Microbit as a BLE gamepad

Dependents:   nRF51822

Fork of nrf51-sdk by Lancaster University

Embed: (wiki syntax)

« Back to documentation index

Show/hide line numbers hci_mem_pool.c Source File

hci_mem_pool.c

00001 /*
00002  * Copyright (c) Nordic Semiconductor ASA
00003  * All rights reserved.
00004  *
00005  * Redistribution and use in source and binary forms, with or without modification,
00006  * are permitted provided that the following conditions are met:
00007  *
00008  *   1. Redistributions of source code must retain the above copyright notice, this
00009  *   list of conditions and the following disclaimer.
00010  *
00011  *   2. Redistributions in binary form must reproduce the above copyright notice, this
00012  *   list of conditions and the following disclaimer in the documentation and/or
00013  *   other materials provided with the distribution.
00014  *
00015  *   3. Neither the name of Nordic Semiconductor ASA nor the names of other
00016  *   contributors to this software may be used to endorse or promote products
00017  *   derived from this software without specific prior written permission.
00018  *
00019  *
00020  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
00021  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
00022  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
00023  * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
00024  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
00025  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
00026  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
00027  * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
00028  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
00029  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
00030  *
00031  */
00032  
00033 #include "hci_mem_pool.h "
00034 #include "hci_mem_pool_internal.h "
00035 #include <stdbool.h>
00036 #include <stdio.h>
00037 
00038 /**@brief RX buffer element instance structure. 
00039  */
00040 typedef struct 
00041 {
00042     uint8_t  rx_buffer[RX_BUF_SIZE];                                /**< RX buffer memory array. */  
00043     uint32_t length;                                                /**< Length of the RX buffer memory array. */
00044 } rx_buffer_elem_t;
00045 
00046 /**@brief RX buffer queue element instance structure. 
00047  */
00048 typedef struct 
00049 {
00050     rx_buffer_elem_t * p_buffer;                                    /**< Pointer to RX buffer element. */
00051     uint32_t           free_window_count;                           /**< Free space element count. */
00052     uint32_t           free_available_count;                        /**< Free area element count. */
00053     uint32_t           read_available_count;                        /**< Read area element count. */
00054     uint32_t           write_index;                                 /**< Write position index. */                                      
00055     uint32_t           read_index;                                  /**< Read position index. */                                                                            
00056     uint32_t           free_index;                                  /**< Free position index. */                                                                                                                  
00057 } rx_buffer_queue_t;
00058 
00059 static bool              m_is_tx_allocated;                         /**< Boolean value to determine if the TX buffer is allocated. */
00060 static rx_buffer_elem_t  m_rx_buffer_elem_queue[RX_BUF_QUEUE_SIZE]; /**< RX buffer element instances. */
00061 static rx_buffer_queue_t m_rx_buffer_queue;                         /**< RX buffer queue element instance. */
00062 
00063 
00064 uint32_t hci_mem_pool_open(void)
00065 {
00066     m_is_tx_allocated                      = false;    
00067     m_rx_buffer_queue.p_buffer             = m_rx_buffer_elem_queue;
00068     m_rx_buffer_queue.free_window_count    = RX_BUF_QUEUE_SIZE;
00069     m_rx_buffer_queue.free_available_count = 0;
00070     m_rx_buffer_queue.read_available_count = 0;
00071     m_rx_buffer_queue.write_index          = 0;    
00072     m_rx_buffer_queue.read_index           = 0;        
00073     m_rx_buffer_queue.free_index           = 0;            
00074     
00075     return NRF_SUCCESS;
00076 }
00077 
00078 
00079 uint32_t hci_mem_pool_close(void)
00080 {    
00081     return NRF_SUCCESS;
00082 }
00083 
00084 
00085 uint32_t hci_mem_pool_tx_alloc(void ** pp_buffer)
00086 {
00087     static uint8_t tx_buffer[TX_BUF_SIZE];  
00088 
00089     uint32_t err_code;
00090     
00091     if (pp_buffer == NULL)
00092     {
00093         return NRF_ERROR_NULL;
00094     }
00095     
00096     if (!m_is_tx_allocated)
00097     {        
00098             m_is_tx_allocated = true;
00099             *pp_buffer        = tx_buffer;
00100             err_code          = NRF_SUCCESS;
00101     }
00102     else
00103     {
00104         err_code              = NRF_ERROR_NO_MEM;
00105     }
00106     
00107     return err_code;
00108 }
00109 
00110 
00111 uint32_t hci_mem_pool_tx_free(void)
00112 {
00113     m_is_tx_allocated = false;
00114     
00115     return NRF_SUCCESS;
00116 }
00117 
00118 
00119 uint32_t hci_mem_pool_rx_produce(uint32_t length, void ** pp_buffer)
00120 {
00121     uint32_t err_code; 
00122 
00123     if (pp_buffer == NULL)
00124     {
00125         return NRF_ERROR_NULL;
00126     }    
00127     *pp_buffer = NULL;
00128     
00129     if (m_rx_buffer_queue.free_window_count != 0)
00130     {    
00131         if (length <= RX_BUF_SIZE)
00132         {    
00133             --(m_rx_buffer_queue.free_window_count);            
00134             ++(m_rx_buffer_queue.read_available_count);            
00135 
00136             *pp_buffer                    = 
00137                     m_rx_buffer_queue.p_buffer[m_rx_buffer_queue.write_index].rx_buffer;
00138 
00139             m_rx_buffer_queue.free_index |= (1u << m_rx_buffer_queue.write_index);
00140 
00141             // @note: Adjust the write_index making use of the fact that the buffer size is of 
00142             // power of two and two's complement arithmetic. For details refer example to book 
00143             // "Making embedded systems: Elicia White".
00144             m_rx_buffer_queue.write_index = 
00145                     (m_rx_buffer_queue.write_index + 1u) & (RX_BUF_QUEUE_SIZE - 1u);
00146             
00147             err_code                      = NRF_SUCCESS;
00148         }
00149         else
00150         {
00151             err_code = NRF_ERROR_DATA_SIZE;    
00152         }        
00153     }
00154     else
00155     {
00156         err_code = NRF_ERROR_NO_MEM;    
00157     }
00158     
00159     return err_code;
00160 }
00161 
00162 
00163 uint32_t hci_mem_pool_rx_consume(uint8_t * p_buffer)
00164 {
00165     uint32_t err_code;
00166     uint32_t consume_index;
00167     uint32_t start_index;
00168     
00169     if (m_rx_buffer_queue.free_available_count != 0)
00170     {
00171         // Find the buffer that has been freed -
00172         // Start at read_index minus free_available_count and then increment until read index.
00173         err_code      = NRF_ERROR_INVALID_ADDR;
00174         consume_index = (m_rx_buffer_queue.read_index - m_rx_buffer_queue.free_available_count) & 
00175                         (RX_BUF_QUEUE_SIZE - 1u);
00176         start_index   = consume_index;
00177         
00178         do
00179         {
00180             if (m_rx_buffer_queue.p_buffer[consume_index].rx_buffer == p_buffer)
00181             {
00182                 m_rx_buffer_queue.free_index ^= (1u << consume_index);
00183                 err_code = NRF_SUCCESS;
00184                 break;
00185             }
00186             else
00187             {
00188                 consume_index = (consume_index + 1u) & (RX_BUF_QUEUE_SIZE - 1u);
00189             }
00190         }
00191         while (consume_index != m_rx_buffer_queue.read_index);
00192 
00193         while (!(m_rx_buffer_queue.free_index & (1 << start_index)) && 
00194                 (m_rx_buffer_queue.free_available_count != 0))
00195         {
00196             --(m_rx_buffer_queue.free_available_count);
00197             ++(m_rx_buffer_queue.free_window_count);            
00198             start_index = (consume_index + 1u) & (RX_BUF_QUEUE_SIZE - 1u);
00199         }
00200     }
00201     else
00202     {
00203         err_code = NRF_ERROR_NO_MEM;
00204     }
00205         
00206     return err_code;    
00207 }
00208 
00209 
00210 uint32_t hci_mem_pool_rx_data_size_set(uint32_t length)
00211 {
00212     // @note: Adjust the write_index making use of the fact that the buffer size is of power
00213     // of two and two's complement arithmetic. For details refer example to book 
00214     // "Making embedded systems: Elicia White".
00215     const uint32_t index = (m_rx_buffer_queue.write_index - 1u) & (RX_BUF_QUEUE_SIZE - 1u);
00216     m_rx_buffer_queue.p_buffer[index].length = length;    
00217     
00218     return NRF_SUCCESS;
00219 }
00220 
00221 
00222 uint32_t hci_mem_pool_rx_extract(uint8_t ** pp_buffer, uint32_t * p_length)
00223 {
00224     uint32_t err_code;
00225     
00226     if ((pp_buffer == NULL) || (p_length == NULL))
00227     {
00228         return NRF_ERROR_NULL;
00229     }
00230     
00231     if (m_rx_buffer_queue.read_available_count != 0)
00232     {
00233         --(m_rx_buffer_queue.read_available_count);
00234         ++(m_rx_buffer_queue.free_available_count);        
00235         
00236         *pp_buffer                   = 
00237             m_rx_buffer_queue.p_buffer[m_rx_buffer_queue.read_index].rx_buffer;
00238         *p_length                    = 
00239             m_rx_buffer_queue.p_buffer[m_rx_buffer_queue.read_index].length;
00240         
00241         // @note: Adjust the write_index making use of the fact that the buffer size is of power
00242         // of two and two's complement arithmetic. For details refer example to book 
00243         // "Making embedded systems: Elicia White".            
00244         m_rx_buffer_queue.read_index = 
00245             (m_rx_buffer_queue.read_index + 1u) & (RX_BUF_QUEUE_SIZE - 1u); 
00246         
00247         err_code                     = NRF_SUCCESS;
00248     }
00249     else
00250     {
00251         err_code                     = NRF_ERROR_NO_MEM;        
00252     }
00253     
00254     return err_code;
00255 }