Forked mbed-dev as I use an 20 pins stm32F042 and not the 32 pins version

Dependents:   Numitron_clock

Fork of mbed-dev by mbed official

Committer:
riktw
Date:
Sun Jan 22 22:20:36 2017 +0000
Revision:
153:0a78729d3229
Parent:
149:156823d33999
Back to 8Mhz clock. Revision 1.0

Who changed what in which revision?

UserRevisionLine numberNew contents of line
<> 144:ef7eb2e8f9f7 1 /**************************************************************************//**
<> 144:ef7eb2e8f9f7 2 * @file core_cmInstr.h
<> 144:ef7eb2e8f9f7 3 * @brief CMSIS Cortex-M Core Instruction Access Header File
<> 144:ef7eb2e8f9f7 4 * @version V4.10
<> 144:ef7eb2e8f9f7 5 * @date 18. March 2015
<> 144:ef7eb2e8f9f7 6 *
<> 144:ef7eb2e8f9f7 7 * @note
<> 144:ef7eb2e8f9f7 8 *
<> 144:ef7eb2e8f9f7 9 ******************************************************************************/
<> 144:ef7eb2e8f9f7 10 /* Copyright (c) 2009 - 2014 ARM LIMITED
<> 144:ef7eb2e8f9f7 11
<> 144:ef7eb2e8f9f7 12 All rights reserved.
<> 144:ef7eb2e8f9f7 13 Redistribution and use in source and binary forms, with or without
<> 144:ef7eb2e8f9f7 14 modification, are permitted provided that the following conditions are met:
<> 144:ef7eb2e8f9f7 15 - Redistributions of source code must retain the above copyright
<> 144:ef7eb2e8f9f7 16 notice, this list of conditions and the following disclaimer.
<> 144:ef7eb2e8f9f7 17 - Redistributions in binary form must reproduce the above copyright
<> 144:ef7eb2e8f9f7 18 notice, this list of conditions and the following disclaimer in the
<> 144:ef7eb2e8f9f7 19 documentation and/or other materials provided with the distribution.
<> 144:ef7eb2e8f9f7 20 - Neither the name of ARM nor the names of its contributors may be used
<> 144:ef7eb2e8f9f7 21 to endorse or promote products derived from this software without
<> 144:ef7eb2e8f9f7 22 specific prior written permission.
<> 144:ef7eb2e8f9f7 23 *
<> 144:ef7eb2e8f9f7 24 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
<> 144:ef7eb2e8f9f7 25 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
<> 144:ef7eb2e8f9f7 26 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
<> 144:ef7eb2e8f9f7 27 ARE DISCLAIMED. IN NO EVENT SHALL COPYRIGHT HOLDERS AND CONTRIBUTORS BE
<> 144:ef7eb2e8f9f7 28 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
<> 144:ef7eb2e8f9f7 29 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
<> 144:ef7eb2e8f9f7 30 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
<> 144:ef7eb2e8f9f7 31 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
<> 144:ef7eb2e8f9f7 32 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
<> 144:ef7eb2e8f9f7 33 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
<> 144:ef7eb2e8f9f7 34 POSSIBILITY OF SUCH DAMAGE.
<> 144:ef7eb2e8f9f7 35 ---------------------------------------------------------------------------*/
<> 144:ef7eb2e8f9f7 36
<> 144:ef7eb2e8f9f7 37
<> 144:ef7eb2e8f9f7 38 #ifndef __CORE_CMINSTR_H
<> 144:ef7eb2e8f9f7 39 #define __CORE_CMINSTR_H
<> 144:ef7eb2e8f9f7 40
<> 144:ef7eb2e8f9f7 41
<> 144:ef7eb2e8f9f7 42 /* ########################## Core Instruction Access ######################### */
<> 144:ef7eb2e8f9f7 43 /** \defgroup CMSIS_Core_InstructionInterface CMSIS Core Instruction Interface
<> 144:ef7eb2e8f9f7 44 Access to dedicated instructions
<> 144:ef7eb2e8f9f7 45 @{
<> 144:ef7eb2e8f9f7 46 */
<> 144:ef7eb2e8f9f7 47
<> 144:ef7eb2e8f9f7 48 #if defined ( __CC_ARM ) /*------------------RealView Compiler -----------------*/
<> 144:ef7eb2e8f9f7 49 /* ARM armcc specific functions */
<> 144:ef7eb2e8f9f7 50
<> 144:ef7eb2e8f9f7 51 #if (__ARMCC_VERSION < 400677)
<> 144:ef7eb2e8f9f7 52 #error "Please use ARM Compiler Toolchain V4.0.677 or later!"
<> 144:ef7eb2e8f9f7 53 #endif
<> 144:ef7eb2e8f9f7 54
<> 144:ef7eb2e8f9f7 55
<> 144:ef7eb2e8f9f7 56 /** \brief No Operation
<> 144:ef7eb2e8f9f7 57
<> 144:ef7eb2e8f9f7 58 No Operation does nothing. This instruction can be used for code alignment purposes.
<> 144:ef7eb2e8f9f7 59 */
<> 144:ef7eb2e8f9f7 60 #define __NOP __nop
<> 144:ef7eb2e8f9f7 61
<> 144:ef7eb2e8f9f7 62
<> 144:ef7eb2e8f9f7 63 /** \brief Wait For Interrupt
<> 144:ef7eb2e8f9f7 64
<> 144:ef7eb2e8f9f7 65 Wait For Interrupt is a hint instruction that suspends execution
<> 144:ef7eb2e8f9f7 66 until one of a number of events occurs.
<> 144:ef7eb2e8f9f7 67 */
<> 144:ef7eb2e8f9f7 68 #define __WFI __wfi
<> 144:ef7eb2e8f9f7 69
<> 144:ef7eb2e8f9f7 70
<> 144:ef7eb2e8f9f7 71 /** \brief Wait For Event
<> 144:ef7eb2e8f9f7 72
<> 144:ef7eb2e8f9f7 73 Wait For Event is a hint instruction that permits the processor to enter
<> 144:ef7eb2e8f9f7 74 a low-power state until one of a number of events occurs.
<> 144:ef7eb2e8f9f7 75 */
<> 144:ef7eb2e8f9f7 76 #define __WFE __wfe
<> 144:ef7eb2e8f9f7 77
<> 144:ef7eb2e8f9f7 78
<> 144:ef7eb2e8f9f7 79 /** \brief Send Event
<> 144:ef7eb2e8f9f7 80
<> 144:ef7eb2e8f9f7 81 Send Event is a hint instruction. It causes an event to be signaled to the CPU.
<> 144:ef7eb2e8f9f7 82 */
<> 144:ef7eb2e8f9f7 83 #define __SEV __sev
<> 144:ef7eb2e8f9f7 84
<> 144:ef7eb2e8f9f7 85
<> 144:ef7eb2e8f9f7 86 /** \brief Instruction Synchronization Barrier
<> 144:ef7eb2e8f9f7 87
<> 144:ef7eb2e8f9f7 88 Instruction Synchronization Barrier flushes the pipeline in the processor,
<> 144:ef7eb2e8f9f7 89 so that all instructions following the ISB are fetched from cache or
<> 144:ef7eb2e8f9f7 90 memory, after the instruction has been completed.
<> 144:ef7eb2e8f9f7 91 */
<> 144:ef7eb2e8f9f7 92 #define __ISB() do {\
<> 144:ef7eb2e8f9f7 93 __schedule_barrier();\
<> 144:ef7eb2e8f9f7 94 __isb(0xF);\
<> 144:ef7eb2e8f9f7 95 __schedule_barrier();\
<> 144:ef7eb2e8f9f7 96 } while (0)
<> 144:ef7eb2e8f9f7 97
<> 144:ef7eb2e8f9f7 98 /** \brief Data Synchronization Barrier
<> 144:ef7eb2e8f9f7 99
<> 144:ef7eb2e8f9f7 100 This function acts as a special kind of Data Memory Barrier.
<> 144:ef7eb2e8f9f7 101 It completes when all explicit memory accesses before this instruction complete.
<> 144:ef7eb2e8f9f7 102 */
<> 144:ef7eb2e8f9f7 103 #define __DSB() do {\
<> 144:ef7eb2e8f9f7 104 __schedule_barrier();\
<> 144:ef7eb2e8f9f7 105 __dsb(0xF);\
<> 144:ef7eb2e8f9f7 106 __schedule_barrier();\
<> 144:ef7eb2e8f9f7 107 } while (0)
<> 144:ef7eb2e8f9f7 108
<> 144:ef7eb2e8f9f7 109 /** \brief Data Memory Barrier
<> 144:ef7eb2e8f9f7 110
<> 144:ef7eb2e8f9f7 111 This function ensures the apparent order of the explicit memory operations before
<> 144:ef7eb2e8f9f7 112 and after the instruction, without ensuring their completion.
<> 144:ef7eb2e8f9f7 113 */
<> 144:ef7eb2e8f9f7 114 #define __DMB() do {\
<> 144:ef7eb2e8f9f7 115 __schedule_barrier();\
<> 144:ef7eb2e8f9f7 116 __dmb(0xF);\
<> 144:ef7eb2e8f9f7 117 __schedule_barrier();\
<> 144:ef7eb2e8f9f7 118 } while (0)
<> 144:ef7eb2e8f9f7 119
<> 144:ef7eb2e8f9f7 120 /** \brief Reverse byte order (32 bit)
<> 144:ef7eb2e8f9f7 121
<> 144:ef7eb2e8f9f7 122 This function reverses the byte order in integer value.
<> 144:ef7eb2e8f9f7 123
<> 144:ef7eb2e8f9f7 124 \param [in] value Value to reverse
<> 144:ef7eb2e8f9f7 125 \return Reversed value
<> 144:ef7eb2e8f9f7 126 */
<> 144:ef7eb2e8f9f7 127 #define __REV __rev
<> 144:ef7eb2e8f9f7 128
<> 144:ef7eb2e8f9f7 129
<> 144:ef7eb2e8f9f7 130 /** \brief Reverse byte order (16 bit)
<> 144:ef7eb2e8f9f7 131
<> 144:ef7eb2e8f9f7 132 This function reverses the byte order in two unsigned short values.
<> 144:ef7eb2e8f9f7 133
<> 144:ef7eb2e8f9f7 134 \param [in] value Value to reverse
<> 144:ef7eb2e8f9f7 135 \return Reversed value
<> 144:ef7eb2e8f9f7 136 */
<> 144:ef7eb2e8f9f7 137 #ifndef __NO_EMBEDDED_ASM
<> 144:ef7eb2e8f9f7 138 __attribute__((section(".rev16_text"))) __STATIC_INLINE __ASM uint32_t __REV16(uint32_t value)
<> 144:ef7eb2e8f9f7 139 {
<> 144:ef7eb2e8f9f7 140 rev16 r0, r0
<> 144:ef7eb2e8f9f7 141 bx lr
<> 144:ef7eb2e8f9f7 142 }
<> 144:ef7eb2e8f9f7 143 #endif
<> 144:ef7eb2e8f9f7 144
<> 144:ef7eb2e8f9f7 145 /** \brief Reverse byte order in signed short value
<> 144:ef7eb2e8f9f7 146
<> 144:ef7eb2e8f9f7 147 This function reverses the byte order in a signed short value with sign extension to integer.
<> 144:ef7eb2e8f9f7 148
<> 144:ef7eb2e8f9f7 149 \param [in] value Value to reverse
<> 144:ef7eb2e8f9f7 150 \return Reversed value
<> 144:ef7eb2e8f9f7 151 */
<> 144:ef7eb2e8f9f7 152 #ifndef __NO_EMBEDDED_ASM
<> 144:ef7eb2e8f9f7 153 __attribute__((section(".revsh_text"))) __STATIC_INLINE __ASM int32_t __REVSH(int32_t value)
<> 144:ef7eb2e8f9f7 154 {
<> 144:ef7eb2e8f9f7 155 revsh r0, r0
<> 144:ef7eb2e8f9f7 156 bx lr
<> 144:ef7eb2e8f9f7 157 }
<> 144:ef7eb2e8f9f7 158 #endif
<> 144:ef7eb2e8f9f7 159
<> 144:ef7eb2e8f9f7 160
<> 144:ef7eb2e8f9f7 161 /** \brief Rotate Right in unsigned value (32 bit)
<> 144:ef7eb2e8f9f7 162
<> 144:ef7eb2e8f9f7 163 This function Rotate Right (immediate) provides the value of the contents of a register rotated by a variable number of bits.
<> 144:ef7eb2e8f9f7 164
<> 144:ef7eb2e8f9f7 165 \param [in] value Value to rotate
<> 144:ef7eb2e8f9f7 166 \param [in] value Number of Bits to rotate
<> 144:ef7eb2e8f9f7 167 \return Rotated value
<> 144:ef7eb2e8f9f7 168 */
<> 144:ef7eb2e8f9f7 169 #define __ROR __ror
<> 144:ef7eb2e8f9f7 170
<> 144:ef7eb2e8f9f7 171
<> 144:ef7eb2e8f9f7 172 /** \brief Breakpoint
<> 144:ef7eb2e8f9f7 173
<> 144:ef7eb2e8f9f7 174 This function causes the processor to enter Debug state.
<> 144:ef7eb2e8f9f7 175 Debug tools can use this to investigate system state when the instruction at a particular address is reached.
<> 144:ef7eb2e8f9f7 176
<> 144:ef7eb2e8f9f7 177 \param [in] value is ignored by the processor.
<> 144:ef7eb2e8f9f7 178 If required, a debugger can use it to store additional information about the breakpoint.
<> 144:ef7eb2e8f9f7 179 */
<> 144:ef7eb2e8f9f7 180 #define __BKPT(value) __breakpoint(value)
<> 144:ef7eb2e8f9f7 181
<> 144:ef7eb2e8f9f7 182
<> 144:ef7eb2e8f9f7 183 /** \brief Reverse bit order of value
<> 144:ef7eb2e8f9f7 184
<> 144:ef7eb2e8f9f7 185 This function reverses the bit order of the given value.
<> 144:ef7eb2e8f9f7 186
<> 144:ef7eb2e8f9f7 187 \param [in] value Value to reverse
<> 144:ef7eb2e8f9f7 188 \return Reversed value
<> 144:ef7eb2e8f9f7 189 */
<> 144:ef7eb2e8f9f7 190 #if (__CORTEX_M >= 0x03) || (__CORTEX_SC >= 300)
<> 144:ef7eb2e8f9f7 191 #define __RBIT __rbit
<> 144:ef7eb2e8f9f7 192 #else
<> 144:ef7eb2e8f9f7 193 __attribute__((always_inline)) __STATIC_INLINE uint32_t __RBIT(uint32_t value)
<> 144:ef7eb2e8f9f7 194 {
<> 144:ef7eb2e8f9f7 195 uint32_t result;
<> 144:ef7eb2e8f9f7 196 int32_t s = 4 /*sizeof(v)*/ * 8 - 1; // extra shift needed at end
<> 144:ef7eb2e8f9f7 197
<> 144:ef7eb2e8f9f7 198 result = value; // r will be reversed bits of v; first get LSB of v
<> 144:ef7eb2e8f9f7 199 for (value >>= 1; value; value >>= 1)
<> 144:ef7eb2e8f9f7 200 {
<> 144:ef7eb2e8f9f7 201 result <<= 1;
<> 144:ef7eb2e8f9f7 202 result |= value & 1;
<> 144:ef7eb2e8f9f7 203 s--;
<> 144:ef7eb2e8f9f7 204 }
<> 144:ef7eb2e8f9f7 205 result <<= s; // shift when v's highest bits are zero
<> 144:ef7eb2e8f9f7 206 return(result);
<> 144:ef7eb2e8f9f7 207 }
<> 144:ef7eb2e8f9f7 208 #endif
<> 144:ef7eb2e8f9f7 209
<> 144:ef7eb2e8f9f7 210
<> 144:ef7eb2e8f9f7 211 /** \brief Count leading zeros
<> 144:ef7eb2e8f9f7 212
<> 144:ef7eb2e8f9f7 213 This function counts the number of leading zeros of a data value.
<> 144:ef7eb2e8f9f7 214
<> 144:ef7eb2e8f9f7 215 \param [in] value Value to count the leading zeros
<> 144:ef7eb2e8f9f7 216 \return number of leading zeros in value
<> 144:ef7eb2e8f9f7 217 */
<> 144:ef7eb2e8f9f7 218 #define __CLZ __clz
<> 144:ef7eb2e8f9f7 219
<> 144:ef7eb2e8f9f7 220
<> 144:ef7eb2e8f9f7 221 #if (__CORTEX_M >= 0x03) || (__CORTEX_SC >= 300)
<> 144:ef7eb2e8f9f7 222
<> 144:ef7eb2e8f9f7 223 /** \brief LDR Exclusive (8 bit)
<> 144:ef7eb2e8f9f7 224
<> 144:ef7eb2e8f9f7 225 This function executes a exclusive LDR instruction for 8 bit value.
<> 144:ef7eb2e8f9f7 226
<> 144:ef7eb2e8f9f7 227 \param [in] ptr Pointer to data
<> 144:ef7eb2e8f9f7 228 \return value of type uint8_t at (*ptr)
<> 144:ef7eb2e8f9f7 229 */
<> 144:ef7eb2e8f9f7 230 #define __LDREXB(ptr) ((uint8_t ) __ldrex(ptr))
<> 144:ef7eb2e8f9f7 231
<> 144:ef7eb2e8f9f7 232
<> 144:ef7eb2e8f9f7 233 /** \brief LDR Exclusive (16 bit)
<> 144:ef7eb2e8f9f7 234
<> 144:ef7eb2e8f9f7 235 This function executes a exclusive LDR instruction for 16 bit values.
<> 144:ef7eb2e8f9f7 236
<> 144:ef7eb2e8f9f7 237 \param [in] ptr Pointer to data
<> 144:ef7eb2e8f9f7 238 \return value of type uint16_t at (*ptr)
<> 144:ef7eb2e8f9f7 239 */
<> 144:ef7eb2e8f9f7 240 #define __LDREXH(ptr) ((uint16_t) __ldrex(ptr))
<> 144:ef7eb2e8f9f7 241
<> 144:ef7eb2e8f9f7 242
<> 144:ef7eb2e8f9f7 243 /** \brief LDR Exclusive (32 bit)
<> 144:ef7eb2e8f9f7 244
<> 144:ef7eb2e8f9f7 245 This function executes a exclusive LDR instruction for 32 bit values.
<> 144:ef7eb2e8f9f7 246
<> 144:ef7eb2e8f9f7 247 \param [in] ptr Pointer to data
<> 144:ef7eb2e8f9f7 248 \return value of type uint32_t at (*ptr)
<> 144:ef7eb2e8f9f7 249 */
<> 144:ef7eb2e8f9f7 250 #define __LDREXW(ptr) ((uint32_t ) __ldrex(ptr))
<> 144:ef7eb2e8f9f7 251
<> 144:ef7eb2e8f9f7 252
<> 144:ef7eb2e8f9f7 253 /** \brief STR Exclusive (8 bit)
<> 144:ef7eb2e8f9f7 254
<> 144:ef7eb2e8f9f7 255 This function executes a exclusive STR instruction for 8 bit values.
<> 144:ef7eb2e8f9f7 256
<> 144:ef7eb2e8f9f7 257 \param [in] value Value to store
<> 144:ef7eb2e8f9f7 258 \param [in] ptr Pointer to location
<> 144:ef7eb2e8f9f7 259 \return 0 Function succeeded
<> 144:ef7eb2e8f9f7 260 \return 1 Function failed
<> 144:ef7eb2e8f9f7 261 */
<> 144:ef7eb2e8f9f7 262 #define __STREXB(value, ptr) __strex(value, ptr)
<> 144:ef7eb2e8f9f7 263
<> 144:ef7eb2e8f9f7 264
<> 144:ef7eb2e8f9f7 265 /** \brief STR Exclusive (16 bit)
<> 144:ef7eb2e8f9f7 266
<> 144:ef7eb2e8f9f7 267 This function executes a exclusive STR instruction for 16 bit values.
<> 144:ef7eb2e8f9f7 268
<> 144:ef7eb2e8f9f7 269 \param [in] value Value to store
<> 144:ef7eb2e8f9f7 270 \param [in] ptr Pointer to location
<> 144:ef7eb2e8f9f7 271 \return 0 Function succeeded
<> 144:ef7eb2e8f9f7 272 \return 1 Function failed
<> 144:ef7eb2e8f9f7 273 */
<> 144:ef7eb2e8f9f7 274 #define __STREXH(value, ptr) __strex(value, ptr)
<> 144:ef7eb2e8f9f7 275
<> 144:ef7eb2e8f9f7 276
<> 144:ef7eb2e8f9f7 277 /** \brief STR Exclusive (32 bit)
<> 144:ef7eb2e8f9f7 278
<> 144:ef7eb2e8f9f7 279 This function executes a exclusive STR instruction for 32 bit values.
<> 144:ef7eb2e8f9f7 280
<> 144:ef7eb2e8f9f7 281 \param [in] value Value to store
<> 144:ef7eb2e8f9f7 282 \param [in] ptr Pointer to location
<> 144:ef7eb2e8f9f7 283 \return 0 Function succeeded
<> 144:ef7eb2e8f9f7 284 \return 1 Function failed
<> 144:ef7eb2e8f9f7 285 */
<> 144:ef7eb2e8f9f7 286 #define __STREXW(value, ptr) __strex(value, ptr)
<> 144:ef7eb2e8f9f7 287
<> 144:ef7eb2e8f9f7 288
<> 144:ef7eb2e8f9f7 289 /** \brief Remove the exclusive lock
<> 144:ef7eb2e8f9f7 290
<> 144:ef7eb2e8f9f7 291 This function removes the exclusive lock which is created by LDREX.
<> 144:ef7eb2e8f9f7 292
<> 144:ef7eb2e8f9f7 293 */
<> 144:ef7eb2e8f9f7 294 #define __CLREX __clrex
<> 144:ef7eb2e8f9f7 295
<> 144:ef7eb2e8f9f7 296
<> 144:ef7eb2e8f9f7 297 /** \brief Signed Saturate
<> 144:ef7eb2e8f9f7 298
<> 144:ef7eb2e8f9f7 299 This function saturates a signed value.
<> 144:ef7eb2e8f9f7 300
<> 144:ef7eb2e8f9f7 301 \param [in] value Value to be saturated
<> 144:ef7eb2e8f9f7 302 \param [in] sat Bit position to saturate to (1..32)
<> 144:ef7eb2e8f9f7 303 \return Saturated value
<> 144:ef7eb2e8f9f7 304 */
<> 144:ef7eb2e8f9f7 305 #define __SSAT __ssat
<> 144:ef7eb2e8f9f7 306
<> 144:ef7eb2e8f9f7 307
<> 144:ef7eb2e8f9f7 308 /** \brief Unsigned Saturate
<> 144:ef7eb2e8f9f7 309
<> 144:ef7eb2e8f9f7 310 This function saturates an unsigned value.
<> 144:ef7eb2e8f9f7 311
<> 144:ef7eb2e8f9f7 312 \param [in] value Value to be saturated
<> 144:ef7eb2e8f9f7 313 \param [in] sat Bit position to saturate to (0..31)
<> 144:ef7eb2e8f9f7 314 \return Saturated value
<> 144:ef7eb2e8f9f7 315 */
<> 144:ef7eb2e8f9f7 316 #define __USAT __usat
<> 144:ef7eb2e8f9f7 317
<> 144:ef7eb2e8f9f7 318
<> 144:ef7eb2e8f9f7 319 /** \brief Rotate Right with Extend (32 bit)
<> 144:ef7eb2e8f9f7 320
<> 144:ef7eb2e8f9f7 321 This function moves each bit of a bitstring right by one bit.
<> 144:ef7eb2e8f9f7 322 The carry input is shifted in at the left end of the bitstring.
<> 144:ef7eb2e8f9f7 323
<> 144:ef7eb2e8f9f7 324 \param [in] value Value to rotate
<> 144:ef7eb2e8f9f7 325 \return Rotated value
<> 144:ef7eb2e8f9f7 326 */
<> 144:ef7eb2e8f9f7 327 #ifndef __NO_EMBEDDED_ASM
<> 144:ef7eb2e8f9f7 328 __attribute__((section(".rrx_text"))) __STATIC_INLINE __ASM uint32_t __RRX(uint32_t value)
<> 144:ef7eb2e8f9f7 329 {
<> 144:ef7eb2e8f9f7 330 rrx r0, r0
<> 144:ef7eb2e8f9f7 331 bx lr
<> 144:ef7eb2e8f9f7 332 }
<> 144:ef7eb2e8f9f7 333 #endif
<> 144:ef7eb2e8f9f7 334
<> 144:ef7eb2e8f9f7 335
<> 144:ef7eb2e8f9f7 336 /** \brief LDRT Unprivileged (8 bit)
<> 144:ef7eb2e8f9f7 337
<> 144:ef7eb2e8f9f7 338 This function executes a Unprivileged LDRT instruction for 8 bit value.
<> 144:ef7eb2e8f9f7 339
<> 144:ef7eb2e8f9f7 340 \param [in] ptr Pointer to data
<> 144:ef7eb2e8f9f7 341 \return value of type uint8_t at (*ptr)
<> 144:ef7eb2e8f9f7 342 */
<> 144:ef7eb2e8f9f7 343 #define __LDRBT(ptr) ((uint8_t ) __ldrt(ptr))
<> 144:ef7eb2e8f9f7 344
<> 144:ef7eb2e8f9f7 345
<> 144:ef7eb2e8f9f7 346 /** \brief LDRT Unprivileged (16 bit)
<> 144:ef7eb2e8f9f7 347
<> 144:ef7eb2e8f9f7 348 This function executes a Unprivileged LDRT instruction for 16 bit values.
<> 144:ef7eb2e8f9f7 349
<> 144:ef7eb2e8f9f7 350 \param [in] ptr Pointer to data
<> 144:ef7eb2e8f9f7 351 \return value of type uint16_t at (*ptr)
<> 144:ef7eb2e8f9f7 352 */
<> 144:ef7eb2e8f9f7 353 #define __LDRHT(ptr) ((uint16_t) __ldrt(ptr))
<> 144:ef7eb2e8f9f7 354
<> 144:ef7eb2e8f9f7 355
<> 144:ef7eb2e8f9f7 356 /** \brief LDRT Unprivileged (32 bit)
<> 144:ef7eb2e8f9f7 357
<> 144:ef7eb2e8f9f7 358 This function executes a Unprivileged LDRT instruction for 32 bit values.
<> 144:ef7eb2e8f9f7 359
<> 144:ef7eb2e8f9f7 360 \param [in] ptr Pointer to data
<> 144:ef7eb2e8f9f7 361 \return value of type uint32_t at (*ptr)
<> 144:ef7eb2e8f9f7 362 */
<> 144:ef7eb2e8f9f7 363 #define __LDRT(ptr) ((uint32_t ) __ldrt(ptr))
<> 144:ef7eb2e8f9f7 364
<> 144:ef7eb2e8f9f7 365
<> 144:ef7eb2e8f9f7 366 /** \brief STRT Unprivileged (8 bit)
<> 144:ef7eb2e8f9f7 367
<> 144:ef7eb2e8f9f7 368 This function executes a Unprivileged STRT instruction for 8 bit values.
<> 144:ef7eb2e8f9f7 369
<> 144:ef7eb2e8f9f7 370 \param [in] value Value to store
<> 144:ef7eb2e8f9f7 371 \param [in] ptr Pointer to location
<> 144:ef7eb2e8f9f7 372 */
<> 144:ef7eb2e8f9f7 373 #define __STRBT(value, ptr) __strt(value, ptr)
<> 144:ef7eb2e8f9f7 374
<> 144:ef7eb2e8f9f7 375
<> 144:ef7eb2e8f9f7 376 /** \brief STRT Unprivileged (16 bit)
<> 144:ef7eb2e8f9f7 377
<> 144:ef7eb2e8f9f7 378 This function executes a Unprivileged STRT instruction for 16 bit values.
<> 144:ef7eb2e8f9f7 379
<> 144:ef7eb2e8f9f7 380 \param [in] value Value to store
<> 144:ef7eb2e8f9f7 381 \param [in] ptr Pointer to location
<> 144:ef7eb2e8f9f7 382 */
<> 144:ef7eb2e8f9f7 383 #define __STRHT(value, ptr) __strt(value, ptr)
<> 144:ef7eb2e8f9f7 384
<> 144:ef7eb2e8f9f7 385
<> 144:ef7eb2e8f9f7 386 /** \brief STRT Unprivileged (32 bit)
<> 144:ef7eb2e8f9f7 387
<> 144:ef7eb2e8f9f7 388 This function executes a Unprivileged STRT instruction for 32 bit values.
<> 144:ef7eb2e8f9f7 389
<> 144:ef7eb2e8f9f7 390 \param [in] value Value to store
<> 144:ef7eb2e8f9f7 391 \param [in] ptr Pointer to location
<> 144:ef7eb2e8f9f7 392 */
<> 144:ef7eb2e8f9f7 393 #define __STRT(value, ptr) __strt(value, ptr)
<> 144:ef7eb2e8f9f7 394
<> 144:ef7eb2e8f9f7 395 #endif /* (__CORTEX_M >= 0x03) || (__CORTEX_SC >= 300) */
<> 144:ef7eb2e8f9f7 396
<> 144:ef7eb2e8f9f7 397
<> 144:ef7eb2e8f9f7 398 #elif defined ( __GNUC__ ) /*------------------ GNU Compiler ---------------------*/
<> 144:ef7eb2e8f9f7 399 /* GNU gcc specific functions */
<> 144:ef7eb2e8f9f7 400
<> 144:ef7eb2e8f9f7 401 /* Define macros for porting to both thumb1 and thumb2.
<> 144:ef7eb2e8f9f7 402 * For thumb1, use low register (r0-r7), specified by constrant "l"
<> 144:ef7eb2e8f9f7 403 * Otherwise, use general registers, specified by constrant "r" */
<> 144:ef7eb2e8f9f7 404 #if defined (__thumb__) && !defined (__thumb2__)
<> 144:ef7eb2e8f9f7 405 #define __CMSIS_GCC_OUT_REG(r) "=l" (r)
<> 144:ef7eb2e8f9f7 406 #define __CMSIS_GCC_USE_REG(r) "l" (r)
<> 144:ef7eb2e8f9f7 407 #else
<> 144:ef7eb2e8f9f7 408 #define __CMSIS_GCC_OUT_REG(r) "=r" (r)
<> 144:ef7eb2e8f9f7 409 #define __CMSIS_GCC_USE_REG(r) "r" (r)
<> 144:ef7eb2e8f9f7 410 #endif
<> 144:ef7eb2e8f9f7 411
<> 144:ef7eb2e8f9f7 412 /** \brief No Operation
<> 144:ef7eb2e8f9f7 413
<> 144:ef7eb2e8f9f7 414 No Operation does nothing. This instruction can be used for code alignment purposes.
<> 144:ef7eb2e8f9f7 415 */
<> 144:ef7eb2e8f9f7 416 __attribute__((always_inline)) __STATIC_INLINE void __NOP(void)
<> 144:ef7eb2e8f9f7 417 {
<> 144:ef7eb2e8f9f7 418 __ASM volatile ("nop");
<> 144:ef7eb2e8f9f7 419 }
<> 144:ef7eb2e8f9f7 420
<> 144:ef7eb2e8f9f7 421
<> 144:ef7eb2e8f9f7 422 /** \brief Wait For Interrupt
<> 144:ef7eb2e8f9f7 423
<> 144:ef7eb2e8f9f7 424 Wait For Interrupt is a hint instruction that suspends execution
<> 144:ef7eb2e8f9f7 425 until one of a number of events occurs.
<> 144:ef7eb2e8f9f7 426 */
<> 144:ef7eb2e8f9f7 427 __attribute__((always_inline)) __STATIC_INLINE void __WFI(void)
<> 144:ef7eb2e8f9f7 428 {
<> 144:ef7eb2e8f9f7 429 __ASM volatile ("wfi");
<> 144:ef7eb2e8f9f7 430 }
<> 144:ef7eb2e8f9f7 431
<> 144:ef7eb2e8f9f7 432
<> 144:ef7eb2e8f9f7 433 /** \brief Wait For Event
<> 144:ef7eb2e8f9f7 434
<> 144:ef7eb2e8f9f7 435 Wait For Event is a hint instruction that permits the processor to enter
<> 144:ef7eb2e8f9f7 436 a low-power state until one of a number of events occurs.
<> 144:ef7eb2e8f9f7 437 */
<> 144:ef7eb2e8f9f7 438 __attribute__((always_inline)) __STATIC_INLINE void __WFE(void)
<> 144:ef7eb2e8f9f7 439 {
<> 144:ef7eb2e8f9f7 440 __ASM volatile ("wfe");
<> 144:ef7eb2e8f9f7 441 }
<> 144:ef7eb2e8f9f7 442
<> 144:ef7eb2e8f9f7 443
<> 144:ef7eb2e8f9f7 444 /** \brief Send Event
<> 144:ef7eb2e8f9f7 445
<> 144:ef7eb2e8f9f7 446 Send Event is a hint instruction. It causes an event to be signaled to the CPU.
<> 144:ef7eb2e8f9f7 447 */
<> 144:ef7eb2e8f9f7 448 __attribute__((always_inline)) __STATIC_INLINE void __SEV(void)
<> 144:ef7eb2e8f9f7 449 {
<> 144:ef7eb2e8f9f7 450 __ASM volatile ("sev");
<> 144:ef7eb2e8f9f7 451 }
<> 144:ef7eb2e8f9f7 452
<> 144:ef7eb2e8f9f7 453
<> 144:ef7eb2e8f9f7 454 /** \brief Instruction Synchronization Barrier
<> 144:ef7eb2e8f9f7 455
<> 144:ef7eb2e8f9f7 456 Instruction Synchronization Barrier flushes the pipeline in the processor,
<> 144:ef7eb2e8f9f7 457 so that all instructions following the ISB are fetched from cache or
<> 144:ef7eb2e8f9f7 458 memory, after the instruction has been completed.
<> 144:ef7eb2e8f9f7 459 */
<> 144:ef7eb2e8f9f7 460 __attribute__((always_inline)) __STATIC_INLINE void __ISB(void)
<> 144:ef7eb2e8f9f7 461 {
<> 144:ef7eb2e8f9f7 462 __ASM volatile ("isb 0xF":::"memory");
<> 144:ef7eb2e8f9f7 463 }
<> 144:ef7eb2e8f9f7 464
<> 144:ef7eb2e8f9f7 465
<> 144:ef7eb2e8f9f7 466 /** \brief Data Synchronization Barrier
<> 144:ef7eb2e8f9f7 467
<> 144:ef7eb2e8f9f7 468 This function acts as a special kind of Data Memory Barrier.
<> 144:ef7eb2e8f9f7 469 It completes when all explicit memory accesses before this instruction complete.
<> 144:ef7eb2e8f9f7 470 */
<> 144:ef7eb2e8f9f7 471 __attribute__((always_inline)) __STATIC_INLINE void __DSB(void)
<> 144:ef7eb2e8f9f7 472 {
<> 144:ef7eb2e8f9f7 473 __ASM volatile ("dsb 0xF":::"memory");
<> 144:ef7eb2e8f9f7 474 }
<> 144:ef7eb2e8f9f7 475
<> 144:ef7eb2e8f9f7 476
<> 144:ef7eb2e8f9f7 477 /** \brief Data Memory Barrier
<> 144:ef7eb2e8f9f7 478
<> 144:ef7eb2e8f9f7 479 This function ensures the apparent order of the explicit memory operations before
<> 144:ef7eb2e8f9f7 480 and after the instruction, without ensuring their completion.
<> 144:ef7eb2e8f9f7 481 */
<> 144:ef7eb2e8f9f7 482 __attribute__((always_inline)) __STATIC_INLINE void __DMB(void)
<> 144:ef7eb2e8f9f7 483 {
<> 144:ef7eb2e8f9f7 484 __ASM volatile ("dmb 0xF":::"memory");
<> 144:ef7eb2e8f9f7 485 }
<> 144:ef7eb2e8f9f7 486
<> 144:ef7eb2e8f9f7 487
<> 144:ef7eb2e8f9f7 488 /** \brief Reverse byte order (32 bit)
<> 144:ef7eb2e8f9f7 489
<> 144:ef7eb2e8f9f7 490 This function reverses the byte order in integer value.
<> 144:ef7eb2e8f9f7 491
<> 144:ef7eb2e8f9f7 492 \param [in] value Value to reverse
<> 144:ef7eb2e8f9f7 493 \return Reversed value
<> 144:ef7eb2e8f9f7 494 */
<> 144:ef7eb2e8f9f7 495 __attribute__((always_inline)) __STATIC_INLINE uint32_t __REV(uint32_t value)
<> 144:ef7eb2e8f9f7 496 {
<> 144:ef7eb2e8f9f7 497 #if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 5)
<> 144:ef7eb2e8f9f7 498 return __builtin_bswap32(value);
<> 144:ef7eb2e8f9f7 499 #else
<> 144:ef7eb2e8f9f7 500 uint32_t result;
<> 144:ef7eb2e8f9f7 501
<> 144:ef7eb2e8f9f7 502 __ASM volatile ("rev %0, %1" : __CMSIS_GCC_OUT_REG (result) : __CMSIS_GCC_USE_REG (value) );
<> 144:ef7eb2e8f9f7 503 return(result);
<> 144:ef7eb2e8f9f7 504 #endif
<> 144:ef7eb2e8f9f7 505 }
<> 144:ef7eb2e8f9f7 506
<> 144:ef7eb2e8f9f7 507
<> 144:ef7eb2e8f9f7 508 /** \brief Reverse byte order (16 bit)
<> 144:ef7eb2e8f9f7 509
<> 144:ef7eb2e8f9f7 510 This function reverses the byte order in two unsigned short values.
<> 144:ef7eb2e8f9f7 511
<> 144:ef7eb2e8f9f7 512 \param [in] value Value to reverse
<> 144:ef7eb2e8f9f7 513 \return Reversed value
<> 144:ef7eb2e8f9f7 514 */
<> 144:ef7eb2e8f9f7 515 __attribute__((always_inline)) __STATIC_INLINE uint32_t __REV16(uint32_t value)
<> 144:ef7eb2e8f9f7 516 {
<> 144:ef7eb2e8f9f7 517 uint32_t result;
<> 144:ef7eb2e8f9f7 518
<> 144:ef7eb2e8f9f7 519 __ASM volatile ("rev16 %0, %1" : __CMSIS_GCC_OUT_REG (result) : __CMSIS_GCC_USE_REG (value) );
<> 144:ef7eb2e8f9f7 520 return(result);
<> 144:ef7eb2e8f9f7 521 }
<> 144:ef7eb2e8f9f7 522
<> 144:ef7eb2e8f9f7 523
<> 144:ef7eb2e8f9f7 524 /** \brief Reverse byte order in signed short value
<> 144:ef7eb2e8f9f7 525
<> 144:ef7eb2e8f9f7 526 This function reverses the byte order in a signed short value with sign extension to integer.
<> 144:ef7eb2e8f9f7 527
<> 144:ef7eb2e8f9f7 528 \param [in] value Value to reverse
<> 144:ef7eb2e8f9f7 529 \return Reversed value
<> 144:ef7eb2e8f9f7 530 */
<> 144:ef7eb2e8f9f7 531 __attribute__((always_inline)) __STATIC_INLINE int32_t __REVSH(int32_t value)
<> 144:ef7eb2e8f9f7 532 {
<> 144:ef7eb2e8f9f7 533 #if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8)
<> 144:ef7eb2e8f9f7 534 return (short)__builtin_bswap16(value);
<> 144:ef7eb2e8f9f7 535 #else
<> 144:ef7eb2e8f9f7 536 uint32_t result;
<> 144:ef7eb2e8f9f7 537
<> 144:ef7eb2e8f9f7 538 __ASM volatile ("revsh %0, %1" : __CMSIS_GCC_OUT_REG (result) : __CMSIS_GCC_USE_REG (value) );
<> 144:ef7eb2e8f9f7 539 return(result);
<> 144:ef7eb2e8f9f7 540 #endif
<> 144:ef7eb2e8f9f7 541 }
<> 144:ef7eb2e8f9f7 542
<> 144:ef7eb2e8f9f7 543
<> 144:ef7eb2e8f9f7 544 /** \brief Rotate Right in unsigned value (32 bit)
<> 144:ef7eb2e8f9f7 545
<> 144:ef7eb2e8f9f7 546 This function Rotate Right (immediate) provides the value of the contents of a register rotated by a variable number of bits.
<> 144:ef7eb2e8f9f7 547
<> 144:ef7eb2e8f9f7 548 \param [in] value Value to rotate
<> 144:ef7eb2e8f9f7 549 \param [in] value Number of Bits to rotate
<> 144:ef7eb2e8f9f7 550 \return Rotated value
<> 144:ef7eb2e8f9f7 551 */
<> 144:ef7eb2e8f9f7 552 __attribute__((always_inline)) __STATIC_INLINE uint32_t __ROR(uint32_t op1, uint32_t op2)
<> 144:ef7eb2e8f9f7 553 {
<> 144:ef7eb2e8f9f7 554 return (op1 >> op2) | (op1 << (32 - op2));
<> 144:ef7eb2e8f9f7 555 }
<> 144:ef7eb2e8f9f7 556
<> 144:ef7eb2e8f9f7 557
<> 144:ef7eb2e8f9f7 558 /** \brief Breakpoint
<> 144:ef7eb2e8f9f7 559
<> 144:ef7eb2e8f9f7 560 This function causes the processor to enter Debug state.
<> 144:ef7eb2e8f9f7 561 Debug tools can use this to investigate system state when the instruction at a particular address is reached.
<> 144:ef7eb2e8f9f7 562
<> 144:ef7eb2e8f9f7 563 \param [in] value is ignored by the processor.
<> 144:ef7eb2e8f9f7 564 If required, a debugger can use it to store additional information about the breakpoint.
<> 144:ef7eb2e8f9f7 565 */
<> 144:ef7eb2e8f9f7 566 #define __BKPT(value) __ASM volatile ("bkpt "#value)
<> 144:ef7eb2e8f9f7 567
<> 144:ef7eb2e8f9f7 568
<> 144:ef7eb2e8f9f7 569 /** \brief Reverse bit order of value
<> 144:ef7eb2e8f9f7 570
<> 144:ef7eb2e8f9f7 571 This function reverses the bit order of the given value.
<> 144:ef7eb2e8f9f7 572
<> 144:ef7eb2e8f9f7 573 \param [in] value Value to reverse
<> 144:ef7eb2e8f9f7 574 \return Reversed value
<> 144:ef7eb2e8f9f7 575 */
<> 144:ef7eb2e8f9f7 576 __attribute__((always_inline)) __STATIC_INLINE uint32_t __RBIT(uint32_t value)
<> 144:ef7eb2e8f9f7 577 {
<> 144:ef7eb2e8f9f7 578 uint32_t result;
<> 144:ef7eb2e8f9f7 579
<> 144:ef7eb2e8f9f7 580 #if (__CORTEX_M >= 0x03) || (__CORTEX_SC >= 300)
<> 144:ef7eb2e8f9f7 581 __ASM volatile ("rbit %0, %1" : "=r" (result) : "r" (value) );
<> 144:ef7eb2e8f9f7 582 #else
<> 144:ef7eb2e8f9f7 583 int32_t s = 4 /*sizeof(v)*/ * 8 - 1; // extra shift needed at end
<> 144:ef7eb2e8f9f7 584
<> 144:ef7eb2e8f9f7 585 result = value; // r will be reversed bits of v; first get LSB of v
<> 144:ef7eb2e8f9f7 586 for (value >>= 1; value; value >>= 1)
<> 144:ef7eb2e8f9f7 587 {
<> 144:ef7eb2e8f9f7 588 result <<= 1;
<> 144:ef7eb2e8f9f7 589 result |= value & 1;
<> 144:ef7eb2e8f9f7 590 s--;
<> 144:ef7eb2e8f9f7 591 }
<> 144:ef7eb2e8f9f7 592 result <<= s; // shift when v's highest bits are zero
<> 144:ef7eb2e8f9f7 593 #endif
<> 144:ef7eb2e8f9f7 594 return(result);
<> 144:ef7eb2e8f9f7 595 }
<> 144:ef7eb2e8f9f7 596
<> 144:ef7eb2e8f9f7 597
<> 144:ef7eb2e8f9f7 598 /** \brief Count leading zeros
<> 144:ef7eb2e8f9f7 599
<> 144:ef7eb2e8f9f7 600 This function counts the number of leading zeros of a data value.
<> 144:ef7eb2e8f9f7 601
<> 144:ef7eb2e8f9f7 602 \param [in] value Value to count the leading zeros
<> 144:ef7eb2e8f9f7 603 \return number of leading zeros in value
<> 144:ef7eb2e8f9f7 604 */
<> 144:ef7eb2e8f9f7 605 #define __CLZ __builtin_clz
<> 144:ef7eb2e8f9f7 606
<> 144:ef7eb2e8f9f7 607
<> 144:ef7eb2e8f9f7 608 #if (__CORTEX_M >= 0x03) || (__CORTEX_SC >= 300)
<> 144:ef7eb2e8f9f7 609
<> 144:ef7eb2e8f9f7 610 /** \brief LDR Exclusive (8 bit)
<> 144:ef7eb2e8f9f7 611
<> 144:ef7eb2e8f9f7 612 This function executes a exclusive LDR instruction for 8 bit value.
<> 144:ef7eb2e8f9f7 613
<> 144:ef7eb2e8f9f7 614 \param [in] ptr Pointer to data
<> 144:ef7eb2e8f9f7 615 \return value of type uint8_t at (*ptr)
<> 144:ef7eb2e8f9f7 616 */
<> 144:ef7eb2e8f9f7 617 __attribute__((always_inline)) __STATIC_INLINE uint8_t __LDREXB(volatile uint8_t *addr)
<> 144:ef7eb2e8f9f7 618 {
<> 144:ef7eb2e8f9f7 619 uint32_t result;
<> 144:ef7eb2e8f9f7 620
<> 144:ef7eb2e8f9f7 621 #if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8)
<> 144:ef7eb2e8f9f7 622 __ASM volatile ("ldrexb %0, %1" : "=r" (result) : "Q" (*addr) );
<> 144:ef7eb2e8f9f7 623 #else
<> 144:ef7eb2e8f9f7 624 /* Prior to GCC 4.8, "Q" will be expanded to [rx, #0] which is not
<> 144:ef7eb2e8f9f7 625 accepted by assembler. So has to use following less efficient pattern.
<> 144:ef7eb2e8f9f7 626 */
<> 144:ef7eb2e8f9f7 627 __ASM volatile ("ldrexb %0, [%1]" : "=r" (result) : "r" (addr) : "memory" );
<> 144:ef7eb2e8f9f7 628 #endif
<> 144:ef7eb2e8f9f7 629 return ((uint8_t) result); /* Add explicit type cast here */
<> 144:ef7eb2e8f9f7 630 }
<> 144:ef7eb2e8f9f7 631
<> 144:ef7eb2e8f9f7 632
<> 144:ef7eb2e8f9f7 633 /** \brief LDR Exclusive (16 bit)
<> 144:ef7eb2e8f9f7 634
<> 144:ef7eb2e8f9f7 635 This function executes a exclusive LDR instruction for 16 bit values.
<> 144:ef7eb2e8f9f7 636
<> 144:ef7eb2e8f9f7 637 \param [in] ptr Pointer to data
<> 144:ef7eb2e8f9f7 638 \return value of type uint16_t at (*ptr)
<> 144:ef7eb2e8f9f7 639 */
<> 144:ef7eb2e8f9f7 640 __attribute__((always_inline)) __STATIC_INLINE uint16_t __LDREXH(volatile uint16_t *addr)
<> 144:ef7eb2e8f9f7 641 {
<> 144:ef7eb2e8f9f7 642 uint32_t result;
<> 144:ef7eb2e8f9f7 643
<> 144:ef7eb2e8f9f7 644 #if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8)
<> 144:ef7eb2e8f9f7 645 __ASM volatile ("ldrexh %0, %1" : "=r" (result) : "Q" (*addr) );
<> 144:ef7eb2e8f9f7 646 #else
<> 144:ef7eb2e8f9f7 647 /* Prior to GCC 4.8, "Q" will be expanded to [rx, #0] which is not
<> 144:ef7eb2e8f9f7 648 accepted by assembler. So has to use following less efficient pattern.
<> 144:ef7eb2e8f9f7 649 */
<> 144:ef7eb2e8f9f7 650 __ASM volatile ("ldrexh %0, [%1]" : "=r" (result) : "r" (addr) : "memory" );
<> 144:ef7eb2e8f9f7 651 #endif
<> 144:ef7eb2e8f9f7 652 return ((uint16_t) result); /* Add explicit type cast here */
<> 144:ef7eb2e8f9f7 653 }
<> 144:ef7eb2e8f9f7 654
<> 144:ef7eb2e8f9f7 655
<> 144:ef7eb2e8f9f7 656 /** \brief LDR Exclusive (32 bit)
<> 144:ef7eb2e8f9f7 657
<> 144:ef7eb2e8f9f7 658 This function executes a exclusive LDR instruction for 32 bit values.
<> 144:ef7eb2e8f9f7 659
<> 144:ef7eb2e8f9f7 660 \param [in] ptr Pointer to data
<> 144:ef7eb2e8f9f7 661 \return value of type uint32_t at (*ptr)
<> 144:ef7eb2e8f9f7 662 */
<> 144:ef7eb2e8f9f7 663 __attribute__((always_inline)) __STATIC_INLINE uint32_t __LDREXW(volatile uint32_t *addr)
<> 144:ef7eb2e8f9f7 664 {
<> 144:ef7eb2e8f9f7 665 uint32_t result;
<> 144:ef7eb2e8f9f7 666
<> 144:ef7eb2e8f9f7 667 __ASM volatile ("ldrex %0, %1" : "=r" (result) : "Q" (*addr) );
<> 144:ef7eb2e8f9f7 668 return(result);
<> 144:ef7eb2e8f9f7 669 }
<> 144:ef7eb2e8f9f7 670
<> 144:ef7eb2e8f9f7 671
<> 144:ef7eb2e8f9f7 672 /** \brief STR Exclusive (8 bit)
<> 144:ef7eb2e8f9f7 673
<> 144:ef7eb2e8f9f7 674 This function executes a exclusive STR instruction for 8 bit values.
<> 144:ef7eb2e8f9f7 675
<> 144:ef7eb2e8f9f7 676 \param [in] value Value to store
<> 144:ef7eb2e8f9f7 677 \param [in] ptr Pointer to location
<> 144:ef7eb2e8f9f7 678 \return 0 Function succeeded
<> 144:ef7eb2e8f9f7 679 \return 1 Function failed
<> 144:ef7eb2e8f9f7 680 */
<> 144:ef7eb2e8f9f7 681 __attribute__((always_inline)) __STATIC_INLINE uint32_t __STREXB(uint8_t value, volatile uint8_t *addr)
<> 144:ef7eb2e8f9f7 682 {
<> 144:ef7eb2e8f9f7 683 uint32_t result;
<> 144:ef7eb2e8f9f7 684
<> 144:ef7eb2e8f9f7 685 __ASM volatile ("strexb %0, %2, %1" : "=&r" (result), "=Q" (*addr) : "r" ((uint32_t)value) );
<> 144:ef7eb2e8f9f7 686 return(result);
<> 144:ef7eb2e8f9f7 687 }
<> 144:ef7eb2e8f9f7 688
<> 144:ef7eb2e8f9f7 689
<> 144:ef7eb2e8f9f7 690 /** \brief STR Exclusive (16 bit)
<> 144:ef7eb2e8f9f7 691
<> 144:ef7eb2e8f9f7 692 This function executes a exclusive STR instruction for 16 bit values.
<> 144:ef7eb2e8f9f7 693
<> 144:ef7eb2e8f9f7 694 \param [in] value Value to store
<> 144:ef7eb2e8f9f7 695 \param [in] ptr Pointer to location
<> 144:ef7eb2e8f9f7 696 \return 0 Function succeeded
<> 144:ef7eb2e8f9f7 697 \return 1 Function failed
<> 144:ef7eb2e8f9f7 698 */
<> 144:ef7eb2e8f9f7 699 __attribute__((always_inline)) __STATIC_INLINE uint32_t __STREXH(uint16_t value, volatile uint16_t *addr)
<> 144:ef7eb2e8f9f7 700 {
<> 144:ef7eb2e8f9f7 701 uint32_t result;
<> 144:ef7eb2e8f9f7 702
<> 144:ef7eb2e8f9f7 703 __ASM volatile ("strexh %0, %2, %1" : "=&r" (result), "=Q" (*addr) : "r" ((uint32_t)value) );
<> 144:ef7eb2e8f9f7 704 return(result);
<> 144:ef7eb2e8f9f7 705 }
<> 144:ef7eb2e8f9f7 706
<> 144:ef7eb2e8f9f7 707
<> 144:ef7eb2e8f9f7 708 /** \brief STR Exclusive (32 bit)
<> 144:ef7eb2e8f9f7 709
<> 144:ef7eb2e8f9f7 710 This function executes a exclusive STR instruction for 32 bit values.
<> 144:ef7eb2e8f9f7 711
<> 144:ef7eb2e8f9f7 712 \param [in] value Value to store
<> 144:ef7eb2e8f9f7 713 \param [in] ptr Pointer to location
<> 144:ef7eb2e8f9f7 714 \return 0 Function succeeded
<> 144:ef7eb2e8f9f7 715 \return 1 Function failed
<> 144:ef7eb2e8f9f7 716 */
<> 144:ef7eb2e8f9f7 717 __attribute__((always_inline)) __STATIC_INLINE uint32_t __STREXW(uint32_t value, volatile uint32_t *addr)
<> 144:ef7eb2e8f9f7 718 {
<> 144:ef7eb2e8f9f7 719 uint32_t result;
<> 144:ef7eb2e8f9f7 720
<> 144:ef7eb2e8f9f7 721 __ASM volatile ("strex %0, %2, %1" : "=&r" (result), "=Q" (*addr) : "r" (value) );
<> 144:ef7eb2e8f9f7 722 return(result);
<> 144:ef7eb2e8f9f7 723 }
<> 144:ef7eb2e8f9f7 724
<> 144:ef7eb2e8f9f7 725
<> 144:ef7eb2e8f9f7 726 /** \brief Remove the exclusive lock
<> 144:ef7eb2e8f9f7 727
<> 144:ef7eb2e8f9f7 728 This function removes the exclusive lock which is created by LDREX.
<> 144:ef7eb2e8f9f7 729
<> 144:ef7eb2e8f9f7 730 */
<> 144:ef7eb2e8f9f7 731 __attribute__((always_inline)) __STATIC_INLINE void __CLREX(void)
<> 144:ef7eb2e8f9f7 732 {
<> 144:ef7eb2e8f9f7 733 __ASM volatile ("clrex" ::: "memory");
<> 144:ef7eb2e8f9f7 734 }
<> 144:ef7eb2e8f9f7 735
<> 144:ef7eb2e8f9f7 736
<> 144:ef7eb2e8f9f7 737 /** \brief Signed Saturate
<> 144:ef7eb2e8f9f7 738
<> 144:ef7eb2e8f9f7 739 This function saturates a signed value.
<> 144:ef7eb2e8f9f7 740
<> 144:ef7eb2e8f9f7 741 \param [in] value Value to be saturated
<> 144:ef7eb2e8f9f7 742 \param [in] sat Bit position to saturate to (1..32)
<> 144:ef7eb2e8f9f7 743 \return Saturated value
<> 144:ef7eb2e8f9f7 744 */
<> 144:ef7eb2e8f9f7 745 #define __SSAT(ARG1,ARG2) \
<> 144:ef7eb2e8f9f7 746 ({ \
<> 144:ef7eb2e8f9f7 747 uint32_t __RES, __ARG1 = (ARG1); \
<> 144:ef7eb2e8f9f7 748 __ASM ("ssat %0, %1, %2" : "=r" (__RES) : "I" (ARG2), "r" (__ARG1) ); \
<> 144:ef7eb2e8f9f7 749 __RES; \
<> 144:ef7eb2e8f9f7 750 })
<> 144:ef7eb2e8f9f7 751
<> 144:ef7eb2e8f9f7 752
<> 144:ef7eb2e8f9f7 753 /** \brief Unsigned Saturate
<> 144:ef7eb2e8f9f7 754
<> 144:ef7eb2e8f9f7 755 This function saturates an unsigned value.
<> 144:ef7eb2e8f9f7 756
<> 144:ef7eb2e8f9f7 757 \param [in] value Value to be saturated
<> 144:ef7eb2e8f9f7 758 \param [in] sat Bit position to saturate to (0..31)
<> 144:ef7eb2e8f9f7 759 \return Saturated value
<> 144:ef7eb2e8f9f7 760 */
<> 144:ef7eb2e8f9f7 761 #define __USAT(ARG1,ARG2) \
<> 144:ef7eb2e8f9f7 762 ({ \
<> 144:ef7eb2e8f9f7 763 uint32_t __RES, __ARG1 = (ARG1); \
<> 144:ef7eb2e8f9f7 764 __ASM ("usat %0, %1, %2" : "=r" (__RES) : "I" (ARG2), "r" (__ARG1) ); \
<> 144:ef7eb2e8f9f7 765 __RES; \
<> 144:ef7eb2e8f9f7 766 })
<> 144:ef7eb2e8f9f7 767
<> 144:ef7eb2e8f9f7 768
<> 144:ef7eb2e8f9f7 769 /** \brief Rotate Right with Extend (32 bit)
<> 144:ef7eb2e8f9f7 770
<> 144:ef7eb2e8f9f7 771 This function moves each bit of a bitstring right by one bit.
<> 144:ef7eb2e8f9f7 772 The carry input is shifted in at the left end of the bitstring.
<> 144:ef7eb2e8f9f7 773
<> 144:ef7eb2e8f9f7 774 \param [in] value Value to rotate
<> 144:ef7eb2e8f9f7 775 \return Rotated value
<> 144:ef7eb2e8f9f7 776 */
<> 144:ef7eb2e8f9f7 777 __attribute__((always_inline)) __STATIC_INLINE uint32_t __RRX(uint32_t value)
<> 144:ef7eb2e8f9f7 778 {
<> 144:ef7eb2e8f9f7 779 uint32_t result;
<> 144:ef7eb2e8f9f7 780
<> 144:ef7eb2e8f9f7 781 __ASM volatile ("rrx %0, %1" : __CMSIS_GCC_OUT_REG (result) : __CMSIS_GCC_USE_REG (value) );
<> 144:ef7eb2e8f9f7 782 return(result);
<> 144:ef7eb2e8f9f7 783 }
<> 144:ef7eb2e8f9f7 784
<> 144:ef7eb2e8f9f7 785
<> 144:ef7eb2e8f9f7 786 /** \brief LDRT Unprivileged (8 bit)
<> 144:ef7eb2e8f9f7 787
<> 144:ef7eb2e8f9f7 788 This function executes a Unprivileged LDRT instruction for 8 bit value.
<> 144:ef7eb2e8f9f7 789
<> 144:ef7eb2e8f9f7 790 \param [in] ptr Pointer to data
<> 144:ef7eb2e8f9f7 791 \return value of type uint8_t at (*ptr)
<> 144:ef7eb2e8f9f7 792 */
<> 144:ef7eb2e8f9f7 793 __attribute__((always_inline)) __STATIC_INLINE uint8_t __LDRBT(volatile uint8_t *addr)
<> 144:ef7eb2e8f9f7 794 {
<> 144:ef7eb2e8f9f7 795 uint32_t result;
<> 144:ef7eb2e8f9f7 796
<> 144:ef7eb2e8f9f7 797 #if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8)
<> 144:ef7eb2e8f9f7 798 __ASM volatile ("ldrbt %0, %1" : "=r" (result) : "Q" (*addr) );
<> 144:ef7eb2e8f9f7 799 #else
<> 144:ef7eb2e8f9f7 800 /* Prior to GCC 4.8, "Q" will be expanded to [rx, #0] which is not
<> 144:ef7eb2e8f9f7 801 accepted by assembler. So has to use following less efficient pattern.
<> 144:ef7eb2e8f9f7 802 */
<> 144:ef7eb2e8f9f7 803 __ASM volatile ("ldrbt %0, [%1]" : "=r" (result) : "r" (addr) : "memory" );
<> 144:ef7eb2e8f9f7 804 #endif
<> 144:ef7eb2e8f9f7 805 return ((uint8_t) result); /* Add explicit type cast here */
<> 144:ef7eb2e8f9f7 806 }
<> 144:ef7eb2e8f9f7 807
<> 144:ef7eb2e8f9f7 808
<> 144:ef7eb2e8f9f7 809 /** \brief LDRT Unprivileged (16 bit)
<> 144:ef7eb2e8f9f7 810
<> 144:ef7eb2e8f9f7 811 This function executes a Unprivileged LDRT instruction for 16 bit values.
<> 144:ef7eb2e8f9f7 812
<> 144:ef7eb2e8f9f7 813 \param [in] ptr Pointer to data
<> 144:ef7eb2e8f9f7 814 \return value of type uint16_t at (*ptr)
<> 144:ef7eb2e8f9f7 815 */
<> 144:ef7eb2e8f9f7 816 __attribute__((always_inline)) __STATIC_INLINE uint16_t __LDRHT(volatile uint16_t *addr)
<> 144:ef7eb2e8f9f7 817 {
<> 144:ef7eb2e8f9f7 818 uint32_t result;
<> 144:ef7eb2e8f9f7 819
<> 144:ef7eb2e8f9f7 820 #if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8)
<> 144:ef7eb2e8f9f7 821 __ASM volatile ("ldrht %0, %1" : "=r" (result) : "Q" (*addr) );
<> 144:ef7eb2e8f9f7 822 #else
<> 144:ef7eb2e8f9f7 823 /* Prior to GCC 4.8, "Q" will be expanded to [rx, #0] which is not
<> 144:ef7eb2e8f9f7 824 accepted by assembler. So has to use following less efficient pattern.
<> 144:ef7eb2e8f9f7 825 */
<> 144:ef7eb2e8f9f7 826 __ASM volatile ("ldrht %0, [%1]" : "=r" (result) : "r" (addr) : "memory" );
<> 144:ef7eb2e8f9f7 827 #endif
<> 144:ef7eb2e8f9f7 828 return ((uint16_t) result); /* Add explicit type cast here */
<> 144:ef7eb2e8f9f7 829 }
<> 144:ef7eb2e8f9f7 830
<> 144:ef7eb2e8f9f7 831
<> 144:ef7eb2e8f9f7 832 /** \brief LDRT Unprivileged (32 bit)
<> 144:ef7eb2e8f9f7 833
<> 144:ef7eb2e8f9f7 834 This function executes a Unprivileged LDRT instruction for 32 bit values.
<> 144:ef7eb2e8f9f7 835
<> 144:ef7eb2e8f9f7 836 \param [in] ptr Pointer to data
<> 144:ef7eb2e8f9f7 837 \return value of type uint32_t at (*ptr)
<> 144:ef7eb2e8f9f7 838 */
<> 144:ef7eb2e8f9f7 839 __attribute__((always_inline)) __STATIC_INLINE uint32_t __LDRT(volatile uint32_t *addr)
<> 144:ef7eb2e8f9f7 840 {
<> 144:ef7eb2e8f9f7 841 uint32_t result;
<> 144:ef7eb2e8f9f7 842
<> 144:ef7eb2e8f9f7 843 __ASM volatile ("ldrt %0, %1" : "=r" (result) : "Q" (*addr) );
<> 144:ef7eb2e8f9f7 844 return(result);
<> 144:ef7eb2e8f9f7 845 }
<> 144:ef7eb2e8f9f7 846
<> 144:ef7eb2e8f9f7 847
<> 144:ef7eb2e8f9f7 848 /** \brief STRT Unprivileged (8 bit)
<> 144:ef7eb2e8f9f7 849
<> 144:ef7eb2e8f9f7 850 This function executes a Unprivileged STRT instruction for 8 bit values.
<> 144:ef7eb2e8f9f7 851
<> 144:ef7eb2e8f9f7 852 \param [in] value Value to store
<> 144:ef7eb2e8f9f7 853 \param [in] ptr Pointer to location
<> 144:ef7eb2e8f9f7 854 */
<> 144:ef7eb2e8f9f7 855 __attribute__((always_inline)) __STATIC_INLINE void __STRBT(uint8_t value, volatile uint8_t *addr)
<> 144:ef7eb2e8f9f7 856 {
<> 144:ef7eb2e8f9f7 857 __ASM volatile ("strbt %1, %0" : "=Q" (*addr) : "r" ((uint32_t)value) );
<> 144:ef7eb2e8f9f7 858 }
<> 144:ef7eb2e8f9f7 859
<> 144:ef7eb2e8f9f7 860
<> 144:ef7eb2e8f9f7 861 /** \brief STRT Unprivileged (16 bit)
<> 144:ef7eb2e8f9f7 862
<> 144:ef7eb2e8f9f7 863 This function executes a Unprivileged STRT instruction for 16 bit values.
<> 144:ef7eb2e8f9f7 864
<> 144:ef7eb2e8f9f7 865 \param [in] value Value to store
<> 144:ef7eb2e8f9f7 866 \param [in] ptr Pointer to location
<> 144:ef7eb2e8f9f7 867 */
<> 144:ef7eb2e8f9f7 868 __attribute__((always_inline)) __STATIC_INLINE void __STRHT(uint16_t value, volatile uint16_t *addr)
<> 144:ef7eb2e8f9f7 869 {
<> 144:ef7eb2e8f9f7 870 __ASM volatile ("strht %1, %0" : "=Q" (*addr) : "r" ((uint32_t)value) );
<> 144:ef7eb2e8f9f7 871 }
<> 144:ef7eb2e8f9f7 872
<> 144:ef7eb2e8f9f7 873
<> 144:ef7eb2e8f9f7 874 /** \brief STRT Unprivileged (32 bit)
<> 144:ef7eb2e8f9f7 875
<> 144:ef7eb2e8f9f7 876 This function executes a Unprivileged STRT instruction for 32 bit values.
<> 144:ef7eb2e8f9f7 877
<> 144:ef7eb2e8f9f7 878 \param [in] value Value to store
<> 144:ef7eb2e8f9f7 879 \param [in] ptr Pointer to location
<> 144:ef7eb2e8f9f7 880 */
<> 144:ef7eb2e8f9f7 881 __attribute__((always_inline)) __STATIC_INLINE void __STRT(uint32_t value, volatile uint32_t *addr)
<> 144:ef7eb2e8f9f7 882 {
<> 144:ef7eb2e8f9f7 883 __ASM volatile ("strt %1, %0" : "=Q" (*addr) : "r" (value) );
<> 144:ef7eb2e8f9f7 884 }
<> 144:ef7eb2e8f9f7 885
<> 144:ef7eb2e8f9f7 886 #endif /* (__CORTEX_M >= 0x03) || (__CORTEX_SC >= 300) */
<> 144:ef7eb2e8f9f7 887
<> 144:ef7eb2e8f9f7 888
<> 144:ef7eb2e8f9f7 889 #elif defined ( __ICCARM__ ) /*------------------ ICC Compiler -------------------*/
<> 144:ef7eb2e8f9f7 890 /* IAR iccarm specific functions */
<> 144:ef7eb2e8f9f7 891 #include <cmsis_iar.h>
<> 144:ef7eb2e8f9f7 892
<> 144:ef7eb2e8f9f7 893
<> 144:ef7eb2e8f9f7 894 #elif defined ( __TMS470__ ) /*---------------- TI CCS Compiler ------------------*/
<> 144:ef7eb2e8f9f7 895 /* TI CCS specific functions */
<> 144:ef7eb2e8f9f7 896 #include <cmsis_ccs.h>
<> 144:ef7eb2e8f9f7 897
<> 144:ef7eb2e8f9f7 898
<> 144:ef7eb2e8f9f7 899 #elif defined ( __TASKING__ ) /*------------------ TASKING Compiler --------------*/
<> 144:ef7eb2e8f9f7 900 /* TASKING carm specific functions */
<> 144:ef7eb2e8f9f7 901 /*
<> 144:ef7eb2e8f9f7 902 * The CMSIS functions have been implemented as intrinsics in the compiler.
<> 144:ef7eb2e8f9f7 903 * Please use "carm -?i" to get an up to date list of all intrinsics,
<> 144:ef7eb2e8f9f7 904 * Including the CMSIS ones.
<> 144:ef7eb2e8f9f7 905 */
<> 144:ef7eb2e8f9f7 906
<> 144:ef7eb2e8f9f7 907
<> 144:ef7eb2e8f9f7 908 #elif defined ( __CSMC__ ) /*------------------ COSMIC Compiler -------------------*/
<> 144:ef7eb2e8f9f7 909 /* Cosmic specific functions */
<> 144:ef7eb2e8f9f7 910 #include <cmsis_csm.h>
<> 144:ef7eb2e8f9f7 911
<> 144:ef7eb2e8f9f7 912 #endif
<> 144:ef7eb2e8f9f7 913
<> 144:ef7eb2e8f9f7 914 /*@}*/ /* end of group CMSIS_Core_InstructionInterface */
<> 144:ef7eb2e8f9f7 915
<> 144:ef7eb2e8f9f7 916 #endif /* __CORE_CMINSTR_H */