> 144:ef7eb2e8f9f7 273
<> 144:ef7eb2e8f9f7 274 /** \brief Get TTBR0
<> 144:ef7eb2e8f9f7 275
<> 144:ef7eb2e8f9f7 276 This function returns the value of the Translation Table Base Register 0.
<> 144:ef7eb2e8f9f7 277
<> 144:ef7eb2e8f9f7 278 \return Translation Table Base Register 0 value
<> 144:ef7eb2e8f9f7 279 */
<> 144:ef7eb2e8f9f7 280 __STATIC_INLINE uint32_t __get_TTBR0() {
<> 144:ef7eb2e8f9f7 281 register uint32_t __regTTBR0 __ASM("cp15:0:c2:c0:0");
<> 144:ef7eb2e8f9f7 282 return(__regTTBR0);
<> 144:ef7eb2e8f9f7 283 }
<> 144:ef7eb2e8f9f7 284
<> 144:ef7eb2e8f9f7 285 /** \brief Set TTBR0
<> 144:ef7eb2e8f9f7 286
<> 144:ef7eb2e8f9f7 287 This function assigns the given value to the Translation Table Base Register 0.
<> 144:ef7eb2e8f9f7 288
<> 144:ef7eb2e8f9f7 289 \param [in] ttbr0 Translation Table Base Register 0 value to set
<> 144:ef7eb2e8f9f7 290 */
<> 144:ef7eb2e8f9f7 291 __STATIC_INLINE void __set_TTBR0(uint32_t ttbr0) {
<> 144:ef7eb2e8f9f7 292 register uint32_t __regTTBR0 __ASM("cp15:0:c2:c0:0");
<> 144:ef7eb2e8f9f7 293 __regTTBR0 = ttbr0;
<> 144:ef7eb2e8f9f7 294 __ISB();
<> 144:ef7eb2e8f9f7 295 }
<> 144:ef7eb2e8f9f7 296
<> 144:ef7eb2e8f9f7 297 /** \brief Get DACR
<> 144:ef7eb2e8f9f7 298
<> 144:ef7eb2e8f9f7 299 This function returns the value of the Domain Access Control Register.
<> 144:ef7eb2e8f9f7 300
<> 144:ef7eb2e8f9f7 301 \return Domain Access Control Register value
<> 144:ef7eb2e8f9f7 302 */
<> 144:ef7eb2e8f9f7 303 __STATIC_INLINE uint32_t __get_DACR() {
<> 144:ef7eb2e8f9f7 304 register uint32_t __regDACR __ASM("cp15:0:c3:c0:0");
<> 144:ef7eb2e8f9f7 305 return(__regDACR);
<> 144:ef7eb2e8f9f7 306 }
<> 144:ef7eb2e8f9f7 307
<> 144:ef7eb2e8f9f7 308 /** \brief Set DACR
<> 144:ef7eb2e8f9f7 309
<> 144:ef7eb2e8f9f7 310 This function assigns the given value to the Domain Access Control Register.
<> 144:ef7eb2e8f9f7 311
<> 144:ef7eb2e8f9f7 312 \param [in] dacr Domain Access Control Register value to set
<> 144:ef7eb2e8f9f7 313 */
<> 144:ef7eb2e8f9f7 314 __STATIC_INLINE void __set_DACR(uint32_t dacr) {
<> 144:ef7eb2e8f9f7 315 register uint32_t __regDACR __ASM("cp15:0:c3:c0:0");
<> 144:ef7eb2e8f9f7 316 __regDACR = dacr;
<> 144:ef7eb2e8f9f7 317 __ISB();
<> 144:ef7eb2e8f9f7 318 }
<> 144:ef7eb2e8f9f7 319
<> 144:ef7eb2e8f9f7 320 /******************************** Cache and BTAC enable ****************************************************/
<> 144:ef7eb2e8f9f7 321
<> 144:ef7eb2e8f9f7 322 /** \brief Set SCTLR
<> 144:ef7eb2e8f9f7 323
<> 144:ef7eb2e8f9f7 324 This function assigns the given value to the System Control Register.
<> 144:ef7eb2e8f9f7 325
<> 144:ef7eb2e8f9f7 326 \param [in] sctlr System Control Register value to set
<> 144:ef7eb2e8f9f7 327 */
<> 144:ef7eb2e8f9f7 328 __STATIC_INLINE void __set_SCTLR(uint32_t sctlr)
<> 144:ef7eb2e8f9f7 329 {
<> 144:ef7eb2e8f9f7 330 register uint32_t __regSCTLR __ASM("cp15:0:c1:c0:0");
<> 144:ef7eb2e8f9f7 331 __regSCTLR = sctlr;
<> 144:ef7eb2e8f9f7 332 }
<> 144:ef7eb2e8f9f7 333
<> 144:ef7eb2e8f9f7 334 /** \brief Get SCTLR
<> 144:ef7eb2e8f9f7 335
<> 144:ef7eb2e8f9f7 336 This function returns the value of the System Control Register.
<> 144:ef7eb2e8f9f7 337
<> 144:ef7eb2e8f9f7 338 \return System Control Register value
<> 144:ef7eb2e8f9f7 339 */
<> 144:ef7eb2e8f9f7 340 __STATIC_INLINE uint32_t __get_SCTLR() {
<> 144:ef7eb2e8f9f7 341 register uint32_t __regSCTLR __ASM("cp15:0:c1:c0:0");
<> 144:ef7eb2e8f9f7 342 return(__regSCTLR);
<> 144:ef7eb2e8f9f7 343 }
<> 144:ef7eb2e8f9f7 344
<> 144:ef7eb2e8f9f7 345 /** \brief Enable Caches
<> 144:ef7eb2e8f9f7 346
<> 144:ef7eb2e8f9f7 347 Enable Caches
<> 144:ef7eb2e8f9f7 348 */
<> 144:ef7eb2e8f9f7 349 __STATIC_INLINE void __enable_caches(void) {
<> 144:ef7eb2e8f9f7 350 // Set I bit 12 to enable I Cache
<> 144:ef7eb2e8f9f7 351 // Set C bit 2 to enable D Cache
<> 144:ef7eb2e8f9f7 352 __set_SCTLR( __get_SCTLR() | (1 << 12) | (1 << 2));
<> 144:ef7eb2e8f9f7 353 }
<> 144:ef7eb2e8f9f7 354
<> 144:ef7eb2e8f9f7 355 /** \brief Disable Caches
<> 144:ef7eb2e8f9f7 356
<> 144:ef7eb2e8f9f7 357 Disable Caches
<> 144:ef7eb2e8f9f7 358 */
<> 144:ef7eb2e8f9f7 359 __STATIC_INLINE void __disable_caches(void) {
<> 144:ef7eb2e8f9f7 360 // Clear I bit 12 to disable I Cache
<> 144:ef7eb2e8f9f7 361 // Clear C bit 2 to disable D Cache
<> 144:ef7eb2e8f9f7 362 __set_SCTLR( __get_SCTLR() & ~(1 << 12) & ~(1 << 2));
<> 144:ef7eb2e8f9f7 363 __ISB();
<> 144:ef7eb2e8f9f7 364 }
<> 144:ef7eb2e8f9f7 365
<> 144:ef7eb2e8f9f7 366 /** \brief Enable BTAC
<> 144:ef7eb2e8f9f7 367
<> 144:ef7eb2e8f9f7 368 Enable BTAC
<> 144:ef7eb2e8f9f7 369 */
<> 144:ef7eb2e8f9f7 370 __STATIC_INLINE void __enable_btac(void) {
<> 144:ef7eb2e8f9f7 371 // Set Z bit 11 to enable branch prediction
<> 144:ef7eb2e8f9f7 372 __set_SCTLR( __get_SCTLR() | (1 << 11));
<> 144:ef7eb2e8f9f7 373 __ISB();
<> 144:ef7eb2e8f9f7 374 }
<> 144:ef7eb2e8f9f7 375
<> 144:ef7eb2e8f9f7 376 /** \brief Disable BTAC
<> 144:ef7eb2e8f9f7 377
<> 144:ef7eb2e8f9f7 378 Disable BTAC
<> 144:ef7eb2e8f9f7 379 */
<> 144:ef7eb2e8f9f7 380 __STATIC_INLINE void __disable_btac(void) {
<> 144:ef7eb2e8f9f7 381 // Clear Z bit 11 to disable branch prediction
<> 144:ef7eb2e8f9f7 382 __set_SCTLR( __get_SCTLR() & ~(1 << 11));
<> 144:ef7eb2e8f9f7 383 }
<> 144:ef7eb2e8f9f7 384
<> 144:ef7eb2e8f9f7 385
<> 144:ef7eb2e8f9f7 386 /** \brief Enable MMU
<> 144:ef7eb2e8f9f7 387
<> 144:ef7eb2e8f9f7 388 Enable MMU
<> 144:ef7eb2e8f9f7 389 */
<> 144:ef7eb2e8f9f7 390 __STATIC_INLINE void __enable_mmu(void) {
<> 144:ef7eb2e8f9f7 391 // Set M bit 0 to enable the MMU
<> 144:ef7eb2e8f9f7 392 // Set AFE bit to enable simplified access permissions model
<> 144:ef7eb2e8f9f7 393 // Clear TRE bit to disable TEX remap and A bit to disable strict alignment fault checking
<> 144:ef7eb2e8f9f7 394 __set_SCTLR( (__get_SCTLR() & ~(1 << 28) & ~(1 << 1)) | 1 | (1 << 29));
<> 144:ef7eb2e8f9f7 395 __ISB();
<> 144:ef7eb2e8f9f7 396 }
<> 144:ef7eb2e8f9f7 397
<> 144:ef7eb2e8f9f7 398 /** \brief Disable MMU
<> 144:ef7eb2e8f9f7 399
<> 144:ef7eb2e8f9f7 400 Disable MMU
<> 144:ef7eb2e8f9f7 401 */
<> 144:ef7eb2e8f9f7 402 __STATIC_INLINE void __disable_mmu(void) {
<> 144:ef7eb2e8f9f7 403 // Clear M bit 0 to disable the MMU
<> 144:ef7eb2e8f9f7 404 __set_SCTLR( __get_SCTLR() & ~1);
<> 144:ef7eb2e8f9f7 405 __ISB();
<> 144:ef7eb2e8f9f7 406 }
<> 144:ef7eb2e8f9f7 407
<> 144:ef7eb2e8f9f7 408 /******************************** TLB maintenance operations ************************************************/
<> 144:ef7eb2e8f9f7 409 /** \brief Invalidate the whole tlb
<> 144:ef7eb2e8f9f7 410
<> 144:ef7eb2e8f9f7 411 TLBIALL. Invalidate the whole tlb
<> 144:ef7eb2e8f9f7 412 */
<> 144:ef7eb2e8f9f7 413
<> 144:ef7eb2e8f9f7 414 __STATIC_INLINE void __ca9u_inv_tlb_all(void) {
<> 144:ef7eb2e8f9f7 415 register uint32_t __TLBIALL __ASM("cp15:0:c8:c7:0");
<> 144:ef7eb2e8f9f7 416 __TLBIALL = 0;
<> 144:ef7eb2e8f9f7 417 __DSB();
<> 144:ef7eb2e8f9f7 418 __ISB();
<> 144:ef7eb2e8f9f7 419 }
<> 144:ef7eb2e8f9f7 420
<> 144:ef7eb2e8f9f7 421 /******************************** BTB maintenance operations ************************************************/
<> 144:ef7eb2e8f9f7 422 /** \brief Invalidate entire branch predictor array
<> 144:ef7eb2e8f9f7 423
<> 144:ef7eb2e8f9f7 424 BPIALL. Branch Predictor Invalidate All.
<> 144:ef7eb2e8f9f7 425 */
<> 144:ef7eb2e8f9f7 426
<> 144:ef7eb2e8f9f7 427 __STATIC_INLINE void __v7_inv_btac(void) {
<> 144:ef7eb2e8f9f7 428 register uint32_t __BPIALL __ASM("cp15:0:c7:c5:6");
<> 144:ef7eb2e8f9f7 429 __BPIALL = 0;
<> 144:ef7eb2e8f9f7 430 __DSB(); //ensure completion of the invalidation
<> 144:ef7eb2e8f9f7 431 __ISB(); //ensure instruction fetch path sees new state
<> 144:ef7eb2e8f9f7 432 }
<> 144:ef7eb2e8f9f7 433
<> 144:ef7eb2e8f9f7 434
<> 144:ef7eb2e8f9f7 435 /******************************** L1 cache operations ******************************************************/
<> 144:ef7eb2e8f9f7 436
<> 144:ef7eb2e8f9f7 437 /** \brief Invalidate the whole I$
<> 144:ef7eb2e8f9f7 438
<> 144:ef7eb2e8f9f7 439 ICIALLU. Instruction Cache Invalidate All to PoU
<> 144:ef7eb2e8f9f7 440 */
<> 144:ef7eb2e8f9f7 441 __STATIC_INLINE void __v7_inv_icache_all(void) {
<> 144:ef7eb2e8f9f7 442 register uint32_t __ICIALLU __ASM("cp15:0:c7:c5:0");
<> 144:ef7eb2e8f9f7 443 __ICIALLU = 0;
<> 144:ef7eb2e8f9f7 444 __DSB(); //ensure completion of the invalidation
<> 144:ef7eb2e8f9f7 445 __ISB(); //ensure instruction fetch path sees new I cache state
<> 144:ef7eb2e8f9f7 446 }
<> 144:ef7eb2e8f9f7 447
<> 144:ef7eb2e8f9f7 448 /** \brief Clean D$ by MVA
<> 144:ef7eb2e8f9f7 449
<> 144:ef7eb2e8f9f7 450 DCCMVAC. Data cache clean by MVA to PoC
<> 144:ef7eb2e8f9f7 451 */
<> 144:ef7eb2e8f9f7 452 __STATIC_INLINE void __v7_clean_dcache_mva(void *va) {
<> 144:ef7eb2e8f9f7 453 register uint32_t __DCCMVAC __ASM("cp15:0:c7:c10:1");
<> 144:ef7eb2e8f9f7 454 __DCCMVAC = (uint32_t)va;
<> 144:ef7eb2e8f9f7 455 __DMB(); //ensure the ordering of data cache maintenance operations and their effects
<> 144:ef7eb2e8f9f7 456 }
<> 144:ef7eb2e8f9f7 457
<> 144:ef7eb2e8f9f7 458 /** \brief Invalidate D$ by MVA
<> 144:ef7eb2e8f9f7 459
<> 144:ef7eb2e8f9f7 460 DCIMVAC. Data cache invalidate by MVA to PoC
<> 144:ef7eb2e8f9f7 461 */
<> 144:ef7eb2e8f9f7 462 __STATIC_INLINE void __v7_inv_dcache_mva(void *va) {
<> 144:ef7eb2e8f9f7 463 register uint32_t __DCIMVAC __ASM("cp15:0:c7:c6:1");
<> 144:ef7eb2e8f9f7 464 __DCIMVAC = (uint32_t)va;
<> 144:ef7eb2e8f9f7 465 __DMB(); //ensure the ordering of data cache maintenance operations and their effects
<> 144:ef7eb2e8f9f7 466 }
<> 144:ef7eb2e8f9f7 467
<> 144:ef7eb2e8f9f7 468 /** \brief Clean and Invalidate D$ by MVA
<> 144:ef7eb2e8f9f7 469
<> 144:ef7eb2e8f9f7 470 DCCIMVAC. Data cache clean and invalidate by MVA to PoC
<> 144:ef7eb2e8f9f7 471 */
<> 144:ef7eb2e8f9f7 472 __STATIC_INLINE void __v7_clean_inv_dcache_mva(void *va) {
<> 144:ef7eb2e8f9f7 473 register uint32_t __DCCIMVAC __ASM("cp15:0:c7:c14:1");
<> 144:ef7eb2e8f9f7 474 __DCCIMVAC = (uint32_t)va;
<> 144:ef7eb2e8f9f7 475 __DMB(); //ensure the ordering of data cache maintenance operations and their effects
<> 144:ef7eb2e8f9f7 476 }
<> 144:ef7eb2e8f9f7 477
<> 144:ef7eb2e8f9f7 478 /** \brief Clean and Invalidate the entire data or unified cache
<> 144:ef7eb2e8f9f7 479
<> 144:ef7eb2e8f9f7 480 Generic mechanism for cleaning/invalidating the entire data or unified cache to the point of coherency.
<> 144:ef7eb2e8f9f7 481 */
<> 144:ef7eb2e8f9f7 482 #pragma push
<> 144:ef7eb2e8f9f7 483 #pragma arm
<> 144:ef7eb2e8f9f7 484 __STATIC_ASM void __v7_all_cache(uint32_t op) {
<> 144:ef7eb2e8f9f7 485 ARM
<> 144:ef7eb2e8f9f7 486
<> 144:ef7eb2e8f9f7 487 PUSH {R4-R11}
<> 144:ef7eb2e8f9f7 488
<> 144:ef7eb2e8f9f7 489 MRC p15, 1, R6, c0, c0, 1 // Read CLIDR
<> 144:ef7eb2e8f9f7 490 ANDS R3, R6, #0x07000000 // Extract coherency level
<> 144:ef7eb2e8f9f7 491 MOV R3, R3, LSR #23 // Total cache levels << 1
<> 144:ef7eb2e8f9f7 492 BEQ Finished // If 0, no need to clean
<> 144:ef7eb2e8f9f7 493
<> 144:ef7eb2e8f9f7 494 MOV R10, #0 // R10 holds current cache level << 1
<> 144:ef7eb2e8f9f7 495 Loop1 ADD R2, R10, R10, LSR #1 // R2 holds cache "Set" position
<> 144:ef7eb2e8f9f7 496 MOV R1, R6, LSR R2 // Bottom 3 bits are the Cache-type for this level
<> 144:ef7eb2e8f9f7 497 AND R1, R1, #7 // Isolate those lower 3 bits
<> 144:ef7eb2e8f9f7 498 CMP R1, #2
<> 144:ef7eb2e8f9f7 499 BLT Skip // No cache or only instruction cache at this level
<> 144:ef7eb2e8f9f7 500
<> 144:ef7eb2e8f9f7 501 MCR p15, 2, R10, c0, c0, 0 // Write the Cache Size selection register
<> 144:ef7eb2e8f9f7 502 ISB // ISB to sync the change to the CacheSizeID reg
<> 144:ef7eb2e8f9f7 503 MRC p15, 1, R1, c0, c0, 0 // Reads current Cache Size ID register
<> 144:ef7eb2e8f9f7 504 AND R2, R1, #7 // Extract the line length field
<> 144:ef7eb2e8f9f7 505 ADD R2, R2, #4 // Add 4 for the line length offset (log2 16 bytes)
<> 144:ef7eb2e8f9f7 506 LDR R4, =0x3FF
<> 144:ef7eb2e8f9f7 507 ANDS R4, R4, R1, LSR #3 // R4 is the max number on the way size (right aligned)
<> 144:ef7eb2e8f9f7 508 CLZ R5, R4 // R5 is the bit position of the way size increment
<> 144:ef7eb2e8f9f7 509 LDR R7, =0x7FFF
<> 144:ef7eb2e8f9f7 510 ANDS R7, R7, R1, LSR #13 // R7 is the max number of the index size (right aligned)
<> 144:ef7eb2e8f9f7 511
<> 144:ef7eb2e8f9f7 512 Loop2 MOV R9, R4 // R9 working copy of the max way size (right aligned)
<> 144:ef7eb2e8f9f7 513
<> 144:ef7eb2e8f9f7 514 Loop3 ORR R11, R10, R9, LSL R5 // Factor in the Way number and cache number into R11
<> 144:ef7eb2e8f9f7 515 ORR R11, R11, R7, LSL R2 // Factor in the Set number
<> 144:ef7eb2e8f9f7 516 CMP R0, #0
<> 144:ef7eb2e8f9f7 517 BNE Dccsw
<> 144:ef7eb2e8f9f7 518 MCR p15, 0, R11, c7, c6, 2 // DCISW. Invalidate by Set/Way
<> 144:ef7eb2e8f9f7 519 B cont
<> 144:ef7eb2e8f9f7 520 Dccsw CMP R0, #1
<> 144:ef7eb2e8f9f7 521 BNE Dccisw
<> 144:ef7eb2e8f9f7 522 MCR p15, 0, R11, c7, c10, 2 // DCCSW. Clean by Set/Way
<> 144:ef7eb2e8f9f7 523 B cont
<> 144:ef7eb2e8f9f7 524 Dccisw MCR p15, 0, R11, c7, c14, 2 // DCCISW. Clean and Invalidate by Set/Way
<> 144:ef7eb2e8f9f7 525 cont SUBS R9, R9, #1 // Decrement the Way number
<> 144:ef7eb2e8f9f7 526 BGE Loop3
<> 144:ef7eb2e8f9f7 527 SUBS R7, R7, #1 // Decrement the Set number
<> 144:ef7eb2e8f9f7 528 BGE Loop2
<> 144:ef7eb2e8f9f7 529 Skip ADD R10, R10, #2 // Increment the cache number
<> 144:ef7eb2e8f9f7 530 CMP R3, R10
<> 144:ef7eb2e8f9f7 531 BGT Loop1
<> 144:ef7eb2e8f9f7 532
<> 144:ef7eb2e8f9f7 533 Finished
<> 144:ef7eb2e8f9f7 534 DSB
<> 144:ef7eb2e8f9f7 535 POP {R4-R11}
<> 144:ef7eb2e8f9f7 536 BX lr
<> 144:ef7eb2e8f9f7 537
<> 144:ef7eb2e8f9f7 538 }
<> 144:ef7eb2e8f9f7 539 #pragma pop
<> 144:ef7eb2e8f9f7 540
<> 144:ef7eb2e8f9f7 541
<> 144:ef7eb2e8f9f7 542 /** \brief Invalidate the whole D$
<> 144:ef7eb2e8f9f7 543
<> 144:ef7eb2e8f9f7 544 DCISW. Invalidate by Set/Way
<> 144:ef7eb2e8f9f7 545 */
<> 144:ef7eb2e8f9f7 546
<> 144:ef7eb2e8f9f7 547 __STATIC_INLINE void __v7_inv_dcache_all(void) {
<> 144:ef7eb2e8f9f7 548 __v7_all_cache(0);
<> 144:ef7eb2e8f9f7 549 }
<> 144:ef7eb2e8f9f7 550
<> 144:ef7eb2e8f9f7 551 /** \brief Clean the whole D$
<> 144:ef7eb2e8f9f7 552
<> 144:ef7eb2e8f9f7 553 DCCSW. Clean by Set/Way
<> 144:ef7eb2e8f9f7 554 */
<> 144:ef7eb2e8f9f7 555
<> 144:ef7eb2e8f9f7 556 __STATIC_INLINE void __v7_clean_dcache_all(void) {
<> 144:ef7eb2e8f9f7 557 __v7_all_cache(1);
<> 144:ef7eb2e8f9f7 558 }
<> 144:ef7eb2e8f9f7 559
<> 144:ef7eb2e8f9f7 560 /** \brief Clean and invalidate the whole D$
<> 144:ef7eb2e8f9f7 561
<> 144:ef7eb2e8f9f7 562 DCCISW. Clean and Invalidate by Set/Way
<> 144:ef7eb2e8f9f7 563 */
<> 144:ef7eb2e8f9f7 564
<> 144:ef7eb2e8f9f7 565 __STATIC_INLINE void __v7_clean_inv_dcache_all(void) {
<> 144:ef7eb2e8f9f7 566 __v7_all_cache(2);
<> 144:ef7eb2e8f9f7 567 }
<> 144:ef7eb2e8f9f7 568
<> 144:ef7eb2e8f9f7 569 #include "core_ca_mmu.h"
<> 144:ef7eb2e8f9f7 570
<> 144:ef7eb2e8f9f7 571 #elif (defined (__ICCARM__)) /*---------------- ICC Compiler ---------------------*/
<> 144:ef7eb2e8f9f7 572
<> 144:ef7eb2e8f9f7 573 #define __inline inline
<> 144:ef7eb2e8f9f7 574
<> 144:ef7eb2e8f9f7 575 inline static uint32_t __disable_irq_iar() {
<> 144:ef7eb2e8f9f7 576 int irq_dis = __get_CPSR() & 0x80; // 7bit CPSR.I
<> 144:ef7eb2e8f9f7 577 __disable_irq();
<> 144:ef7eb2e8f9f7 578 return irq_dis;
<> 144:ef7eb2e8f9f7 579 }
<> 144:ef7eb2e8f9f7 580
<> 144:ef7eb2e8f9f7 581 #define MODE_USR 0x10
<> 144:ef7eb2e8f9f7 582 #define MODE_FIQ 0x11
<> 144:ef7eb2e8f9f7 583 #define MODE_IRQ 0x12
<> 144:ef7eb2e8f9f7 584 #define MODE_SVC 0x13
<> 144:ef7eb2e8f9f7 585 #define MODE_MON 0x16
<> 144:ef7eb2e8f9f7 586 #define MODE_ABT 0x17
<> 144:ef7eb2e8f9f7 587 #define MODE_HYP 0x1A
<> 144:ef7eb2e8f9f7 588 #define MODE_UND 0x1B
<> 144:ef7eb2e8f9f7 589 #define MODE_SYS 0x1F
<> 144:ef7eb2e8f9f7 590
<> 144:ef7eb2e8f9f7 591 /** \brief Set Process Stack Pointer
<> 144:ef7eb2e8f9f7 592
<> 144:ef7eb2e8f9f7 593 This function assigns the given value to the USR/SYS Stack Pointer (PSP).
<> 144:ef7eb2e8f9f7 594
<> 144:ef7eb2e8f9f7 595 \param [in] topOfProcStack USR/SYS Stack Pointer value to set
<> 144:ef7eb2e8f9f7 596 */
<> 144:ef7eb2e8f9f7 597 // from rt_CMSIS.c
<> 144:ef7eb2e8f9f7 598 __arm static inline void __set_PSP(uint32_t topOfProcStack) {
<> 144:ef7eb2e8f9f7 599 __asm(
<> 144:ef7eb2e8f9f7 600 " ARM\n"
<> 144:ef7eb2e8f9f7 601 // " PRESERVE8\n"
<> 144:ef7eb2e8f9f7 602
<> 144:ef7eb2e8f9f7 603 " BIC R0, R0, #7 ;ensure stack is 8-byte aligned \n"
<> 144:ef7eb2e8f9f7 604 " MRS R1, CPSR \n"
<> 144:ef7eb2e8f9f7 605 " CPS #0x1F ;no effect in USR mode \n" // MODE_SYS
<> 144:ef7eb2e8f9f7 606 " MOV SP, R0 \n"
<> 144:ef7eb2e8f9f7 607 " MSR CPSR_c, R1 ;no effect in USR mode \n"
<> 144:ef7eb2e8f9f7 608 " ISB \n"
<> 144:ef7eb2e8f9f7 609 " BX LR \n");
<> 144:ef7eb2e8f9f7 610 }
<> 144:ef7eb2e8f9f7 611
<> 144:ef7eb2e8f9f7 612 /** \brief Set User Mode
<> 144:ef7eb2e8f9f7 613
<> 144:ef7eb2e8f9f7 614 This function changes the processor state to User Mode
<> 144:ef7eb2e8f9f7 615 */
<> 144:ef7eb2e8f9f7 616 // from rt_CMSIS.c
<> 144:ef7eb2e8f9f7 617 __arm static inline void __set_CPS_USR(void) {
<> 144:ef7eb2e8f9f7 618 __asm(
<> 144:ef7eb2e8f9f7 619 " ARM \n"
<> 144:ef7eb2e8f9f7 620
<> 144:ef7eb2e8f9f7 621 " CPS #0x10 \n" // MODE_USR
<> 144:ef7eb2e8f9f7 622 " BX LR\n");
<> 144:ef7eb2e8f9f7 623 }
<> 144:ef7eb2e8f9f7 624
<> 144:ef7eb2e8f9f7 625 /** \brief Set TTBR0
<> 144:ef7eb2e8f9f7 626
<> 144:ef7eb2e8f9f7 627 This function assigns the given value to the Translation Table Base Register 0.
<> 144:ef7eb2e8f9f7 628
<> 144:ef7eb2e8f9f7 629 \param [in] ttbr0 Translation Table Base Register 0 value to set
<> 144:ef7eb2e8f9f7 630 */
<> 144:ef7eb2e8f9f7 631 // from mmu_Renesas_RZ_A1.c
<> 144:ef7eb2e8f9f7 632 __STATIC_INLINE void __set_TTBR0(uint32_t ttbr0) {
<> 144:ef7eb2e8f9f7 633 __MCR(15, 0, ttbr0, 2, 0, 0); // reg to cp15
<> 144:ef7eb2e8f9f7 634 __ISB();
<> 144:ef7eb2e8f9f7 635 }
<> 144:ef7eb2e8f9f7 636
<> 144:ef7eb2e8f9f7 637 /** \brief Set DACR
<> 144:ef7eb2e8f9f7 638
<> 144:ef7eb2e8f9f7 639 This function assigns the given value to the Domain Access Control Register.
<> 144:ef7eb2e8f9f7 640
<> 144:ef7eb2e8f9f7 641 \param [in] dacr Domain Access Control Register value to set
<> 144:ef7eb2e8f9f7 642 */
<> 144:ef7eb2e8f9f7 643 // from mmu_Renesas_RZ_A1.c
<> 144:ef7eb2e8f9f7 644 __STATIC_INLINE void __set_DACR(uint32_t dacr) {
<> 144:ef7eb2e8f9f7 645 __MCR(15, 0, dacr, 3, 0, 0); // reg to cp15
<> 144:ef7eb2e8f9f7 646 __ISB();
<> 144:ef7eb2e8f9f7 647 }
<> 144:ef7eb2e8f9f7 648
<> 144:ef7eb2e8f9f7 649
<> 144:ef7eb2e8f9f7 650 /******************************** Cache and BTAC enable ****************************************************/
<> 144:ef7eb2e8f9f7 651 /** \brief Set SCTLR
<> 144:ef7eb2e8f9f7 652
<> 144:ef7eb2e8f9f7 653 This function assigns the given value to the System Control Register.
<> 144:ef7eb2e8f9f7 654
<> 144:ef7eb2e8f9f7 655 \param [in] sctlr System Control Register value to set
<> 144:ef7eb2e8f9f7 656 */
<> 144:ef7eb2e8f9f7 657 // from __enable_mmu()
<> 144:ef7eb2e8f9f7 658 __STATIC_INLINE void __set_SCTLR(uint32_t sctlr) {
<> 144:ef7eb2e8f9f7 659 __MCR(15, 0, sctlr, 1, 0, 0); // reg to cp15
<> 144:ef7eb2e8f9f7 660 }
<> 144:ef7eb2e8f9f7 661
<> 144:ef7eb2e8f9f7 662 /** \brief Get SCTLR
<> 144:ef7eb2e8f9f7 663
<> 144:ef7eb2e8f9f7 664 This function returns the value of the System Control Register.
<> 144:ef7eb2e8f9f7 665
<> 144:ef7eb2e8f9f7 666 \return System Control Register value
<> 144:ef7eb2e8f9f7 667 */
<> 144:ef7eb2e8f9f7 668 // from __enable_mmu()
<> 144:ef7eb2e8f9f7 669 __STATIC_INLINE uint32_t __get_SCTLR() {
<> 144:ef7eb2e8f9f7 670 uint32_t __regSCTLR = __MRC(15, 0, 1, 0, 0);
<> 144:ef7eb2e8f9f7 671 return __regSCTLR;
<> 144:ef7eb2e8f9f7 672 }
<> 144:ef7eb2e8f9f7 673
<> 144:ef7eb2e8f9f7 674 /** \brief Enable Caches
<> 144:ef7eb2e8f9f7 675
<> 144:ef7eb2e8f9f7 676 Enable Caches
<> 144:ef7eb2e8f9f7 677 */
<> 144:ef7eb2e8f9f7 678 // from system_Renesas_RZ_A1.c
<> 144:ef7eb2e8f9f7 679 __STATIC_INLINE void __enable_caches(void) {
<> 144:ef7eb2e8f9f7 680 __set_SCTLR( __get_SCTLR() | (1 << 12) | (1 << 2));
<> 144:ef7eb2e8f9f7 681 }
<> 144:ef7eb2e8f9f7 682
<> 144:ef7eb2e8f9f7 683 /** \brief Enable BTAC
<> 144:ef7eb2e8f9f7 684
<> 144:ef7eb2e8f9f7 685 Enable BTAC
<> 144:ef7eb2e8f9f7 686 */
<> 144:ef7eb2e8f9f7 687 // from system_Renesas_RZ_A1.c
<> 144:ef7eb2e8f9f7 688 __STATIC_INLINE void __enable_btac(void) {
<> 144:ef7eb2e8f9f7 689 __set_SCTLR( __get_SCTLR() | (1 << 11));
<> 144:ef7eb2e8f9f7 690 __ISB();
<> 144:ef7eb2e8f9f7 691 }
<> 144:ef7eb2e8f9f7 692
<> 144:ef7eb2e8f9f7 693 /** \brief Enable MMU
<> 144:ef7eb2e8f9f7 694
<> 144:ef7eb2e8f9f7 695 Enable MMU
<> 144:ef7eb2e8f9f7 696 */
<> 144:ef7eb2e8f9f7 697 // from system_Renesas_RZ_A1.c
<> 144:ef7eb2e8f9f7 698 __STATIC_INLINE void __enable_mmu(void) {
<> 144:ef7eb2e8f9f7 699 // Set M bit 0 to enable the MMU
<> 144:ef7eb2e8f9f7 700 // Set AFE bit to enable simplified access permissions model
<> 144:ef7eb2e8f9f7 701 // Clear TRE bit to disable TEX remap and A bit to disable strict alignment fault checking
<> 144:ef7eb2e8f9f7 702 __set_SCTLR( (__get_SCTLR() & ~(1 << 28) & ~(1 << 1)) | 1 | (1 << 29));
<> 144:ef7eb2e8f9f7 703 __ISB();
<> 144:ef7eb2e8f9f7 704 }
<> 144:ef7eb2e8f9f7 705
<> 144:ef7eb2e8f9f7 706 /******************************** TLB maintenance operations ************************************************/
<> 144:ef7eb2e8f9f7 707 /** \brief Invalidate the whole tlb
<> 144:ef7eb2e8f9f7 708
<> 144:ef7eb2e8f9f7 709 TLBIALL. Invalidate the whole tlb
<> 144:ef7eb2e8f9f7 710 */
<> 144:ef7eb2e8f9f7 711 // from system_Renesas_RZ_A1.c
<> 144:ef7eb2e8f9f7 712 __STATIC_INLINE void __ca9u_inv_tlb_all(void) {
<> 144:ef7eb2e8f9f7 713 uint32_t val = 0;
<> 144:ef7eb2e8f9f7 714 __MCR(15, 0, val, 8, 7, 0); // reg to cp15
<> 144:ef7eb2e8f9f7 715 __MCR(15, 0, val, 8, 6, 0); // reg to cp15
<> 144:ef7eb2e8f9f7 716 __MCR(15, 0, val, 8, 5, 0); // reg to cp15
<> 144:ef7eb2e8f9f7 717 __DSB();
<> 144:ef7eb2e8f9f7 718 __ISB();
<> 144:ef7eb2e8f9f7 719 }
<> 144:ef7eb2e8f9f7 720
<> 144:ef7eb2e8f9f7 721 /******************************** BTB maintenance operations ************************************************/
<> 144:ef7eb2e8f9f7 722 /** \brief Invalidate entire branch predictor array
<> 144:ef7eb2e8f9f7 723
<> 144:ef7eb2e8f9f7 724 BPIALL. Branch Predictor Invalidate All.
<> 144:ef7eb2e8f9f7 725 */
<> 144:ef7eb2e8f9f7 726 // from system_Renesas_RZ_A1.c
<> 144:ef7eb2e8f9f7 727 __STATIC_INLINE void __v7_inv_btac(void) {
<> 144:ef7eb2e8f9f7 728 uint32_t val = 0;
<> 144:ef7eb2e8f9f7 729 __MCR(15, 0, val, 7, 5, 6); // reg to cp15
<> 144:ef7eb2e8f9f7 730 __DSB(); //ensure completion of the invalidation
<> 144:ef7eb2e8f9f7 731 __ISB(); //ensure instruction fetch path sees new state
<> 144:ef7eb2e8f9f7 732 }
<> 144:ef7eb2e8f9f7 733
<> 144:ef7eb2e8f9f7 734
<> 144:ef7eb2e8f9f7 735 /******************************** L1 cache operations ******************************************************/
<> 144:ef7eb2e8f9f7 736
<> 144:ef7eb2e8f9f7 737 /** \brief Invalidate the whole I$
<> 144:ef7eb2e8f9f7 738
<> 144:ef7eb2e8f9f7 739 ICIALLU. Instruction Cache Invalidate All to PoU
<> 144:ef7eb2e8f9f7 740 */
<> 144:ef7eb2e8f9f7 741 // from system_Renesas_RZ_A1.c
<> 144:ef7eb2e8f9f7 742 __STATIC_INLINE void __v7_inv_icache_all(void) {
<> 144:ef7eb2e8f9f7 743 uint32_t val = 0;
<> 144:ef7eb2e8f9f7 744 __MCR(15, 0, val, 7, 5, 0); // reg to cp15
<> 144:ef7eb2e8f9f7 745 __DSB(); //ensure completion of the invalidation
<> 144:ef7eb2e8f9f7 746 __ISB(); //ensure instruction fetch path sees new I cache state
<> 144:ef7eb2e8f9f7 747 }
<> 144:ef7eb2e8f9f7 748
<> 144:ef7eb2e8f9f7 749 // from __v7_inv_dcache_all()
<> 144:ef7eb2e8f9f7 750 __arm static inline void __v7_all_cache(uint32_t op) {
<> 144:ef7eb2e8f9f7 751 __asm(
<> 144:ef7eb2e8f9f7 752 " ARM \n"
<> 144:ef7eb2e8f9f7 753
<> 144:ef7eb2e8f9f7 754 " PUSH {R4-R11} \n"
<> 144:ef7eb2e8f9f7 755
<> 144:ef7eb2e8f9f7 756 " MRC p15, 1, R6, c0, c0, 1\n" // Read CLIDR
<> 144:ef7eb2e8f9f7 757 " ANDS R3, R6, #0x07000000\n" // Extract coherency level
<> 144:ef7eb2e8f9f7 758 " MOV R3, R3, LSR #23\n" // Total cache levels << 1
<> 144:ef7eb2e8f9f7 759 " BEQ Finished\n" // If 0, no need to clean
<> 144:ef7eb2e8f9f7 760
<> 144:ef7eb2e8f9f7 761 " MOV R10, #0\n" // R10 holds current cache level << 1
<> 144:ef7eb2e8f9f7 762 "Loop1: ADD R2, R10, R10, LSR #1\n" // R2 holds cache "Set" position
<> 144:ef7eb2e8f9f7 763 " MOV R1, R6, LSR R2 \n" // Bottom 3 bits are the Cache-type for this level
<> 144:ef7eb2e8f9f7 764 " AND R1, R1, #7 \n" // Isolate those lower 3 bits
<> 144:ef7eb2e8f9f7 765 " CMP R1, #2 \n"
<> 144:ef7eb2e8f9f7 766 " BLT Skip \n" // No cache or only instruction cache at this level
<> 144:ef7eb2e8f9f7 767
<> 144:ef7eb2e8f9f7 768 " MCR p15, 2, R10, c0, c0, 0 \n" // Write the Cache Size selection register
<> 144:ef7eb2e8f9f7 769 " ISB \n" // ISB to sync the change to the CacheSizeID reg
<> 144:ef7eb2e8f9f7 770 " MRC p15, 1, R1, c0, c0, 0 \n" // Reads current Cache Size ID register
<> 144:ef7eb2e8f9f7 771 " AND R2, R1, #7 \n" // Extract the line length field
<> 144:ef7eb2e8f9f7 772 " ADD R2, R2, #4 \n" // Add 4 for the line length offset (log2 16 bytes)
<> 144:ef7eb2e8f9f7 773 " movw R4, #0x3FF \n"
<> 144:ef7eb2e8f9f7 774 " ANDS R4, R4, R1, LSR #3 \n" // R4 is the max number on the way size (right aligned)
<> 144:ef7eb2e8f9f7 775 " CLZ R5, R4 \n" // R5 is the bit position of the way size increment
<> 144:ef7eb2e8f9f7 776 " movw R7, #0x7FFF \n"
<> 144:ef7eb2e8f9f7 777 " ANDS R7, R7, R1, LSR #13 \n" // R7 is the max number of the index size (right aligned)
<> 144:ef7eb2e8f9f7 778
<> 144:ef7eb2e8f9f7 779 "Loop2: MOV R9, R4 \n" // R9 working copy of the max way size (right aligned)
<> 144:ef7eb2e8f9f7 780
<> 144:ef7eb2e8f9f7 781 "Loop3: ORR R11, R10, R9, LSL R5 \n" // Factor in the Way number and cache number into R11
<> 144:ef7eb2e8f9f7 782 " ORR R11, R11, R7, LSL R2 \n" // Factor in the Set number
<> 144:ef7eb2e8f9f7 783 " CMP R0, #0 \n"
<> 144:ef7eb2e8f9f7 784 " BNE Dccsw \n"
<> 144:ef7eb2e8f9f7 785 " MCR p15, 0, R11, c7, c6, 2 \n" // DCISW. Invalidate by Set/Way
<> 144:ef7eb2e8f9f7 786 " B cont \n"
<> 144:ef7eb2e8f9f7 787 "Dccsw: CMP R0, #1 \n"
<> 144:ef7eb2e8f9f7 788 " BNE Dccisw \n"
<> 144:ef7eb2e8f9f7 789 " MCR p15, 0, R11, c7, c10, 2 \n" // DCCSW. Clean by Set/Way
<> 144:ef7eb2e8f9f7 790 " B cont \n"
<> 144:ef7eb2e8f9f7 791 "Dccisw: MCR p15, 0, R11, c7, c14, 2 \n" // DCCISW, Clean and Invalidate by Set/Way
<> 144:ef7eb2e8f9f7 792 "cont: SUBS R9, R9, #1 \n" // Decrement the Way number
<> 144:ef7eb2e8f9f7 793 " BGE Loop3 \n"
<> 144:ef7eb2e8f9f7 794 " SUBS R7, R7, #1 \n" // Decrement the Set number
<> 144:ef7eb2e8f9f7 795 " BGE Loop2 \n"
<> 144:ef7eb2e8f9f7 796 "Skip: ADD R10, R10, #2 \n" // increment the cache number
<> 144:ef7eb2e8f9f7 797 " CMP R3, R10 \n"
<> 144:ef7eb2e8f9f7 798 " BGT Loop1 \n"
<> 144:ef7eb2e8f9f7 799
<> 144:ef7eb2e8f9f7 800 "Finished: \n"
<> 144:ef7eb2e8f9f7 801 " DSB \n"
<> 144:ef7eb2e8f9f7 802 " POP {R4-R11} \n"
<> 144:ef7eb2e8f9f7 803 " BX lr \n" );
<> 144:ef7eb2e8f9f7 804 }
<> 144:ef7eb2e8f9f7 805
<> 144:ef7eb2e8f9f7 806 /** \brief Invalidate the whole D$
<> 144:ef7eb2e8f9f7 807
<> 144:ef7eb2e8f9f7 808 DCISW. Invalidate by Set/Way
<> 144:ef7eb2e8f9f7 809 */
<> 144:ef7eb2e8f9f7 810 // from system_Renesas_RZ_A1.c
<> 144:ef7eb2e8f9f7 811 __STATIC_INLINE void __v7_inv_dcache_all(void) {
<> 144:ef7eb2e8f9f7 812 __v7_all_cache(0);
<> 144:ef7eb2e8f9f7 813 }
<> 151:5eaa88a5bcc7 814 /** \brief Clean the whole D$
<> 151:5eaa88a5bcc7 815
<> 151:5eaa88a5bcc7 816 DCCSW. Clean by Set/Way
<> 151:5eaa88a5bcc7 817 */
<> 151:5eaa88a5bcc7 818
<> 151:5eaa88a5bcc7 819 __STATIC_INLINE void __v7_clean_dcache_all(void) {
<> 151:5eaa88a5bcc7 820 __v7_all_cache(1);
<> 151:5eaa88a5bcc7 821 }
<> 151:5eaa88a5bcc7 822
<> 151:5eaa88a5bcc7 823 /** \brief Clean and invalidate the whole D$
<> 151:5eaa88a5bcc7 824
<> 151:5eaa88a5bcc7 825 DCCISW. Clean and Invalidate by Set/Way
<> 151:5eaa88a5bcc7 826 */
<> 151:5eaa88a5bcc7 827
<> 151:5eaa88a5bcc7 828 __STATIC_INLINE void __v7_clean_inv_dcache_all(void) {
<> 151:5eaa88a5bcc7 829 __v7_all_cache(2);
<> 151:5eaa88a5bcc7 830 }
<> 144:ef7eb2e8f9f7 831 /** \brief Clean and Invalidate D$ by MVA
<> 144:ef7eb2e8f9f7 832
<> 144:ef7eb2e8f9f7 833 DCCIMVAC. Data cache clean and invalidate by MVA to PoC
<> 144:ef7eb2e8f9f7 834 */
<> 144:ef7eb2e8f9f7 835 __STATIC_INLINE void __v7_clean_inv_dcache_mva(void *va) {
<> 144:ef7eb2e8f9f7 836 __MCR(15, 0, (uint32_t)va, 7, 14, 1);
<> 144:ef7eb2e8f9f7 837 __DMB();
<> 144:ef7eb2e8f9f7 838 }
<> 144:ef7eb2e8f9f7 839
<> 144:ef7eb2e8f9f7 840 #include "core_ca_mmu.h"
<> 144:ef7eb2e8f9f7 841
<> 144:ef7eb2e8f9f7 842 #elif (defined (__GNUC__)) /*------------------ GNU Compiler ---------------------*/
<> 144:ef7eb2e8f9f7 843 /* GNU gcc specific functions */
<> 144:ef7eb2e8f9f7 844
<> 144:ef7eb2e8f9f7 845 #define MODE_USR 0x10
<> 144:ef7eb2e8f9f7 846 #define MODE_FIQ 0x11
<> 144:ef7eb2e8f9f7 847 #define MODE_IRQ 0x12
<> 144:ef7eb2e8f9f7 848 #define MODE_SVC 0x13
<> 144:ef7eb2e8f9f7 849 #define MODE_MON 0x16
<> 144:ef7eb2e8f9f7 850 #define MODE_ABT 0x17
<> 144:ef7eb2e8f9f7 851 #define MODE_HYP 0x1A
<> 144:ef7eb2e8f9f7 852 #define MODE_UND 0x1B
<> 144:ef7eb2e8f9f7 853 #define MODE_SYS 0x1F
<> 144:ef7eb2e8f9f7 854
<> 144:ef7eb2e8f9f7 855
<> 144:ef7eb2e8f9f7 856 __attribute__( ( always_inline ) ) __STATIC_INLINE void __enable_irq(void)
<> 144:ef7eb2e8f9f7 857 {
<> 144:ef7eb2e8f9f7 858 __ASM volatile ("cpsie i");
<> 144:ef7eb2e8f9f7 859 }
<> 144:ef7eb2e8f9f7 860
<> 144:ef7eb2e8f9f7 861 /** \brief Disable IRQ Interrupts
<> 144:ef7eb2e8f9f7 862
<> 144:ef7eb2e8f9f7 863 This function disables IRQ interrupts by setting the I-bit in the CPSR.
<> 144:ef7eb2e8f9f7 864 Can only be executed in Privileged modes.
<> 144:ef7eb2e8f9f7 865 */
<> 144:ef7eb2e8f9f7 866 __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __disable_irq(void)
<> 144:ef7eb2e8f9f7 867 {
<> 144:ef7eb2e8f9f7 868 uint32_t result;
<> 144:ef7eb2e8f9f7 869
<> 144:ef7eb2e8f9f7 870 __ASM volatile ("mrs %0, cpsr" : "=r" (result));
<> 144:ef7eb2e8f9f7 871 __ASM volatile ("cpsid i");
<> 144:ef7eb2e8f9f7 872 return(result & 0x80);
<> 144:ef7eb2e8f9f7 873 }
<> 144:ef7eb2e8f9f7 874
<> 144:ef7eb2e8f9f7 875
<> 144:ef7eb2e8f9f7 876 /** \brief Get APSR Register
<> 144:ef7eb2e8f9f7 877
<> 144:ef7eb2e8f9f7 878 This function returns the content of the APSR Register.
<> 144:ef7eb2e8f9f7 879
<> 144:ef7eb2e8f9f7 880 \return APSR Register value
<> 144:ef7eb2e8f9f7 881 */
<> 144:ef7eb2e8f9f7 882 __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_APSR(void)
<> 144:ef7eb2e8f9f7 883 {
<> 144:ef7eb2e8f9f7 884 #if 1
<> 144:ef7eb2e8f9f7 885 register uint32_t __regAPSR;
<> 144:ef7eb2e8f9f7 886 __ASM volatile ("mrs %0, apsr" : "=r" (__regAPSR) );
<> 144:ef7eb2e8f9f7 887 #else
<> 144:ef7eb2e8f9f7 888 register uint32_t __regAPSR __ASM("apsr");
<> 144:ef7eb2e8f9f7 889 #endif
<> 144:ef7eb2e8f9f7 890 return(__regAPSR);
<> 144:ef7eb2e8f9f7 891 }
<> 144:ef7eb2e8f9f7 892
<> 144:ef7eb2e8f9f7 893
<> 144:ef7eb2e8f9f7 894 /** \brief Get CPSR Register
<> 144:ef7eb2e8f9f7 895
<> 144:ef7eb2e8f9f7 896 This function returns the content of the CPSR Register.
<> 144:ef7eb2e8f9f7 897
<> 144:ef7eb2e8f9f7 898 \return CPSR Register value
<> 144:ef7eb2e8f9f7 899 */
<> 144:ef7eb2e8f9f7 900 __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_CPSR(void)
<> 144:ef7eb2e8f9f7 901 {
<> 144:ef7eb2e8f9f7 902 #if 1
<> 144:ef7eb2e8f9f7 903 register uint32_t __regCPSR;
<> 144:ef7eb2e8f9f7 904 __ASM volatile ("mrs %0, cpsr" : "=r" (__regCPSR));
<> 144:ef7eb2e8f9f7 905 #else
<> 144:ef7eb2e8f9f7 906 register uint32_t __regCPSR __ASM("cpsr");
<> 144:ef7eb2e8f9f7 907 #endif
<> 144:ef7eb2e8f9f7 908 return(__regCPSR);
<> 144:ef7eb2e8f9f7 909 }
<> 144:ef7eb2e8f9f7 910
<> 144:ef7eb2e8f9f7 911 #if 0
<> 144:ef7eb2e8f9f7 912 /** \brief Set Stack Pointer
<> 144:ef7eb2e8f9f7 913
<> 144:ef7eb2e8f9f7 914 This function assigns the given value to the current stack pointer.
<> 144:ef7eb2e8f9f7 915
<> 144:ef7eb2e8f9f7 916 \param [in] topOfStack Stack Pointer value to set
<> 144:ef7eb2e8f9f7 917 */
<> 144:ef7eb2e8f9f7 918 __attribute__( ( always_inline ) ) __STATIC_INLINE void __set_SP(uint32_t topOfStack)
<> 144:ef7eb2e8f9f7 919 {
<> 144:ef7eb2e8f9f7 920 register uint32_t __regSP __ASM("sp");
<> 144:ef7eb2e8f9f7 921 __regSP = topOfStack;
<> 144:ef7eb2e8f9f7 922 }
<> 144:ef7eb2e8f9f7 923 #endif
<> 144:ef7eb2e8f9f7 924
<> 144:ef7eb2e8f9f7 925 /** \brief Get link register
<> 144:ef7eb2e8f9f7 926
<> 144:ef7eb2e8f9f7 927 This function returns the value of the link register
<> 144:ef7eb2e8f9f7 928
<> 144:ef7eb2e8f9f7 929 \return Value of link register
<> 144:ef7eb2e8f9f7 930 */
<> 144:ef7eb2e8f9f7 931 __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_LR(void)
<> 144:ef7eb2e8f9f7 932 {
<> 144:ef7eb2e8f9f7 933 register uint32_t __reglr __ASM("lr");
<> 144:ef7eb2e8f9f7 934 return(__reglr);
<> 144:ef7eb2e8f9f7 935 }
<> 144:ef7eb2e8f9f7 936
<> 144:ef7eb2e8f9f7 937 #if 0
<> 144:ef7eb2e8f9f7 938 /** \brief Set link register
<> 144:ef7eb2e8f9f7 939
<> 144:ef7eb2e8f9f7 940 This function sets the value of the link register
<> 144:ef7eb2e8f9f7 941
<> 144:ef7eb2e8f9f7 942 \param [in] lr LR value to set
<> 144:ef7eb2e8f9f7 943 */
<> 144:ef7eb2e8f9f7 944 __attribute__( ( always_inline ) ) __STATIC_INLINE void __set_LR(uint32_t lr)
<> 144:ef7eb2e8f9f7 945 {
<> 144:ef7eb2e8f9f7 946 register uint32_t __reglr __ASM("lr");
<> 144:ef7eb2e8f9f7 947 __reglr = lr;
<> 144:ef7eb2e8f9f7 948 }
<> 144:ef7eb2e8f9f7 949 #endif
<> 144:ef7eb2e8f9f7 950
<> 144:ef7eb2e8f9f7 951 /** \brief Set Process Stack Pointer
<> 144:ef7eb2e8f9f7 952
<> 144:ef7eb2e8f9f7 953 This function assigns the given value to the USR/SYS Stack Pointer (PSP).
<> 144:ef7eb2e8f9f7 954
<> 144:ef7eb2e8f9f7 955 \param [in] topOfProcStack USR/SYS Stack Pointer value to set
<> 144:ef7eb2e8f9f7 956 */
<> 144:ef7eb2e8f9f7 957 __attribute__( ( always_inline ) ) __STATIC_INLINE void __set_PSP(uint32_t topOfProcStack)
<> 144:ef7eb2e8f9f7 958 {
<> 144:ef7eb2e8f9f7 959 __asm__ volatile (
<> 144:ef7eb2e8f9f7 960 ".ARM;"
<> 144:ef7eb2e8f9f7 961 ".eabi_attribute Tag_ABI_align8_preserved,1;"
<> 144:ef7eb2e8f9f7 962
<> 144:ef7eb2e8f9f7 963 "BIC R0, R0, #7;" /* ;ensure stack is 8-byte aligned */
<> 144:ef7eb2e8f9f7 964 "MRS R1, CPSR;"
<> 144:ef7eb2e8f9f7 965 "CPS %0;" /* ;no effect in USR mode */
<> 144:ef7eb2e8f9f7 966 "MOV SP, R0;"
<> 144:ef7eb2e8f9f7 967 "MSR CPSR_c, R1;" /* ;no effect in USR mode */
<> 144:ef7eb2e8f9f7 968 "ISB;"
<> 144:ef7eb2e8f9f7 969 //"BX LR;"
<> 144:ef7eb2e8f9f7 970 :
<> 144:ef7eb2e8f9f7 971 : "i"(MODE_SYS)
<> 144:ef7eb2e8f9f7 972 : "r0", "r1");
<> 144:ef7eb2e8f9f7 973 return;
<> 144:ef7eb2e8f9f7 974 }
<> 144:ef7eb2e8f9f7 975
<> 144:ef7eb2e8f9f7 976 /** \brief Set User Mode
<> 144:ef7eb2e8f9f7 977
<> 144:ef7eb2e8f9f7 978 This function changes the processor state to User Mode
<> 144:ef7eb2e8f9f7 979 */
<> 144:ef7eb2e8f9f7 980 __attribute__( ( always_inline ) ) __STATIC_INLINE void __set_CPS_USR(void)
<> 144:ef7eb2e8f9f7 981 {
<> 144:ef7eb2e8f9f7 982 __asm__ volatile (
<> 144:ef7eb2e8f9f7 983 ".ARM;"
<> 144:ef7eb2e8f9f7 984
<> 144:ef7eb2e8f9f7 985 "CPS %0;"
<> 144:ef7eb2e8f9f7 986 //"BX LR;"
<> 144:ef7eb2e8f9f7 987 :
<> 144:ef7eb2e8f9f7 988 : "i"(MODE_USR)
<> 144:ef7eb2e8f9f7 989 : );
<> 144:ef7eb2e8f9f7 990 return;
<> 144:ef7eb2e8f9f7 991 }
<> 144:ef7eb2e8f9f7 992
<> 144:ef7eb2e8f9f7 993
<> 144:ef7eb2e8f9f7 994 /** \brief Enable FIQ
<> 144:ef7eb2e8f9f7 995
<> 144:ef7eb2e8f9f7 996 This function enables FIQ interrupts by clearing the F-bit in the CPSR.
<> 144:ef7eb2e8f9f7 997 Can only be executed in Privileged modes.
<> 144:ef7eb2e8f9f7 998 */
<> 144:ef7eb2e8f9f7 999 #define __enable_fault_irq() __asm__ volatile ("cpsie f")
<> 144:ef7eb2e8f9f7 1000
<> 144:ef7eb2e8f9f7 1001
<> 144:ef7eb2e8f9f7 1002 /** \brief Disable FIQ
<> 144:ef7eb2e8f9f7 1003
<> 144:ef7eb2e8f9f7 1004 This function disables FIQ interrupts by setting the F-bit in the CPSR.
<> 144:ef7eb2e8f9f7 1005 Can only be executed in Privileged modes.
<> 144:ef7eb2e8f9f7 1006 */
<> 144:ef7eb2e8f9f7 1007 #define __disable_fault_irq() __asm__ volatile ("cpsid f")
<> 144:ef7eb2e8f9f7 1008
<> 144:ef7eb2e8f9f7 1009
<> 144:ef7eb2e8f9f7 1010 /** \brief Get FPSCR
<> 144:ef7eb2e8f9f7 1011
<> 144:ef7eb2e8f9f7 1012 This function returns the current value of the Floating Point Status/Control register.
<> 144:ef7eb2e8f9f7 1013
<> 144:ef7eb2e8f9f7 1014 \return Floating Point Status/Control register value
<> 144:ef7eb2e8f9f7 1015 */
<> 144:ef7eb2e8f9f7 1016 __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_FPSCR(void)
<> 144:ef7eb2e8f9f7 1017 {
<> 144:ef7eb2e8f9f7 1018 #if (__FPU_PRESENT == 1) && (__FPU_USED == 1)
<> 144:ef7eb2e8f9f7 1019 #if 1
<> 144:ef7eb2e8f9f7 1020 uint32_t result;
<> 144:ef7eb2e8f9f7 1021
<> 144:ef7eb2e8f9f7 1022 __ASM volatile ("vmrs %0, fpscr" : "=r" (result) );
<> 144:ef7eb2e8f9f7 1023 return (result);
<> 144:ef7eb2e8f9f7 1024 #else
<> 144:ef7eb2e8f9f7 1025 register uint32_t __regfpscr __ASM("fpscr");
<> 144:ef7eb2e8f9f7 1026 return(__regfpscr);
<> 144:ef7eb2e8f9f7 1027 #endif
<> 144:ef7eb2e8f9f7 1028 #else
<> 144:ef7eb2e8f9f7 1029 return(0);
<> 144:ef7eb2e8f9f7 1030 #endif
<> 144:ef7eb2e8f9f7 1031 }
<> 144:ef7eb2e8f9f7 1032
<> 144:ef7eb2e8f9f7 1033
<> 144:ef7eb2e8f9f7 1034 /** \brief Set FPSCR
<> 144:ef7eb2e8f9f7 1035
<> 144:ef7eb2e8f9f7 1036 This function assigns the given value to the Floating Point Status/Control register.
<> 144:ef7eb2e8f9f7 1037
<> 144:ef7eb2e8f9f7 1038 \param [in] fpscr Floating Point Status/Control value to set
<> 144:ef7eb2e8f9f7 1039 */
<> 144:ef7eb2e8f9f7 1040 __attribute__( ( always_inline ) ) __STATIC_INLINE void __set_FPSCR(uint32_t fpscr)
<> 144:ef7eb2e8f9f7 1041 {
<> 144:ef7eb2e8f9f7 1042 #if (__FPU_PRESENT == 1) && (__FPU_USED == 1)
<> 144:ef7eb2e8f9f7 1043 #if 1
<> 144:ef7eb2e8f9f7 1044 __ASM volatile ("vmsr fpscr, %0" : : "r" (fpscr) );
<> 144:ef7eb2e8f9f7 1045 #else
<> 144:ef7eb2e8f9f7 1046 register uint32_t __regfpscr __ASM("fpscr");
<> 144:ef7eb2e8f9f7 1047 __regfpscr = (fpscr);
<> 144:ef7eb2e8f9f7 1048 #endif
<> 144:ef7eb2e8f9f7 1049 #endif
<> 144:ef7eb2e8f9f7 1050 }
<> 144:ef7eb2e8f9f7 1051
<> 144:ef7eb2e8f9f7 1052 /** \brief Get FPEXC
<> 144:ef7eb2e8f9f7 1053
<> 144:ef7eb2e8f9f7 1054 This function returns the current value of the Floating Point Exception Control register.
<> 144:ef7eb2e8f9f7 1055
<> 144:ef7eb2e8f9f7 1056 \return Floating Point Exception Control register value
<> 144:ef7eb2e8f9f7 1057 */
<> 144:ef7eb2e8f9f7 1058 __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_FPEXC(void)
<> 144:ef7eb2e8f9f7 1059 {
<> 144:ef7eb2e8f9f7 1060 #if (__FPU_PRESENT == 1)
<> 144:ef7eb2e8f9f7 1061 #if 1
<> 144:ef7eb2e8f9f7 1062 uint32_t result;
<> 144:ef7eb2e8f9f7 1063
<> 144:ef7eb2e8f9f7 1064 __ASM volatile ("vmrs %0, fpexc" : "=r" (result));
<> 144:ef7eb2e8f9f7 1065 return (result);
<> 144:ef7eb2e8f9f7 1066 #else
<> 144:ef7eb2e8f9f7 1067 register uint32_t __regfpexc __ASM("fpexc");
<> 144:ef7eb2e8f9f7 1068 return(__regfpexc);
<> 144:ef7eb2e8f9f7 1069 #endif
<> 144:ef7eb2e8f9f7 1070 #else
<> 144:ef7eb2e8f9f7 1071 return(0);
<> 144:ef7eb2e8f9f7 1072 #endif
<> 144:ef7eb2e8f9f7 1073 }
<> 144:ef7eb2e8f9f7 1074
<> 144:ef7eb2e8f9f7 1075
<> 144:ef7eb2e8f9f7 1076 /** \brief Set FPEXC
<> 144:ef7eb2e8f9f7 1077
<> 144:ef7eb2e8f9f7 1078 This function assigns the given value to the Floating Point Exception Control register.
<> 144:ef7eb2e8f9f7 1079
<> 144:ef7eb2e8f9f7 1080 \param [in] fpscr Floating Point Exception Control value to set
<> 144:ef7eb2e8f9f7 1081 */
<> 144:ef7eb2e8f9f7 1082 __attribute__( ( always_inline ) ) __STATIC_INLINE void __set_FPEXC(uint32_t fpexc)
<> 144:ef7eb2e8f9f7 1083 {
<> 144:ef7eb2e8f9f7 1084 #if (__FPU_PRESENT == 1)
<> 144:ef7eb2e8f9f7 1085 #if 1
<> 144:ef7eb2e8f9f7 1086 __ASM volatile ("vmsr fpexc, %0" : : "r" (fpexc));
<> 144:ef7eb2e8f9f7 1087 #else
<> 144:ef7eb2e8f9f7 1088 register uint32_t __regfpexc __ASM("fpexc");
<> 144:ef7eb2e8f9f7 1089 __regfpexc = (fpexc);
<> 144:ef7eb2e8f9f7 1090 #endif
<> 144:ef7eb2e8f9f7 1091 #endif
<> 144:ef7eb2e8f9f7 1092 }
<> 144:ef7eb2e8f9f7 1093
<> 144:ef7eb2e8f9f7 1094 /** \brief Get CPACR
<> 144:ef7eb2e8f9f7 1095
<> 144:ef7eb2e8f9f7 1096 This function returns the current value of the Coprocessor Access Control register.
<> 144:ef7eb2e8f9f7 1097
<> 144:ef7eb2e8f9f7 1098 \return Coprocessor Access Control register value
<> 144:ef7eb2e8f9f7 1099 */
<> 144:ef7eb2e8f9f7 1100 __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_CPACR(void)
<> 144:ef7eb2e8f9f7 1101 {
<> 144:ef7eb2e8f9f7 1102 #if 1
<> 144:ef7eb2e8f9f7 1103 register uint32_t __regCPACR;
<> 144:ef7eb2e8f9f7 1104 __ASM volatile ("mrc p15, 0, %0, c1, c0, 2" : "=r" (__regCPACR));
<> 144:ef7eb2e8f9f7 1105 #else
<> 144:ef7eb2e8f9f7 1106 register uint32_t __regCPACR __ASM("cp15:0:c1:c0:2");
<> 144:ef7eb2e8f9f7 1107 #endif
<> 144:ef7eb2e8f9f7 1108 return __regCPACR;
<> 144:ef7eb2e8f9f7 1109 }
<> 144:ef7eb2e8f9f7 1110
<> 144:ef7eb2e8f9f7 1111 /** \brief Set CPACR
<> 144:ef7eb2e8f9f7 1112
<> 144:ef7eb2e8f9f7 1113 This function assigns the given value to the Coprocessor Access Control register.
<> 144:ef7eb2e8f9f7 1114
<> 144:ef7eb2e8f9f7 1115 \param [in] cpacr Coprocessor Acccess Control value to set
<> 144:ef7eb2e8f9f7 1116 */
<> 144:ef7eb2e8f9f7 1117 __attribute__( ( always_inline ) ) __STATIC_INLINE void __set_CPACR(uint32_t cpacr)
<> 144:ef7eb2e8f9f7 1118 {
<> 144:ef7eb2e8f9f7 1119 #if 1
<> 144:ef7eb2e8f9f7 1120 __ASM volatile ("mcr p15, 0, %0, c1, c0, 2" : : "r" (cpacr));
<> 144:ef7eb2e8f9f7 1121 #else
<> 144:ef7eb2e8f9f7 1122 register uint32_t __regCPACR __ASM("cp15:0:c1:c0:2");
<> 144:ef7eb2e8f9f7 1123 __regCPACR = cpacr;
<> 144:ef7eb2e8f9f7 1124 #endif
<> 144:ef7eb2e8f9f7 1125 __ISB();
<> 144:ef7eb2e8f9f7 1126 }
<> 144:ef7eb2e8f9f7 1127
<> 144:ef7eb2e8f9f7 1128 /** \brief Get CBAR
<> 144:ef7eb2e8f9f7 1129
<> 144:ef7eb2e8f9f7 1130 This function returns the value of the Configuration Base Address register.
<> 144:ef7eb2e8f9f7 1131
<> 144:ef7eb2e8f9f7 1132 \return Configuration Base Address register value
<> 144:ef7eb2e8f9f7 1133 */
<> 144:ef7eb2e8f9f7 1134 __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_CBAR() {
<> 144:ef7eb2e8f9f7 1135 #if 1
<> 144:ef7eb2e8f9f7 1136 register uint32_t __regCBAR;
<> 144:ef7eb2e8f9f7 1137 __ASM volatile ("mrc p15, 4, %0, c15, c0, 0" : "=r" (__regCBAR));
<> 144:ef7eb2e8f9f7 1138 #else
<> 144:ef7eb2e8f9f7 1139 register uint32_t __regCBAR __ASM("cp15:4:c15:c0:0");
<> 144:ef7eb2e8f9f7 1140 #endif
<> 144:ef7eb2e8f9f7 1141 return(__regCBAR);
<> 144:ef7eb2e8f9f7 1142 }
<> 144:ef7eb2e8f9f7 1143
<> 144:ef7eb2e8f9f7 1144 /** \brief Get TTBR0
<> 144:ef7eb2e8f9f7 1145
<> 144:ef7eb2e8f9f7 1146 This function returns the value of the Translation Table Base Register 0.
<> 144:ef7eb2e8f9f7 1147
<> 144:ef7eb2e8f9f7 1148 \return Translation Table Base Register 0 value
<> 144:ef7eb2e8f9f7 1149 */
<> 144:ef7eb2e8f9f7 1150 __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_TTBR0() {
<> 144:ef7eb2e8f9f7 1151 #if 1
<> 144:ef7eb2e8f9f7 1152 register uint32_t __regTTBR0;
<> 144:ef7eb2e8f9f7 1153 __ASM volatile ("mrc p15, 0, %0, c2, c0, 0" : "=r" (__regTTBR0));
<> 144:ef7eb2e8f9f7 1154 #else
<> 144:ef7eb2e8f9f7 1155 register uint32_t __regTTBR0 __ASM("cp15:0:c2:c0:0");
<> 144:ef7eb2e8f9f7 1156 #endif
<> 144:ef7eb2e8f9f7 1157 return(__regTTBR0);
<> 144:ef7eb2e8f9f7 1158 }
<> 144:ef7eb2e8f9f7 1159
<> 144:ef7eb2e8f9f7 1160 /** \brief Set TTBR0
<> 144:ef7eb2e8f9f7 1161
<> 144:ef7eb2e8f9f7 1162 This function assigns the given value to the Translation Table Base Register 0.
<> 144:ef7eb2e8f9f7 1163
<> 144:ef7eb2e8f9f7 1164 \param [in] ttbr0 Translation Table Base Register 0 value to set
<> 144:ef7eb2e8f9f7 1165 */
<> 144:ef7eb2e8f9f7 1166 __attribute__( ( always_inline ) ) __STATIC_INLINE void __set_TTBR0(uint32_t ttbr0) {
<> 144:ef7eb2e8f9f7 1167 #if 1
<> 144:ef7eb2e8f9f7 1168 __ASM volatile ("mcr p15, 0, %0, c2, c0, 0" : : "r" (ttbr0));
<> 144:ef7eb2e8f9f7 1169 #else
<> 144:ef7eb2e8f9f7 1170 register uint32_t __regTTBR0 __ASM("cp15:0:c2:c0:0");
<> 144:ef7eb2e8f9f7 1171 __regTTBR0 = ttbr0;
<> 144:ef7eb2e8f9f7 1172 #endif
<> 144:ef7eb2e8f9f7 1173 __ISB();
<> 144:ef7eb2e8f9f7 1174 }
<> 144:ef7eb2e8f9f7 1175
<> 144:ef7eb2e8f9f7 1176 /** \brief Get DACR
<> 144:ef7eb2e8f9f7 1177
<> 144:ef7eb2e8f9f7 1178 This function returns the value of the Domain Access Control Register.
<> 144:ef7eb2e8f9f7 1179
<> 144:ef7eb2e8f9f7 1180 \return Domain Access Control Register value
<> 144:ef7eb2e8f9f7 1181 */
<> 144:ef7eb2e8f9f7 1182 __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_DACR() {
<> 144:ef7eb2e8f9f7 1183 #if 1
<> 144:ef7eb2e8f9f7 1184 register uint32_t __regDACR;
<> 144:ef7eb2e8f9f7 1185 __ASM volatile ("mrc p15, 0, %0, c3, c0, 0" : "=r" (__regDACR));
<> 144:ef7eb2e8f9f7 1186 #else
<> 144:ef7eb2e8f9f7 1187 register uint32_t __regDACR __ASM("cp15:0:c3:c0:0");
<> 144:ef7eb2e8f9f7 1188 #endif
<> 144:ef7eb2e8f9f7 1189 return(__regDACR);
<> 144:ef7eb2e8f9f7 1190 }
<> 144:ef7eb2e8f9f7 1191
<> 144:ef7eb2e8f9f7 1192 /** \brief Set DACR
<> 144:ef7eb2e8f9f7 1193
<> 144:ef7eb2e8f9f7 1194 This function assigns the given value to the Domain Access Control Register.
<> 144:ef7eb2e8f9f7 1195
<> 144:ef7eb2e8f9f7 1196 \param [in] dacr Domain Access Control Register value to set
<> 144:ef7eb2e8f9f7 1197 */
<> 144:ef7eb2e8f9f7 1198 __attribute__( ( always_inline ) ) __STATIC_INLINE void __set_DACR(uint32_t dacr) {
<> 144:ef7eb2e8f9f7 1199 #if 1
<> 144:ef7eb2e8f9f7 1200 __ASM volatile ("mcr p15, 0, %0, c3, c0, 0" : : "r" (dacr));
<> 144:ef7eb2e8f9f7 1201 #else
<> 144:ef7eb2e8f9f7 1202 register uint32_t __regDACR __ASM("cp15:0:c3:c0:0");
<> 144:ef7eb2e8f9f7 1203 __regDACR = dacr;
<> 144:ef7eb2e8f9f7 1204 #endif
<> 144:ef7eb2e8f9f7 1205 __ISB();
<> 144:ef7eb2e8f9f7 1206 }
<> 144:ef7eb2e8f9f7 1207
<> 144:ef7eb2e8f9f7 1208 /******************************** Cache and BTAC enable ****************************************************/
<> 144:ef7eb2e8f9f7 1209
<> 144:ef7eb2e8f9f7 1210 /** \brief Set SCTLR
<> 144:ef7eb2e8f9f7 1211
<> 144:ef7eb2e8f9f7 1212 This function assigns the given value to the System Control Register.
<> 144:ef7eb2e8f9f7 1213
<> 144:ef7eb2e8f9f7 1214 \param [in] sctlr System Control Register value to set
<> 144:ef7eb2e8f9f7 1215 */
<> 144:ef7eb2e8f9f7 1216 __attribute__( ( always_inline ) ) __STATIC_INLINE void __set_SCTLR(uint32_t sctlr)
<> 144:ef7eb2e8f9f7 1217 {
<> 144:ef7eb2e8f9f7 1218 #if 1
<> 144:ef7eb2e8f9f7 1219 __ASM volatile ("mcr p15, 0, %0, c1, c0, 0" : : "r" (sctlr));
<> 144:ef7eb2e8f9f7 1220 #else
<> 144:ef7eb2e8f9f7 1221 register uint32_t __regSCTLR __ASM("cp15:0:c1:c0:0");
<> 144:ef7eb2e8f9f7 1222 __regSCTLR = sctlr;
<> 144:ef7eb2e8f9f7 1223 #endif
<> 144:ef7eb2e8f9f7 1224 }
<> 144:ef7eb2e8f9f7 1225
<> 144:ef7eb2e8f9f7 1226 /** \brief Get SCTLR
<> 144:ef7eb2e8f9f7 1227
<> 144:ef7eb2e8f9f7 1228 This function returns the value of the System Control Register.
<> 144:ef7eb2e8f9f7 1229
<> 144:ef7eb2e8f9f7 1230 \return System Control Register value
<> 144:ef7eb2e8f9f7 1231 */
<> 144:ef7eb2e8f9f7 1232 __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_SCTLR() {
<> 144:ef7eb2e8f9f7 1233 #if 1
<> 144:ef7eb2e8f9f7 1234 register uint32_t __regSCTLR;
<> 144:ef7eb2e8f9f7 1235 __ASM volatile ("mrc p15, 0, %0, c1, c0, 0" : "=r" (__regSCTLR));
<> 144:ef7eb2e8f9f7 1236 #else
<> 144:ef7eb2e8f9f7 1237 register uint32_t __regSCTLR __ASM("cp15:0:c1:c0:0");
<> 144:ef7eb2e8f9f7 1238 #endif
<> 144:ef7eb2e8f9f7 1239 return(__regSCTLR);
<> 144:ef7eb2e8f9f7 1240 }
<> 144:ef7eb2e8f9f7 1241
<> 144:ef7eb2e8f9f7 1242 /** \brief Enable Caches
<> 144:ef7eb2e8f9f7 1243
<> 144:ef7eb2e8f9f7 1244 Enable Caches
<> 144:ef7eb2e8f9f7 1245 */
<> 144:ef7eb2e8f9f7 1246 __attribute__( ( always_inline ) ) __STATIC_INLINE void __enable_caches(void) {
<> 144:ef7eb2e8f9f7 1247 // Set I bit 12 to enable I Cache
<> 144:ef7eb2e8f9f7 1248 // Set C bit 2 to enable D Cache
<> 144:ef7eb2e8f9f7 1249 __set_SCTLR( __get_SCTLR() | (1 << 12) | (1 << 2));
<> 144:ef7eb2e8f9f7 1250 }
<> 144:ef7eb2e8f9f7 1251
<> 144:ef7eb2e8f9f7 1252 /** \brief Disable Caches
<> 144:ef7eb2e8f9f7 1253
<> 144:ef7eb2e8f9f7 1254 Disable Caches
<> 144:ef7eb2e8f9f7 1255 */
<> 144:ef7eb2e8f9f7 1256 __attribute__( ( always_inline ) ) __STATIC_INLINE void __disable_caches(void) {
<> 144:ef7eb2e8f9f7 1257 // Clear I bit 12 to disable I Cache
<> 144:ef7eb2e8f9f7 1258 // Clear C bit 2 to disable D Cache
<> 144:ef7eb2e8f9f7 1259 __set_SCTLR( __get_SCTLR() & ~(1 << 12) & ~(1 << 2));
<> 144:ef7eb2e8f9f7 1260 __ISB();
<> 144:ef7eb2e8f9f7 1261 }
<> 144:ef7eb2e8f9f7 1262
<> 144:ef7eb2e8f9f7 1263 /** \brief Enable BTAC
<> 144:ef7eb2e8f9f7 1264
<> 144:ef7eb2e8f9f7 1265 Enable BTAC
<> 144:ef7eb2e8f9f7 1266 */
<> 144:ef7eb2e8f9f7 1267 __attribute__( ( always_inline ) ) __STATIC_INLINE void __enable_btac(void) {
<> 144:ef7eb2e8f9f7 1268 // Set Z bit 11 to enable branch prediction
<> 144:ef7eb2e8f9f7 1269 __set_SCTLR( __get_SCTLR() | (1 << 11));
<> 144:ef7eb2e8f9f7 1270 __ISB();
<> 144:ef7eb2e8f9f7 1271 }
<> 144:ef7eb2e8f9f7 1272
<> 144:ef7eb2e8f9f7 1273 /** \brief Disable BTAC
<> 144:ef7eb2e8f9f7 1274
<> 144:ef7eb2e8f9f7 1275 Disable BTAC
<> 144:ef7eb2e8f9f7 1276 */
<> 144:ef7eb2e8f9f7 1277 __attribute__( ( always_inline ) ) __STATIC_INLINE void __disable_btac(void) {
<> 144:ef7eb2e8f9f7 1278 // Clear Z bit 11 to disable branch prediction
<> 144:ef7eb2e8f9f7 1279 __set_SCTLR( __get_SCTLR() & ~(1 << 11));
<> 144:ef7eb2e8f9f7 1280 }
<> 144:ef7eb2e8f9f7 1281
<> 144:ef7eb2e8f9f7 1282
<> 144:ef7eb2e8f9f7 1283 /** \brief Enable MMU
<> 144:ef7eb2e8f9f7 1284
<> 144:ef7eb2e8f9f7 1285 Enable MMU
<> 144:ef7eb2e8f9f7 1286 */
<> 144:ef7eb2e8f9f7 1287 __attribute__( ( always_inline ) ) __STATIC_INLINE void __enable_mmu(void) {
<> 144:ef7eb2e8f9f7 1288 // Set M bit 0 to enable the MMU
<> 144:ef7eb2e8f9f7 1289 // Set AFE bit to enable simplified access permissions model
<> 144:ef7eb2e8f9f7 1290 // Clear TRE bit to disable TEX remap and A bit to disable strict alignment fault checking
<> 144:ef7eb2e8f9f7 1291 __set_SCTLR( (__get_SCTLR() & ~(1 << 28) & ~(1 << 1)) | 1 | (1 << 29));
<> 144:ef7eb2e8f9f7 1292 __ISB();
<> 144:ef7eb2e8f9f7 1293 }
<> 144:ef7eb2e8f9f7 1294
<> 144:ef7eb2e8f9f7 1295 /** \brief Disable MMU
<> 144:ef7eb2e8f9f7 1296
<> 144:ef7eb2e8f9f7 1297 Disable MMU
<> 144:ef7eb2e8f9f7 1298 */
<> 144:ef7eb2e8f9f7 1299 __attribute__( ( always_inline ) ) __STATIC_INLINE void __disable_mmu(void) {
<> 144:ef7eb2e8f9f7 1300 // Clear M bit 0 to disable the MMU
<> 144:ef7eb2e8f9f7 1301 __set_SCTLR( __get_SCTLR() & ~1);
<> 144:ef7eb2e8f9f7 1302 __ISB();
<> 144:ef7eb2e8f9f7 1303 }
<> 144:ef7eb2e8f9f7 1304
<> 144:ef7eb2e8f9f7 1305 /******************************** TLB maintenance operations ************************************************/
<> 144:ef7eb2e8f9f7 1306 /** \brief Invalidate the whole tlb
<> 144:ef7eb2e8f9f7 1307
<> 144:ef7eb2e8f9f7 1308 TLBIALL. Invalidate the whole tlb
<> 144:ef7eb2e8f9f7 1309 */
<> 144:ef7eb2e8f9f7 1310
<> 144:ef7eb2e8f9f7 1311 __attribute__( ( always_inline ) ) __STATIC_INLINE void __ca9u_inv_tlb_all(void) {
<> 144:ef7eb2e8f9f7 1312 #if 1
<> 144:ef7eb2e8f9f7 1313 __ASM volatile ("mcr p15, 0, %0, c8, c7, 0" : : "r" (0));
<> 144:ef7eb2e8f9f7 1314 #else
<> 144:ef7eb2e8f9f7 1315 register uint32_t __TLBIALL __ASM("cp15:0:c8:c7:0");
<> 144:ef7eb2e8f9f7 1316 __TLBIALL = 0;
<> 144:ef7eb2e8f9f7 1317 #endif
<> 144:ef7eb2e8f9f7 1318 __DSB();
<> 144:ef7eb2e8f9f7 1319 __ISB();
<> 144:ef7eb2e8f9f7 1320 }
<> 144:ef7eb2e8f9f7 1321
<> 144:ef7eb2e8f9f7 1322 /******************************** BTB maintenance operations ************************************************/
<> 144:ef7eb2e8f9f7 1323 /** \brief Invalidate entire branch predictor array
<> 144:ef7eb2e8f9f7 1324
<> 144:ef7eb2e8f9f7 1325 BPIALL. Branch Predictor Invalidate All.
<> 144:ef7eb2e8f9f7 1326 */
<> 144:ef7eb2e8f9f7 1327
<> 144:ef7eb2e8f9f7 1328 __attribute__( ( always_inline ) ) __STATIC_INLINE void __v7_inv_btac(void) {
<> 144:ef7eb2e8f9f7 1329 #if 1
<> 144:ef7eb2e8f9f7 1330 __ASM volatile ("mcr p15, 0, %0, c7, c5, 6" : : "r" (0));
<> 144:ef7eb2e8f9f7 1331 #else
<> 144:ef7eb2e8f9f7 1332 register uint32_t __BPIALL __ASM("cp15:0:c7:c5:6");
<> 144:ef7eb2e8f9f7 1333 __BPIALL = 0;
<> 144:ef7eb2e8f9f7 1334 #endif
<> 144:ef7eb2e8f9f7 1335 __DSB(); //ensure completion of the invalidation
<> 144:ef7eb2e8f9f7 1336 __ISB(); //ensure instruction fetch path sees new state
<> 144:ef7eb2e8f9f7 1337 }
<> 144:ef7eb2e8f9f7 1338
<> 144:ef7eb2e8f9f7 1339
<> 144:ef7eb2e8f9f7 1340 /******************************** L1 cache operations ******************************************************/
<> 144:ef7eb2e8f9f7 1341
<> 144:ef7eb2e8f9f7 1342 /** \brief Invalidate the whole I$
<> 144:ef7eb2e8f9f7 1343
<> 144:ef7eb2e8f9f7 1344 ICIALLU. Instruction Cache Invalidate All to PoU
<> 144:ef7eb2e8f9f7 1345 */
<> 144:ef7eb2e8f9f7 1346 __attribute__( ( always_inline ) ) __STATIC_INLINE void __v7_inv_icache_all(void) {
<> 144:ef7eb2e8f9f7 1347 #if 1
<> 144:ef7eb2e8f9f7 1348 __ASM volatile ("mcr p15, 0, %0, c7, c5, 0" : : "r" (0));
<> 144:ef7eb2e8f9f7 1349 #else
<> 144:ef7eb2e8f9f7 1350 register uint32_t __ICIALLU __ASM("cp15:0:c7:c5:0");
<> 144:ef7eb2e8f9f7 1351 __ICIALLU = 0;
<> 144:ef7eb2e8f9f7 1352 #endif
<> 144:ef7eb2e8f9f7 1353 __DSB(); //ensure completion of the invalidation
<> 144:ef7eb2e8f9f7 1354 __ISB(); //ensure instruction fetch path sees new I cache state
<> 144:ef7eb2e8f9f7 1355 }
<> 144:ef7eb2e8f9f7 1356
<> 144:ef7eb2e8f9f7 1357 /** \brief Clean D$ by MVA
<> 144:ef7eb2e8f9f7 1358
<> 144:ef7eb2e8f9f7 1359 DCCMVAC. Data cache clean by MVA to PoC
<> 144:ef7eb2e8f9f7 1360 */
<> 144:ef7eb2e8f9f7 1361 __attribute__( ( always_inline ) ) __STATIC_INLINE void __v7_clean_dcache_mva(void *va) {
<> 144:ef7eb2e8f9f7 1362 #if 1
<> 144:ef7eb2e8f9f7 1363 __ASM volatile ("mcr p15, 0, %0, c7, c10, 1" : : "r" ((uint32_t)va));
<> 144:ef7eb2e8f9f7 1364 #else
<> 144:ef7eb2e8f9f7 1365 register uint32_t __DCCMVAC __ASM("cp15:0:c7:c10:1");
<> 144:ef7eb2e8f9f7 1366 __DCCMVAC = (uint32_t)va;
<> 144:ef7eb2e8f9f7 1367 #endif
<> 144:ef7eb2e8f9f7 1368 __DMB(); //ensure the ordering of data cache maintenance operations and their effects
<> 144:ef7eb2e8f9f7 1369 }
<> 144:ef7eb2e8f9f7 1370
<> 144:ef7eb2e8f9f7 1371 /** \brief Invalidate D$ by MVA
<> 144:ef7eb2e8f9f7 1372
<> 144:ef7eb2e8f9f7 1373 DCIMVAC. Data cache invalidate by MVA to PoC
<> 144:ef7eb2e8f9f7 1374 */
<> 144:ef7eb2e8f9f7 1375 __attribute__( ( always_inline ) ) __STATIC_INLINE void __v7_inv_dcache_mva(void *va) {
<> 144:ef7eb2e8f9f7 1376 #if 1
<> 144:ef7eb2e8f9f7 1377 __ASM volatile ("mcr p15, 0, %0, c7, c6, 1" : : "r" ((uint32_t)va));
<> 144:ef7eb2e8f9f7 1378 #else
<> 144:ef7eb2e8f9f7 1379 register uint32_t __DCIMVAC __ASM("cp15:0:c7:c6:1");
<> 144:ef7eb2e8f9f7 1380 __DCIMVAC = (uint32_t)va;
<> 144:ef7eb2e8f9f7 1381 #endif
<> 144:ef7eb2e8f9f7 1382 __DMB(); //ensure the ordering of data cache maintenance operations and their effects
<> 144:ef7eb2e8f9f7 1383 }
<> 144:ef7eb2e8f9f7 1384
<> 144:ef7eb2e8f9f7 1385 /** \brief Clean and Invalidate D$ by MVA
<> 144:ef7eb2e8f9f7 1386
<> 144:ef7eb2e8f9f7 1387 DCCIMVAC. Data cache clean and invalidate by MVA to PoC
<> 144:ef7eb2e8f9f7 1388 */
<> 144:ef7eb2e8f9f7 1389 __attribute__( ( always_inline ) ) __STATIC_INLINE void __v7_clean_inv_dcache_mva(void *va) {
<> 144:ef7eb2e8f9f7 1390 #if 1
<> 144:ef7eb2e8f9f7 1391 __ASM volatile ("mcr p15, 0, %0, c7, c14, 1" : : "r" ((uint32_t)va));
<> 144:ef7eb2e8f9f7 1392 #else
<> 144:ef7eb2e8f9f7 1393 register uint32_t __DCCIMVAC __ASM("cp15:0:c7:c14:1");
<> 144:ef7eb2e8f9f7 1394 __DCCIMVAC = (uint32_t)va;
<> 144:ef7eb2e8f9f7 1395 #endif
<> 144:ef7eb2e8f9f7 1396 __DMB(); //ensure the ordering of data cache maintenance operations and their effects
<> 144:ef7eb2e8f9f7 1397 }
<> 144:ef7eb2e8f9f7 1398
<> 144:ef7eb2e8f9f7 1399 /** \brief Clean and Invalidate the entire data or unified cache
<> 144:ef7eb2e8f9f7 1400
<> 144:ef7eb2e8f9f7 1401 Generic mechanism for cleaning/invalidating the entire data or unified cache to the point of coherency.
<> 144:ef7eb2e8f9f7 1402 */
<> 144:ef7eb2e8f9f7 1403 extern void __v7_all_cache(uint32_t op);
<> 144:ef7eb2e8f9f7 1404
<> 144:ef7eb2e8f9f7 1405
<> 144:ef7eb2e8f9f7 1406 /** \brief Invalidate the whole D$
<> 144:ef7eb2e8f9f7 1407
<> 144:ef7eb2e8f9f7 1408 DCISW. Invalidate by Set/Way
<> 144:ef7eb2e8f9f7 1409 */
<> 144:ef7eb2e8f9f7 1410
<> 144:ef7eb2e8f9f7 1411 __attribute__( ( always_inline ) ) __STATIC_INLINE void __v7_inv_dcache_all(void) {
<> 144:ef7eb2e8f9f7 1412 __v7_all_cache(0);
<> 144:ef7eb2e8f9f7 1413 }
<> 144:ef7eb2e8f9f7 1414
<> 144:ef7eb2e8f9f7 1415 /** \brief Clean the whole D$
<> 144:ef7eb2e8f9f7 1416
<> 144:ef7eb2e8f9f7 1417 DCCSW. Clean by Set/Way
<> 144:ef7eb2e8f9f7 1418 */
<> 144:ef7eb2e8f9f7 1419
<> 144:ef7eb2e8f9f7 1420 __attribute__( ( always_inline ) ) __STATIC_INLINE void __v7_clean_dcache_all(void) {
<> 144:ef7eb2e8f9f7 1421 __v7_all_cache(1);
<> 144:ef7eb2e8f9f7 1422 }
<> 144:ef7eb2e8f9f7 1423
<> 144:ef7eb2e8f9f7 1424 /** \brief Clean and invalidate the whole D$
<> 144:ef7eb2e8f9f7 1425
<> 144:ef7eb2e8f9f7 1426 DCCISW. Clean and Invalidate by Set/Way
<> 144:ef7eb2e8f9f7 1427 */
<> 144:ef7eb2e8f9f7 1428
<> 144:ef7eb2e8f9f7 1429 __attribute__( ( always_inline ) ) __STATIC_INLINE void __v7_clean_inv_dcache_all(void) {
<> 144:ef7eb2e8f9f7 1430 __v7_all_cache(2);
<> 144:ef7eb2e8f9f7 1431 }
<> 144:ef7eb2e8f9f7 1432
<> 144:ef7eb2e8f9f7 1433 #include "core_ca_mmu.h"
<> 144:ef7eb2e8f9f7 1434
<> 144:ef7eb2e8f9f7 1435 #elif (defined (__TASKING__)) /*--------------- TASKING Compiler -----------------*/
<> 144:ef7eb2e8f9f7 1436
<> 144:ef7eb2e8f9f7 1437 #error TASKING Compiler support not implemented for Cortex-A
<> 144:ef7eb2e8f9f7 1438
<> 144:ef7eb2e8f9f7 1439 #endif
<> 144:ef7eb2e8f9f7 1440
<> 144:ef7eb2e8f9f7 1441 /*@} end of CMSIS_Core_RegAccFunctions */
<> 144:ef7eb2e8f9f7 1442
<> 144:ef7eb2e8f9f7 1443
<> 144:ef7eb2e8f9f7 1444 #endif /* __CORE_CAFUNC_H__ */