meh
Fork of mbed by
TARGET_NUCLEO_L053R8/stm32l0xx_hal_rcc.h
- Committer:
- ricardobtez
- Date:
- 2016-04-05
- Revision:
- 118:16969dd821af
- Parent:
- 92:4fc01daae5a5
- Child:
- 96:487b796308b0
File content as of revision 118:16969dd821af:
/** ****************************************************************************** * @file stm32l0xx_hal_rcc.h * @author MCD Application Team * @version V1.1.0 * @date 18-June-2014 * @brief Header file of RCC HAL module. ****************************************************************************** * @attention * * <h2><center>© COPYRIGHT(c) 2014 STMicroelectronics</center></h2> * * Redistribution and use in source and binary forms, with or without modification, * are permitted provided that the following conditions are met: * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * 3. Neither the name of STMicroelectronics nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * ****************************************************************************** */ /* Define to prevent recursive inclusion -------------------------------------*/ #ifndef __STM32L0xx_HAL_RCC_H #define __STM32L0xx_HAL_RCC_H #ifdef __cplusplus extern "C" { #endif /* Includes ------------------------------------------------------------------*/ #include "stm32l0xx_hal_def.h" /** @addtogroup STM32L0xx_HAL_Driver * @{ */ /** @addtogroup RCC * @{ */ /* Exported types ------------------------------------------------------------*/ /** * @brief RCC PLL configuration structure definition */ typedef struct { uint32_t PLLState; /*!< The new state of the PLL. This parameter can be a value of @ref RCC_PLL_Config */ uint32_t PLLSource; /*!< RCC_PLLSource: PLL entry clock source. This parameter must be a value of @ref RCC_PLL_Clock_Source */ uint32_t PLLMUL; /*!< PLLMUL: Multiplication factor for PLL VCO output clock This parameter must of @ref RCC_PLLMultiplication_Factor */ uint32_t PLLDIV; /*!< PLLDIV: Division factor for main system clock (SYSCLK) This parameter must be a value of @ref RCC_PLLDivider_Factor */ }RCC_PLLInitTypeDef; /** * @brief RCC Internal/External Oscillator (HSE, HSI, LSE and LSI) configuration structure definition */ typedef struct { uint32_t OscillatorType; /*!< The oscillators to be configured. This parameter can be a value of @ref RCC_Oscillator_Type */ uint32_t HSEState; /*!< The new state of the HSE. This parameter can be a value of @ref RCC_HSE_Config */ uint32_t LSEState; /*!< The new state of the LSE. This parameter can be a value of @ref RCC_LSE_Config */ uint32_t HSIState; /*!< The new state of the HSI. This parameter can be a value of @ref RCC_HSI_Config */ uint32_t HSICalibrationValue; /*!< The calibration trimming value. This parameter must be a number between Min_Data = 0x00 and Max_Data = 0x1F */ uint32_t LSIState; /*!< The new state of the LSI. This parameter can be a value of @ref RCC_LSI_Config */ uint32_t HSI48State; /*!< The new state of the HSI48. This parameter can be a value of @ref RCC_HSI48_Config */ uint32_t MSIState; /*!< The new state of the MSI. This parameter can be a value of @ref RCC_MSI_Config */ uint32_t MSICalibrationValue; /*!< The calibration trimming value. This parameter must be a number between Min_Data = 0x00 and Max_Data = 0xFF */ uint32_t MSIClockRange; /*!< The MSI frequency range. This parameter can be a value of @ref RCC_MSI_Clock_Range */ RCC_PLLInitTypeDef PLL; /*!< PLL structure parameters */ }RCC_OscInitTypeDef; /** * @brief RCC System, AHB and APB busses clock configuration structure definition */ typedef struct { uint32_t ClockType; /*!< The clock to be configured. This parameter can be a value of @ref RCC_System_Clock_Type */ uint32_t SYSCLKSource; /*!< The clock source (SYSCLKS) used as system clock. This parameter can be a value of @ref RCC_System_Clock_Source */ uint32_t AHBCLKDivider; /*!< The AHB clock (HCLK) divider. This clock is derived from the system clock (SYSCLK). This parameter can be a value of @ref RCC_AHB_Clock_Source */ uint32_t APB1CLKDivider; /*!< The APB1 clock (PCLK1) divider. This clock is derived from the AHB clock (HCLK). This parameter can be a value of @ref RCC_APB1_APB2_Clock_Source */ uint32_t APB2CLKDivider; /*!< The APB2 clock (PCLK2) divider. This clock is derived from the AHB clock (HCLK). This parameter can be a value of @ref RCC_APB1_APB2_Clock_Source */ }RCC_ClkInitTypeDef; /* Exported constants --------------------------------------------------------*/ /** @defgroup RCC_Exported_Constants * @{ */ /** @defgroup RCC_BitAddress_AliasRegion * @brief RCC registers bit address in the alias region * @{ */ #define RCC_OFFSET (RCC_BASE - PERIPH_BASE) /* --- CR Register ---*/ /* Alias word address of HSION bit */ #define RCC_CR_OFFSET (RCC_OFFSET + 0x00) /* --- CFGR Register ---*/ /* Alias word address of I2SSRC bit */ #define RCC_CFGR_OFFSET (RCC_OFFSET + 0x08) /* --- CSR Register ---*/ #define RCC_CSR_OFFSET (RCC_OFFSET + 0x74) /* CR register byte 3 (Bits[23:16]) base address */ #define CR_BYTE2_ADDRESS ((uint32_t)0x40023802) /* CIER register byte 0 (Bits[0:8]) base address */ #define CIER_BYTE0_ADDRESS ((uint32_t)(RCC_BASE + 0x10 + 0x00)) #define LSE_TIMEOUT_VALUE LSE_STARTUP_TIMEOUT #define DBP_TIMEOUT_VALUE ((uint32_t)100) /* 100 ms */ /** * @} */ /** @defgroup RCC_Oscillator_Type * @{ */ #define RCC_OSCILLATORTYPE_NONE ((uint32_t)0x00000000) #define RCC_OSCILLATORTYPE_HSE ((uint32_t)0x00000001) #define RCC_OSCILLATORTYPE_HSI ((uint32_t)0x00000002) #define RCC_OSCILLATORTYPE_LSE ((uint32_t)0x00000004) #define RCC_OSCILLATORTYPE_LSI ((uint32_t)0x00000008) #define RCC_OSCILLATORTYPE_MSI ((uint32_t)0x00000010) #define RCC_OSCILLATORTYPE_HSI48 ((uint32_t)0x00000020) #define IS_RCC_OSCILLATORTYPE(OSCILLATOR) ((OSCILLATOR) <= 0x3F) /** * @} */ /** @defgroup RCC_HSE_Config * @{ */ #define RCC_HSE_OFF ((uint32_t)0x00000000) #define RCC_HSE_ON RCC_CR_HSEON #define RCC_HSE_BYPASS ((uint32_t)(RCC_CR_HSEBYP | RCC_CR_HSEON)) #define IS_RCC_HSE(HSE) (((HSE) == RCC_HSE_OFF) || ((HSE) == RCC_HSE_ON) || \ ((HSE) == RCC_HSE_BYPASS)) /** * @} */ /** @defgroup RCC_LSE_Config * @{ */ #define RCC_LSE_OFF ((uint32_t)0x00000000) #define RCC_LSE_ON RCC_CSR_LSEON #define RCC_LSE_BYPASS ((uint32_t)(RCC_CSR_LSEBYP | RCC_CSR_LSEON)) #define IS_RCC_LSE(LSE) (((LSE) == RCC_LSE_OFF) || ((LSE) == RCC_LSE_ON) || \ ((LSE) == RCC_LSE_BYPASS)) /** * @} */ /** @defgroup RCC_HSI_Config * @{ */ #define RCC_HSI_OFF ((uint8_t)0x00) #define RCC_HSI_ON ((uint8_t)0x01) #define RCC_HSI_DIV4 ((uint8_t)0x09) #define IS_RCC_HSI(HSI) (((HSI) == RCC_HSI_OFF) || ((HSI) == RCC_HSI_ON) || \ ((HSI) == RCC_HSI_DIV4)) /** * @} */ /** @defgroup RCC_MSI_Clock_Range * @{ */ #define RCC_MSIRANGE_0 RCC_ICSCR_MSIRANGE_0 /*!< MSI = 65.536 KHz */ #define RCC_MSIRANGE_1 RCC_ICSCR_MSIRANGE_1 /*!< MSI = 131.072 KHz */ #define RCC_MSIRANGE_2 RCC_ICSCR_MSIRANGE_2 /*!< MSI = 262.144 KHz */ #define RCC_MSIRANGE_3 RCC_ICSCR_MSIRANGE_3 /*!< MSI = 524.288 KHz */ #define RCC_MSIRANGE_4 RCC_ICSCR_MSIRANGE_4 /*!< MSI = 1.048 MHz */ #define RCC_MSIRANGE_5 RCC_ICSCR_MSIRANGE_5 /*!< MSI = 2.097 MHz */ #define RCC_MSIRANGE_6 RCC_ICSCR_MSIRANGE_6 /*!< MSI = 4.194 MHz */ #define IS_RCC_MSI_CLOCK_RANGE(RANGE) (((RANGE) == RCC_MSIRANGE_0) || \ ((RANGE) == RCC_MSIRANGE_1) || \ ((RANGE) == RCC_MSIRANGE_2) || \ ((RANGE) == RCC_MSIRANGE_3) || \ ((RANGE) == RCC_MSIRANGE_4) || \ ((RANGE) == RCC_MSIRANGE_5) || \ ((RANGE) == RCC_MSIRANGE_6)) /** * @} */ /** @defgroup RCC_LSI_Config * @{ */ #define RCC_LSI_OFF ((uint8_t)0x00) #define RCC_LSI_ON ((uint8_t)0x01) #define IS_RCC_LSI(LSI) (((LSI) == RCC_LSI_OFF) || ((LSI) == RCC_LSI_ON)) /** * @} */ /** @defgroup RCC_MSI_Config * @{ */ #define RCC_MSI_OFF ((uint8_t)0x00) #define RCC_MSI_ON ((uint8_t)0x01) #define IS_RCC_MSI(MSI) (((MSI) == RCC_MSI_OFF) || ((MSI) == RCC_MSI_ON)) /** * @} */ /** @defgroup RCC_HSI48_Config * @{ */ #define RCC_HSI48_OFF ((uint8_t)0x00) #define RCC_HSI48_ON ((uint8_t)0x01) #define IS_RCC_HSI48(HSI48) (((HSI48) == RCC_HSI48_OFF) || ((HSI48) == RCC_HSI48_ON)) /** * @} */ /** @defgroup RCC_PLL_Config * @{ */ #define RCC_PLL_NONE ((uint8_t)0x00) #define RCC_PLL_OFF ((uint8_t)0x01) #define RCC_PLL_ON ((uint8_t)0x02) #define IS_RCC_PLL(PLL) (((PLL) == RCC_PLL_NONE) ||((PLL) == RCC_PLL_OFF) || ((PLL) == RCC_PLL_ON)) /** * @} */ /** @defgroup RCC_PLL_Clock_Source * @{ */ #define RCC_PLLSOURCE_HSI RCC_CFGR_PLLSRC_HSI #define RCC_PLLSOURCE_HSE RCC_CFGR_PLLSRC_HSE #define IS_RCC_PLLSOURCE(SOURCE) (((SOURCE) == RCC_PLLSOURCE_HSI) || \ ((SOURCE) == RCC_PLLSOURCE_HSE)) /** * @} */ /** @defgroup RCC_PLLMultiplication_Factor * @{ */ #define RCC_PLLMUL_3 RCC_CFGR_PLLMUL3 #define RCC_PLLMUL_4 RCC_CFGR_PLLMUL4 #define RCC_PLLMUL_6 RCC_CFGR_PLLMUL6 #define RCC_PLLMUL_8 RCC_CFGR_PLLMUL8 #define RCC_PLLMUL_12 RCC_CFGR_PLLMUL12 #define RCC_PLLMUL_16 RCC_CFGR_PLLMUL16 #define RCC_PLLMUL_24 RCC_CFGR_PLLMUL24 #define RCC_PLLMUL_32 RCC_CFGR_PLLMUL32 #define RCC_PLLMUL_48 RCC_CFGR_PLLMUL48 #define IS_RCC_PLL_MUL(MUL) (((MUL) == RCC_PLLMUL_3) || ((MUL) == RCC_PLLMUL_4) || \ ((MUL) == RCC_PLLMUL_6) || ((MUL) == RCC_PLLMUL_8) || \ ((MUL) == RCC_PLLMUL_12) || ((MUL) == RCC_PLLMUL_16) || \ ((MUL) == RCC_PLLMUL_24) || ((MUL) == RCC_PLLMUL_32) || \ ((MUL) == RCC_PLLMUL_48)) /** * @} */ /** @defgroup RCC_PLLDivider_Factor * @{ */ #define RCC_PLLDIV_2 RCC_CFGR_PLLDIV2 #define RCC_PLLDIV_3 RCC_CFGR_PLLDIV3 #define RCC_PLLDIV_4 RCC_CFGR_PLLDIV4 #define IS_RCC_PLL_DIV(DIV) (((DIV) == RCC_PLLDIV_2) || ((DIV) == RCC_PLLDIV_3) || \ ((DIV) == RCC_PLLDIV_4)) /** * @} */ /** @defgroup RCC_System_Clock_Type * @{ */ #define RCC_CLOCKTYPE_SYSCLK ((uint32_t)0x00000001) #define RCC_CLOCKTYPE_HCLK ((uint32_t)0x00000002) #define RCC_CLOCKTYPE_PCLK1 ((uint32_t)0x00000004) #define RCC_CLOCKTYPE_PCLK2 ((uint32_t)0x00000008) #define IS_RCC_CLOCKTYPE(CLK) ((1 <= (CLK)) && ((CLK) <= 15)) /** * @} */ /** @defgroup RCC_System_Clock_Source * @{ */ #define RCC_SYSCLKSOURCE_MSI RCC_CFGR_SW_MSI #define RCC_SYSCLKSOURCE_HSI RCC_CFGR_SW_HSI #define RCC_SYSCLKSOURCE_HSE RCC_CFGR_SW_HSE #define RCC_SYSCLKSOURCE_PLLCLK RCC_CFGR_SW_PLL #define IS_RCC_SYSCLKSOURCE(SOURCE) (((SOURCE) == RCC_SYSCLKSOURCE_HSI) || \ ((SOURCE) == RCC_SYSCLKSOURCE_HSE) || \ ((SOURCE) == RCC_SYSCLKSOURCE_MSI) || \ ((SOURCE) == RCC_SYSCLKSOURCE_PLLCLK)) /** * @} */ /** @defgroup RCC_AHB_Clock_Source * @{ */ #define RCC_SYSCLK_DIV1 RCC_CFGR_HPRE_DIV1 #define RCC_SYSCLK_DIV2 RCC_CFGR_HPRE_DIV2 #define RCC_SYSCLK_DIV4 RCC_CFGR_HPRE_DIV4 #define RCC_SYSCLK_DIV8 RCC_CFGR_HPRE_DIV8 #define RCC_SYSCLK_DIV16 RCC_CFGR_HPRE_DIV16 #define RCC_SYSCLK_DIV64 RCC_CFGR_HPRE_DIV64 #define RCC_SYSCLK_DIV128 RCC_CFGR_HPRE_DIV128 #define RCC_SYSCLK_DIV256 RCC_CFGR_HPRE_DIV256 #define RCC_SYSCLK_DIV512 RCC_CFGR_HPRE_DIV512 #define IS_RCC_HCLK(HCLK) (((HCLK) == RCC_SYSCLK_DIV1) || ((HCLK) == RCC_SYSCLK_DIV2) || \ ((HCLK) == RCC_SYSCLK_DIV4) || ((HCLK) == RCC_SYSCLK_DIV8) || \ ((HCLK) == RCC_SYSCLK_DIV16) || ((HCLK) == RCC_SYSCLK_DIV64) || \ ((HCLK) == RCC_SYSCLK_DIV128) || ((HCLK) == RCC_SYSCLK_DIV256) || \ ((HCLK) == RCC_SYSCLK_DIV512)) /** * @} */ /** @defgroup RCC_APB1_APB2_Clock_Source * @{ */ #define RCC_HCLK_DIV1 RCC_CFGR_PPRE1_DIV1 #define RCC_HCLK_DIV2 RCC_CFGR_PPRE1_DIV2 #define RCC_HCLK_DIV4 RCC_CFGR_PPRE1_DIV4 #define RCC_HCLK_DIV8 RCC_CFGR_PPRE1_DIV8 #define RCC_HCLK_DIV16 RCC_CFGR_PPRE1_DIV16 #define IS_RCC_PCLK(PCLK) (((PCLK) == RCC_HCLK_DIV1) || ((PCLK) == RCC_HCLK_DIV2) || \ ((PCLK) == RCC_HCLK_DIV4) || ((PCLK) == RCC_HCLK_DIV8) || \ ((PCLK) == RCC_HCLK_DIV16)) /** * @} */ /** @defgroup RCC_RTC_Clock_Source * @{ */ #define RCC_RTCCLKSOURCE_LSE RCC_CSR_RTCSEL_LSE #define RCC_RTCCLKSOURCE_LSI RCC_CSR_RTCSEL_LSI #define RCC_RTCCLKSOURCE_HSE_DIV2 RCC_CSR_RTCSEL_HSE #define RCC_RTCCLKSOURCE_HSE_DIV4 ((uint32_t)RCC_CSR_RTCSEL_HSE | RCC_CR_RTCPRE_0) #define RCC_RTCCLKSOURCE_HSE_DIV8 ((uint32_t)RCC_CSR_RTCSEL_HSE | RCC_CR_RTCPRE_1) #define RCC_RTCCLKSOURCE_HSE_DIV16 ((uint32_t)RCC_CSR_RTCSEL_HSE | RCC_CR_RTCPRE) #define IS_RCC_RTCCLK_SOURCE(SOURCE) (((SOURCE) == RCC_RTCCLKSOURCE_LSE) || \ ((SOURCE) == RCC_RTCCLKSOURCE_LSI) || \ ((SOURCE) == RCC_RTCCLKSOURCE_HSE_DIV2) || \ ((SOURCE) == RCC_RTCCLKSOURCE_HSE_DIV4) || \ ((SOURCE) == RCC_RTCCLKSOURCE_HSE_DIV8) || \ ((SOURCE) == RCC_RTCCLKSOURCE_HSE_DIV16)) /** * @} */ /** @defgroup RCC_MCO_Clock_Source * @{ */ #define RCC_MCO1SOURCE_NOCLOCK ((uint8_t)0x00) #define RCC_MCO1SOURCE_SYSCLK ((uint8_t)0x01) #define RCC_MCO1SOURCE_HSI ((uint8_t)0x02) #define RCC_MCO1SOURCE_MSI ((uint8_t)0x03) #define RCC_MCO1SOURCE_HSE ((uint8_t)0x04) #define RCC_MCO1SOURCE_PLLCLK ((uint8_t)0x05) #define RCC_MCO1SOURCE_LSI ((uint8_t)0x06) #define RCC_MCO1SOURCE_LSE ((uint8_t)0x07) #define RCC_MCO1SOURCE_HSI48 ((uint8_t)0x08) #define IS_RCC_MCO1SOURCE(SOURCE) (((SOURCE) == RCC_MCO1SOURCE_NOCLOCK) || ((SOURCE) == RCC_MCO1SOURCE_SYSCLK) || \ ((SOURCE) == RCC_MCO1SOURCE_HSI) || ((SOURCE) == RCC_MCO1SOURCE_MSI) || \ ((SOURCE) == RCC_MCO1SOURCE_HSE) || ((SOURCE) == RCC_MCO1SOURCE_PLLCLK) || \ ((SOURCE) == RCC_MCO1SOURCE_LSI) || ((SOURCE) == RCC_MCO1SOURCE_LSE) || \ ((SOURCE) == RCC_MCO1SOURCE_HSI48)) /** * @} */ /** @defgroup RCC_MCOPrescaler * @{ */ #define RCC_MCODIV_1 RCC_CFGR_MCO_PRE_1 #define RCC_MCODIV_2 RCC_CFGR_MCO_PRE_2 #define RCC_MCODIV_4 RCC_CFGR_MCO_PRE_4 #define RCC_MCODIV_8 RCC_CFGR_MCO_PRE_8 #define RCC_MCODIV_16 RCC_CFGR_MCO_PRE_16 #define IS_RCC_MCODIV(DIV) (((DIV) == RCC_MCODIV_1) || \ ((DIV) == RCC_MCODIV_2) || \ ((DIV) == RCC_MCODIV_4) || \ ((DIV) == RCC_MCODIV_8) || \ ((DIV) == RCC_MCODIV_16)) /** * @} */ /** @defgroup RCC_MCO_Index * @{ */ #define RCC_MCO1 ((uint32_t)0x00000000) #define RCC_MCO2 ((uint32_t)0x00000001) #define IS_RCC_MCO(MCOx) (((MCOx) == RCC_MCO1) || ((MCOx) == RCC_MCO2)) /** * @} */ /** @defgroup RCC_Interrupt * @{ */ #define RCC_IT_LSIRDY RCC_CIFR_LSIRDYF #define RCC_IT_LSERDY RCC_CIFR_LSERDYF #define RCC_IT_HSIRDY RCC_CIFR_HSIRDYF #define RCC_IT_HSERDY RCC_CIFR_HSERDYF #define RCC_IT_PLLRDY RCC_CIFR_PLLRDYF #define RCC_IT_MSIRDY RCC_CIFR_MSIRDYF #define RCC_IT_HSI48RDY RCC_CIFR_HSI48RDYF #define RCC_IT_LSECSS RCC_CIFR_LSECSSF #define RCC_IT_CSS RCC_CIFR_CSSF #define IS_RCC_IT(IT) (((IT) == RCC_IT_LSIRDY) || ((IT) == RCC_IT_LSERDY) || \ ((IT) == RCC_IT_HSIRDY) || ((IT) == RCC_IT_HSERDY) || \ ((IT) == RCC_IT_PLLRDY) || ((IT) == RCC_IT_MSIRDY) || \ ((IT) == RCC_IT_HSI48RDY) || ((IT) == RCC_IT_LSECSS)) #define IS_RCC_GET_IT(IT) (((IT) == RCC_IT_LSIRDY) || ((IT) == RCC_IT_LSERDY) || \ ((IT) == RCC_IT_HSIRDY) || ((IT) == RCC_IT_HSERDY) || \ ((IT) == RCC_IT_PLLRDY) || ((IT) == RCC_IT_MSIRDY) || \ ((IT) == RCC_IT_CSS) || ((IT) == RCC_IT_HSI48RDY) || \ ((IT) == RCC_IT_LSECSS)) #define IS_RCC_CLEAR_IT(IT) (((IT) == RCC_IT_LSIRDY) || ((IT) == RCC_IT_LSERDY) || \ ((IT) == RCC_IT_HSIRDY) || ((IT) == RCC_IT_HSERDY) || \ ((IT) == RCC_IT_PLLRDY) || ((IT) == RCC_IT_MSIRDY) || \ ((IT) == RCC_IT_CSS) || ((IT) == RCC_IT_HSI48RDY) || \ ((IT) == RCC_IT_LSECSS)) /** * @} */ /** @defgroup RCC_Flag * Elements values convention: 0XXYYYYYb * - YYYYY : Flag position in the register * - 0XX : Register index * - 01: CR register * - 10: CSR register * - 11: CRRCR register * @{ */ /* Flags in the CR register */ #define RCC_FLAG_HSIRDY ((uint8_t)0x22) #define RCC_FLAG_HSIDIV ((uint8_t)0x24) #define RCC_FLAG_MSIRDY ((uint8_t)0x29) #define RCC_FLAG_HSERDY ((uint8_t)0x31) #define RCC_FLAG_PLLRDY ((uint8_t)0x39) /* Flags in the CSR register */ #define RCC_FLAG_LSERDY ((uint8_t)0x49) #define RCC_FLAG_LSECSS ((uint8_t)0x4E) #define RCC_FLAG_LSIRDY ((uint8_t)0x41) #define RCC_FLAG_FIREWALLRST ((uint8_t)0x58) #define RCC_FLAG_OBLRST ((uint8_t)0x59) #define RCC_FLAG_PINRST ((uint8_t)0x5A) #define RCC_FLAG_PORRST ((uint8_t)0x5B) #define RCC_FLAG_SFTRST ((uint8_t)0x5C) #define RCC_FLAG_IWDGRST ((uint8_t)0x5D) #define RCC_FLAG_WWDGRST ((uint8_t)0x5E) #define RCC_FLAG_LPWRRST ((uint8_t)0x5F) /* Flags in the CRRCR register */ #define RCC_FLAG_HSI48RDY ((uint8_t)0x61) #define IS_RCC_CALIBRATION_VALUE(VALUE) ((VALUE) <= 0x1F) #define IS_RCC_MSICALIBRATION_VALUE(VALUE) ((VALUE) <= 0xFF) /** * @} */ /** * @} */ /* Exported macro ------------------------------------------------------------*/ /** @defgroup RCC_Exported macro * @{ */ /** @brief Enable or disable the AHB peripheral clock. * @note After reset, the peripheral clock (used for registers read/write access) * is disabled and the application software has to enable this clock before * using it. */ #define __DMA1_CLK_ENABLE() (RCC->AHBENR |= (RCC_AHBENR_DMA1EN)) #define __MIF_CLK_ENABLE() (RCC->AHBENR |= (RCC_AHBENR_MIFEN)) #define __CRC_CLK_ENABLE() (RCC->AHBENR |= (RCC_AHBENR_CRCEN)) #define __DMA1_CLK_DISABLE() (RCC->AHBENR &= ~ (RCC_AHBENR_DMA1EN)) #define __MIF_CLK_DISABLE() (RCC->AHBENR &= ~ (RCC_AHBENR_MIFEN)) #define __CRC_CLK_DISABLE() (RCC->AHBENR &= ~ (RCC_AHBENR_CRCEN)) /** @brief Enable or disable the IOPORT peripheral clock. * @note After reset, the peripheral clock (used for registers read/write access) * is disabled and the application software has to enable this clock before * using it. */ #define __GPIOA_CLK_ENABLE() (RCC->IOPENR |= (RCC_IOPENR_GPIOAEN)) #define __GPIOB_CLK_ENABLE() (RCC->IOPENR |= (RCC_IOPENR_GPIOBEN)) #define __GPIOC_CLK_ENABLE() (RCC->IOPENR |= (RCC_IOPENR_GPIOCEN)) #define __GPIOD_CLK_ENABLE() (RCC->IOPENR |= (RCC_IOPENR_GPIODEN)) #define __GPIOH_CLK_ENABLE() (RCC->IOPENR |= (RCC_IOPENR_GPIOHEN)) #define __GPIOA_CLK_DISABLE() (RCC->IOPENR &= ~(RCC_IOPENR_GPIOAEN)) #define __GPIOB_CLK_DISABLE() (RCC->IOPENR &= ~(RCC_IOPENR_GPIOBEN)) #define __GPIOC_CLK_DISABLE() (RCC->IOPENR &= ~(RCC_IOPENR_GPIOCEN)) #define __GPIOD_CLK_DISABLE() (RCC->IOPENR &= ~(RCC_IOPENR_GPIODEN)) #define __GPIOH_CLK_DISABLE() (RCC->IOPENR &= ~(RCC_IOPENR_GPIOHEN)) /** @brief Enable or disable the Low Speed APB (APB1) peripheral clock. * @note After reset, the peripheral clock (used for registers read/write access) * is disabled and the application software has to enable this clock before * using it. */ #define __WWDG_CLK_ENABLE() (RCC->APB1ENR |= (RCC_APB1ENR_WWDGEN)) #define __PWR_CLK_ENABLE() (RCC->APB1ENR |= (RCC_APB1ENR_PWREN)) #define __WWDG_CLK_DISABLE() (RCC->APB1ENR &= ~ (RCC_APB1ENR_WWDGEN)) #define __PWR_CLK_DISABLE() (RCC->APB1ENR &= ~ (RCC_APB1ENR_PWREN)) /** @brief Enable or disable the High Speed APB (APB2) peripheral clock. * @note After reset, the peripheral clock (used for registers read/write access) * is disabled and the application software has to enable this clock before * using it. */ #define __SYSCFG_CLK_ENABLE() (RCC->APB2ENR |= (RCC_APB2ENR_SYSCFGEN)) #define __DBGMCU_CLK_ENABLE() (RCC->APB2ENR |= (RCC_APB2ENR_DBGMCUEN)) #define __SYSCFG_CLK_DISABLE() (RCC->APB2ENR &= ~ (RCC_APB2ENR_SYSCFGEN)) #define __DBGMCU_CLK_DISABLE() (RCC->APB2ENR &= ~ (RCC_APB2ENR_DBGMCUEN)) /** @brief Force or release AHB peripheral reset. */ #define __AHB_FORCE_RESET() (RCC->AHBRSTR = 0xFFFFFFFF) #define __DMA1_FORCE_RESET() (RCC->AHBRSTR |= (RCC_AHBRSTR_DMA1RST)) #define __MIF_FORCE_RESET() (RCC->AHBRSTR |= (RCC_AHBRSTR_MIFRST)) #define __CRC_FORCE_RESET() (RCC->AHBRSTR |= (RCC_AHBRSTR_CRCRST)) #define __AHB_RELEASE_RESET() (RCC->AHBRSTR = 0x00) #define __CRC_RELEASE_RESET() (RCC->AHBRSTR &= ~ (RCC_AHBRSTR_CRCRST)) #define __DMA1_RELEASE_RESET() (RCC->AHBRSTR &= ~ (RCC_AHBRSTR_DMA1RST)) #define __MIF_RELEASE_RESET() (RCC->AHBRSTR &= ~ (RCC_AHBRSTR_MIFRST)) /** @brief Force or release IOPORT peripheral reset. */ #define __IOP_FORCE_RESET() (RCC->IOPRSTR = 0xFFFFFFFF) #define __GPIOA_FORCE_RESET() (RCC->IOPRSTR |= (RCC_IOPRSTR_GPIOARST)) #define __GPIOB_FORCE_RESET() (RCC->IOPRSTR |= (RCC_IOPRSTR_GPIOBRST)) #define __GPIOC_FORCE_RESET() (RCC->IOPRSTR |= (RCC_IOPRSTR_GPIOCRST)) #define __GPIOD_FORCE_RESET() (RCC->IOPRSTR |= (RCC_IOPRSTR_GPIODRST)) #define __GPIOH_FORCE_RESET() (RCC->IOPRSTR |= (RCC_IOPRSTR_GPIOHRST)) #define __IOP_RELEASE_RESET() (RCC->IOPRSTR = 0x00) #define __GPIOA_RELEASE_RESET() (RCC->IOPRSTR &= ~(RCC_IOPRSTR_GPIOARST)) #define __GPIOB_RELEASE_RESET() (RCC->IOPRSTR &= ~(RCC_IOPRSTR_GPIOBRST)) #define __GPIOC_RELEASE_RESET() (RCC->IOPRSTR &= ~(RCC_IOPRSTR_GPIOCRST)) #define __GPIOD_RELEASE_RESET() (RCC->IOPRSTR &= ~(RCC_IOPRSTR_GPIODRST)) #define __GPIOH_RELEASE_RESET() (RCC->IOPRSTR &= ~(RCC_IOPRSTR_GPIOHRST)) /** @brief Force or release APB1 peripheral reset. */ #define __APB1_FORCE_RESET() (RCC->APB1RSTR = 0xFFFFFFFF) #define __WWDG_FORCE_RESET() (RCC->APB1RSTR |= (RCC_APB1RSTR_WWDGRST)) #define __PWR_FORCE_RESET() (RCC->APB1RSTR |= (RCC_APB1RSTR_PWRRST)) #define __APB1_RELEASE_RESET() (RCC->APB1RSTR = 0x00) #define __WWDG_RELEASE_RESET() (RCC->APB1RSTR &= ~ (RCC_APB1RSTR_WWDGRST)) #define __PWR_RELEASE_RESET() (RCC->APB1RSTR &= ~ (RCC_APB1RSTR_PWRRST)) /** @brief Force or release APB2 peripheral reset. */ #define __APB2_FORCE_RESET() (RCC->APB2RSTR = 0xFFFFFFFF) #define __DBGMCU_FORCE_RESET() (RCC->APB2RSTR |= (RCC_APB2RSTR_DBGMCURST)) #define __SYSCFG_FORCE_RESET() (RCC->APB2RSTR |= (RCC_APB2RSTR_SYSCFGRST)) #define __APB2_RELEASE_RESET() (RCC->APB2RSTR = 0x00) #define __DBGMCU_RELEASE_RESET() (RCC->APB2RSTR &= ~ (RCC_APB2RSTR_DBGMCURST)) #define __SYSCFG_RELEASE_RESET() (RCC->APB2RSTR &= ~ (RCC_APB2RSTR_SYSCFGRST)) /** @brief Enable or disable the AHB peripheral clock during Low Power (Sleep) mode. * @note Peripheral clock gating in SLEEP mode can be used to further reduce * power consumption. * @note After wakeup from SLEEP mode, the peripheral clock is enabled again. * @note By default, all peripheral clocks are enabled during SLEEP mode. */ #define __CRC_CLK_SLEEP_ENABLE() (RCC->AHBSMENR |= (RCC_AHBSMENR_CRCSMEN)) #define __MIF_CLK_SLEEP_ENABLE() (RCC->AHBSMENR |= (RCC_AHBSMENR_MIFSMEN)) #define __SRAM_CLK_SLEEP_ENABLE() (RCC->AHBSMENR |= (RCC_AHBSMENR_SRAMSMEN)) #define __DMA1_CLK_SLEEP_ENABLE() (RCC->AHBSMENR |= (RCC_AHBSMENR_DMA1SMEN)) #define __CRC_CLK_SLEEP_DISABLE() (RCC->AHBSMENR &= ~ (RCC_AHBSMENR_CRCSMEN)) #define __MIF_CLK_SLEEP_DISABLE() (RCC->AHBSMENR &= ~ (RCC_AHBSMENR_MIFSMEN)) #define __SRAM_CLK_SLEEP_DISABLE() (RCC->AHBSMENR &= ~ (RCC_AHBSMENR_SRAMSMEN)) #define __DMA1_CLK_SLEEP_DISABLE() (RCC->AHBSMENR &= ~ (RCC_AHBSMENR_DMA1SMEN)) /** @brief Enable or disable the IOPORT peripheral clock during Low Power (Sleep) mode. * @note Peripheral clock gating in SLEEP mode can be used to further reduce * power consumption. * @note After wakeup from SLEEP mode, the peripheral clock is enabled again. * @note By default, all peripheral clocks are enabled during SLEEP mode. */ #define __GPIOA_CLK_SLEEP_ENABLE() (RCC->IOPSMENR |= (RCC_IOPSMENR_GPIOASMEN)) #define __GPIOB_CLK_SLEEP_ENABLE() (RCC->IOPSMENR |= (RCC_IOPSMENR_GPIOBSMEN)) #define __GPIOC_CLK_SLEEP_ENABLE() (RCC->IOPSMENR |= (RCC_IOPSMENR_GPIOCSMEN)) #define __GPIOD_CLK_SLEEP_ENABLE() (RCC->IOPSMENR |= (RCC_IOPSMENR_GPIODSMEN)) #define __GPIOH_CLK_SLEEP_ENABLE() (RCC->IOPSMENR |= (RCC_IOPSMENR_GPIOHSMEN)) #define __GPIOA_CLK_SLEEP_DISABLE() (RCC->IOPSMENR &= ~(RCC_IOPSMENR_GPIOASMEN)) #define __GPIOB_CLK_SLEEP_DISABLE() (RCC->IOPSMENR &= ~(RCC_IOPSMENR_GPIOBSMEN)) #define __GPIOC_CLK_SLEEP_DISABLE() (RCC->IOPSMENR &= ~(RCC_IOPSMENR_GPIOCSMEN)) #define __GPIOD_CLK_SLEEP_DISABLE() (RCC->IOPSMENR &= ~(RCC_IOPSMENR_GPIODSMEN)) #define __GPIOH_CLK_SLEEP_DISABLE() (RCC->IOPSMENR &= ~(RCC_IOPSMENR_GPIOHSMEN)) /** @brief Enable or disable the APB1 peripheral clock during Low Power (Sleep) mode. * @note Peripheral clock gating in SLEEP mode can be used to further reduce * power consumption. * @note After wakeup from SLEEP mode, the peripheral clock is enabled again. * @note By default, all peripheral clocks are enabled during SLEEP mode. */ #define __WWDG_CLK_SLEEP_ENABLE() (RCC->APB1SMENR |= (RCC_APB1SMENR_WWDGSMEN)) #define __PWR_CLK_SLEEP_ENABLE() (RCC->APB1SMENR |= (RCC_APB1SMENR_PWRSMEN)) #define __WWDG_CLK_SLEEP_DISABLE() (RCC->APB1SMENR &= ~ (RCC_APB1SMENR_WWDGSMEN)) #define __PWR_CLK_SLEEP_DISABLE() (RCC->APB1SMENR &= ~ (RCC_APB1SMENR_PWRSMEN)) /** @brief Enable or disable the APB2 peripheral clock during Low Power (Sleep) mode. * @note Peripheral clock gating in SLEEP mode can be used to further reduce * power consumption. * @note After wakeup from SLEEP mode, the peripheral clock is enabled again. * @note By default, all peripheral clocks are enabled during SLEEP mode. */ #define __SYSCFG_CLK_SLEEP_ENABLE() (RCC->APB2SMENR |= (RCC_APB2SMENR_SYSCFGSMEN)) #define __DBGMCU_CLK_SLEEP_ENABLE() (RCC->APB2SMENR |= (RCC_APB2SMENR_DBGMCUSMEN)) #define __SYSCFG_CLK_SLEEP_DISABLE() (RCC->APB2SMENR &= ~ (RCC_APB2SMENR_SYSCFGSMEN)) #define __DBGMCU_CLK_SLEEP_DISABLE() (RCC->APB2SMENR &= ~ (RCC_APB2SMENR_DBGMCUSMEN)) /** @brief Macro to enable or disable the Internal High Speed oscillator (HSI). * @note After enabling the HSI, the application software should wait on * HSIRDY flag to be set indicating that HSI clock is stable and can * be used to clock the PLL and/or system clock. * @note HSI can not be stopped if it is used directly or through the PLL * as system clock. In this case, you have to select another source * of the system clock then stop the HSI. * @note The HSI is stopped by hardware when entering STOP and STANDBY modes. * @param __STATE__: specifies the new state of the HSI. * This parameter can be one of the following values: * @arg RCC_HSI_OFF: turn OFF the HSI oscillator * @arg RCC_HSI_ON: turn ON the HSI oscillator * @arg RCC_HSI_DIV4: turn ON the HSI oscillator and divide it by 4 * @note When the HSI is stopped, HSIRDY flag goes low after 6 HSI oscillator * clock cycles. */ #define __HAL_RCC_HSI_CONFIG(__STATE__) \ MODIFY_REG(RCC->CR, RCC_CR_HSION|RCC_CR_HSIDIVEN, (uint32_t)(__STATE__)) /** @brief Macros to enable or disable the Internal High Speed oscillator (HSI). * @note The HSI is stopped by hardware when entering STOP and STANDBY modes. * It is used (enabled by hardware) as system clock source after startup * from Reset, wakeup from STOP and STANDBY mode, or in case of failure * of the HSE used directly or indirectly as system clock (if the Clock * Security System CSS is enabled). * @note HSI can not be stopped if it is used as system clock source. In this case, * you have to select another source of the system clock then stop the HSI. * @note After enabling the HSI, the application software should wait on HSIRDY * flag to be set indicating that HSI clock is stable and can be used as * system clock source. * @note When the HSI is stopped, HSIRDY flag goes low after 6 HSI oscillator * clock cycles. */ #define __HAL_RCC_HSI_ENABLE() SET_BIT(RCC->CR, RCC_CR_HSION) #define __HAL_RCC_HSI_DISABLE() CLEAR_BIT(RCC->CR, RCC_CR_HSION) /** * @brief Macros to enable or disable the Internal Multi Speed oscillator (MSI). * @note The MSI is stopped by hardware when entering STOP and STANDBY modes. * It is used (enabled by hardware) as system clock source after * startup from Reset, wakeup from STOP and STANDBY mode, or in case * of failure of the HSE used directly or indirectly as system clock * (if the Clock Security System CSS is enabled). * @note MSI can not be stopped if it is used as system clock source. * In this case, you have to select another source of the system * clock then stop the MSI. * @note After enabling the MSI, the application software should wait on * MSIRDY flag to be set indicating that MSI clock is stable and can * be used as system clock source. * @note When the MSI is stopped, MSIRDY flag goes low after 6 MSI oscillator * clock cycles. */ #define __HAL_RCC_MSI_ENABLE() SET_BIT(RCC->CR, RCC_CR_MSION) #define __HAL_RCC_MSI_DISABLE() CLEAR_BIT(RCC->CR, RCC_CR_MSION) /** * @brief Macro to enable or disable the Internal High Speed oscillator for USB (HSI48). * @note After enabling the HSI48, the application software should wait on * HSI48RDY flag to be set indicating that HSI48 clock is stable and can * be used to clock the USB. * @note The HSI48 is stopped by hardware when entering STOP and STANDBY modes. */ #define __HAL_RCC_HSI48_ENABLE() do { SET_BIT(RCC->CRRCR, RCC_CRRCR_HSI48ON); \ RCC->APB2ENR |= RCC_APB2ENR_SYSCFGEN; \ SYSCFG->CFGR3 |= (SYSCFG_CFGR3_ENREF_HSI48 | SYSCFG_CFGR3_EN_VREFINT); \ } while (0) #define __HAL_RCC_HSI48_DISABLE() do { CLEAR_BIT(RCC->CRRCR, RCC_CRRCR_HSI48ON); \ SYSCFG->CFGR3 &= (uint32_t)~((uint32_t)(SYSCFG_CFGR3_ENREF_HSI48 | SYSCFG_CFGR3_EN_VREFINT)); \ } while (0) /** @brief Macro to adjust the Internal High Speed oscillator (HSI) calibration value. * @note The calibration is used to compensate for the variations in voltage * and temperature that influence the frequency of the internal HSI RC. * @param __HSICalibrationValue__: specifies the calibration trimming value. * This parameter must be a number between 0 and 0x1F. */ #define __HAL_RCC_HSI_CALIBRATIONVALUE_ADJUST(__HSICalibrationValue__) (MODIFY_REG(RCC->ICSCR,\ RCC_ICSCR_HSITRIM, (uint32_t)(__HSICalibrationValue__) << 8)) /** @brief Macro Adjusts the Internal Multi Speed oscillator (MSI) calibration value. * @note The calibration is used to compensate for the variations in voltage * and temperature that influence the frequency of the internal MSI RC. * Refer to the Application Note AN3300 for more details on how to * calibrate the MSI. * @param __MSICalibrationValue__: specifies the calibration trimming value. * This parameter must be a number between 0 and 0xFF. */ #define __HAL_RCC_MSI_CALIBRATIONVALUE_ADJUST(__MSICalibrationValue__) (MODIFY_REG(RCC->ICSCR,\ RCC_ICSCR_MSITRIM, (uint32_t)(__MSICalibrationValue__) << 24)) /** * @brief Macro to configures the Internal Multi Speed oscillator (MSI) clock range. * @note After restart from Reset or wakeup from STANDBY, the MSI clock is * around 2.097 MHz. The MSI clock does not change after wake-up from * STOP mode. * @note The MSI clock range can be modified on the fly. * @param RCC_MSIRange: specifies the MSI Clock range. * This parameter must be one of the following values: * @arg RCC_MSIRANGE_0: MSI clock is around 65.536 KHz * @arg RCC_MSIRANGE_1: MSI clock is around 131.072 KHz * @arg RCC_MSIRANGE_2: MSI clock is around 262.144 KHz * @arg RCC_MSIRANGE_3: MSI clock is around 524.288 KHz * @arg RCC_MSIRANGE_4: MSI clock is around 1.048 MHz * @arg RCC_MSIRANGE_5: MSI clock is around 2.097 MHz (default after Reset or wake-up from STANDBY) * @arg RCC_MSIRANGE_6: MSI clock is around 4.194 MHz */ #define __HAL_RCC_MSI_RANGE_CONFIG(__RCC_MSIRange__) (MODIFY_REG(RCC->ICSCR,\ RCC_ICSCR_MSIRANGE, (uint32_t)(__RCC_MSIRange__) )) /** @brief Macros to enable or disable the Internal Low Speed oscillator (LSI). * @note After enabling the LSI, the application software should wait on * LSIRDY flag to be set indicating that LSI clock is stable and can * be used to clock the IWDG and/or the RTC. * @note LSI can not be disabled if the IWDG is running. * @note When the LSI is stopped, LSIRDY flag goes low after 6 LSI oscillator * clock cycles. */ #define __HAL_RCC_LSI_ENABLE() SET_BIT(RCC->CSR, RCC_CSR_LSION) #define __HAL_RCC_LSI_DISABLE() CLEAR_BIT(RCC->CSR, RCC_CSR_LSION) /** * @brief Macro to configure the External High Speed oscillator (HSE). * @note After enabling the HSE (RCC_HSE_ON or RCC_HSE_Bypass), the application * software should wait on HSERDY flag to be set indicating that HSE clock * is stable and can be used to clock the PLL and/or system clock. * @note HSE state can not be changed if it is used directly or through the * PLL as system clock. In this case, you have to select another source * of the system clock then change the HSE state (ex. disable it). * @note The HSE is stopped by hardware when entering STOP and STANDBY modes. * @note This function reset the CSSON bit, so if the clock security system(CSS) * was previously enabled you have to enable it again after calling this * function. * @param __STATE__: specifies the new state of the HSE. * This parameter can be one of the following values: * @arg RCC_HSE_OFF: turn OFF the HSE oscillator, HSERDY flag goes low after * 6 HSE oscillator clock cycles. * @arg RCC_HSE_ON: turn ON the HSE oscillator. * @arg RCC_HSE_BYPASS: HSE oscillator bypassed with external clock. */ #define __HAL_RCC_HSE_CONFIG(__STATE__) \ MODIFY_REG(RCC->CR, RCC_CR_HSEON|RCC_CR_HSEBYP, (uint32_t)(__STATE__)) /** * @brief Macro to configure the External Low Speed oscillator (LSE). * @note As the LSE is in the Backup domain and write access is denied to * this domain after reset, you have to enable write access using * HAL_PWR_EnableBkUpAccess() function before to configure the LSE * (to be done once after reset). * @note After enabling the LSE (RCC_LSE_ON or RCC_LSE_BYPASS), the application * software should wait on LSERDY flag to be set indicating that LSE clock * is stable and can be used to clock the RTC. * @param __STATE__: specifies the new state of the LSE. * This parameter can be one of the following values: * @arg RCC_LSE_OFF: turn OFF the LSE oscillator, LSERDY flag goes low after * 6 LSE oscillator clock cycles. * @arg RCC_LSE_ON: turn ON the LSE oscillator. * @arg RCC_LSE_BYPASS: LSE oscillator bypassed with external clock. */ #define __HAL_RCC_LSE_CONFIG(__STATE__) \ MODIFY_REG(RCC->CSR, RCC_CSR_LSEON|RCC_CSR_LSEBYP, (uint32_t)(__STATE__)) /** @brief Macros to enable or disable the the RTC clock. * @note These macros must be used only after the RTC clock source was selected. */ #define __HAL_RCC_RTC_ENABLE() SET_BIT(RCC->CSR, RCC_CSR_RTCEN) #define __HAL_RCC_RTC_DISABLE() CLEAR_BIT(RCC->CSR, RCC_CSR_RTCEN) /** * @brief Configures or Get the RTC and LCD clock (RTCCLK / LCDCLK). * @note As the RTC clock configuration bits are in the RTC domain and write * access is denied to this domain after reset, you have to enable write * access using PWR_RTCAccessCmd(ENABLE) function before to configure * the RTC clock source (to be done once after reset). * @note Once the RTC clock is configured it can't be changed unless the RTC * is reset using RCC_RTCResetCmd function, or by a Power On Reset (POR) * @note The RTC clock (RTCCLK) is used also to clock the LCD (LCDCLK). * * @param RCC_RTCCLKSource: specifies the RTC clock source. * This parameter can be one of the following values: * @arg RCC_RTCCLKSOURCE_LSE: LSE selected as RTC clock * @arg RCC_RTCCLKSOURCE_LSI: LSI selected as RTC clock * @arg RCC_RTCCLKSOURCE_HSE_DIV2: HSE divided by 2 selected as RTC clock * @arg RCC_RTCCLKSOURCE_HSE_DIV4: HSE divided by 4 selected as RTC clock * @arg RCC_RTCCLKSOURCE_HSE_DIV8: HSE divided by 8 selected as RTC clock * @arg RCC_RTCCLKSOURCE_HSE_DIV16: HSE divided by 16 selected as RTC clock * * @note If the LSE or LSI is used as RTC clock source, the RTC continues to * work in STOP and STANDBY modes, and can be used as wakeup source. * However, when the HSE clock is used as RTC clock source, the RTC * cannot be used in STOP and STANDBY modes. * @note The maximum input clock frequency for RTC is 1MHz (when using HSE as * RTC clock source). */ #define __HAL_RCC_RTC_CLKPRESCALER(__RTCCLKSource__) (((__RTCCLKSource__) & RCC_CSR_RTCSEL) == RCC_CSR_RTCSEL) ? \ MODIFY_REG(RCC->CR, RCC_CR_RTCPRE, ((__RTCCLKSource__) & 0xFFFCFFFF)) : CLEAR_BIT(RCC->CR, RCC_CR_RTCPRE) #define __HAL_RCC_RTC_CONFIG(__RTCCLKSource__) do { __HAL_RCC_RTC_CLKPRESCALER(__RTCCLKSource__); \ MODIFY_REG( RCC->CSR, RCC_CSR_RTCSEL, (uint32_t)(__RTCCLKSource__)); \ } while (0) #define __HAL_RCC_GET_RTC_SOURCE() ((uint32_t)(READ_BIT(RCC->CSR, RCC_CSR_RTCSEL))) /** @brief Macros to force or release the Backup domain reset. * @note This function resets the RTC peripheral (including the backup registers) * and the RTC clock source selection in RCC_CSR register. * @note The BKPSRAM is not affected by this reset. */ #define __HAL_RCC_BACKUPRESET_FORCE() SET_BIT(RCC->CSR, RCC_CSR_RTCRST) #define __HAL_RCC_BACKUPRESET_RELEASE() CLEAR_BIT(RCC->CSR, RCC_CSR_RTCRST) /** @brief Macros to enable or disable the main PLL. * @note After enabling the main PLL, the application software should wait on * PLLRDY flag to be set indicating that PLL clock is stable and can * be used as system clock source. * @note The main PLL can not be disabled if it is used as system clock source * @note The main PLL is disabled by hardware when entering STOP and STANDBY modes. */ #define __HAL_RCC_PLL_ENABLE() SET_BIT(RCC->CR, RCC_CR_PLLON) #define __HAL_RCC_PLL_DISABLE() CLEAR_BIT(RCC->CR, RCC_CR_PLLON) /** @brief Macro to configure the main PLL clock source, multiplication and division factors. * @note This function must be used only when the main PLL is disabled. * @param __RCC_PLLSource__: specifies the PLL entry clock source. * This parameter can be one of the following values: * @arg RCC_PLLSOURCE_HSI: HSI oscillator clock selected as PLL clock entry * @arg RCC_PLLSOURCE_HSE: HSE oscillator clock selected as PLL clock entry * @param __PLLMUL__: specifies the multiplication factor to generate the PLL VCO clock * This parameter must be one of the following values: * @arg RCC_CFGR_PLLMUL3: PLLVCO = PLL clock entry x 3 * @arg RCC_CFGR_PLLMUL4: PLLVCO = PLL clock entry x 4 * @arg RCC_CFGR_PLLMUL6: PLLVCO = PLL clock entry x 6 * @arg RCC_CFGR_PLLMUL8: PLLVCO = PLL clock entry x 8 * @arg RCC_CFGR_PLLMUL12: PLLVCO = PLL clock entry x 12 * @arg RCC_CFGR_PLLMUL16: PLLVCO = PLL clock entry x 16 * @arg RCC_CFGR_PLLMUL24: PLLVCO = PLL clock entry x 24 * @arg RCC_CFGR_PLLMUL32: PLLVCO = PLL clock entry x 32 * @arg RCC_CFGR_PLLMUL48: PLLVCO = PLL clock entry x 48 * @note The PLL VCO clock frequency must not exceed 96 MHz when the product is in * Range 1, 48 MHz when the product is in Range 2 and 24 MHz when the product is * in Range 3. * @param __PLLDIV__: specifies the PLL output clock division from PLL VCO clock * This parameter must be one of the following values: * @arg RCC_PLLDIV_2: PLL clock output = PLLVCO / 2 * @arg RCC_PLLDIV_3: PLL clock output = PLLVCO / 3 * @arg RCC_PLLDIV_4: PLL clock output = PLLVCO / 4 */ #define __HAL_RCC_PLL_CONFIG(__RCC_PLLSource__ , __PLLMUL__ ,__PLLDIV__ ) \ MODIFY_REG(RCC->CFGR, RCC_CFGR_PLLMUL | RCC_CFGR_PLLDIV | RCC_CFGR_PLLSRC, (uint32_t)((__PLLMUL__)| (__PLLDIV__)| (__RCC_PLLSource__))) /** @brief Macro to get the clock source used as system clock. * @retval The clock source used as system clock. The returned value can be one * of the following: * - RCC_CFGR_SWS_HSI: HSI used as system clock. * - RCC_CFGR_SWS_HSE: HSE used as system clock. * - RCC_CFGR_SWS_PLL: PLL used as system clock. */ #define __HAL_RCC_GET_SYSCLK_SOURCE() ((uint32_t)(RCC->CFGR & RCC_CFGR_SWS)) /** @brief Macro to get the oscillator used as PLL clock source. * @retval The oscillator used as PLL clock source. The returned value can be one * of the following: * - RCC_PLLSOURCE_HSI: HSI oscillator is used as PLL clock source. * - RCC_PLLSOURCE_HSE: HSE oscillator is used as PLL clock source. */ #define __HAL_RCC_GET_PLL_OSCSOURCE() ((uint32_t)(RCC->CFGR & RCC_CFGR_PLLSRC)) /** @defgroup RCC_Flags_Interrupts_Management * @brief macros to manage the specified RCC Flags and interrupts. * @{ */ /** @brief Enable RCC interrupt (Perform Byte access to RCC_CIER[0:7] bits to enable * the selected interrupts). * @note The CSS interrupt doesn't have an enable bit; once the CSS is enabled * and if the HSE clock fails, the CSS interrupt occurs and an NMI is * automatically generated. The NMI will be executed indefinitely, and * since NMI has higher priority than any other IRQ (and main program) * the application will be stacked in the NMI ISR unless the CSS interrupt * pending bit is cleared. * @param __INTERRUPT__: specifies the RCC interrupt sources to be enabled. * This parameter can be any combination of the following values: * @arg RCC_IT_LSIRDY: LSI ready interrupt * @arg RCC_IT_LSERDY: LSE ready interrupt * @arg RCC_IT_HSIRDY: HSI ready interrupt * @arg RCC_IT_HSERDY: HSE ready interrupt * @arg RCC_IT_PLLRDY: PLL ready interrupt * @arg RCC_IT_MSIRDY: MSI ready interrupt * @arg RCC_IT_LSECSS: LSE CSS interrupt */ #define __HAL_RCC_ENABLE_IT(__INTERRUPT__) (*(__IO uint8_t *) CIER_BYTE0_ADDRESS |= (__INTERRUPT__)) /** @brief Disable RCC interrupt (Perform Byte access to RCC_CIER[0:7] bits to disable * the selected interrupts). * @note The CSS interrupt doesn't have an enable bit; once the CSS is enabled * and if the HSE clock fails, the CSS interrupt occurs and an NMI is * automatically generated. The NMI will be executed indefinitely, and * since NMI has higher priority than any other IRQ (and main program) * the application will be stacked in the NMI ISR unless the CSS interrupt * pending bit is cleared. * @param __INTERRUPT__: specifies the RCC interrupt sources to be disabled. * This parameter can be any combination of the following values: * @arg RCC_IT_LSIRDY: LSI ready interrupt * @arg RCC_IT_LSERDY: LSE ready interrupt * @arg RCC_IT_HSIRDY: HSI ready interrupt * @arg RCC_IT_HSERDY: HSE ready interrupt * @arg RCC_IT_PLLRDY: PLL ready interrupt * @arg RCC_IT_MSIRDY: MSI ready interrupt * @arg RCC_IT_LSECSS: LSE CSS interrupt */ #define __HAL_RCC_DISABLE_IT(__INTERRUPT__) (*(__IO uint8_t *) CIER_BYTE0_ADDRESS &= ~(__INTERRUPT__)) /** @brief Clear the RCC's interrupt pending bits (Perform Byte access to RCC_CIR[23:16] * bits to clear the selected interrupt pending bits. * @param __INTERRUPT__: specifies the interrupt pending bit to clear. * This parameter can be any combination of the following values: * @arg RCC_IT_LSIRDY: LSI ready interrupt * @arg RCC_IT_LSERDY: LSE ready interrupt * @arg RCC_IT_HSIRDY: HSI ready interrupt * @arg RCC_IT_HSERDY: HSE ready interrupt * @arg RCC_IT_PLLRDY: PLL ready interrupt * @arg RCC_IT_MSIRDY: MSI ready interrupt * @arg RCC_IT_LSECSS: LSE CSS interrupt * @arg RCC_IT_CSS: Clock Security System interrupt */ #define __HAL_RCC_CLEAR_IT(__INTERRUPT__) (RCC->CICR = (__INTERRUPT__)) /** @brief Check the RCC's interrupt has occurred or not. * @param __INTERRUPT__: specifies the RCC interrupt source to check. * This parameter can be one of the following values: * @arg RCC_IT_LSIRDY: LSI ready interrupt * @arg RCC_IT_LSERDY: LSE ready interrupt * @arg RCC_IT_HSIRDY: HSI ready interrupt * @arg RCC_IT_HSERDY: HSE ready interrupt * @arg RCC_IT_PLLRDY: PLL ready interrupt * @arg RCC_IT_MSIRDY: MSI ready interrupt * @arg RCC_IT_LSECSS: LSE CSS interrupt * @arg RCC_IT_CSS: Clock Security System interrupt * @retval The new state of __INTERRUPT__ (TRUE or FALSE). */ #define __HAL_RCC_GET_IT(__INTERRUPT__) ((RCC->CIFR & (__INTERRUPT__)) == (__INTERRUPT__)) /** @brief Set RMVF bit to clear the reset flags. * The reset flags are: RCC_FLAG_OBLRST, RCC_FLAG_PINRST, RCC_FLAG_PORRST, * RCC_FLAG_SFTRST, RCC_FLAG_IWDGRST, RCC_FLAG_WWDGRST, RCC_FLAG_LPWRRST. */ #define __HAL_RCC_CLEAR_RESET_FLAGS() (RCC->CSR |= RCC_CSR_RMVF) /** @brief Check RCC flag is set or not. * @param __FLAG__: specifies the flag to check. * This parameter can be one of the following values: * @arg RCC_FLAG_HSIRDY: HSI oscillator clock ready * @arg RCC_FLAG_MSIRDY: MSI oscillator clock ready * @arg RCC_FLAG_HSERDY: HSE oscillator clock ready * @arg RCC_FLAG_PLLRDY: PLL clock ready * @arg RCC_FLAG_LSECSS: LSE oscillator clock CSS detected * @arg RCC_FLAG_LSERDY: LSE oscillator clock ready * @arg RCC_FLAG_LSIRDY: LSI oscillator clock ready * @arg RCC_FLAG_OBLRST: Option Byte Loader (OBL) reset * @arg RCC_FLAG_PINRST: Pin reset * @arg RCC_FLAG_PORRST: POR/PDR reset * @arg RCC_FLAG_SFTRST: Software reset * @arg RCC_FLAG_IWDGRST: Independent Watchdog reset * @arg RCC_FLAG_WWDGRST: Window Watchdog reset * @arg RCC_FLAG_LPWRRST: Low Power reset * @retval The new state of __FLAG__ (TRUE or FALSE). */ #define RCC_FLAG_MASK ((uint8_t)0x1F) #define __HAL_RCC_GET_FLAG(__FLAG__) (((((((__FLAG__) >> 5) == 1)? RCC->CR :((((__FLAG__) >> 5) == 2) ? RCC->CSR :((((__FLAG__) >> 5) == 3)? \ RCC->CRRCR :RCC->CIFR))) & ((uint32_t)1 << ((__FLAG__) & RCC_FLAG_MASK))) != 0 ) ? 1 : 0 ) /** * @} */ #define __RCC_PLLSRC() ((RCC->PLLCFGR & RCC_PLLCFGR_PLLSRC) >> POSITION_VAL(RCC_PLLCFGR_PLLSRC)) /** * @} */ /* Include RCC HAL Extension module */ #include "stm32l0xx_hal_rcc_ex.h" /* Exported functions --------------------------------------------------------*/ /* Initialization and de-initialization methods ******************************/ void HAL_RCC_DeInit(void); HAL_StatusTypeDef HAL_RCC_OscConfig(RCC_OscInitTypeDef *RCC_OscInitStruct); HAL_StatusTypeDef HAL_RCC_ClockConfig(RCC_ClkInitTypeDef *RCC_ClkInitStruct, uint32_t FLatency); /* Peripheral Control methods ************************************************/ void HAL_RCC_MCOConfig(uint32_t RCC_MCOx, uint32_t RCC_MCOSource, uint32_t RCC_MCODiv); void HAL_RCC_EnableCSS(void); uint32_t HAL_RCC_GetSysClockFreq(void); uint32_t HAL_RCC_GetHCLKFreq(void); uint32_t HAL_RCC_GetPCLK1Freq(void); uint32_t HAL_RCC_GetPCLK2Freq(void); void HAL_RCC_GetOscConfig(RCC_OscInitTypeDef *RCC_OscInitStruct); void HAL_RCC_GetClockConfig(RCC_ClkInitTypeDef *RCC_ClkInitStruct, uint32_t *pFLatency); /* CSS NMI IRQ handler */ void HAL_RCC_NMI_IRQHandler(void); /* User Callbacks in non blocking mode (IT mode) */ void HAL_RCC_CCSCallback(void); /** * @} */ /** * @} */ #ifdef __cplusplus } #endif #endif /* __STM32L0xx_HAL_RCC_H */ /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/