16*2Lcd Display

Committer:
reedas
Date:
Tue Jan 14 11:27:31 2020 +0000
Revision:
42:1962dc501f94
Parent:
41:111ca62e8a59
Initial Commit;

Who changed what in which revision?

UserRevisionLine numberNew contents of line
wim 37:ce348c002929 1 /* mbed TextLCD Library, for LCDs based on HD44780 controllers
simon 6:e4cb7ddee0d3 2 * Copyright (c) 2007-2010, sford, http://mbed.org
wim 14:0c32b66b14b8 3 * 2013, v01: WH, Added LCD types, fixed LCD address issues, added Cursor and UDCs
wim 14:0c32b66b14b8 4 * 2013, v02: WH, Added I2C and SPI bus interfaces
wim 15:b70ebfffb258 5 * 2013, v03: WH, Added support for LCD40x4 which uses 2 controllers
wim 18:bd65dc10f27f 6 * 2013, v04: WH, Added support for Display On/Off, improved 4bit bootprocess
wim 18:bd65dc10f27f 7 * 2013, v05: WH, Added support for 8x2B, added some UDCs
wim 19:c747b9e2e7b8 8 * 2013, v06: WH, Added support for devices that use internal DC/DC converters
wim 20:e0da005a777f 9 * 2013, v07: WH, Added support for backlight and include portdefinitions for LCD2004 Module from DFROBOT
wim 22:35742ec80c24 10 * 2014, v08: WH, Refactored in Base and Derived Classes to deal with mbed lib change regarding 'NC' defined pins
wim 25:6162b31128c9 11 * 2014, v09: WH/EO, Added Class for Native SPI controllers such as ST7032
wim 26:bd897a001012 12 * 2014, v10: WH, Added Class for Native I2C controllers such as ST7032i, Added support for MCP23008 I2C portexpander, Added support for Adafruit module
wim 30:033048611c01 13 * 2014, v11: WH, Added support for native I2C controllers such as PCF21XX, Improved the _initCtrl() method to deal with differences between all supported controllers
wim 32:59c4b8f648d4 14 * 2014, v12: WH, Added support for native I2C controller PCF2119 and native I2C/SPI controllers SSD1803, ST7036, added setContrast method (by JH1PJL) for supported devices (eg ST7032i)
wim 34:e5a0dcb43ecc 15 * 2014, v13: WH, Added support for controllers US2066/SSD1311 (OLED), added setUDCBlink() method for supported devices (eg SSD1803), fixed issue in setPower()
wim 34:e5a0dcb43ecc 16 * 2014, v14: WH, Added support for PT6314 (VFD), added setOrient() method for supported devices (eg SSD1803, US2066), added Double Height lines for supported devices,
wim 34:e5a0dcb43ecc 17 * added 16 UDCs for supported devices (eg PCF2103), moved UDC defines to TextLCD_UDC file, added TextLCD_Config.h for feature and footprint settings.
wim 35:311be6444a39 18 * 2014, v15: WH, Added AC780 support, added I2C expander modules, fixed setBacklight() for inverted logic modules. Fixed bug in LCD_SPI_N define
wim 36:9f5f86dfd44a 19 * 2014, v16: WH, Added ST7070 and KS0073 support, added setIcon(), clrIcon() and setInvert() method for supported devices
wim 37:ce348c002929 20 * 2015, v17: WH, Clean up low-level _writeCommand() and _writeData(), Added support for alternative fonttables (eg PCF21XX), Added ST7066_ACM controller for ACM1602 module
wim 38:cbe275b0b647 21 * 2015, v18: WH, Performance improvement I2C portexpander
wim 38:cbe275b0b647 22 * 2015, v19: WH, Fixed Adafruit I2C/SPI portexpander pinmappings, fixed SYDZ Backlight
wim 39:e9c2319de9c5 23 * 2015, v20: WH, Fixed occasional Init fail caused by insufficient wait time after ReturnHome command (0x02), Added defines to reduce memory footprint (eg LCD_ICON),
wim 40:d3496c3ea301 24 * Fixed and Added more fonttable support for PCF2119R_3V3, Added HD66712 controller.
wim 41:111ca62e8a59 25 * 2015, v21: WH, Added LCD32x2 defines and code, Fixed KS0073 DL=1 init for SPI, Added defines to reduce memory footprint (LCD_TWO_CTRL, LCD_CONTRAST, LCD_UTF8_FONT)
wim 41:111ca62e8a59 26 * Added SPLC792A controller, Added UTF8_2_LCD decode for Cyrilic font (By Andriy Ribalko). Added setFont()
reedas 42:1962dc501f94 27 * 2019, v22?: AR Changed wait_ms to ThisThread::sleep_for and added (char) casts for int conversion on parameters passed to a couple of function definitions. MBED 5.xx
simon 1:ac48b187213c 28 *
simon 1:ac48b187213c 29 * Permission is hereby granted, free of charge, to any person obtaining a copy
simon 1:ac48b187213c 30 * of this software and associated documentation files (the "Software"), to deal
simon 1:ac48b187213c 31 * in the Software without restriction, including without limitation the rights
simon 1:ac48b187213c 32 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
simon 1:ac48b187213c 33 * copies of the Software, and to permit persons to whom the Software is
simon 1:ac48b187213c 34 * furnished to do so, subject to the following conditions:
simon 1:ac48b187213c 35 *
simon 1:ac48b187213c 36 * The above copyright notice and this permission notice shall be included in
simon 1:ac48b187213c 37 * all copies or substantial portions of the Software.
simon 1:ac48b187213c 38 *
simon 1:ac48b187213c 39 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
simon 1:ac48b187213c 40 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
simon 1:ac48b187213c 41 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
simon 1:ac48b187213c 42 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
simon 1:ac48b187213c 43 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
simon 1:ac48b187213c 44 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
simon 1:ac48b187213c 45 * THE SOFTWARE.
simon 1:ac48b187213c 46 */
wim 34:e5a0dcb43ecc 47 #include "mbed.h"
simon 1:ac48b187213c 48 #include "TextLCD.h"
wim 34:e5a0dcb43ecc 49 #include "TextLCD_UDC.inc"
wim 41:111ca62e8a59 50 #include "TextLCD_UTF8.inc"
reedas 42:1962dc501f94 51
wim 21:9eb628d9e164 52 /** Create a TextLCD_Base interface
wim 15:b70ebfffb258 53 *
wim 21:9eb628d9e164 54 * @param type Sets the panel size/addressing mode (default = LCD16x2)
wim 21:9eb628d9e164 55 * @param ctrl LCD controller (default = HD44780)
wim 15:b70ebfffb258 56 */
wim 21:9eb628d9e164 57 TextLCD_Base::TextLCD_Base(LCDType type, LCDCtrl ctrl) : _type(type), _ctrl(ctrl) {
wim 30:033048611c01 58
wim 30:033048611c01 59 // Extract LCDType data
wim 30:033048611c01 60
wim 41:111ca62e8a59 61 // Columns encoded in b15..b8
wim 41:111ca62e8a59 62 _nr_cols = (_type & LCD_T_COL_MSK) >> LCD_T_COL_SHFT;
wim 41:111ca62e8a59 63
wim 41:111ca62e8a59 64 // Rows encoded in b23..b16
wim 41:111ca62e8a59 65 _nr_rows = (_type & LCD_T_ROW_MSK) >> LCD_T_ROW_SHFT;
wim 41:111ca62e8a59 66
wim 41:111ca62e8a59 67 // Addressing mode encoded in b27..b24
wim 30:033048611c01 68 _addr_mode = _type & LCD_T_ADR_MSK;
wim 37:ce348c002929 69
wim 37:ce348c002929 70 // Font table, encoded in LCDCtrl
wim 39:e9c2319de9c5 71 _font = _ctrl & LCD_C_FNT_MSK;
wim 14:0c32b66b14b8 72 }
wim 14:0c32b66b14b8 73
wim 21:9eb628d9e164 74 /** Init the LCD Controller(s)
wim 21:9eb628d9e164 75 * Clear display
wim 36:9f5f86dfd44a 76 * @param _LCDDatalength dl sets the datalength of data/commands
wim 36:9f5f86dfd44a 77 * @return none
wim 21:9eb628d9e164 78 */
wim 36:9f5f86dfd44a 79 void TextLCD_Base::_init(_LCDDatalength dl) {
wim 38:cbe275b0b647 80
reedas 42:1962dc501f94 81 ThisThread::sleep_for(100); // Wait 100ms to ensure powered up
wim 15:b70ebfffb258 82
wim 41:111ca62e8a59 83 #if (LCD_TWO_CTRL == 1)
wim 15:b70ebfffb258 84 // Select and configure second LCD controller when needed
wim 15:b70ebfffb258 85 if(_type==LCD40x4) {
wim 30:033048611c01 86 _ctrl_idx=_LCDCtrl_1; // Select 2nd controller
wim 36:9f5f86dfd44a 87 _initCtrl(dl); // Init 2nd controller
wim 15:b70ebfffb258 88 }
wim 41:111ca62e8a59 89 #endif
wim 15:b70ebfffb258 90
wim 15:b70ebfffb258 91 // Select and configure primary LCD controller
wim 27:22d5086f6ba6 92 _ctrl_idx=_LCDCtrl_0; // Select primary controller
wim 36:9f5f86dfd44a 93 _initCtrl(dl); // Init primary controller
wim 28:30fa94f7341c 94
wim 32:59c4b8f648d4 95 // Clear whole display and Reset Cursor location
wim 32:59c4b8f648d4 96 // Note: This will make sure that some 3-line displays that skip topline of a 4-line configuration
wim 32:59c4b8f648d4 97 // are cleared and init cursor correctly.
wim 32:59c4b8f648d4 98 cls();
wim 15:b70ebfffb258 99 }
wim 15:b70ebfffb258 100
wim 21:9eb628d9e164 101 /** Init the LCD controller
wim 36:9f5f86dfd44a 102 * Set number of lines, fonttype, no cursor etc
wim 36:9f5f86dfd44a 103 * The controller is accessed in 4-bit parallel mode either directly via mbed pins or through I2C or SPI expander.
wim 36:9f5f86dfd44a 104 * Some controllers also support native I2C or SPI interfaces.
wim 36:9f5f86dfd44a 105 *
wim 41:111ca62e8a59 106 * @param _LCDDatalength dl sets the 4 or 8 bit datalength of data/commands. Required for some native serial modes that dont work when DL=0.
wim 36:9f5f86dfd44a 107 * @return none
wim 30:033048611c01 108 *
wim 30:033048611c01 109 * Note: some configurations are commented out because they have not yet been tested due to lack of hardware
wim 21:9eb628d9e164 110 */
wim 36:9f5f86dfd44a 111 void TextLCD_Base::_initCtrl(_LCDDatalength dl) {
wim 32:59c4b8f648d4 112 int _bias_lines=0; // Set Bias and lines (Instr Set 1), temporary variable.
wim 32:59c4b8f648d4 113 int _lines=0; // Set lines (Ext Instr Set), temporary variable.
wim 36:9f5f86dfd44a 114
wim 26:bd897a001012 115 this->_setRS(false); // command mode
simon 1:ac48b187213c 116
wim 37:ce348c002929 117 if (dl == _LCD_DL_4) {
wim 37:ce348c002929 118 // The Controller could be in 8 bit mode (power-on reset) or in 4 bit mode (warm reboot) at this point.
wim 37:ce348c002929 119 // Follow this procedure to make sure the Controller enters the correct state. The hardware interface
wim 37:ce348c002929 120 // between the uP and the LCD can only write the 4 most significant bits (Most Significant Nibble, MSN).
wim 37:ce348c002929 121 // In 4 bit mode the LCD expects the MSN first, followed by the LSN.
wim 37:ce348c002929 122 //
wim 38:cbe275b0b647 123 // Current state: 8 bit mode | 4 bit mode, MSN is next | 4 bit mode, LSN is next
wim 37:ce348c002929 124 //-------------------------------------------------------------------------------------------------
wim 38:cbe275b0b647 125 _writeNibble(0x3); // set 8 bit mode (MSN) and dummy LSN, | set 8 bit mode (MSN), | set dummy LSN,
wim 38:cbe275b0b647 126 // remains in 8 bit mode | remains in 4 bit mode | remains in 4 bit mode
reedas 42:1962dc501f94 127 ThisThread::sleep_for(15); //
wim 37:ce348c002929 128
wim 38:cbe275b0b647 129 _writeNibble(0x3); // set 8 bit mode (MSN) and dummy LSN, | set dummy LSN, | set 8bit mode (MSN),
wim 38:cbe275b0b647 130 // remains in 8 bit mode | change to 8 bit mode | remains in 4 bit mode
reedas 42:1962dc501f94 131 ThisThread::sleep_for(15); //
wim 33:900a94bc7585 132
wim 38:cbe275b0b647 133 _writeNibble(0x3); // set 8 bit mode (MSN) and dummy LSN, | set 8 bit mode (MSN) and dummy LSN, | set dummy LSN,
wim 38:cbe275b0b647 134 // remains in 8 bit mode | remains in 8 bit mode | change to 8 bit mode
reedas 42:1962dc501f94 135 ThisThread::sleep_for(15); //
wim 37:ce348c002929 136
wim 37:ce348c002929 137 // Controller is now in 8 bit mode
wim 37:ce348c002929 138
wim 37:ce348c002929 139 _writeNibble(0x2); // Change to 4-bit mode (MSN), the LSN is undefined dummy
wim 37:ce348c002929 140 wait_us(40); // most instructions take 40us
wim 37:ce348c002929 141
wim 37:ce348c002929 142 // Controller is now in 4-bit mode
wim 37:ce348c002929 143 // Note: 4/8 bit mode is ignored for most native SPI and I2C devices. They dont use the parallel bus.
wim 37:ce348c002929 144 // However, _writeNibble() method is void anyway for native SPI and I2C devices.
wim 38:cbe275b0b647 145 }
wim 38:cbe275b0b647 146 else {
wim 38:cbe275b0b647 147 // Reset in 8 bit mode, final Function set will follow
wim 38:cbe275b0b647 148 _writeCommand(0x30); // Function set 0 0 1 DL=1 N F x x
reedas 42:1962dc501f94 149 ThisThread::sleep_for(1); // most instructions take 40us
wim 37:ce348c002929 150 }
wim 25:6162b31128c9 151
wim 29:a3663151aa65 152 // Device specific initialisations: DC/DC converter to generate VLCD or VLED, number of lines etc
wim 19:c747b9e2e7b8 153 switch (_ctrl) {
wim 32:59c4b8f648d4 154
wim 36:9f5f86dfd44a 155 case KS0073:
wim 36:9f5f86dfd44a 156 // Initialise Display configuration
wim 36:9f5f86dfd44a 157 switch (_type) {
wim 41:111ca62e8a59 158 // case LCD6x1:
wim 36:9f5f86dfd44a 159 case LCD8x1: //8x1 is a regular 1 line display
wim 41:111ca62e8a59 160 // case LCD8x2B: //8x1 is a 16x1 line display
wim 36:9f5f86dfd44a 161 case LCD12x1:
wim 36:9f5f86dfd44a 162 case LCD16x1:
wim 36:9f5f86dfd44a 163 case LCD20x1:
wim 36:9f5f86dfd44a 164 case LCD24x1:
wim 36:9f5f86dfd44a 165 // case LCD32x1: // EXT pin is High, extension driver needed
wim 41:111ca62e8a59 166 // case LCD40x1: // EXT pin is High, extension driver needed
wim 41:111ca62e8a59 167 // case LCD52x1: // EXT pin is High, extension driver needed
wim 41:111ca62e8a59 168 _function = dl | 0x02; // Set function, 0 0 1 DL, N, RE(0), DH, REV
wim 41:111ca62e8a59 169 // Note: 4 bit mode is NOT ignored for native SPI !
wim 41:111ca62e8a59 170 // DL=1 (8 bits bus), DL=0 (4 bits bus)
wim 41:111ca62e8a59 171 // N=0 (1-line mode), N=1 (2-line mode), dont care for 4 line mode
wim 41:111ca62e8a59 172 // RE=0 (Dis. Extended Regs, special mode for KS0073)
wim 41:111ca62e8a59 173 // DH=1 (Disp shift enable, special mode for KS0073)
wim 41:111ca62e8a59 174 // REV=0 (Reverse normal, special mode for KS0073)
wim 41:111ca62e8a59 175
wim 41:111ca62e8a59 176 _function_1 = dl | 0x04; // Set function, 0 0 1 DL, N, RE(1), BE, LP (Ext Regs)
wim 41:111ca62e8a59 177 // Note: 4 bit mode is NOT ignored for native SPI !
wim 41:111ca62e8a59 178 // DL=1 (8 bits bus), DL=0 (4 bits bus)
wim 41:111ca62e8a59 179 // N=0 (1-line mode), N=1 (2-line mode), dont care for 4 line mode
wim 41:111ca62e8a59 180 // RE=1 (Ena Extended Regs, special mode for KS0073)
wim 41:111ca62e8a59 181 // BE=0 (Blink Enable, CG/SEG RAM, special mode for KS0073)
wim 41:111ca62e8a59 182 // LP=0 (LP=1 Low power mode, LP=0 Normal)
wim 36:9f5f86dfd44a 183
wim 36:9f5f86dfd44a 184 _function_x = 0x00; // Ext Function set 0000 1 FW BW NW (Ext Regs)
wim 41:111ca62e8a59 185 // NW=0 (1,2 line), NW=1 (4 Line, special mode for KS0073)
wim 36:9f5f86dfd44a 186 break;
wim 36:9f5f86dfd44a 187
wim 36:9f5f86dfd44a 188 // case LCD12x3D: // Special mode for KS0073, KS0078 and PCF21XX
wim 36:9f5f86dfd44a 189 // case LCD12x3D1: // Special mode for KS0073, KS0078 and PCF21XX
wim 36:9f5f86dfd44a 190 case LCD12x4D: // Special mode for KS0073, KS0078 and PCF21XX
wim 36:9f5f86dfd44a 191 // case LCD16x3D: // Special mode for KS0073, KS0078
wim 41:111ca62e8a59 192 // case LCD16x3D1: // Special mode for KS0073, KS0078
wim 36:9f5f86dfd44a 193 // case LCD16x4D: // Special mode for KS0073, KS0078
wim 36:9f5f86dfd44a 194 case LCD20x4D: // Special mode for KS0073, KS0078
wim 41:111ca62e8a59 195 _function = dl | 0x02; // Set function, 0 0 1 DL, N, RE(0), DH, REV
wim 41:111ca62e8a59 196 // Note: 4 bit mode is NOT ignored for native SPI !
wim 41:111ca62e8a59 197 // DL=1 (8 bits bus), DL=0 (4 bits bus)
wim 41:111ca62e8a59 198 // N=0 (1-line mode), N=1 (2-line mode), dont care for 4 line mode
wim 41:111ca62e8a59 199 // RE=0 (Dis. Extended Regs, special mode for KS0073)
wim 41:111ca62e8a59 200 // DH=1 (Disp shift enable, special mode for KS0073)
wim 41:111ca62e8a59 201 // REV=0 (Reverse normal, special mode for KS0073)
wim 36:9f5f86dfd44a 202
wim 41:111ca62e8a59 203 _function_1 = dl | 0x04; // Set function, 0 0 1 DL, N, RE(1), BE, LP (Ext Regs)
wim 41:111ca62e8a59 204 // Note: 4 bit mode is NOT ignored for native SPI !
wim 41:111ca62e8a59 205 // DL=1 (8 bits bus), DL=0 (4 bits bus)
wim 41:111ca62e8a59 206 // N=0 (1-line mode), N=1 (2-line mode), dont care for 4 line mode
wim 41:111ca62e8a59 207 // RE=1 (Ena Extended Regs, special mode for KS0073)
wim 41:111ca62e8a59 208 // BE=0 (Blink Enable, CG/SEG RAM, special mode for KS0073)
wim 41:111ca62e8a59 209 // LP=0 (LP=1 Low power mode, LP=0 Normal)
wim 36:9f5f86dfd44a 210
wim 36:9f5f86dfd44a 211 _function_x = 0x01; // Ext Function set 0000 1 FW BW NW (Ext Regs)
wim 41:111ca62e8a59 212 // NW=0 (1,2 line), NW=1 (4 Line, special mode for KS0073)
wim 36:9f5f86dfd44a 213 break;
wim 36:9f5f86dfd44a 214
wim 41:111ca62e8a59 215 // case LCD6x2:
wim 41:111ca62e8a59 216 case LCD8x2:
wim 41:111ca62e8a59 217 case LCD16x2:
wim 41:111ca62e8a59 218 // case LCD16x1C:
wim 41:111ca62e8a59 219 case LCD20x2:
wim 41:111ca62e8a59 220 case LCD24x2:
wim 41:111ca62e8a59 221 case LCD32x2:
wim 41:111ca62e8a59 222 // All other LCD types are initialised as 2 Line displays
wim 41:111ca62e8a59 223 _function = dl | 0x0A; // Set function, 0 0 1 DL, N, RE(0), DH, REV
wim 41:111ca62e8a59 224 // Note: 4 bit mode is NOT ignored for native SPI !
wim 41:111ca62e8a59 225 // DL=1 (8 bits bus), DL=0 (4 bits bus)
wim 41:111ca62e8a59 226 // N=1 (2-line mode), N=0 (1-line mode)
wim 41:111ca62e8a59 227 // RE=0 (Dis. Extended Regs, special mode for KS0073)
wim 41:111ca62e8a59 228 // DH=1 (Disp shift enable, special mode for KS0073)
wim 41:111ca62e8a59 229 // REV=0 (Reverse normal, special mode for KS0073)
wim 36:9f5f86dfd44a 230
wim 41:111ca62e8a59 231 _function_1 = dl | 0x0C; // Set function, 0 0 1 DL, N, RE(1), BE, LP (Ext Regs)
wim 41:111ca62e8a59 232 // Note: 4 bit mode is NOT ignored for native SPI !
wim 41:111ca62e8a59 233 // DL=1 (8 bits bus), DL=0 (4 bits bus)
wim 41:111ca62e8a59 234 // N=1 (2 line mode), N=0 (1-line mode)
wim 41:111ca62e8a59 235 // RE=1 (Ena Extended Regs, special mode for KS0073)
wim 41:111ca62e8a59 236 // BE=0 (Blink Enable, CG/SEG RAM, special mode for KS0073)
wim 41:111ca62e8a59 237 // LP=0 (LP=1 Low power mode, LP=0 Normal)
wim 36:9f5f86dfd44a 238
wim 36:9f5f86dfd44a 239 _function_x = 0x00; // Ext Function set 0000 1 FW BW NW (Ext Regs)
wim 36:9f5f86dfd44a 240 // NW=0 (1,2 line), NW=1 (4 Line, special mode for KS0073)
wim 36:9f5f86dfd44a 241 break;
wim 41:111ca62e8a59 242
wim 41:111ca62e8a59 243 default:
wim 41:111ca62e8a59 244 error("Error: LCD Controller type does not support this Display type\n\r");
wim 41:111ca62e8a59 245 break;
wim 36:9f5f86dfd44a 246 } // switch type
wim 36:9f5f86dfd44a 247
wim 36:9f5f86dfd44a 248 // init special features
wim 36:9f5f86dfd44a 249 _writeCommand(0x20 | _function_1);// Function set 001 DL N RE(1) BE LP (Ext Regs)
wim 36:9f5f86dfd44a 250 // DL=0 (4 bits bus), DL=1 (8 bits mode)
wim 36:9f5f86dfd44a 251 // N=0 (1 line mode), N=1 (2 line mode)
wim 36:9f5f86dfd44a 252 // RE=1 (Ena Extended Regs, special mode for KS0073)
wim 36:9f5f86dfd44a 253 // BE=0 (Blink Enable/Disable, CG/SEG RAM, special mode for KS0073)
wim 36:9f5f86dfd44a 254 // LP=0 (LP=1 Low power mode, LP=0 Normal)
wim 36:9f5f86dfd44a 255
wim 36:9f5f86dfd44a 256 _writeCommand(0x08 | _function_x); // Ext Function set 0000 1 FW BW NW (Ext Regs)
wim 36:9f5f86dfd44a 257 // FW=0 (5-dot font, special mode for KS0073)
wim 36:9f5f86dfd44a 258 // BW=0 (Cur BW invert disable, special mode for KS0073)
wim 36:9f5f86dfd44a 259 // NW=0 (1,2 Line), NW=1 (4 line, special mode for KS0073)
wim 36:9f5f86dfd44a 260
wim 36:9f5f86dfd44a 261 _writeCommand(0x10); // Scroll/Shift set 0001 DS/HS4 DS/HS3 DS/HS2 DS/HS1 (Ext Regs)
wim 36:9f5f86dfd44a 262 // Dotscroll/Display shift enable (Special mode for KS0073)
wim 36:9f5f86dfd44a 263
wim 36:9f5f86dfd44a 264 _writeCommand(0x80); // Scroll Quantity set 1 0 SQ5 SQ4 SQ3 SQ2 SQ1 SQ0 (Ext Regs)
wim 36:9f5f86dfd44a 265 // Scroll quantity (Special mode for KS0073)
wim 36:9f5f86dfd44a 266
wim 36:9f5f86dfd44a 267 _writeCommand(0x20 | _function); // Function set 001 DL N RE(0) DH REV (Std Regs)
wim 36:9f5f86dfd44a 268 // DL=0 (4 bits bus), DL=1 (8 bits mode)
wim 36:9f5f86dfd44a 269 // N=0 (1 line mode), N=1 (2 line mode)
wim 36:9f5f86dfd44a 270 // RE=0 (Dis. Extended Regs, special mode for KS0073)
wim 36:9f5f86dfd44a 271 // DH=1 (Disp shift enable/disable, special mode for KS0073)
wim 36:9f5f86dfd44a 272 // REV=0 (Reverse/Normal, special mode for KS0073)
wim 36:9f5f86dfd44a 273 break; // case KS0073 Controller
wim 36:9f5f86dfd44a 274
wim 36:9f5f86dfd44a 275
wim 29:a3663151aa65 276 case KS0078:
wim 29:a3663151aa65 277 // Initialise Display configuration
wim 29:a3663151aa65 278 switch (_type) {
wim 29:a3663151aa65 279 case LCD8x1: //8x1 is a regular 1 line display
wim 29:a3663151aa65 280 case LCD8x2B: //8x2B is a special case of 16x1
wim 29:a3663151aa65 281 // case LCD12x1:
wim 29:a3663151aa65 282 case LCD16x1:
wim 30:033048611c01 283 // case LCD20x1:
wim 29:a3663151aa65 284 case LCD24x1:
wim 41:111ca62e8a59 285 _function = dl | 0x02; // Function set 001 DL N RE(0) DH REV (Std Regs)
wim 32:59c4b8f648d4 286 // DL=0 (4 bits bus)
wim 32:59c4b8f648d4 287 // N=0 (1 line mode), N=1 (2 line mode)
wim 32:59c4b8f648d4 288 // RE=0 (Dis. Extended Regs, special mode for KS0078)
wim 32:59c4b8f648d4 289 // DH=1 (Disp shift enable, special mode for KS0078)
wim 32:59c4b8f648d4 290 // REV=0 (Reverse normal, special mode for KS0078)
wim 32:59c4b8f648d4 291
wim 41:111ca62e8a59 292 _function_1 = dl | 0x04; // Function set 001 DL N RE(1) BE 0 (Ext Regs)
wim 32:59c4b8f648d4 293 // DL=0 (4 bits bus)
wim 32:59c4b8f648d4 294 // N=0 (1 line mode), N=1 (2 line mode)
wim 32:59c4b8f648d4 295 // RE=1 (Ena Extended Regs, special mode for KS0078)
wim 32:59c4b8f648d4 296 // BE=0 (Blink Enable, CG/SEG RAM, special mode for KS0078)
wim 32:59c4b8f648d4 297 // 0
wim 30:033048611c01 298
wim 32:59c4b8f648d4 299 _function_x = 0x00; // Ext Function set 0000 1 FW BW NW (Ext Regs)
wim 32:59c4b8f648d4 300 // NW=0 (1,2 line), NW=1 (4 Line, special mode for KS0078)
wim 29:a3663151aa65 301 break;
wim 29:a3663151aa65 302
wim 36:9f5f86dfd44a 303 // case LCD12x3D: // Special mode for KS0073, KS0078 and PCF21XX
wim 36:9f5f86dfd44a 304 // case LCD12x3D1: // Special mode for KS0073, KS0078 and PCF21XX
wim 36:9f5f86dfd44a 305 // case LCD12x4D: // Special mode for KS0073, KS0078 and PCF21XX
wim 36:9f5f86dfd44a 306 // case LCD16x3D: // Special mode for KS0073, KS0078
wim 36:9f5f86dfd44a 307 // case LCD16x4D: // Special mode for KS0073, KS0078
wim 36:9f5f86dfd44a 308 // case LCD20x4D: // Special mode for KS0073, KS0078
wim 30:033048611c01 309 // case LCD24x3D: // Special mode for KS0078
wim 30:033048611c01 310 // case LCD24x3D1: // Special mode for KS0078
wim 30:033048611c01 311 case LCD24x4D: // Special mode for KS0078
wim 41:111ca62e8a59 312 _function = dl | 0x02; // Function set 001 DL N RE(0) DH REV (Std Regs)
wim 32:59c4b8f648d4 313 // DL=0 (4 bits bus)
wim 32:59c4b8f648d4 314 // N=0 (dont care for 4 line mode)
wim 32:59c4b8f648d4 315 // RE=0 (Dis. Extended Regs, special mode for KS0078)
wim 32:59c4b8f648d4 316 // DH=1 (Disp shift enable, special mode for KS0078)
wim 32:59c4b8f648d4 317 // REV=0 (Reverse normal, special mode for KS0078)
wim 32:59c4b8f648d4 318
wim 41:111ca62e8a59 319 _function_1 = dl | 0x04; // Function set 001 DL N RE(1) BE 0 (Ext Regs)
wim 32:59c4b8f648d4 320 // DL=0 (4 bits bus)
wim 32:59c4b8f648d4 321 // N=0 (1 line mode), N=1 (2 line mode)
wim 32:59c4b8f648d4 322 // RE=1 (Ena Extended Regs, special mode for KS0078)
wim 32:59c4b8f648d4 323 // BE=0 (Blink Enable, CG/SEG RAM, special mode for KS0078)
wim 32:59c4b8f648d4 324 // 0
wim 29:a3663151aa65 325
wim 32:59c4b8f648d4 326 _function_x = 0x01; // Ext Function set 0000 1 FW BW NW (Ext Regs)
wim 32:59c4b8f648d4 327 // NW=0 (1,2 line), NW=1 (4 Line, special mode for KS0078)
wim 30:033048611c01 328 break;
wim 33:900a94bc7585 329
wim 41:111ca62e8a59 330 // case LCD6x2:
wim 41:111ca62e8a59 331 case LCD8x2:
wim 41:111ca62e8a59 332 case LCD16x2:
wim 41:111ca62e8a59 333 // case LCD16x1C:
wim 41:111ca62e8a59 334 case LCD20x2:
wim 41:111ca62e8a59 335 case LCD24x2:
wim 41:111ca62e8a59 336 case LCD32x2:
wim 41:111ca62e8a59 337 case LCD40x2:
wim 30:033048611c01 338 // All other LCD types are initialised as 2 Line displays (including LCD16x1C and LCD40x4)
wim 41:111ca62e8a59 339 _function = dl | 0x0A; // Function set 001 DL N RE(0) DH REV (Std Regs)
wim 32:59c4b8f648d4 340 // DL=0 (4 bits bus)
wim 32:59c4b8f648d4 341 // N=1 (1 line mode), N=1 (2 line mode)
wim 32:59c4b8f648d4 342 // RE=0 (Dis. Extended Regs, special mode for KS0078)
wim 32:59c4b8f648d4 343 // DH=1 (Disp shift enable, special mode for KS0078)
wim 32:59c4b8f648d4 344 // REV=0 (Reverse normal, special mode for KS0078)
wim 32:59c4b8f648d4 345
wim 41:111ca62e8a59 346 _function_1 = dl | 0x0C; // Function set 001 DL N RE(1) BE 0 (Ext Regs)
wim 32:59c4b8f648d4 347 // DL=0 (4 bits bus)
wim 32:59c4b8f648d4 348 // N=1 (1 line mode), N=1 (2 line mode)
wim 32:59c4b8f648d4 349 // RE=1 (Ena Extended Regs, special mode for KS0078)
wim 32:59c4b8f648d4 350 // BE=0 (Blink Enable, CG/SEG RAM, special mode for KS0078)
wim 32:59c4b8f648d4 351 // 0
wim 30:033048611c01 352
wim 32:59c4b8f648d4 353 _function_x = 0x00; // Ext Function set 0000 1 FW BW NW (Ext Regs)
wim 32:59c4b8f648d4 354 // NW=0 (1,2 line), NW=1 (4 Line, special mode for KS0078)
wim 29:a3663151aa65 355 break;
wim 41:111ca62e8a59 356
wim 41:111ca62e8a59 357 default:
wim 41:111ca62e8a59 358 error("Error: LCD Controller type does not support this Display type\n\r");
wim 41:111ca62e8a59 359 break;
wim 29:a3663151aa65 360 } // switch type
wim 29:a3663151aa65 361
wim 32:59c4b8f648d4 362 // init special features
wim 32:59c4b8f648d4 363 _writeCommand(0x20 | _function_1);// Function set 001 DL N RE(1) BE 0 (Ext Regs)
wim 32:59c4b8f648d4 364 // DL=0 (4 bits bus), DL=1 (8 bits mode)
wim 32:59c4b8f648d4 365 // N=0 (1 line mode), N=1 (2 line mode)
wim 32:59c4b8f648d4 366 // RE=1 (Ena Extended Regs, special mode for KS0078)
wim 32:59c4b8f648d4 367 // BE=0 (Blink Enable/Disable, CG/SEG RAM, special mode for KS0078)
wim 32:59c4b8f648d4 368 // 0
wim 32:59c4b8f648d4 369
wim 32:59c4b8f648d4 370 _writeCommand(0x08 | _function_x); // Ext Function set 0000 1 FW BW NW (Ext Regs)
wim 32:59c4b8f648d4 371 // FW=0 (5-dot font, special mode for KS0078)
wim 32:59c4b8f648d4 372 // BW=0 (Cur BW invert disable, special mode for KS0078)
wim 32:59c4b8f648d4 373 // NW=0 (1,2 Line), NW=1 (4 line, special mode for KS0078)
wim 32:59c4b8f648d4 374
wim 32:59c4b8f648d4 375 _writeCommand(0x10); // Scroll/Shift set 0001 DS/HS4 DS/HS3 DS/HS2 DS/HS1 (Ext Regs)
wim 32:59c4b8f648d4 376 // Dotscroll/Display shift enable (Special mode for KS0078)
wim 32:59c4b8f648d4 377
wim 32:59c4b8f648d4 378 _writeCommand(0x80); // Scroll Quantity set 1 0 SQ5 SQ4 SQ3 SQ2 SQ1 SQ0 (Ext Regs)
wim 32:59c4b8f648d4 379 // Scroll quantity (Special mode for KS0078)
wim 32:59c4b8f648d4 380
wim 32:59c4b8f648d4 381 _writeCommand(0x20 | _function); // Function set 001 DL N RE(0) DH REV (Std Regs)
wim 32:59c4b8f648d4 382 // DL=0 (4 bits bus), DL=1 (8 bits mode)
wim 32:59c4b8f648d4 383 // N=0 (1 line mode), N=1 (2 line mode)
wim 32:59c4b8f648d4 384 // RE=0 (Dis. Extended Regs, special mode for KS0078)
wim 32:59c4b8f648d4 385 // DH=1 (Disp shift enable/disable, special mode for KS0078)
wim 32:59c4b8f648d4 386 // REV=0 (Reverse/Normal, special mode for KS0078)
wim 29:a3663151aa65 387 break; // case KS0078 Controller
wim 29:a3663151aa65 388
wim 26:bd897a001012 389 case ST7032_3V3:
wim 26:bd897a001012 390 // ST7032 controller: Initialise Voltage booster for VLCD. VDD=3V3
wim 41:111ca62e8a59 391 // Note: very similar to SPLC792A
wim 26:bd897a001012 392 case ST7032_5V:
wim 32:59c4b8f648d4 393 // ST7032 controller: Disable Voltage booster for VLCD. VDD=5V
wim 41:111ca62e8a59 394
wim 29:a3663151aa65 395 // Initialise Display configuration
wim 29:a3663151aa65 396 switch (_type) {
wim 29:a3663151aa65 397 case LCD8x1: //8x1 is a regular 1 line display
wim 29:a3663151aa65 398 case LCD8x2B: //8x2B is a special case of 16x1
wim 29:a3663151aa65 399 // case LCD12x1:
wim 29:a3663151aa65 400 case LCD16x1:
wim 30:033048611c01 401 // case LCD20x1:
wim 32:59c4b8f648d4 402 case LCD24x1:
wim 32:59c4b8f648d4 403 _function = 0x00; // FUNCTION SET 0 0 1 DL=0 (4 bit), N=0 (1-line display mode), F=0 (5*7dot), 0, IS
wim 32:59c4b8f648d4 404 // Note: 4 bit mode is ignored for native SPI and I2C devices
wim 32:59c4b8f648d4 405 // Saved to allow switch between Instruction sets at later time
wim 32:59c4b8f648d4 406 break;
wim 28:30fa94f7341c 407
wim 32:59c4b8f648d4 408 case LCD12x3D: // Special mode for KS0078 and PCF21XX
wim 32:59c4b8f648d4 409 case LCD12x3D1: // Special mode for KS0078 and PCF21XX
wim 32:59c4b8f648d4 410 case LCD12x4D: // Special mode for KS0078 and PCF21XX
wim 33:900a94bc7585 411 case LCD16x3G: // Special mode for ST7036
wim 32:59c4b8f648d4 412 case LCD24x4D: // Special mode for KS0078
wim 32:59c4b8f648d4 413 error("Error: LCD Controller type does not support this Display type\n\r");
wim 30:033048611c01 414 break;
wim 29:a3663151aa65 415
wim 32:59c4b8f648d4 416 default:
wim 32:59c4b8f648d4 417 // All other LCD types are initialised as 2 Line displays
wim 32:59c4b8f648d4 418 _function = 0x08; // FUNCTION SET 0 0 1 DL=0 (4 bit), N=1 (2-line display mode), F=0 (5*7dot), 0, IS
wim 32:59c4b8f648d4 419 // Note: 4 bit mode is ignored for native SPI and I2C devices
wim 32:59c4b8f648d4 420 // Saved to allow switch between Instruction sets at later time
wim 32:59c4b8f648d4 421 break;
wim 32:59c4b8f648d4 422 } // switch type
wim 32:59c4b8f648d4 423
wim 32:59c4b8f648d4 424 // init special features
wim 33:900a94bc7585 425 _writeCommand(0x20 | _function | 0x01); // Set function, 0 0 1 DL N F 0 IS=1 Select Instr Set = 1
wim 33:900a94bc7585 426
wim 33:900a94bc7585 427 _writeCommand(0x1C); // Internal OSC frequency adjustment Framefreq=183HZ, Bias will be 1/4 (Instr Set=1)
wim 41:111ca62e8a59 428 // Note: Bias and Osc register not available on SPLC792A
wim 32:59c4b8f648d4 429
wim 32:59c4b8f648d4 430 _contrast = LCD_ST7032_CONTRAST;
wim 32:59c4b8f648d4 431 _writeCommand(0x70 | (_contrast & 0x0F)); // Set Contrast Low bits, 0 1 1 1 C3 C2 C1 C0 (IS=1)
wim 32:59c4b8f648d4 432
wim 32:59c4b8f648d4 433
wim 32:59c4b8f648d4 434 if (_ctrl == ST7032_3V3) {
wim 41:111ca62e8a59 435 // _icon_power = 0x04; // Icon display off (Bit3=0), Booster circuit is turned on (Bit2=1) (IS=1)
wim 41:111ca62e8a59 436 _icon_power = 0x0C; // Icon display on (Bit3=1), Booster circuit is turned on (Bit2=1) (IS=1)
wim 41:111ca62e8a59 437 // Note: Booster circuit always on for SPLC792A, Bit2 is dont care
wim 32:59c4b8f648d4 438 // Saved to allow contrast change at later time
wim 32:59c4b8f648d4 439 }
wim 32:59c4b8f648d4 440 else {
wim 36:9f5f86dfd44a 441 // _icon_power = 0x00; // Icon display off, Booster circuit is turned off (IS=1)
wim 36:9f5f86dfd44a 442 _icon_power = 0x08; // Icon display on, Booster circuit is turned off (IS=1)
wim 32:59c4b8f648d4 443 // Saved to allow contrast change at later time
wim 32:59c4b8f648d4 444 }
wim 32:59c4b8f648d4 445 _writeCommand(0x50 | _icon_power | ((_contrast >> 4) & 0x03)); // Set Icon, Booster and Contrast High bits, 0 1 0 1 Ion Bon C5 C4 (IS=1)
reedas 42:1962dc501f94 446 ThisThread::sleep_for(10); // Wait 10ms to ensure powered up
wim 32:59c4b8f648d4 447
wim 32:59c4b8f648d4 448 _writeCommand(0x68 | (LCD_ST7032_RAB & 0x07)); // Voltage follower, 0 1 1 0 FOn=1, Ampl ratio Rab2=1, Rab1=0, Rab0=0 (IS=1)
reedas 42:1962dc501f94 449 ThisThread::sleep_for(10); // Wait 10ms to ensure powered up
wim 32:59c4b8f648d4 450
wim 32:59c4b8f648d4 451 _writeCommand(0x20 | _function); // Select Instruction Set = 0
wim 32:59c4b8f648d4 452
wim 32:59c4b8f648d4 453 break; // case ST7032_3V3 Controller
wim 32:59c4b8f648d4 454 // case ST7032_5V Controller
wim 32:59c4b8f648d4 455
wim 32:59c4b8f648d4 456 case ST7036_3V3:
wim 32:59c4b8f648d4 457 // ST7036 controller: Initialise Voltage booster for VLCD. VDD=3V3
wim 32:59c4b8f648d4 458 // Note: supports 1,2 (LCD_T_A) or 3 lines (LCD_T_G)
wim 32:59c4b8f648d4 459 case ST7036_5V:
wim 32:59c4b8f648d4 460 // ST7036 controller: Disable Voltage booster for VLCD. VDD=5V
wim 32:59c4b8f648d4 461 // Note: supports 1,2 (LCD_T_A) or 3 lines (LCD_T_G)
wim 32:59c4b8f648d4 462
wim 32:59c4b8f648d4 463 // Initialise Display configuration
wim 32:59c4b8f648d4 464 switch (_type) {
wim 32:59c4b8f648d4 465 case LCD8x1: //8x1 is a regular 1 line display
wim 32:59c4b8f648d4 466 case LCD8x2B: //8x2D is a special case of 16x1
wim 32:59c4b8f648d4 467 // case LCD12x1:
wim 32:59c4b8f648d4 468 case LCD16x1:
wim 32:59c4b8f648d4 469 case LCD24x1:
wim 32:59c4b8f648d4 470 _function = 0x00; // Set function, 0 0 1 DL=0 (4-bit Databus), N=0 (1 Line), DH=0 (5x7font), IS2, IS1 (Select Instruction Set)
wim 32:59c4b8f648d4 471 // Note: 4 bit mode is ignored for native SPI and I2C devices
wim 32:59c4b8f648d4 472 // Saved to allow switch between Instruction sets at later time
wim 32:59c4b8f648d4 473
wim 32:59c4b8f648d4 474 _bias_lines = 0x04; // Bias: 1/5, 1 or 2-Lines LCD
wim 32:59c4b8f648d4 475 break;
wim 32:59c4b8f648d4 476
wim 32:59c4b8f648d4 477 // case LCD12x3G: // Special mode for ST7036
wim 32:59c4b8f648d4 478 case LCD16x3G: // Special mode for ST7036
wim 32:59c4b8f648d4 479 _function = 0x08; // Set function, 0 0 1 DL=0 (4-bit Databus), N=1 (2 Line), DH=0 (5x7font), IS2,IS1 (Select Instruction Set)
wim 32:59c4b8f648d4 480 // Note: 4 bit mode is ignored for native SPI and I2C devices
wim 32:59c4b8f648d4 481 // Saved to allow switch between Instruction sets at later time
wim 32:59c4b8f648d4 482
wim 32:59c4b8f648d4 483 _bias_lines = 0x05; // Bias: 1/5, 3-Lines LCD
wim 32:59c4b8f648d4 484 break;
wim 32:59c4b8f648d4 485
wim 32:59c4b8f648d4 486 // case LCD12x3D1: // Special mode for KS0078 and PCF21XX
wim 32:59c4b8f648d4 487 // case LCD16x3D1: // Special mode for SSD1803
wim 30:033048611c01 488 case LCD12x4D: // Special mode for PCF2116
wim 30:033048611c01 489 case LCD24x4D: // Special mode for KS0078
wim 30:033048611c01 490 error("Error: LCD Controller type does not support this Display type\n\r");
wim 29:a3663151aa65 491 break;
wim 28:30fa94f7341c 492
wim 29:a3663151aa65 493 default:
wim 32:59c4b8f648d4 494 // All other LCD types are initialised as 2 Line displays (including LCD16x1C and LCD40x4)
wim 32:59c4b8f648d4 495 _function = 0x08; // Set function, 0 0 1 DL=0 (4-bit Databus), N=1 (2 Line), DH=0 (5x7font), IS2,IS1 (Select Instruction Set)
wim 32:59c4b8f648d4 496 // Note: 4 bit mode is ignored for native SPI and I2C devices
wim 32:59c4b8f648d4 497 // Saved to allow switch between Instruction sets at later time
wim 32:59c4b8f648d4 498
wim 32:59c4b8f648d4 499 _bias_lines = 0x04; // Bias: 1/5, 1 or 2-Lines LCD
wim 32:59c4b8f648d4 500 break;
wim 32:59c4b8f648d4 501 } // switch type
wim 32:59c4b8f648d4 502
wim 29:a3663151aa65 503
wim 32:59c4b8f648d4 504 // init special features
wim 33:900a94bc7585 505 _writeCommand(0x20 | _function | 0x01); // Set function, IS2,IS1 = 01 (Select Instr Set = 1)
wim 32:59c4b8f648d4 506 _writeCommand(0x10 | _bias_lines); // Set Bias and 1,2 or 3 lines (Instr Set 1)
wim 29:a3663151aa65 507
wim 32:59c4b8f648d4 508 _contrast = LCD_ST7036_CONTRAST;
wim 32:59c4b8f648d4 509 _writeCommand(0x70 | (_contrast & 0x0F)); // Set Contrast, 0 1 1 1 C3 C2 C1 C0 (Instr Set 1)
wim 32:59c4b8f648d4 510
wim 32:59c4b8f648d4 511 if (_ctrl == ST7036_3V3) {
wim 36:9f5f86dfd44a 512 _icon_power = 0x0C; // Set Icon, Booster, Contrast High bits, 0 1 0 1 Ion=1 Bon=1 C5 C4 (Instr Set 1)
wim 36:9f5f86dfd44a 513 // _icon_power = 0x04; // Set Icon, Booster, Contrast High bits, 0 1 0 1 Ion=0 Bon=1 C5 C4 (Instr Set 1)
wim 32:59c4b8f648d4 514 // Saved to allow contrast change at later time
wim 32:59c4b8f648d4 515 }
wim 32:59c4b8f648d4 516 else {
wim 36:9f5f86dfd44a 517 _icon_power = 0x08; // Set Icon, Booster, Contrast High bits, 0 1 0 1 Ion=1 Bon=0 C5 C4 (Instr Set 1)
wim 36:9f5f86dfd44a 518 // _icon_power = 0x00; // Set Icon, Booster, Contrast High bits, 0 1 0 1 Ion=0 Bon=0 C5 C4 (Instr Set 1)
wim 32:59c4b8f648d4 519 }
wim 29:a3663151aa65 520
wim 32:59c4b8f648d4 521 _writeCommand(0x50 | _icon_power | ((_contrast >> 4) & 0x03)); // Set Contrast C5, C4 (Instr Set 1)
reedas 42:1962dc501f94 522 ThisThread::sleep_for(10); // Wait 10ms to ensure powered up
wim 32:59c4b8f648d4 523
wim 32:59c4b8f648d4 524 _writeCommand(0x68 | (LCD_ST7036_RAB & 0x07)); // Voltagefollower On = 1, Ampl ratio Rab2, Rab1, Rab0 = 1 0 1 (Instr Set 1)
reedas 42:1962dc501f94 525 ThisThread::sleep_for(10); // Wait 10ms to ensure powered up
wim 28:30fa94f7341c 526
wim 32:59c4b8f648d4 527 _writeCommand(0x20 | _function); // Set function, IS2,IS1 = 00 (Select Instruction Set = 0)
wim 32:59c4b8f648d4 528
wim 32:59c4b8f648d4 529 break; // case ST7036_3V3 Controller
wim 32:59c4b8f648d4 530 // case ST7036_5V Controller
wim 36:9f5f86dfd44a 531
wim 36:9f5f86dfd44a 532 case ST7070:
wim 36:9f5f86dfd44a 533 // Initialise Display configuration
wim 36:9f5f86dfd44a 534 switch (_type) {
wim 36:9f5f86dfd44a 535 case LCD8x1: //8x1 is a regular 1 line display
wim 36:9f5f86dfd44a 536 case LCD8x2B: //8x2D is a special case of 16x1
wim 36:9f5f86dfd44a 537 // case LCD12x1:
wim 36:9f5f86dfd44a 538 case LCD16x1:
wim 36:9f5f86dfd44a 539 case LCD24x1:
wim 36:9f5f86dfd44a 540 _function = dl | 0x00; // Set function, 0 0 1 DL=0 (4-bit Databus), N=0 (1 Line), EXT=0, x, x
wim 36:9f5f86dfd44a 541 // Note: 4 bit mode is NOT ignored for native SPI !
wim 36:9f5f86dfd44a 542 // Saved to allow switch between Instruction sets at later time
wim 36:9f5f86dfd44a 543 break;
wim 36:9f5f86dfd44a 544
wim 36:9f5f86dfd44a 545 // case LCD12x3D1: // Special mode for KS0078 and PCF21XX
wim 36:9f5f86dfd44a 546 // case LCD16x3D1: // Special mode for SSD1803
wim 36:9f5f86dfd44a 547 case LCD12x4D: // Special mode for PCF2116
wim 36:9f5f86dfd44a 548 case LCD24x4D: // Special mode for KS0078
wim 36:9f5f86dfd44a 549 // case LCD12x3G: // Special mode for ST7036
wim 36:9f5f86dfd44a 550 case LCD16x3G: // Special mode for ST7036
wim 36:9f5f86dfd44a 551 error("Error: LCD Controller type does not support this Display type\n\r");
wim 36:9f5f86dfd44a 552 break;
wim 36:9f5f86dfd44a 553
wim 36:9f5f86dfd44a 554 default:
wim 36:9f5f86dfd44a 555 // All other LCD types are initialised as 2 Line displays (including LCD16x1C and LCD40x4)
wim 36:9f5f86dfd44a 556 _function = dl | 0x08; // Set function, 0 0 1 DL, N=1 (2 Line), EXT=0, x, x
wim 36:9f5f86dfd44a 557 // Note: 4 bit mode is NOT ignored for native SPI !
wim 36:9f5f86dfd44a 558 // Saved to allow switch between Instruction sets at later time
wim 36:9f5f86dfd44a 559 break;
wim 36:9f5f86dfd44a 560 } // switch type
wim 36:9f5f86dfd44a 561
wim 36:9f5f86dfd44a 562 // _writeCommand(0x00); // NOP, make sure to sync SPI
wim 36:9f5f86dfd44a 563
wim 36:9f5f86dfd44a 564 // init special features
wim 36:9f5f86dfd44a 565 _writeCommand(0x20 | _function | 0x04); // Set function, 0 0 1 DL N EXT=1 x x (Select Instr Set = 1)
wim 36:9f5f86dfd44a 566
wim 36:9f5f86dfd44a 567 _writeCommand(0x04 | 0x00); // Set Bias resistors 0 0 0 0 0 1 Rb1,Rb0= 0 0 (Extern Res) (Instr Set 1)
wim 36:9f5f86dfd44a 568
wim 36:9f5f86dfd44a 569 _writeCommand(0x40 | 0x00); // COM/SEG directions 0 1 0 0 C1, C2, S1, S2 (Instr Set 1)
wim 36:9f5f86dfd44a 570 // C1=1: Com1-8 -> Com8-1; C2=1: Com9-16 -> Com16-9
wim 36:9f5f86dfd44a 571 // S1=1: Seg1-40 -> Seg40-1; S2=1: Seg41-80 -> Seg80-41
wim 36:9f5f86dfd44a 572
wim 36:9f5f86dfd44a 573 _writeCommand(0x20 | _function); // Set function, EXT=0 (Select Instr Set = 0)
wim 36:9f5f86dfd44a 574
wim 36:9f5f86dfd44a 575 break; // case ST7070 Controller
wim 36:9f5f86dfd44a 576
wim 32:59c4b8f648d4 577 case SSD1803_3V3:
wim 32:59c4b8f648d4 578 // SSD1803 controller: Initialise Voltage booster for VLCD. VDD=3V3
wim 32:59c4b8f648d4 579 // Note: supports 1,2, 3 or 4 lines
wim 32:59c4b8f648d4 580 // case SSD1803_5V:
wim 32:59c4b8f648d4 581 // SSD1803 controller: No Voltage booster for VLCD. VDD=5V
wim 32:59c4b8f648d4 582
wim 29:a3663151aa65 583 // Initialise Display configuration
wim 29:a3663151aa65 584 switch (_type) {
wim 29:a3663151aa65 585 case LCD8x1: //8x1 is a regular 1 line display
wim 30:033048611c01 586 case LCD8x2B: //8x2D is a special case of 16x1
wim 29:a3663151aa65 587 // case LCD12x1:
wim 29:a3663151aa65 588 case LCD16x1:
wim 29:a3663151aa65 589 case LCD24x1:
wim 32:59c4b8f648d4 590 _function = 0x00; // Set function 0 0 1 DL N DH RE(0) IS
wim 32:59c4b8f648d4 591 // Saved to allow switch between Instruction sets at later time
wim 32:59c4b8f648d4 592 // DL=0 4-bit Databus,
wim 32:59c4b8f648d4 593 // Note: 4 bit mode is ignored for native SPI and I2C devices
wim 32:59c4b8f648d4 594 // N=0 1 Line / 3 Line
wim 32:59c4b8f648d4 595 // DH=0 Double Height disable
wim 32:59c4b8f648d4 596 // IS=0
wim 32:59c4b8f648d4 597
wim 33:900a94bc7585 598 _function_1 = 0x02; // Set function, 0 0 1 DL N BE RE(1) REV
wim 32:59c4b8f648d4 599 // Saved to allow switch between Instruction sets at later time
wim 32:59c4b8f648d4 600 // DL=0 4-bit Databus,
wim 32:59c4b8f648d4 601 // Note: 4 bit mode is ignored for native SPI and I2C devices
wim 32:59c4b8f648d4 602 // N=0 1 Line / 3 Line
wim 32:59c4b8f648d4 603 // BE=0 Blink Enable off, special feature of SSD1803
wim 32:59c4b8f648d4 604 // REV=0 Reverse off, special feature of SSD1803
wim 32:59c4b8f648d4 605
wim 32:59c4b8f648d4 606 _lines = 0x00; // Ext function set 0 0 0 0 1 FW BW NW
wim 32:59c4b8f648d4 607 // NW=0 1-Line LCD (N=0)
wim 29:a3663151aa65 608 break;
wim 32:59c4b8f648d4 609
wim 33:900a94bc7585 610 case LCD12x3D: // Special mode for KS0078 and PCF21XX
wim 32:59c4b8f648d4 611 // case LCD12x3D1: // Special mode for KS0078 and PCF21XX
wim 33:900a94bc7585 612 case LCD16x3D: // Special mode for KS0078
wim 32:59c4b8f648d4 613 // case LCD16x3D1: // Special mode for SSD1803
wim 32:59c4b8f648d4 614 // case LCD20x3D: // Special mode for SSD1803
wim 32:59c4b8f648d4 615 _function = 0x00; // Set function 0 0 1 DL N DH RE(0) IS
wim 32:59c4b8f648d4 616 // Saved to allow switch between Instruction sets at later time
wim 32:59c4b8f648d4 617 // DL=0 4-bit Databus,
wim 32:59c4b8f648d4 618 // Note: 4 bit mode is ignored for native SPI and I2C devices
wim 32:59c4b8f648d4 619 // N=0 1 Line / 3 Line
wim 32:59c4b8f648d4 620 // DH=0 Double Height disable
wim 32:59c4b8f648d4 621 // IS=0
wim 32:59c4b8f648d4 622
wim 33:900a94bc7585 623 _function_1 = 0x02; // Set function, 0 0 1 DL N BE RE(1) REV
wim 32:59c4b8f648d4 624 // Saved to allow switch between Instruction sets at later time
wim 32:59c4b8f648d4 625 // DL=0 4-bit Databus,
wim 32:59c4b8f648d4 626 // Note: 4 bit mode is ignored for native SPI and I2C devices
wim 32:59c4b8f648d4 627 // N=0 1 Line / 3 Line
wim 32:59c4b8f648d4 628 // BE=0 Blink Enable off, special feature of SSD1803
wim 32:59c4b8f648d4 629 // REV=0 Reverse off, special feature of SSD1803
wim 32:59c4b8f648d4 630
wim 32:59c4b8f648d4 631 _lines = 0x00; // Ext function set 0 0 0 0 1 FW BW NW
wim 32:59c4b8f648d4 632 // NW=1 3-Line LCD (N=0)
wim 29:a3663151aa65 633 break;
wim 30:033048611c01 634
wim 39:e9c2319de9c5 635 // case LCD10x2D: // Special mode for SSD1803, 4-line mode but switch to double height font
wim 39:e9c2319de9c5 636 case LCD10x4D: // Special mode for SSD1803
wim 32:59c4b8f648d4 637 case LCD20x4D: // Special mode for SSD1803
wim 32:59c4b8f648d4 638 _function = 0x08; // Set function 0 0 1 DL N DH RE(0) IS
wim 32:59c4b8f648d4 639 // Saved to allow switch between Instruction sets at later time
wim 32:59c4b8f648d4 640 // DL=0 4-bit Databus,
wim 32:59c4b8f648d4 641 // Note: 4 bit mode is ignored for native SPI and I2C devices
wim 32:59c4b8f648d4 642 // N=1 4 Line
wim 32:59c4b8f648d4 643 // DH=0 Double Height disable
wim 32:59c4b8f648d4 644 // IS=0
wim 32:59c4b8f648d4 645
wim 33:900a94bc7585 646 _function_1 = 0x0A; // Set function, 0 0 1 DL N BE RE(1) REV
wim 32:59c4b8f648d4 647 // Saved to allow switch between Instruction sets at later time
wim 32:59c4b8f648d4 648 // DL=0 4-bit Databus,
wim 32:59c4b8f648d4 649 // Note: 4 bit mode is ignored for native SPI and I2C devices
wim 32:59c4b8f648d4 650 // N=1 4 Line
wim 32:59c4b8f648d4 651 // BE=0 Blink Enable off, special feature of SSD1803
wim 32:59c4b8f648d4 652 // REV=0 Reverse off, special feature of SSD1803
wim 32:59c4b8f648d4 653
wim 32:59c4b8f648d4 654 _lines = 0x01; // Ext function set 0 0 0 0 1 FW BW NW
wim 32:59c4b8f648d4 655 // NW=1 4-Line LCD (N=1)
wim 32:59c4b8f648d4 656 break;
wim 32:59c4b8f648d4 657
wim 33:900a94bc7585 658 case LCD16x3G: // Special mode for ST7036
wim 32:59c4b8f648d4 659 case LCD24x4D: // Special mode for KS0078
wim 30:033048611c01 660 error("Error: LCD Controller type does not support this Display type\n\r");
wim 30:033048611c01 661 break;
wim 30:033048611c01 662
wim 29:a3663151aa65 663 default:
wim 30:033048611c01 664 // All other LCD types are initialised as 2 Line displays (including LCD16x1C and LCD40x4)
wim 32:59c4b8f648d4 665 _function = 0x08; // Set function 0 0 1 DL N DH RE(0) IS
wim 32:59c4b8f648d4 666 // Saved to allow switch between Instruction sets at later time
wim 32:59c4b8f648d4 667 // DL=0 4-bit Databus,
wim 32:59c4b8f648d4 668 // Note: 4 bit mode is ignored for native SPI and I2C devices
wim 32:59c4b8f648d4 669 // N=1 2 line / 4 Line
wim 32:59c4b8f648d4 670 // DH=0 Double Height disable
wim 36:9f5f86dfd44a 671 // RE=0
wim 32:59c4b8f648d4 672 // IS=0
wim 29:a3663151aa65 673
wim 33:900a94bc7585 674 _function_1 = 0x0A; // Set function, 0 0 1 DL N BE RE(1) REV
wim 32:59c4b8f648d4 675 // Saved to allow switch between Instruction sets at later time
wim 32:59c4b8f648d4 676 // DL=0 4-bit Databus,
wim 32:59c4b8f648d4 677 // Note: 4 bit mode is ignored for native SPI and I2C devices
wim 32:59c4b8f648d4 678 // N=1 2 line / 4 Line
wim 32:59c4b8f648d4 679 // BE=0 Blink Enable off, special feature of SSD1803
wim 36:9f5f86dfd44a 680 // RE=1
wim 32:59c4b8f648d4 681 // REV=0 Reverse off, special feature of SSD1803
wim 32:59c4b8f648d4 682
wim 32:59c4b8f648d4 683 _lines = 0x00; // Ext function set 0 0 0 0 1 FW BW NW
wim 32:59c4b8f648d4 684 // NW=0 2-Line LCD (N=1)
wim 32:59c4b8f648d4 685 break;
wim 32:59c4b8f648d4 686 } // switch type
wim 32:59c4b8f648d4 687
wim 32:59c4b8f648d4 688
wim 32:59c4b8f648d4 689 // init special features
wim 33:900a94bc7585 690 _writeCommand(0x20 | _function_1); // Set function, 0 0 1 DL N BE RE(1) REV
wim 32:59c4b8f648d4 691 // Select Extended Instruction Set
wim 33:900a94bc7585 692
wim 33:900a94bc7585 693 _writeCommand(0x06); // Set ext entry mode, 0 0 0 0 0 1 BDC=1 COM1-32, BDS=0 SEG100-1 "Bottom View" (Ext Instr Set)
wim 33:900a94bc7585 694 // _writeCommand(0x05); // Set ext entry mode, 0 0 0 0 0 1 BDC=0 COM32-1, BDS=1 SEG1-100 "Top View" (Ext Instr Set)
reedas 42:1962dc501f94 695 ThisThread::sleep_for(5); // Wait to ensure completion or SSD1803 fails to set Top/Bottom after reset..
wim 33:900a94bc7585 696
wim 33:900a94bc7585 697 _writeCommand(0x08 | _lines); // Set ext function 0 0 0 0 1 FW BW NW 1,2,3 or 4 lines (Ext Instr Set)
wim 32:59c4b8f648d4 698
wim 32:59c4b8f648d4 699 _writeCommand(0x10); // Double Height and Bias, 0 0 0 1 UD2=0, UD1=0, BS1=0 Bias 1/5, DH=0 (Ext Instr Set)
wim 32:59c4b8f648d4 700
wim 32:59c4b8f648d4 701 // _writeCommand(0x76); // Set TC Control, 0 1 1 1 0 1 1 0 (Ext Instr Set)
wim 32:59c4b8f648d4 702 // _writeData(0x02); // Set TC data, 0 0 0 0 0 TC2,TC1,TC0 = 0 1 0 (Ext Instr Set)
wim 32:59c4b8f648d4 703
wim 32:59c4b8f648d4 704 _writeCommand(0x20 | _function | 0x01); // Set function, 0 0 1 DL N DH RE(0) IS=1 Select Instruction Set 1
wim 32:59c4b8f648d4 705 // Select Std Instr set, Select IS=1
wim 32:59c4b8f648d4 706
wim 32:59c4b8f648d4 707 _contrast = LCD_SSD1_CONTRAST;
wim 32:59c4b8f648d4 708 _writeCommand(0x70 | (_contrast & 0x0F)); // Set Contrast 0 1 1 1 C3, C2, C1, C0 (Instr Set 1)
wim 32:59c4b8f648d4 709
wim 36:9f5f86dfd44a 710 // _icon_power = 0x04; // Icon off, Booster on (Instr Set 1)
wim 36:9f5f86dfd44a 711 _icon_power = 0x0C; // Icon on, Booster on (Instr Set 1)
wim 32:59c4b8f648d4 712 // Saved to allow contrast change at later time
wim 32:59c4b8f648d4 713 _writeCommand(0x50 | _icon_power | ((_contrast >> 4) & 0x03)); // Set Power, Icon and Contrast, 0 1 0 1 Ion Bon C5 C4 (Instr Set 1)
reedas 42:1962dc501f94 714 ThisThread::sleep_for(10); // Wait 10ms to ensure powered up
wim 32:59c4b8f648d4 715
wim 32:59c4b8f648d4 716 _writeCommand(0x68 | (LCD_SSD1_RAB & 0x07)); // Set Voltagefollower 0 1 1 0 Don = 1, Ampl ratio Rab2, Rab1, Rab0 = 1 1 0 (Instr Set 1)
reedas 42:1962dc501f94 717 ThisThread::sleep_for(10); // Wait 10ms to ensure powered up
wim 32:59c4b8f648d4 718
wim 33:900a94bc7585 719 _writeCommand(0x20 | _function_1); // Set function, 0 0 1 DL N BE RE(1) REV
wim 32:59c4b8f648d4 720 // Select Extended Instruction Set 1
wim 32:59c4b8f648d4 721 _writeCommand(0x10); // Shift/Scroll enable, 0 0 0 1 DS4/HS4 DS3/HS3 DS2/HS2 DS1/HS1 (Ext Instr Set 1)
wim 32:59c4b8f648d4 722
wim 32:59c4b8f648d4 723
wim 32:59c4b8f648d4 724 _writeCommand(0x20 | _function); // Set function, 0 0 1 DL N DH RE(0) IS=0 Select Instruction Set 0
wim 32:59c4b8f648d4 725 // Select Std Instr set, Select IS=0
wim 32:59c4b8f648d4 726
wim 32:59c4b8f648d4 727 break; // case SSD1803 Controller
wim 32:59c4b8f648d4 728
wim 29:a3663151aa65 729
wim 32:59c4b8f648d4 730 // Note1: The PCF21XX family of controllers has several types that dont have an onboard voltage generator for V-LCD.
wim 32:59c4b8f648d4 731 // You must supply this LCD voltage externally and not try to enable VGen.
wim 32:59c4b8f648d4 732 // Note2: The early versions of PCF2116 controllers (eg PCF2116C) can not generate sufficiently negative voltage for the LCD at a VDD of 3V3.
wim 32:59c4b8f648d4 733 // You must supply this voltage externally and not enable VGen or you must use a higher VDD (e.g. 5V) and enable VGen.
wim 32:59c4b8f648d4 734 // More recent versions of the controller (eg PCF2116K) have an improved VGen that will work with 3V3.
wim 32:59c4b8f648d4 735 // Note3: See datasheet, PCF2116 and other types provide a V0 pin to control the LCD contrast voltage that is provided by VGen. This pins allows
wim 32:59c4b8f648d4 736 // contrast control similar to that of pin 3 on the standard 14pin LCD module connector.
wim 32:59c4b8f648d4 737 // You can disable VGen by connecting Vo to VDD. VLCD will then be used directly as LCD voltage.
wim 32:59c4b8f648d4 738 // Note4: PCF2113 and PCF2119 are different wrt to VLCD generator! There is no V0 pin. The contrast voltage is software controlled by setting the VA and VB registers.
wim 32:59c4b8f648d4 739 // Vgen is automatically switched off when the contrast voltage VA or VB is set to 0x00. Note that certain limits apply to allowed values for VA and VB.
wim 32:59c4b8f648d4 740 // Note5: See datasheet, members of the PCF21XX family support different numbers of rows/columns. Not all can support 3 or 4 rows.
wim 32:59c4b8f648d4 741 // Note6: See datasheet, the PCF21XX-C and PCF21XX-K use a non-standard character set. This may result is strange looking text when not corrected..
wim 32:59c4b8f648d4 742
wim 34:e5a0dcb43ecc 743 case PCF2103_3V3:
wim 34:e5a0dcb43ecc 744 // PCF2103 controller: No Voltage generator for VLCD, VDD=3V3..5V, VLCD input controls contrast voltage.
wim 34:e5a0dcb43ecc 745 // Initialise Display configuration
wim 34:e5a0dcb43ecc 746 switch (_type) {
wim 34:e5a0dcb43ecc 747 case LCD24x1:
wim 34:e5a0dcb43ecc 748 _function = 0x00; //FUNCTION SET 0 0 1 DL=0 4-bit, 0, M=0 1-line/24 chars display mode, 0, H=0
wim 34:e5a0dcb43ecc 749 //Note: 4 bit mode is ignored for I2C mode
wim 34:e5a0dcb43ecc 750 break;
wim 34:e5a0dcb43ecc 751
wim 34:e5a0dcb43ecc 752 // case LCD12x1D: //Special mode for PCF21XX, Only top line used
wim 34:e5a0dcb43ecc 753 case LCD12x2:
wim 34:e5a0dcb43ecc 754 _function = 0x04; //FUNCTION SET 0 0 1 DL=0 4-bit, 0, M=1 2-line/12 chars display mode, 0, H=0
wim 34:e5a0dcb43ecc 755 //Note: 4 bit mode is ignored for I2C mode
wim 34:e5a0dcb43ecc 756 break;
wim 34:e5a0dcb43ecc 757
wim 34:e5a0dcb43ecc 758 default:
wim 34:e5a0dcb43ecc 759 error("Error: LCD Controller type does not support this Display type\n\r");
wim 34:e5a0dcb43ecc 760 break;
wim 34:e5a0dcb43ecc 761
wim 34:e5a0dcb43ecc 762 } // switch type
wim 34:e5a0dcb43ecc 763
wim 34:e5a0dcb43ecc 764 _writeCommand(0x20 | _function | 0x01); // Set function, Select Instr Set = 1
reedas 42:1962dc501f94 765 ThisThread::sleep_for(10); // Wait 10ms to ensure powered up
wim 34:e5a0dcb43ecc 766
wim 34:e5a0dcb43ecc 767 // Note: Display from GA628 shows 12 chars. This is actually the right half of a 24x1 display. The commons have been connected in reverse order.
wim 34:e5a0dcb43ecc 768 _writeCommand(0x05); // Display Conf Set 0000 0, 1, P=0, Q=1 (Instr. Set 1)
wim 34:e5a0dcb43ecc 769
wim 34:e5a0dcb43ecc 770 _writeCommand(0x02); // Screen Config 0000 001, L=0 (Instr. Set 1)
wim 34:e5a0dcb43ecc 771 _writeCommand(0x08); // ICON Conf 0000 1, IM=0 (Char mode), IB=0 (no Icon blink), 0 (Instr. Set 1)
wim 34:e5a0dcb43ecc 772
wim 34:e5a0dcb43ecc 773 _writeCommand(0x20 | _function); // Set function, Select Instr Set = 0
wim 34:e5a0dcb43ecc 774
wim 36:9f5f86dfd44a 775 #if(0)
wim 34:e5a0dcb43ecc 776 // Select CG RAM
wim 34:e5a0dcb43ecc 777 _writeCommand(0x40); //Set CG-RAM address, 8 sequential locations needed per UDC
wim 34:e5a0dcb43ecc 778 // Store UDC/Icon pattern:
wim 34:e5a0dcb43ecc 779 // 3 x 8 rows x 5 bits = 120 bits for Normal pattern (UDC 0..2) and
wim 34:e5a0dcb43ecc 780 // 3 x 8 rows x 5 bits = 120 bits for Blink pattern (UDC 4..6)
wim 34:e5a0dcb43ecc 781 for (int i=0; i<(8 * 8); i++) {
wim 34:e5a0dcb43ecc 782 // _writeData(0x1F); // All On
wim 34:e5a0dcb43ecc 783 _writeData(0x00); // All Off
wim 34:e5a0dcb43ecc 784 }
wim 36:9f5f86dfd44a 785 #endif
wim 34:e5a0dcb43ecc 786 break; // case PCF2103_3V3 Controller
wim 34:e5a0dcb43ecc 787
wim 30:033048611c01 788 case PCF2113_3V3:
wim 32:59c4b8f648d4 789 // PCF2113 controller: Initialise Voltage booster for VLCD. VDD=3V3. VA and VB control contrast.
wim 29:a3663151aa65 790 // Initialise Display configuration
wim 29:a3663151aa65 791 switch (_type) {
wim 29:a3663151aa65 792 // case LCD12x1:
wim 33:900a94bc7585 793 // _function = 0x02; // FUNCTION SET 0 0 1 DL=0 4 bit, 0, M=0 1-line/12 chars display mode, SL=1, IS=0
wim 32:59c4b8f648d4 794 // Note: 4 bit mode is ignored for I2C mode
wim 29:a3663151aa65 795 case LCD24x1:
wim 33:900a94bc7585 796 _function = 0x00; // FUNCTION SET 0 0 1 DL=0 4 bit, 0, M=0 1-line/24 chars display mode, SL=0, IS=0
wim 32:59c4b8f648d4 797 // Note: 4 bit mode is ignored for I2C mode
wim 30:033048611c01 798 break;
wim 30:033048611c01 799
wim 30:033048611c01 800 case LCD12x2:
wim 33:900a94bc7585 801 _function = 0x04; // FUNCTION SET 0 0 1 DL=0 4 bit, 0, M=1 2-line/12 chars display mode, SL=0, IS=0
wim 30:033048611c01 802 break;
wim 30:033048611c01 803
wim 30:033048611c01 804 default:
wim 30:033048611c01 805 error("Error: LCD Controller type does not support this Display type\n\r");
wim 30:033048611c01 806 break;
wim 30:033048611c01 807
wim 30:033048611c01 808 } // switch type
wim 30:033048611c01 809
wim 32:59c4b8f648d4 810 // Init special features
wim 33:900a94bc7585 811 _writeCommand(0x20 | _function | 0x01); // Set function, Select Instr Set = 1
wim 33:900a94bc7585 812
wim 33:900a94bc7585 813 _writeCommand(0x04); // Display Conf Set 0000 0, 1, P=0, Q=0 (Instr. Set 1)
wim 33:900a94bc7585 814 _writeCommand(0x10); // Temp Compensation Set 0001 0, 0, TC1=0, TC2=0 (Instr. Set 1)
wim 33:900a94bc7585 815 // _writeCommand(0x42); // HV GEN 0100 S1=1, S2=0 (2x multiplier) (Instr. Set 1)
wim 33:900a94bc7585 816 _writeCommand(0x40 | (LCD_PCF2_S12 & 0x03)); // HV Gen 0100 S1=1, S2=0 (2x multiplier) (Instr. Set 1)
wim 32:59c4b8f648d4 817
wim 32:59c4b8f648d4 818 _contrast = LCD_PCF2_CONTRAST;
wim 33:900a94bc7585 819 _writeCommand(0x80 | 0x00 | (_contrast & 0x3F)); // VLCD_set (Instr. Set 1) 1, V=0, VA=contrast
wim 33:900a94bc7585 820 _writeCommand(0x80 | 0x40 | (_contrast & 0x3F)); // VLCD_set (Instr. Set 1) 1, V=1, VB=contrast
reedas 42:1962dc501f94 821 ThisThread::sleep_for(10); // Wait 10ms to ensure powered up
wim 32:59c4b8f648d4 822
wim 33:900a94bc7585 823 _writeCommand(0x02); // Screen Config 0000 001, L=0 (Instr. Set 1)
wim 33:900a94bc7585 824 _writeCommand(0x08); // ICON Conf 0000 1, IM=0 (Char mode), IB=0 (no icon blink) DM=0 (no direct mode) (Instr. Set 1)
wim 33:900a94bc7585 825
wim 33:900a94bc7585 826 _writeCommand(0x20 | _function); // Set function, Select Instr Set = 0
wim 32:59c4b8f648d4 827
wim 30:033048611c01 828 break; // case PCF2113_3V3 Controller
wim 30:033048611c01 829
wim 30:033048611c01 830
wim 32:59c4b8f648d4 831 // case PCF2113_5V:
wim 32:59c4b8f648d4 832 // PCF2113 controller: No Voltage generator for VLCD. VDD=5V. Contrast voltage controlled by VA or VB.
wim 32:59c4b8f648d4 833 //@TODO
wim 32:59c4b8f648d4 834
wim 30:033048611c01 835
wim 30:033048611c01 836 case PCF2116_3V3:
wim 32:59c4b8f648d4 837 // PCF2116 controller: Voltage generator for VLCD. VDD=5V. V0 controls contrast voltage.
wim 30:033048611c01 838 // Initialise Display configuration
wim 30:033048611c01 839 switch (_type) {
wim 30:033048611c01 840 // case LCD12x1:
wim 30:033048611c01 841 // case LCD12x2:
wim 30:033048611c01 842 case LCD24x1:
wim 34:e5a0dcb43ecc 843 _writeCommand(0x22); //FUNCTION SET 0 0 1 DL=0 4-bit, N=0/M=0 1-line/24 chars display mode, G=1 Vgen on, 0
wim 29:a3663151aa65 844 //Note: 4 bit mode is ignored for I2C mode
reedas 42:1962dc501f94 845 ThisThread::sleep_for(10); // Wait 10ms to ensure powered up
wim 29:a3663151aa65 846 break;
wim 29:a3663151aa65 847
wim 32:59c4b8f648d4 848 case LCD12x3D: // Special mode for KS0078 and PCF21XX
wim 32:59c4b8f648d4 849 case LCD12x3D1: // Special mode for PCF21XX
wim 32:59c4b8f648d4 850 case LCD12x4D: // Special mode for PCF21XX:
wim 34:e5a0dcb43ecc 851 _writeCommand(0x2E); //FUNCTION SET 0 0 1 DL=0 4-bit, N=1/M=1 4-line/12 chars display mode, G=1 VGen on, 0
wim 29:a3663151aa65 852 //Note: 4 bit mode is ignored for I2C mode
reedas 42:1962dc501f94 853 ThisThread::sleep_for(10); // Wait 10ms to ensure powered up
wim 29:a3663151aa65 854 break;
wim 30:033048611c01 855
wim 30:033048611c01 856 case LCD24x2:
wim 34:e5a0dcb43ecc 857 _writeCommand(0x2A); //FUNCTION SET 0 0 1 DL=0 4-bit, N=1/M=0 2-line/24 chars display mode, G=1 VGen on, 0
wim 29:a3663151aa65 858 //Note: 4 bit mode is ignored for I2C mode
reedas 42:1962dc501f94 859 ThisThread::sleep_for(10); // Wait 10ms to ensure powered up
wim 32:59c4b8f648d4 860 break;
wim 32:59c4b8f648d4 861
wim 30:033048611c01 862 default:
wim 30:033048611c01 863 error("Error: LCD Controller type does not support this Display type\n\r");
wim 30:033048611c01 864 break;
wim 30:033048611c01 865
wim 29:a3663151aa65 866 } // switch type
wim 29:a3663151aa65 867
wim 30:033048611c01 868 break; // case PCF2116_3V3 Controller
wim 29:a3663151aa65 869
wim 32:59c4b8f648d4 870
wim 32:59c4b8f648d4 871 //Experimental for cellphone 3-line display, SA=0x74, No Ack supported, Character set C or K, DL = 8 bit, N=0,M=1 (reserved mode !!), external VLCD -2V5
wim 32:59c4b8f648d4 872 //@TODO
wim 32:59c4b8f648d4 873 case PCF2116_5V:
wim 32:59c4b8f648d4 874 // PCF2116 controller: No Voltage generator for VLCD. VDD=5V. V0 controls contrast voltage.
wim 32:59c4b8f648d4 875 // Initialise Display configuration
wim 32:59c4b8f648d4 876 switch (_type) {
wim 32:59c4b8f648d4 877 // case LCD12x1:
wim 32:59c4b8f648d4 878 // case LCD12x2:
wim 32:59c4b8f648d4 879 // case LCD24x1:
wim 34:e5a0dcb43ecc 880 // _writeCommand(0x20); //FUNCTION SET 0 0 1 DL=0 4-bit, N=0/M=0 1-line/24 chars display mode, G=0 no Vgen, 0
wim 32:59c4b8f648d4 881 //Note: 4 bit mode is ignored for I2C mode
reedas 42:1962dc501f94 882 // ThisThread::sleep_for(10); // Wait 10ms to ensure powered up
wim 32:59c4b8f648d4 883 // break;
wim 32:59c4b8f648d4 884
wim 32:59c4b8f648d4 885 case LCD12x3D: // Special mode for KS0078 and PCF21XX
wim 32:59c4b8f648d4 886 case LCD12x3D1: // Special mode for PCF21XX
wim 32:59c4b8f648d4 887 case LCD12x4D: // Special mode for PCF21XX:
wim 32:59c4b8f648d4 888 // _writeCommand(0x34); //FUNCTION SET 8 bit, N=0/M=1 4-line/12 chars display mode OK
wim 32:59c4b8f648d4 889 // _writeCommand(0x24); //FUNCTION SET 4 bit, N=0/M=1 4-line/12 chars display mode OK
wim 34:e5a0dcb43ecc 890 _writeCommand(0x2C); //FUNCTION SET 0 0 1 DL=0 4-bit, N=1/M=1 4-line/12 chars display mode, G=0 no Vgen, 0 OK
wim 32:59c4b8f648d4 891 //Note: 4 bit mode is ignored for I2C mode
reedas 42:1962dc501f94 892 ThisThread::sleep_for(10); // Wait 10ms to ensure powered up
wim 32:59c4b8f648d4 893 break;
wim 32:59c4b8f648d4 894
wim 32:59c4b8f648d4 895 // case LCD24x2:
wim 32:59c4b8f648d4 896 // _writeCommand(0x28); //FUNCTION SET 4 bit, N=1/M=0 2-line/24 chars display mode
wim 32:59c4b8f648d4 897 //Note: 4 bit mode is ignored for I2C mode
reedas 42:1962dc501f94 898 // ThisThread::sleep_for(10); // Wait 10ms to ensure powered up
wim 32:59c4b8f648d4 899 // break;
wim 32:59c4b8f648d4 900
wim 32:59c4b8f648d4 901 default:
wim 32:59c4b8f648d4 902 error("Error: LCD Controller type does not support this Display type\n\r");
wim 32:59c4b8f648d4 903 break;
wim 32:59c4b8f648d4 904
wim 32:59c4b8f648d4 905 } // switch type
wim 32:59c4b8f648d4 906
wim 32:59c4b8f648d4 907 break; // case PCF2116_5V Controller
wim 32:59c4b8f648d4 908
wim 32:59c4b8f648d4 909 case PCF2119_3V3:
wim 39:e9c2319de9c5 910 case PCF2119R_3V3:
wim 32:59c4b8f648d4 911 // PCF2119 controller: Initialise Voltage booster for VLCD. VDD=3V3. VA and VB control contrast.
wim 32:59c4b8f648d4 912 // Note1: See datasheet, the PCF2119 supports icons and provides separate constrast control for Icons and characters.
wim 32:59c4b8f648d4 913 // Note2: Vgen is switched off when the contrast voltage VA or VB is set to 0x00.
wim 32:59c4b8f648d4 914
wim 32:59c4b8f648d4 915 //POR or Hardware Reset should be applied
reedas 42:1962dc501f94 916 ThisThread::sleep_for(10); // Wait 10ms to ensure powered up
wim 32:59c4b8f648d4 917
wim 32:59c4b8f648d4 918 // Initialise Display configuration
wim 32:59c4b8f648d4 919 switch (_type) {
wim 32:59c4b8f648d4 920 case LCD8x1:
wim 32:59c4b8f648d4 921 // case LCD12x1:
wim 32:59c4b8f648d4 922 case LCD16x1:
wim 34:e5a0dcb43ecc 923 _function = 0x02; // FUNCTION SET 0 0 1 DL=0 4-bit, 0 , M=0 1-line/16 chars display mode, SL=1
wim 32:59c4b8f648d4 924 // Note: 4 bit mode is ignored for I2C mode
wim 32:59c4b8f648d4 925 break;
wim 32:59c4b8f648d4 926
wim 32:59c4b8f648d4 927 case LCD24x1:
wim 32:59c4b8f648d4 928 // case LCD32x1:
wim 34:e5a0dcb43ecc 929 _function = 0x00; // FUNCTION SET 0 0 1 DL=0 4-bit, 0 , M=0 1-line/32 chars display mode, SL=0
wim 32:59c4b8f648d4 930 // Note: 4 bit mode is ignored for I2C mode
wim 32:59c4b8f648d4 931 break;
wim 32:59c4b8f648d4 932
wim 32:59c4b8f648d4 933 case LCD8x2:
wim 32:59c4b8f648d4 934 // case LCD12x2:
wim 32:59c4b8f648d4 935 case LCD16x2:
wim 34:e5a0dcb43ecc 936 _function = 0x04; // FUNCTION SET 0 0 1 DL=0 4-bit, 0, M=1 2-line/16 chars display mode, SL=0
wim 32:59c4b8f648d4 937 // Note: 4 bit mode is ignored for I2C mode
wim 32:59c4b8f648d4 938 break;
wim 32:59c4b8f648d4 939
wim 32:59c4b8f648d4 940 default:
wim 32:59c4b8f648d4 941 error("Error: LCD Controller type does not support this Display type\n\r");
wim 32:59c4b8f648d4 942 break;
wim 32:59c4b8f648d4 943
wim 32:59c4b8f648d4 944 } // switch type
wim 32:59c4b8f648d4 945
wim 32:59c4b8f648d4 946 // Init special features
wim 32:59c4b8f648d4 947 _writeCommand(0x20 | _function | 0x01); // Set function, Select Instruction Set = 1
wim 32:59c4b8f648d4 948
wim 39:e9c2319de9c5 949 // _writeCommand(0x04); // DISP CONF SET (Instr. Set 1) 0000, 0, 1, P=0, Q=0 (IC at Bottom)
wim 39:e9c2319de9c5 950 // _writeCommand(0x05); // Display Conf Set 0000, 0, 1, P=0, Q=1
wim 39:e9c2319de9c5 951 // _writeCommand(0x06); // Display Conf Set 0000, 0, 1, P=1, Q=0
wim 39:e9c2319de9c5 952 _writeCommand(0x07); // Display Conf Set 0000, 0, 1, P=1, Q=1 (IC at Top)
wim 39:e9c2319de9c5 953
wim 32:59c4b8f648d4 954 _writeCommand(0x10); // TEMP CTRL SET (Instr. Set 1) 0001, 0, 0, TC1=0, TC2=0
wim 32:59c4b8f648d4 955 // _writeCommand(0x42); // HV GEN (Instr. Set 1) 0100, 0, 0, S1=1, S2=0 (2x multiplier)
wim 32:59c4b8f648d4 956 _writeCommand(0x40 | (LCD_PCF2_S12 & 0x03)); // HV GEN (Instr. Set 1) 0100, 0, 0, S1=1, S2=0 (2x multiplier)
wim 32:59c4b8f648d4 957
wim 32:59c4b8f648d4 958 _contrast = LCD_PCF2_CONTRAST;
wim 32:59c4b8f648d4 959 _writeCommand(0x80 | 0x00 | (_contrast & 0x3F)); // VLCD_set (Instr. Set 1) V=0, VA=contrast
wim 32:59c4b8f648d4 960 _writeCommand(0x80 | 0x40 | (_contrast & 0x3F)); // VLCD_set (Instr. Set 1) V=1, VB=contrast
reedas 42:1962dc501f94 961 ThisThread::sleep_for(10); // Wait 10ms to ensure powered up
wim 32:59c4b8f648d4 962
wim 32:59c4b8f648d4 963 _writeCommand(0x02); // SCRN CONF (Instr. Set 1) L=0
wim 32:59c4b8f648d4 964 _writeCommand(0x08); // ICON CONF (Instr. Set 1) IM=0 (Char mode) IB=0 (no icon blink) DM=0 (no direct mode)
wim 32:59c4b8f648d4 965
wim 32:59c4b8f648d4 966 _writeCommand(0x20 | _function); // Select Instruction Set = 0
wim 32:59c4b8f648d4 967
wim 32:59c4b8f648d4 968 break; // case PCF2119_3V3 Controller
wim 32:59c4b8f648d4 969
wim 32:59c4b8f648d4 970 // case PCF2119_5V:
wim 32:59c4b8f648d4 971 // PCF2119 controller: No Voltage booster for VLCD. VDD=3V3. VA and VB control contrast.
wim 32:59c4b8f648d4 972 // Note1: See datasheet, the PCF2119 supports icons and provides separate constrast control for Icons and characters.
wim 32:59c4b8f648d4 973 // Note2: Vgen is switched off when the contrast voltage VA or VB is set to 0x00.
wim 30:033048611c01 974 //@TODO
wim 29:a3663151aa65 975
wim 19:c747b9e2e7b8 976 case WS0010:
wim 19:c747b9e2e7b8 977 // WS0010 OLED controller: Initialise DC/DC Voltage converter for LEDs
wim 30:033048611c01 978 // Note1: Identical to RS0010
wim 30:033048611c01 979 // Note2: supports 1 or 2 lines (and 16x100 graphics)
wim 30:033048611c01 980 // supports 4 fonts (English/Japanese (default), Western European-I, English/Russian, Western European-II)
wim 19:c747b9e2e7b8 981 // Cursor/Disp shift set 0001 SC RL 0 0
wim 19:c747b9e2e7b8 982 //
wim 30:033048611c01 983 // Mode and Power set 0001 GC PWR 1 1
wim 19:c747b9e2e7b8 984 // GC = 0 (Graph Mode=1, Char Mode=0)
wim 30:033048611c01 985 // PWR = 1 (DC/DC On/Off)
wim 30:033048611c01 986
wim 30:033048611c01 987 //@Todo: This may be needed to enable a warm reboot
wim 32:59c4b8f648d4 988 //_writeCommand(0x13); // Char mode, DC/DC off
reedas 42:1962dc501f94 989 //ThisThread::sleep_for(10); // Wait 10ms to ensure powered down
wim 32:59c4b8f648d4 990 _writeCommand(0x17); // Char mode, DC/DC on
reedas 42:1962dc501f94 991 ThisThread::sleep_for(10); // Wait 10ms to ensure powered up
wim 29:a3663151aa65 992
wim 29:a3663151aa65 993 // Initialise Display configuration
wim 29:a3663151aa65 994 switch (_type) {
wim 29:a3663151aa65 995 case LCD8x1: //8x1 is a regular 1 line display
wim 29:a3663151aa65 996 case LCD8x2B: //8x2B is a special case of 16x1
wim 29:a3663151aa65 997 // case LCD12x1:
wim 29:a3663151aa65 998 case LCD16x1:
wim 30:033048611c01 999 case LCD24x1:
wim 30:033048611c01 1000 _writeCommand(0x20); // Function set 001 DL N F FT1 FT0
wim 30:033048611c01 1001 // DL=0 (4 bits bus)
wim 30:033048611c01 1002 // N=0 (1 line)
wim 30:033048611c01 1003 // F=0 (5x7 dots font)
wim 30:033048611c01 1004 // FT=00 (00 = Engl/Jap, 01 = WestEur1, 10 = Engl/Russian, 11 = WestEur2
wim 30:033048611c01 1005 break;
wim 30:033048611c01 1006
wim 32:59c4b8f648d4 1007 case LCD12x3D: // Special mode for KS0078 and PCF21XX
wim 32:59c4b8f648d4 1008 case LCD12x3D1: // Special mode for PCF21XX
wim 32:59c4b8f648d4 1009 case LCD12x4D: // Special mode for PCF21XX:
wim 33:900a94bc7585 1010 case LCD16x3G: // Special mode for ST7036
wim 30:033048611c01 1011 case LCD24x4D: // Special mode for KS0078
wim 30:033048611c01 1012 error("Error: LCD Controller type does not support this Display type\n\r");
wim 29:a3663151aa65 1013 break;
wim 29:a3663151aa65 1014
wim 29:a3663151aa65 1015 default:
wim 30:033048611c01 1016 // All other LCD types are initialised as 2 Line displays (including LCD16x1C and LCD40x4)
wim 30:033048611c01 1017 _writeCommand(0x28); // Function set 001 DL N F FT1 FT0
wim 30:033048611c01 1018 // DL=0 (4 bits bus)
wim 30:033048611c01 1019 // N=1 (2 lines)
wim 30:033048611c01 1020 // F=0 (5x7 dots font)
wim 30:033048611c01 1021 // FT=00 (00 = Engl/Jap, 01 = WestEur1, 10 = Engl/Russian, 11 = WestEur2
wim 30:033048611c01 1022
wim 29:a3663151aa65 1023 break;
wim 29:a3663151aa65 1024 } // switch type
wim 29:a3663151aa65 1025
wim 32:59c4b8f648d4 1026 break; // case WS0010 Controller
wim 33:900a94bc7585 1027
wim 33:900a94bc7585 1028
wim 33:900a94bc7585 1029 case US2066_3V3:
wim 33:900a94bc7585 1030 // US2066/SSD1311 OLED controller, Initialise for VDD=3V3
wim 33:900a94bc7585 1031 // Note: supports 1,2, 3 or 4 lines
wim 33:900a94bc7585 1032 // case USS2066_5V:
wim 33:900a94bc7585 1033 // US2066 controller, VDD=5V
wim 33:900a94bc7585 1034
wim 33:900a94bc7585 1035 // Initialise Display configuration
wim 33:900a94bc7585 1036 switch (_type) {
wim 33:900a94bc7585 1037 case LCD8x1: //8x1 is a regular 1 line display
wim 33:900a94bc7585 1038 case LCD8x2B: //8x2D is a special case of 16x1
wim 33:900a94bc7585 1039 // case LCD12x1:
wim 33:900a94bc7585 1040 case LCD16x1:
wim 33:900a94bc7585 1041 // case LCD20x1:
wim 33:900a94bc7585 1042 _function = 0x00; // Set function 0 0 1 X N DH RE(0) IS
wim 33:900a94bc7585 1043 // Saved to allow switch between Instruction sets at later time
wim 33:900a94bc7585 1044 // DL=X bit is ignored for US2066. Uses hardwired pins instead
wim 33:900a94bc7585 1045 // N=0 1 Line / 3 Line
wim 33:900a94bc7585 1046 // DH=0 Double Height disable
wim 33:900a94bc7585 1047 // IS=0
wim 33:900a94bc7585 1048
wim 33:900a94bc7585 1049 _function_1 = 0x02; // Set function, 0 0 1 X N BE RE(1) REV
wim 33:900a94bc7585 1050 // Saved to allow switch between Instruction sets at later time
wim 33:900a94bc7585 1051 // DL=X bit is ignored for US2066. Uses hardwired pins instead
wim 33:900a94bc7585 1052 // N=0 1 Line / 3 Line
wim 33:900a94bc7585 1053 // BE=0 Blink Enable off, special feature of SSD1803, US2066
wim 33:900a94bc7585 1054 // REV=0 Reverse off, special feature of SSD1803, US2066
wim 33:900a94bc7585 1055
wim 33:900a94bc7585 1056 _lines = 0x00; // Ext function set 0 0 0 0 1 FW BW NW
wim 33:900a94bc7585 1057 // NW=0 1-Line LCD (N=0)
wim 33:900a94bc7585 1058 break;
wim 33:900a94bc7585 1059
wim 33:900a94bc7585 1060 case LCD16x1C:
wim 33:900a94bc7585 1061 case LCD8x2:
wim 33:900a94bc7585 1062 case LCD16x2:
wim 33:900a94bc7585 1063 case LCD20x2:
wim 33:900a94bc7585 1064 _function = 0x08; // Set function 0 0 1 X N DH RE(0) IS
wim 33:900a94bc7585 1065 // Saved to allow switch between Instruction sets at later time
wim 33:900a94bc7585 1066 // DL=X bit is ignored for US2066. Uses hardwired pins instead
wim 33:900a94bc7585 1067 // N=1 2 line / 4 Line
wim 33:900a94bc7585 1068 // DH=0 Double Height disable
wim 33:900a94bc7585 1069 // IS=0
wim 33:900a94bc7585 1070
wim 33:900a94bc7585 1071 _function_1 = 0x0A; // Set function, 0 0 1 X N BE RE(1) REV
wim 33:900a94bc7585 1072 // Saved to allow switch between Instruction sets at later time
wim 33:900a94bc7585 1073 // DL=X bit is ignored for US2066. Uses hardwired pins instead
wim 33:900a94bc7585 1074 // N=1 2 line / 4 Line
wim 33:900a94bc7585 1075 // BE=0 Blink Enable off, special feature of SSD1803, US2066
wim 33:900a94bc7585 1076 // REV=0 Reverse off, special feature of SSD1803, US2066
wim 33:900a94bc7585 1077
wim 33:900a94bc7585 1078 _lines = 0x00; // Ext function set 0 0 0 0 1 FW BW NW
wim 33:900a94bc7585 1079 // NW=0 2-Line LCD (N=1)
wim 33:900a94bc7585 1080 break;
wim 33:900a94bc7585 1081
wim 33:900a94bc7585 1082 case LCD12x3D: // Special mode for KS0078 and PCF21XX
wim 33:900a94bc7585 1083 // case LCD12x3D1: // Special mode for KS0078 and PCF21XX
wim 33:900a94bc7585 1084 case LCD16x3D: // Special mode for KS0078, SSD1803 and US2066
wim 33:900a94bc7585 1085 // case LCD16x3D1: // Special mode for SSD1803, US2066
wim 33:900a94bc7585 1086 // case LCD20x3D: // Special mode for SSD1803, US2066
wim 33:900a94bc7585 1087 _function = 0x00; // Set function 0 0 1 X N DH RE(0) IS
wim 33:900a94bc7585 1088 // Saved to allow switch between Instruction sets at later time
wim 33:900a94bc7585 1089 // DL=X bit is ignored for US2066. Uses hardwired pins instead
wim 33:900a94bc7585 1090 // N=0 1 Line / 3 Line
wim 33:900a94bc7585 1091 // DH=0 Double Height disable
wim 33:900a94bc7585 1092 // IS=0
wim 33:900a94bc7585 1093
wim 33:900a94bc7585 1094 _function_1 = 0x02; // Set function, 0 0 1 X N BE RE(1) REV
wim 33:900a94bc7585 1095 // Saved to allow switch between Instruction sets at later time
wim 33:900a94bc7585 1096 // DL=X bit is ignored for US2066. Uses hardwired pins instead
wim 33:900a94bc7585 1097 // N=0 1 Line / 3 Line
wim 33:900a94bc7585 1098 // BE=0 Blink Enable off, special feature of SSD1803, US2066
wim 33:900a94bc7585 1099 // REV=0 Reverse off, special feature of SSD1803, US2066
wim 33:900a94bc7585 1100
wim 33:900a94bc7585 1101 _lines = 0x00; // Ext function set 0 0 0 0 1 FW BW NW
wim 33:900a94bc7585 1102 // NW=1 3-Line LCD (N=0)
wim 33:900a94bc7585 1103 break;
wim 33:900a94bc7585 1104
wim 33:900a94bc7585 1105 case LCD20x4D: // Special mode for SSD1803, US2066
wim 33:900a94bc7585 1106 _function = 0x08; // Set function 0 0 1 X N DH RE(0) IS
wim 33:900a94bc7585 1107 // Saved to allow switch between Instruction sets at later time
wim 33:900a94bc7585 1108 // DL=X bit is ignored for US2066. Uses hardwired pins instead
wim 33:900a94bc7585 1109 // N=1 2 line / 4 Line
wim 33:900a94bc7585 1110 // DH=0 Double Height disable
wim 33:900a94bc7585 1111 // IS=0
wim 33:900a94bc7585 1112
wim 33:900a94bc7585 1113 _function_1 = 0x0A; // Set function, 0 0 1 DL N BE RE(1) REV
wim 33:900a94bc7585 1114 // Saved to allow switch between Instruction sets at later time
wim 33:900a94bc7585 1115 // DL=0 bit is ignored for US2066. Uses hardwired pins instead
wim 33:900a94bc7585 1116 // N=1 2 line / 4 Line
wim 33:900a94bc7585 1117 // BE=0 Blink Enable off, special feature of SSD1803, US2066
wim 33:900a94bc7585 1118 // REV=0 Reverse off, special feature of SSD1803, US2066
wim 33:900a94bc7585 1119
wim 33:900a94bc7585 1120 _lines = 0x01; // Ext function set 0 0 0 0 1 FW BW NW
wim 33:900a94bc7585 1121 // NW=1 4-Line LCD (N=1)
wim 33:900a94bc7585 1122 break;
wim 33:900a94bc7585 1123
wim 33:900a94bc7585 1124 // case LCD24x1:
wim 33:900a94bc7585 1125 // case LCD16x3G: // Special mode for ST7036
wim 33:900a94bc7585 1126 // case LCD24x4D: // Special mode for KS0078
wim 33:900a94bc7585 1127 default:
wim 33:900a94bc7585 1128 error("Error: LCD Controller type does not support this Display type\n\r");
wim 33:900a94bc7585 1129 break;
wim 33:900a94bc7585 1130
wim 33:900a94bc7585 1131 } // switch type
wim 33:900a94bc7585 1132
wim 34:e5a0dcb43ecc 1133 _writeCommand(0x00); // NOP, make sure to sync SPI
wim 33:900a94bc7585 1134
wim 33:900a94bc7585 1135 // init special features
wim 33:900a94bc7585 1136 _writeCommand(0x20 | _function_1); // Set function, 0 0 1 X N BE RE(1) REV
wim 33:900a94bc7585 1137 // Select Extended Instruction Set
wim 33:900a94bc7585 1138
wim 33:900a94bc7585 1139 _writeCommand(0x71); // Function Select A: 0 1 1 1 0 0 0 1 (Ext Instr Set)
wim 33:900a94bc7585 1140 _writeData(0x00); // Disable Internal VDD
wim 33:900a94bc7585 1141
wim 33:900a94bc7585 1142 _writeCommand(0x79); // Function Select OLED: 0 1 1 1 1 0 0 1 (Ext Instr Set)
wim 33:900a94bc7585 1143
wim 33:900a94bc7585 1144 _writeCommand(0xD5); // Display Clock Divide Ratio: 1 1 0 1 0 1 0 1 (Ext Instr Set, OLED Instr Set)
wim 33:900a94bc7585 1145 _writeCommand(0x70); // Display Clock Divide Ratio value: 0 1 1 1 0 0 0 0 (Ext Instr Set, OLED Instr Set)
wim 33:900a94bc7585 1146
wim 33:900a94bc7585 1147 _writeCommand(0x78); // Function Disable OLED: 0 1 1 1 1 0 0 0 (Ext Instr Set)
wim 33:900a94bc7585 1148
wim 33:900a94bc7585 1149 // _writeCommand(0x06); // Set ext entry mode, 0 0 0 0 0 1 BDC=1 COM1-32, BDS=0 SEG100-1 "Bottom View" (Ext Instr Set)
wim 33:900a94bc7585 1150 _writeCommand(0x05); // Set ext entry mode, 0 0 0 0 0 1 BDC=0 COM32-1, BDS=1 SEG1-100 "Top View" (Ext Instr Set)
wim 33:900a94bc7585 1151
wim 33:900a94bc7585 1152 _writeCommand(0x08 | _lines); // Set ext function 0 0 0 0 1 FW BW NW 1,2,3 or 4 lines (Ext Instr Set)
wim 33:900a94bc7585 1153
wim 34:e5a0dcb43ecc 1154 // _writeCommand(0x1C); // Double Height, 0 0 0 1 UD2=1, UD1=1, X, DH'=0 (Ext Instr Set)
wim 33:900a94bc7585 1155 // // Default
wim 33:900a94bc7585 1156
wim 33:900a94bc7585 1157 _writeCommand(0x72); // Function Select B: 0 1 1 1 0 0 1 0 (Ext Instr Set)
wim 33:900a94bc7585 1158 _writeData(0x01); // Select ROM A (CGRAM 8, CGROM 248)
wim 33:900a94bc7585 1159
wim 33:900a94bc7585 1160 _writeCommand(0x79); // Function Select OLED: 0 1 1 1 1 0 0 1 (Ext Instr Set)
wim 33:900a94bc7585 1161
wim 33:900a94bc7585 1162 _writeCommand(0xDA); // Set Segm Pins Config: 1 1 0 1 1 0 1 0 (Ext Instr Set, OLED)
wim 33:900a94bc7585 1163 _writeCommand(0x10); // Set Segm Pins Config value: Altern Odd/Even, Disable Remap (Ext Instr Set, OLED)
wim 33:900a94bc7585 1164
wim 33:900a94bc7585 1165 _writeCommand(0xDC); // Function Select C: 1 1 0 1 1 1 0 0 (Ext Instr Set, OLED)
wim 33:900a94bc7585 1166 // _writeCommand(0x00); // Set internal VSL, GPIO pin HiZ (always read low)
wim 33:900a94bc7585 1167 _writeCommand(0x80); // Set external VSL, GPIO pin HiZ (always read low)
wim 33:900a94bc7585 1168
wim 33:900a94bc7585 1169 _contrast = LCD_US20_CONTRAST;
wim 33:900a94bc7585 1170 _writeCommand(0x81); // Set Contrast Control: 1 0 0 0 0 0 0 1 (Ext Instr Set, OLED)
wim 33:900a94bc7585 1171 _writeCommand((_contrast << 2) | 0x03); // Set Contrast Value: 8 bits, use 6 bits for compatibility
wim 33:900a94bc7585 1172
wim 33:900a94bc7585 1173 _writeCommand(0xD9); // Set Phase Length: 1 1 0 1 1 0 0 1 (Ext Instr Set, OLED)
wim 33:900a94bc7585 1174 _writeCommand(0xF1); // Set Phase Length Value:
wim 33:900a94bc7585 1175
wim 33:900a94bc7585 1176 _writeCommand(0xDB); // Set VCOMH Deselect Lvl: 1 1 0 1 1 0 1 1 (Ext Instr Set, OLED)
wim 33:900a94bc7585 1177 _writeCommand(0x30); // Set VCOMH Deselect Value: 0.83 x VCC
wim 33:900a94bc7585 1178
reedas 42:1962dc501f94 1179 ThisThread::sleep_for(10); // Wait 10ms to ensure powered up
wim 33:900a94bc7585 1180
wim 33:900a94bc7585 1181 //Test Fade/Blinking. Hard Blink on/off, No fade in/out ??
wim 33:900a94bc7585 1182 // _writeCommand(0x23); // Set (Ext Instr Set, OLED)
wim 33:900a94bc7585 1183 // _writeCommand(0x3F); // Set interval 128 frames
wim 33:900a94bc7585 1184 //End Test Blinking
wim 33:900a94bc7585 1185
wim 33:900a94bc7585 1186 _writeCommand(0x78); // Function Disable OLED: 0 1 1 1 1 0 0 0 (Ext Instr Set)
wim 33:900a94bc7585 1187
wim 33:900a94bc7585 1188 _writeCommand(0x20 | _function | 0x01); // Set function, 0 0 1 X N DH RE(0) IS=1 Select Instruction Set 1
wim 33:900a94bc7585 1189 // Select Std Instr set, Select IS=1
wim 33:900a94bc7585 1190
wim 33:900a94bc7585 1191 _writeCommand(0x20 | _function_1); // Set function, 0 0 1 X N BE RE(1) REV
wim 33:900a94bc7585 1192 // Select Ext Instr Set, IS=1
wim 33:900a94bc7585 1193 _writeCommand(0x10); // Shift/Scroll enable, 0 0 0 1 DS4/HS4 DS3/HS3 DS2/HS2 DS1/HS1 (Ext Instr Set, IS=1)
wim 33:900a94bc7585 1194
wim 33:900a94bc7585 1195 _writeCommand(0x20 | _function); // Set function, 0 0 1 DL N DH RE(0) IS=0 Select Instruction Set 0
wim 34:e5a0dcb43ecc 1196 // Select Std Instr set, Select IS=0
wim 33:900a94bc7585 1197 break; // case US2066/SSD1311 Controller
wim 33:900a94bc7585 1198
wim 34:e5a0dcb43ecc 1199 //not yet tested on hardware
wim 34:e5a0dcb43ecc 1200 case PT6314 :
wim 34:e5a0dcb43ecc 1201 // Initialise Display configuration
wim 34:e5a0dcb43ecc 1202 switch (_type) {
wim 34:e5a0dcb43ecc 1203 case LCD8x1: //8x1 is a regular 1 line display
wim 34:e5a0dcb43ecc 1204 case LCD8x2B: //8x2B is a special case of 16x1
wim 34:e5a0dcb43ecc 1205 // case LCD12x1:
wim 34:e5a0dcb43ecc 1206 case LCD16x1:
wim 34:e5a0dcb43ecc 1207 case LCD20x1:
wim 34:e5a0dcb43ecc 1208 case LCD24x1:
wim 34:e5a0dcb43ecc 1209 _function = 0x00; // Function set 001 DL N X BR1 BR0
wim 34:e5a0dcb43ecc 1210 // DL=0 (4 bits bus)
wim 34:e5a0dcb43ecc 1211 // Note: 4 bit mode is ignored for native SPI and I2C devices
wim 34:e5a0dcb43ecc 1212 // N=0 (1 line)
wim 34:e5a0dcb43ecc 1213 // X
wim 34:e5a0dcb43ecc 1214 // BR1=0 (2 significant bits for brightness
wim 34:e5a0dcb43ecc 1215 // BR0=0
wim 34:e5a0dcb43ecc 1216 // 0x0 = 100%
wim 34:e5a0dcb43ecc 1217 // 0x1 = 75%
wim 34:e5a0dcb43ecc 1218 // 0x2 = 50%
wim 34:e5a0dcb43ecc 1219 // 0x3 = 25%
wim 34:e5a0dcb43ecc 1220
wim 34:e5a0dcb43ecc 1221 break;
wim 34:e5a0dcb43ecc 1222
wim 34:e5a0dcb43ecc 1223 // All other valid LCD types are initialised as 2 Line displays
wim 34:e5a0dcb43ecc 1224 case LCD8x2:
wim 34:e5a0dcb43ecc 1225 case LCD16x2:
wim 34:e5a0dcb43ecc 1226 case LCD20x2:
wim 34:e5a0dcb43ecc 1227 case LCD24x2:
wim 34:e5a0dcb43ecc 1228 _function = 0x08; // Function set 001 DL N X BR1 BR2
wim 34:e5a0dcb43ecc 1229 // DL=0 (4 bits bus)
wim 34:e5a0dcb43ecc 1230 // Note: 4 bit mode is ignored for native SPI and I2C devices
wim 34:e5a0dcb43ecc 1231 // N=1 (2 lines)
wim 34:e5a0dcb43ecc 1232 // X
wim 34:e5a0dcb43ecc 1233 // BR1=0 (2 significant bits for brightness
wim 34:e5a0dcb43ecc 1234 // BR0=0
wim 34:e5a0dcb43ecc 1235 break;
wim 34:e5a0dcb43ecc 1236
wim 34:e5a0dcb43ecc 1237 default:
wim 34:e5a0dcb43ecc 1238 error("Error: LCD Controller type does not support this Display type\n\r");
wim 34:e5a0dcb43ecc 1239 break;
wim 34:e5a0dcb43ecc 1240 } // switch type
wim 34:e5a0dcb43ecc 1241
wim 34:e5a0dcb43ecc 1242 _contrast = LCD_PT63_CONTRAST;
wim 34:e5a0dcb43ecc 1243 _writeCommand(0x20 | _function | ((~_contrast) >> 4)); // Invert and shift to use 2 MSBs
wim 34:e5a0dcb43ecc 1244 break; // case PT6314 Controller (VFD)
wim 39:e9c2319de9c5 1245
wim 39:e9c2319de9c5 1246
wim 39:e9c2319de9c5 1247 case HD66712:
wim 39:e9c2319de9c5 1248 // Initialise Display configuration
wim 39:e9c2319de9c5 1249 switch (_type) {
wim 39:e9c2319de9c5 1250 case LCD8x1: //8x1 is a regular 1 line display
wim 39:e9c2319de9c5 1251 case LCD12x1:
wim 39:e9c2319de9c5 1252 case LCD16x1:
wim 39:e9c2319de9c5 1253 case LCD20x1:
wim 39:e9c2319de9c5 1254 case LCD24x1:
wim 39:e9c2319de9c5 1255 // case LCD32x1: // EXT pin is High, extension driver needed
wim 40:d3496c3ea301 1256 _function = 0x02; // Function set 001 DL N RE(0) - - (Std Regs)
wim 39:e9c2319de9c5 1257 // DL=0 (4 bits bus)
wim 39:e9c2319de9c5 1258 // N=0 (1-line mode, N=1 2-line mode)
wim 40:d3496c3ea301 1259 // RE=0 (Dis. Extended Regs, special mode for HD66712)
wim 40:d3496c3ea301 1260 //
wim 39:e9c2319de9c5 1261
wim 39:e9c2319de9c5 1262 _function_1 = 0x04; // Function set 001 DL N RE(1) BE LP (Ext Regs)
wim 39:e9c2319de9c5 1263 // DL=0 (4 bits bus)
wim 39:e9c2319de9c5 1264 // N=0 (1-line mode, N=1 2-line mode)
wim 40:d3496c3ea301 1265 // RE=1 (Ena Extended Regs; special mode for HD66712)
wim 40:d3496c3ea301 1266 // BE=0 (Blink Enable, CG/SEG RAM; special mode for HD66712)
wim 40:d3496c3ea301 1267 // LP=0 (LP=1 Low power mode, LP=0 Normal; special mode for HD66712)
wim 39:e9c2319de9c5 1268
wim 39:e9c2319de9c5 1269 _function_x = 0x00; // Ext Function set 0000 1 FW BW NW (Ext Regs)
wim 40:d3496c3ea301 1270 // NW=0 (1,2 line), NW=1 (4 Line, special mode for HD66712)
wim 39:e9c2319de9c5 1271 break;
wim 39:e9c2319de9c5 1272
wim 40:d3496c3ea301 1273 // case LCD12x3D: // Special mode for KS0073, KS0078, PCF21XX and HD66712
wim 40:d3496c3ea301 1274 // case LCD12x3D1: // Special mode for KS0073, KS0078, PCF21XX and HD66712
wim 39:e9c2319de9c5 1275 case LCD12x4D: // Special mode for KS0073, KS0078, PCF21XX and HD66712
wim 40:d3496c3ea301 1276 // case LCD16x3D: // Special mode for KS0073, KS0078 and HD66712
wim 40:d3496c3ea301 1277 // case LCD16x4D: // Special mode for KS0073, KS0078 and HD66712
wim 39:e9c2319de9c5 1278 case LCD20x4D: // Special mode for KS0073, KS0078 and HD66712
wim 40:d3496c3ea301 1279 _function = 0x02; // Function set 001 DL N RE(0) - - (Std Regs)
wim 39:e9c2319de9c5 1280 // DL=0 (4 bits bus)
wim 40:d3496c3ea301 1281 // N=0 (1-line mode, N=1 2-line mode)
wim 40:d3496c3ea301 1282 // RE=0 (Dis. Extended Regs, special mode for HD66712)
wim 40:d3496c3ea301 1283 //
wim 39:e9c2319de9c5 1284
wim 39:e9c2319de9c5 1285 _function_1 = 0x04; // Function set 001 DL N RE(1) BE LP (Ext Regs)
wim 39:e9c2319de9c5 1286 // DL=0 (4 bits bus)
wim 40:d3496c3ea301 1287 // N=0 (1-line mode, N=1 2-line mode)
wim 40:d3496c3ea301 1288 // RE=1 (Ena Extended Regs; special mode for HD66712)
wim 40:d3496c3ea301 1289 // BE=0 (Blink Enable, CG/SEG RAM; special mode for HD66712)
wim 40:d3496c3ea301 1290 // LP=0 (LP=1 Low power mode, LP=0 Normal; special mode for HD66712)
wim 39:e9c2319de9c5 1291
wim 39:e9c2319de9c5 1292 _function_x = 0x01; // Ext Function set 0000 1 FW BW NW (Ext Regs)
wim 40:d3496c3ea301 1293 // NW=0 (1,2 line), NW=1 (4 Line, special mode for HD66712)
wim 39:e9c2319de9c5 1294 break;
wim 39:e9c2319de9c5 1295
wim 39:e9c2319de9c5 1296 case LCD16x3G: // Special mode for ST7036
wim 39:e9c2319de9c5 1297 // case LCD24x3D: // Special mode for KS0078
wim 39:e9c2319de9c5 1298 // case LCD24x3D1: // Special mode for KS0078
wim 39:e9c2319de9c5 1299 case LCD24x4D: // Special mode for KS0078
wim 39:e9c2319de9c5 1300 error("Error: LCD Controller type does not support this Display type\n\r");
wim 39:e9c2319de9c5 1301 break;
wim 39:e9c2319de9c5 1302
wim 39:e9c2319de9c5 1303 default:
wim 39:e9c2319de9c5 1304 // All other LCD types are initialised as 2 Line displays (including LCD16x1C and LCD40x4)
wim 40:d3496c3ea301 1305 _function = 0x0A; // Function set 001 DL N RE(0) - - (Std Regs)
wim 39:e9c2319de9c5 1306 // DL=0 (4 bits bus)
wim 39:e9c2319de9c5 1307 // N=1 (2-line mode), N=0 (1-line mode)
wim 40:d3496c3ea301 1308 // RE=0 (Dis. Extended Regs, special mode for HD66712)
wim 39:e9c2319de9c5 1309
wim 39:e9c2319de9c5 1310 _function_1 = 0x0C; // Function set 001 DL N RE(1) BE LP (Ext Regs)
wim 39:e9c2319de9c5 1311 // DL=0 (4 bits bus)
wim 39:e9c2319de9c5 1312 // N=1 (2 line mode), N=0 (1-line mode)
wim 40:d3496c3ea301 1313 // RE=1 (Ena Extended Regs, special mode for HD66712)
wim 40:d3496c3ea301 1314 // BE=0 (Blink Enable, CG/SEG RAM, special mode for HD66712)
wim 40:d3496c3ea301 1315 // LP=0 (LP=1 Low power mode, LP=0 Normal)
wim 39:e9c2319de9c5 1316
wim 39:e9c2319de9c5 1317 _function_x = 0x00; // Ext Function set 0000 1 FW BW NW (Ext Regs)
wim 40:d3496c3ea301 1318 // NW=0 (1,2 line), NW=1 (4 Line, special mode for HD66712)
wim 39:e9c2319de9c5 1319 break;
wim 39:e9c2319de9c5 1320 } // switch type
wim 39:e9c2319de9c5 1321
wim 39:e9c2319de9c5 1322 // init special features
wim 39:e9c2319de9c5 1323 _writeCommand(0x20 | _function_1);// Function set 001 DL N RE(1) BE LP (Ext Regs)
wim 39:e9c2319de9c5 1324 // DL=0 (4 bits bus), DL=1 (8 bits mode)
wim 39:e9c2319de9c5 1325 // N=0 (1 line mode), N=1 (2 line mode)
wim 40:d3496c3ea301 1326 // RE=1 (Ena Extended Regs, special mode for HD66712)
wim 40:d3496c3ea301 1327 // BE=0 (Blink Enable/Disable, CG/SEG RAM, special mode for HD66712)
wim 39:e9c2319de9c5 1328 // LP=0 (LP=1 Low power mode, LP=0 Normal)
wim 39:e9c2319de9c5 1329
wim 39:e9c2319de9c5 1330 _writeCommand(0x08 | _function_x); // Ext Function set 0000 1 FW BW NW (Ext Regs)
wim 40:d3496c3ea301 1331 // FW=0 (5-dot font, special mode for HD66712)
wim 40:d3496c3ea301 1332 // BW=0 (Cur BW invert disable, special mode for HD66712)
wim 40:d3496c3ea301 1333 // NW=0 (1,2 Line), NW=1 (4 line, special mode for HD66712)
wim 40:d3496c3ea301 1334
wim 40:d3496c3ea301 1335 _writeCommand(0x10); // Scroll/Shift set 0001 HS4 HS3 HS2 HS1 (Ext Regs)
wim 40:d3496c3ea301 1336 // Dotscroll/Display shift enable (Special mode for HD66712)
wim 40:d3496c3ea301 1337
wim 40:d3496c3ea301 1338 _writeCommand(0x80); // Scroll Quantity set 1 0 HDS5 HDS4 HDS3 HDS2 HDS1 HDS0 (Ext Regs)
wim 40:d3496c3ea301 1339 // Scroll quantity (Special mode for HD66712)
wim 39:e9c2319de9c5 1340
wim 39:e9c2319de9c5 1341 _writeCommand(0x20 | _function); // Function set 001 DL N RE(0) DH REV (Std Regs)
wim 39:e9c2319de9c5 1342 // DL=0 (4 bits bus), DL=1 (8 bits mode)
wim 39:e9c2319de9c5 1343 // N=0 (1 line mode), N=1 (2 line mode)
wim 40:d3496c3ea301 1344 // RE=0 (Dis. Extended Regs, special mode for HD66712)
wim 40:d3496c3ea301 1345 // DH=1 (Disp shift enable/disable, special mode for HD66712)
wim 40:d3496c3ea301 1346 // REV=0 (Reverse/Normal, special mode for HD66712)
wim 39:e9c2319de9c5 1347 break; // case HD66712 Controller
wim 39:e9c2319de9c5 1348
wim 41:111ca62e8a59 1349 case SPLC792A_3V3:
wim 41:111ca62e8a59 1350 // SPLC792A controller: Initialise Voltage booster for VLCD. VDD=3V3
wim 41:111ca62e8a59 1351 // Note very similar to ST7032
wim 41:111ca62e8a59 1352
wim 41:111ca62e8a59 1353 // Initialise Display configuration
wim 41:111ca62e8a59 1354 switch (_type) {
wim 41:111ca62e8a59 1355 case LCD8x1: //8x1 is a regular 1 line display
wim 41:111ca62e8a59 1356 case LCD8x2B: //8x2B is a special case of 16x1
wim 41:111ca62e8a59 1357 // case LCD12x1:
wim 41:111ca62e8a59 1358 case LCD16x1:
wim 41:111ca62e8a59 1359 // case LCD20x1:
wim 41:111ca62e8a59 1360 case LCD24x1:
wim 41:111ca62e8a59 1361 _function = 0x00; // FUNCTION SET 0 0 1 DL=0 (4 bit), N=0 (1-line display mode), F=0 (5*7dot), 0, IS
wim 41:111ca62e8a59 1362 // Note: 4 bit mode is ignored for native SPI and I2C devices
wim 41:111ca62e8a59 1363 // Saved to allow switch between Instruction sets at later time
wim 41:111ca62e8a59 1364 break;
wim 41:111ca62e8a59 1365
wim 41:111ca62e8a59 1366 case LCD12x3D: // Special mode for KS0078 and PCF21XX
wim 41:111ca62e8a59 1367 case LCD12x3D1: // Special mode for KS0078 and PCF21XX
wim 41:111ca62e8a59 1368 case LCD12x4D: // Special mode for KS0078 and PCF21XX
wim 41:111ca62e8a59 1369 case LCD16x3G: // Special mode for ST7036
wim 41:111ca62e8a59 1370 case LCD24x4D: // Special mode for KS0078
wim 41:111ca62e8a59 1371 error("Error: LCD Controller type does not support this Display type\n\r");
wim 41:111ca62e8a59 1372 break;
wim 41:111ca62e8a59 1373
wim 41:111ca62e8a59 1374 default:
wim 41:111ca62e8a59 1375 // All other LCD types are initialised as 2 Line displays
wim 41:111ca62e8a59 1376 _function = 0x08; // FUNCTION SET 0 0 1 DL=0 (4 bit), N=1 (2-line display mode), F=0 (5*7dot), 0, IS
wim 41:111ca62e8a59 1377 // Note: 4 bit mode is ignored for native SPI and I2C devices
wim 41:111ca62e8a59 1378 // Saved to allow switch between Instruction sets at later time
wim 41:111ca62e8a59 1379 break;
wim 41:111ca62e8a59 1380 } // switch type
wim 41:111ca62e8a59 1381
wim 41:111ca62e8a59 1382 // init special features
wim 41:111ca62e8a59 1383 _writeCommand(0x20 | _function | 0x01); // Set function, 0 0 1 DL N F 0 IS=1 Select Instr Set = 1
wim 41:111ca62e8a59 1384
wim 41:111ca62e8a59 1385 //SPLC792A Does not support Bias and Internal Osc register
wim 41:111ca62e8a59 1386 // _writeCommand(0x1C); // Internal OSC frequency adjustment Framefreq=183HZ, Bias will be 1/4 (Instr Set=1)
wim 41:111ca62e8a59 1387
wim 41:111ca62e8a59 1388 _contrast = LCD_SPLC792A_CONTRAST;
wim 41:111ca62e8a59 1389 _writeCommand(0x70 | (_contrast & 0x0F)); // Set Contrast Low bits, 0 1 1 1 C3 C2 C1 C0 (IS=1)
wim 41:111ca62e8a59 1390
wim 41:111ca62e8a59 1391
wim 41:111ca62e8a59 1392 // _icon_power = 0x04; // Icon display off (Bit3=0), Booster circuit is turned on (Bit2=1) (IS=1)
wim 41:111ca62e8a59 1393 _icon_power = 0x0C; // Icon display on (Bit3=1), Booster circuit is turned on (Bit2=1) (IS=1)
wim 41:111ca62e8a59 1394 // Note: Booster circuit always on for SPLC792A, Bit2 is dont care
wim 41:111ca62e8a59 1395 // Saved to allow contrast change at later time
wim 41:111ca62e8a59 1396
wim 41:111ca62e8a59 1397 _writeCommand(0x50 | _icon_power | ((_contrast >> 4) & 0x03)); // Set Icon, Booster and Contrast High bits, 0 1 0 1 Ion Bon C5 C4 (IS=1)
reedas 42:1962dc501f94 1398 ThisThread::sleep_for(10); // Wait 10ms to ensure powered up
wim 41:111ca62e8a59 1399
wim 41:111ca62e8a59 1400 _writeCommand(0x68 | (LCD_SPLC792A_RAB & 0x07)); // Voltage follower, 0 1 1 0 FOn=1, Ampl ratio Rab2=1, Rab1=0, Rab0=0 (IS=1)
wim 41:111ca62e8a59 1401 // Note: Follower circuit always on for SPLC792A, Bit3 is dont care
reedas 42:1962dc501f94 1402 ThisThread::sleep_for(10); // Wait 10ms to ensure powered up
wim 41:111ca62e8a59 1403
wim 41:111ca62e8a59 1404 _writeCommand(0x20 | _function); // Select Instruction Set = 0
wim 41:111ca62e8a59 1405
wim 41:111ca62e8a59 1406 break; // case SPLC792A_3V3 Controller
wim 41:111ca62e8a59 1407
wim 37:ce348c002929 1408 case ST7066_ACM: // ST7066 4/8 bit, I2C on ACM1602 using a PIC
wim 19:c747b9e2e7b8 1409 default:
wim 32:59c4b8f648d4 1410 // Devices fully compatible to HD44780 that do not use any DC/DC Voltage converters but external VLCD, no icons etc
wim 10:dd9b3a696acd 1411
wim 29:a3663151aa65 1412 // Initialise Display configuration
wim 29:a3663151aa65 1413 switch (_type) {
wim 29:a3663151aa65 1414 case LCD8x1: //8x1 is a regular 1 line display
wim 29:a3663151aa65 1415 case LCD8x2B: //8x2B is a special case of 16x1
wim 29:a3663151aa65 1416 // case LCD12x1:
wim 29:a3663151aa65 1417 case LCD16x1:
wim 30:033048611c01 1418 // case LCD20x1:
wim 29:a3663151aa65 1419 case LCD24x1:
wim 30:033048611c01 1420 // case LCD40x1:
wim 32:59c4b8f648d4 1421 _function = 0x00; // Function set 001 DL N F - -
wim 29:a3663151aa65 1422 // DL=0 (4 bits bus)
wim 29:a3663151aa65 1423 // N=0 (1 line)
wim 29:a3663151aa65 1424 // F=0 (5x7 dots font)
wim 29:a3663151aa65 1425 break;
wim 29:a3663151aa65 1426
wim 32:59c4b8f648d4 1427 case LCD12x3D: // Special mode for KS0078 and PCF21XX
wim 32:59c4b8f648d4 1428 case LCD12x3D1: // Special mode for KS0078 and PCF21XX
wim 32:59c4b8f648d4 1429 case LCD12x4D: // Special mode for KS0078 and PCF21XX:
wim 33:900a94bc7585 1430 case LCD16x3D: // Special mode for KS0078
wim 32:59c4b8f648d4 1431 // case LCD16x3D1: // Special mode for KS0078
wim 30:033048611c01 1432 // case LCD24x3D: // Special mode for KS0078
wim 32:59c4b8f648d4 1433 // case LCD24x3D1: // Special mode for KS0078
wim 30:033048611c01 1434 case LCD24x4D: // Special mode for KS0078
wim 30:033048611c01 1435 error("Error: LCD Controller type does not support this Display type\n\r");
wim 30:033048611c01 1436 break;
wim 30:033048611c01 1437
wim 30:033048611c01 1438 // All other LCD types are initialised as 2 Line displays (including LCD16x1C and LCD40x4)
wim 29:a3663151aa65 1439 default:
wim 32:59c4b8f648d4 1440 _function = 0x08; // Function set 001 DL N F - -
wim 29:a3663151aa65 1441 // DL=0 (4 bits bus)
wim 29:a3663151aa65 1442 // Note: 4 bit mode is ignored for native SPI and I2C devices
wim 29:a3663151aa65 1443 // N=1 (2 lines)
wim 29:a3663151aa65 1444 // F=0 (5x7 dots font, only option for 2 line display)
wim 32:59c4b8f648d4 1445 // - (Don't care)
wim 29:a3663151aa65 1446 break;
wim 29:a3663151aa65 1447 } // switch type
wim 10:dd9b3a696acd 1448
wim 34:e5a0dcb43ecc 1449 _writeCommand(0x20 | _function);
wim 29:a3663151aa65 1450 break; // case default Controller
wim 29:a3663151aa65 1451
wim 34:e5a0dcb43ecc 1452 } // switch Controller specific initialisations
wim 10:dd9b3a696acd 1453
wim 30:033048611c01 1454 // Controller general initialisations
wim 39:e9c2319de9c5 1455 // _writeCommand(0x01); // Clear Display and set cursor to 0
reedas 42:1962dc501f94 1456 // ThisThread::sleep_for(10); // The CLS command takes 1.64 ms.
wim 32:59c4b8f648d4 1457 // // Since we are not using the Busy flag, Lets be safe and take 10 ms
wim 28:30fa94f7341c 1458
wim 39:e9c2319de9c5 1459 _writeCommand(0x02); // Cursor Home, DDRAM Address to Origin
reedas 42:1962dc501f94 1460 ThisThread::sleep_for(10); // The Return Home command takes 1.64 ms.
wim 39:e9c2319de9c5 1461 // Since we are not using the Busy flag, Lets be safe and take 10 ms
wim 28:30fa94f7341c 1462
wim 28:30fa94f7341c 1463 _writeCommand(0x06); // Entry Mode 0000 0 1 I/D S
wim 13:24506ba22480 1464 // Cursor Direction and Display Shift
wim 28:30fa94f7341c 1465 // I/D=1 (Cur incr)
wim 28:30fa94f7341c 1466 // S=0 (No display shift)
wim 10:dd9b3a696acd 1467
wim 29:a3663151aa65 1468 _writeCommand(0x14); // Cursor or Display shift 0001 S/C R/L x x
wim 29:a3663151aa65 1469 // S/C=0 Cursor moves
wim 29:a3663151aa65 1470 // R/L=1 Right
wim 29:a3663151aa65 1471 //
wim 29:a3663151aa65 1472
wim 13:24506ba22480 1473 // _writeCommand(0x0C); // Display Ctrl 0000 1 D C B
wim 17:652ab113bc2e 1474 // // Display On, Cursor Off, Blink Off
wim 36:9f5f86dfd44a 1475
wim 39:e9c2319de9c5 1476 // setCursor(CurOff_BlkOff);
wim 39:e9c2319de9c5 1477 setCursor(CurOn_BlkOff);
wim 21:9eb628d9e164 1478 setMode(DispOn);
simon 1:ac48b187213c 1479 }
simon 1:ac48b187213c 1480
wim 8:03116f75b66e 1481
wim 21:9eb628d9e164 1482 /** Clear the screen, Cursor home.
wim 39:e9c2319de9c5 1483 * Note: The whole display is initialised to charcode 0x20, which may not be a 'space' on some controllers with a
wim 39:e9c2319de9c5 1484 * different fontset such as the PCF2116C or PCF2119R. In this case you should fill the display with 'spaces'.
wim 21:9eb628d9e164 1485 */
wim 21:9eb628d9e164 1486 void TextLCD_Base::cls() {
wim 15:b70ebfffb258 1487
wim 41:111ca62e8a59 1488 #if (LCD_TWO_CTRL == 1)
wim 15:b70ebfffb258 1489 // Select and configure second LCD controller when needed
wim 15:b70ebfffb258 1490 if(_type==LCD40x4) {
wim 21:9eb628d9e164 1491 _ctrl_idx=_LCDCtrl_1; // Select 2nd controller
wim 15:b70ebfffb258 1492
wim 15:b70ebfffb258 1493 // Second LCD controller Cursor always Off
wim 21:9eb628d9e164 1494 _setCursorAndDisplayMode(_currentMode, CurOff_BlkOff);
wim 15:b70ebfffb258 1495
wim 15:b70ebfffb258 1496 // Second LCD controller Clearscreen
wim 27:22d5086f6ba6 1497 _writeCommand(0x01); // cls, and set cursor to 0
reedas 42:1962dc501f94 1498 ThisThread::sleep_for(20); // The CLS command takes 1.64 ms.
wim 29:a3663151aa65 1499 // Since we are not using the Busy flag, Lets be safe and take 10 ms
wim 15:b70ebfffb258 1500
wim 21:9eb628d9e164 1501 _ctrl_idx=_LCDCtrl_0; // Select primary controller
wim 15:b70ebfffb258 1502 }
wim 41:111ca62e8a59 1503
wim 15:b70ebfffb258 1504
wim 15:b70ebfffb258 1505 // Primary LCD controller Clearscreen
wim 27:22d5086f6ba6 1506 _writeCommand(0x01); // cls, and set cursor to 0
reedas 42:1962dc501f94 1507 ThisThread::sleep_for(20); // The CLS command takes 1.64 ms.
wim 29:a3663151aa65 1508 // Since we are not using the Busy flag, Lets be safe and take 10 ms
wim 15:b70ebfffb258 1509
wim 15:b70ebfffb258 1510 // Restore cursormode on primary LCD controller when needed
wim 15:b70ebfffb258 1511 if(_type==LCD40x4) {
wim 17:652ab113bc2e 1512 _setCursorAndDisplayMode(_currentMode,_currentCursor);
wim 15:b70ebfffb258 1513 }
wim 41:111ca62e8a59 1514
wim 41:111ca62e8a59 1515 #else
wim 41:111ca62e8a59 1516 // Support only one LCD controller
wim 41:111ca62e8a59 1517 _writeCommand(0x01); // cls, and set cursor to 0
reedas 42:1962dc501f94 1518 ThisThread::sleep_for(20); // The CLS command takes 1.64 ms.
wim 41:111ca62e8a59 1519 // Since we are not using the Busy flag, Lets be safe and take 10 ms
wim 41:111ca62e8a59 1520 #endif
wim 15:b70ebfffb258 1521
wim 29:a3663151aa65 1522 setAddress(0, 0); // Reset Cursor location
wim 32:59c4b8f648d4 1523 // Note: This is needed because some displays (eg PCF21XX) don't use line 0 in the '3 Line' mode.
simon 1:ac48b187213c 1524 }
simon 1:ac48b187213c 1525
wim 29:a3663151aa65 1526 /** Locate cursor to a screen column and row
wim 29:a3663151aa65 1527 *
wim 29:a3663151aa65 1528 * @param column The horizontal position from the left, indexed from 0
wim 29:a3663151aa65 1529 * @param row The vertical position from the top, indexed from 0
wim 29:a3663151aa65 1530 */
wim 21:9eb628d9e164 1531 void TextLCD_Base::locate(int column, int row) {
wim 15:b70ebfffb258 1532
wim 15:b70ebfffb258 1533 // setAddress() does all the heavy lifting:
wim 15:b70ebfffb258 1534 // check column and row sanity,
wim 15:b70ebfffb258 1535 // switch controllers for LCD40x4 if needed
wim 15:b70ebfffb258 1536 // switch cursor for LCD40x4 if needed
wim 15:b70ebfffb258 1537 // set the new memory address to show cursor at correct location
wim 32:59c4b8f648d4 1538 setAddress(column, row);
wim 15:b70ebfffb258 1539 }
wim 30:033048611c01 1540
wim 15:b70ebfffb258 1541
wim 21:9eb628d9e164 1542 /** Write a single character (Stream implementation)
wim 21:9eb628d9e164 1543 */
wim 21:9eb628d9e164 1544 int TextLCD_Base::_putc(int value) {
wim 15:b70ebfffb258 1545 int addr;
wim 15:b70ebfffb258 1546
wim 15:b70ebfffb258 1547 if (value == '\n') {
wim 15:b70ebfffb258 1548 //No character to write
wim 15:b70ebfffb258 1549
wim 15:b70ebfffb258 1550 //Update Cursor
wim 15:b70ebfffb258 1551 _column = 0;
wim 15:b70ebfffb258 1552 _row++;
wim 15:b70ebfffb258 1553 if (_row >= rows()) {
wim 15:b70ebfffb258 1554 _row = 0;
wim 15:b70ebfffb258 1555 }
wim 15:b70ebfffb258 1556 }
wim 15:b70ebfffb258 1557 else {
wim 37:ce348c002929 1558 //Character to write
wim 41:111ca62e8a59 1559
wim 41:111ca62e8a59 1560 #if (LCD_DEF_FONT == 1) //Default HD44780 font
wim 37:ce348c002929 1561 _writeData(value);
wim 41:111ca62e8a59 1562 #elif (LCD_C_FONT == 1) || (LCD_R_FONT == 1) //PCF21xxC or PCF21xxR font
wim 41:111ca62e8a59 1563 _writeData(ASCII_2_LCD(value));
wim 41:111ca62e8a59 1564 #elif (LCD_UTF8_FONT == 1) // UTF8 2 byte font (eg Cyrillic)
wim 41:111ca62e8a59 1565 // value = UTF_2_LCD(value, utf_seq_rec_first_cyr, utf_seq_recode_cyr, &utf_rnd_recode_cyr[0][0]);
wim 41:111ca62e8a59 1566 value = UTF_2_LCD(value);
wim 41:111ca62e8a59 1567 if (value >= 0) {
wim 41:111ca62e8a59 1568 _writeData(value);
wim 41:111ca62e8a59 1569
wim 41:111ca62e8a59 1570 // Only increment cursor when there is something to write
wim 41:111ca62e8a59 1571 // Continue below to closing bracket...
wim 37:ce348c002929 1572 #else
wim 41:111ca62e8a59 1573 _writeData('?'); //Oops, no font defined
wim 41:111ca62e8a59 1574 #endif
wim 41:111ca62e8a59 1575
wim 15:b70ebfffb258 1576 //Update Cursor
wim 15:b70ebfffb258 1577 _column++;
wim 15:b70ebfffb258 1578 if (_column >= columns()) {
wim 15:b70ebfffb258 1579 _column = 0;
wim 15:b70ebfffb258 1580 _row++;
wim 15:b70ebfffb258 1581 if (_row >= rows()) {
wim 15:b70ebfffb258 1582 _row = 0;
wim 15:b70ebfffb258 1583 }
wim 41:111ca62e8a59 1584 }
wim 41:111ca62e8a59 1585
wim 41:111ca62e8a59 1586 #if (LCD_DEF_FONT == 1) //Default HD44780 font
wim 41:111ca62e8a59 1587
wim 41:111ca62e8a59 1588 #elif (LCD_C_FONT == 1) || (LCD_R_FONT == 1) //PCF21xxC or PCF21xxR font
wim 41:111ca62e8a59 1589
wim 41:111ca62e8a59 1590 #elif (LCD_UTF8_FONT == 1) //UTF8 2 byte font (eg Cyrillic)
wim 41:111ca62e8a59 1591 // Continue code above to close bracket...
wim 41:111ca62e8a59 1592 } // if (value >= 0) {..
wim 41:111ca62e8a59 1593 #else
wim 41:111ca62e8a59 1594
wim 41:111ca62e8a59 1595 #endif
wim 41:111ca62e8a59 1596
wim 15:b70ebfffb258 1597 } //else
wim 15:b70ebfffb258 1598
wim 15:b70ebfffb258 1599 //Set next memoryaddress, make sure cursor blinks at next location
wim 15:b70ebfffb258 1600 addr = getAddress(_column, _row);
wim 15:b70ebfffb258 1601 _writeCommand(0x80 | addr);
wim 15:b70ebfffb258 1602
wim 15:b70ebfffb258 1603 return value;
wim 15:b70ebfffb258 1604 }
wim 15:b70ebfffb258 1605
wim 15:b70ebfffb258 1606
wim 16:c276b75e6585 1607 // get a single character (Stream implementation)
wim 21:9eb628d9e164 1608 int TextLCD_Base::_getc() {
simon 1:ac48b187213c 1609 return -1;
simon 1:ac48b187213c 1610 }
simon 1:ac48b187213c 1611
wim 41:111ca62e8a59 1612
wim 41:111ca62e8a59 1613 #if ((LCD_C_FONT == 1) || (LCD_R_FONT == 1)) //PCF21xxC or PCF21xxR font
wim 37:ce348c002929 1614 /** Convert ASCII character code to the LCD fonttable code
wim 37:ce348c002929 1615 *
wim 37:ce348c002929 1616 * @param c The character to write to the display
wim 37:ce348c002929 1617 * @return The character code for the specific fonttable of the controller
wim 37:ce348c002929 1618 */
wim 37:ce348c002929 1619 int TextLCD_Base::ASCII_2_LCD (int c) {
wim 37:ce348c002929 1620
wim 41:111ca62e8a59 1621 //LCD_C_F0 is default for HD44780 and compatible series
wim 41:111ca62e8a59 1622 // if (_font == LCD_C_F0) return c;
wim 41:111ca62e8a59 1623
wim 41:111ca62e8a59 1624 //LCD_C_FC for PCF21XXC series
wim 41:111ca62e8a59 1625 //LCD_C_FR for PCF21XXR series
wim 39:e9c2319de9c5 1626 //Used code from Suga koubou library for PCF2119K and PCF2119R
wim 37:ce348c002929 1627 if (((c >= ' ') && (c <= '?')) || ((c >= 'A') && (c <= 'Z')) || ((c >= 'a') && (c <= 'z'))) {
wim 37:ce348c002929 1628 c |= 0x80;
wim 39:e9c2319de9c5 1629 } else if (c >= 0xF0 && c <= 0xFF) {
wim 41:111ca62e8a59 1630 c &= 0x0F;
wim 37:ce348c002929 1631 }
wim 37:ce348c002929 1632 return c;
wim 37:ce348c002929 1633 }
wim 41:111ca62e8a59 1634 #endif
wim 41:111ca62e8a59 1635
wim 41:111ca62e8a59 1636 #if(LCD_UTF8_FONT == 1)
wim 41:111ca62e8a59 1637
wim 41:111ca62e8a59 1638 /** Convert UTF8 2-byte character code to the LCD fonttable code
wim 41:111ca62e8a59 1639 * @param c The character to write to the display
wim 41:111ca62e8a59 1640 * @return character code for the specific fonttable of the controller or -1 if UTF8 code is not yet complete or incorrect
wim 41:111ca62e8a59 1641 *
wim 41:111ca62e8a59 1642 * Orig by Andriy, Modified by WH
wim 41:111ca62e8a59 1643 *
wim 41:111ca62e8a59 1644 * Note: The UTF8 decoding table for a specific controller is defined and selected in file TextLCD_UTF8.inc
wim 41:111ca62e8a59 1645 * The table is accessed in this UTF_2_LCD() method through
wim 41:111ca62e8a59 1646 * #define UTF_FIRST, UTF_LAST, UTF_SEQ_REC_FIRST, UTF_SEQ_REC_LAST and
wim 41:111ca62e8a59 1647 * #define UTF_SEQ_RECODE and UTF_RND_RECODE
wim 41:111ca62e8a59 1648 */
wim 41:111ca62e8a59 1649 int TextLCD_Base::UTF_2_LCD (int c) {
wim 41:111ca62e8a59 1650 int utf_code;
wim 41:111ca62e8a59 1651 int utf_low_byte; // Low byte UTF8
wim 41:111ca62e8a59 1652 static int utf_hi_byte = 0; // High byte UTF8
wim 41:111ca62e8a59 1653
wim 41:111ca62e8a59 1654 if (c < 0x80) { // Regular ASCII code, no need to convert
wim 41:111ca62e8a59 1655 return c;
wim 41:111ca62e8a59 1656 }
wim 41:111ca62e8a59 1657 else { // UTF8 handling, See wikipedia.org/wiki/UTF-8 and www.utf8-chartable.de
wim 41:111ca62e8a59 1658 // printf("0x%X ", c);
wim 41:111ca62e8a59 1659
wim 41:111ca62e8a59 1660 if (c >= 0xC0) { // First UTF8 byte should be formatted as 110b bbaa, Do sanity check
wim 41:111ca62e8a59 1661 utf_hi_byte = c & 0x1F; // Mask out significant bits (0x1F) and save high byte
wim 41:111ca62e8a59 1662 return -1; // Nothing to display as yet, wait for second UTF8 byte
wim 41:111ca62e8a59 1663 }
wim 41:111ca62e8a59 1664
wim 41:111ca62e8a59 1665 if (c <= 0xBF) { // Second UTF8 byte should be formatted as 10aa aaaa, Do sanity check
wim 41:111ca62e8a59 1666 utf_low_byte = c & 0x3F; // Mask out significant bits (0x3F)
wim 41:111ca62e8a59 1667
wim 41:111ca62e8a59 1668 // Compose UTF character code from UTF8 bytes. The UTF codes will be between U+0080 and U+07FF
wim 41:111ca62e8a59 1669 utf_code = (utf_hi_byte << 6) | utf_low_byte; // 00000bbb aaaaaaaa
wim 41:111ca62e8a59 1670 // printf("0x%4X ", utf_code);
wim 41:111ca62e8a59 1671
wim 41:111ca62e8a59 1672 // Sanity check on UTF codes
wim 41:111ca62e8a59 1673 // For example Cyrillic characters are UTF encoded between 0x0400 and 0x04FF
wim 41:111ca62e8a59 1674 if ((utf_code < UTF_FIRST) || (utf_code > UTF_LAST)) {
wim 41:111ca62e8a59 1675 return -1; // Invalid UTF8 code
wim 41:111ca62e8a59 1676 };
wim 41:111ca62e8a59 1677
wim 41:111ca62e8a59 1678 //Map some specific UTF codes on a character in LCD fonttable using a special correcting lookup table
wim 41:111ca62e8a59 1679 for (char i=0; UTF_RND_RECODE[i][0]; i++) { // Step through table until endvalue 0 is found or until a match is found
wim 41:111ca62e8a59 1680 if (utf_code == UTF_RND_RECODE[i][0]) { // UTF8 code match is found
wim 41:111ca62e8a59 1681 c = UTF_RND_RECODE[1][1];
wim 41:111ca62e8a59 1682 return c; // found match in correcting random table
wim 41:111ca62e8a59 1683 }
wim 41:111ca62e8a59 1684 }
wim 41:111ca62e8a59 1685
wim 41:111ca62e8a59 1686 //Sanity check on table idx range
wim 41:111ca62e8a59 1687 if ((utf_code < UTF_SEQ_REC_FIRST) || (utf_code > UTF_SEQ_REC_LAST)) {
wim 41:111ca62e8a59 1688 return -1; // Invalid UTF8 code
wim 41:111ca62e8a59 1689 };
wim 41:111ca62e8a59 1690
wim 41:111ca62e8a59 1691 //Map all other UTF codes on a character in LCD fonttable using a sequential lookup table
wim 41:111ca62e8a59 1692 c = UTF_SEQ_RECODE[utf_code - UTF_SEQ_REC_FIRST];
wim 41:111ca62e8a59 1693 return c; // entry in sequential table
wim 41:111ca62e8a59 1694 }
wim 41:111ca62e8a59 1695 else {
wim 41:111ca62e8a59 1696 return -1; // Invalid UTF8 code for second byte
wim 41:111ca62e8a59 1697 }
wim 41:111ca62e8a59 1698 } // End UTF8 handling
wim 41:111ca62e8a59 1699 }
wim 41:111ca62e8a59 1700
wim 41:111ca62e8a59 1701 #endif
wim 41:111ca62e8a59 1702
wim 14:0c32b66b14b8 1703
wim 34:e5a0dcb43ecc 1704 #if(LCD_PRINTF != 1)
wim 34:e5a0dcb43ecc 1705 /** Write a character to the LCD
wim 34:e5a0dcb43ecc 1706 *
wim 34:e5a0dcb43ecc 1707 * @param c The character to write to the display
wim 34:e5a0dcb43ecc 1708 */
wim 34:e5a0dcb43ecc 1709 int TextLCD_Base::putc(int c){
wim 34:e5a0dcb43ecc 1710 return _putc(c);
wim 34:e5a0dcb43ecc 1711 }
wim 34:e5a0dcb43ecc 1712
wim 34:e5a0dcb43ecc 1713
wim 34:e5a0dcb43ecc 1714 /** Write a raw string to the LCD
wim 34:e5a0dcb43ecc 1715 *
wim 34:e5a0dcb43ecc 1716 * @param string text, may be followed by variables to emulate formatting the string.
wim 34:e5a0dcb43ecc 1717 * However, printf formatting is NOT supported and variables will be ignored!
wim 34:e5a0dcb43ecc 1718 */
wim 34:e5a0dcb43ecc 1719 int TextLCD_Base::printf(const char* text, ...) {
wim 34:e5a0dcb43ecc 1720
wim 34:e5a0dcb43ecc 1721 while (*text !=0) {
wim 34:e5a0dcb43ecc 1722 _putc(*text);
wim 34:e5a0dcb43ecc 1723 text++;
wim 34:e5a0dcb43ecc 1724 }
wim 34:e5a0dcb43ecc 1725 return 0;
wim 34:e5a0dcb43ecc 1726 }
wim 34:e5a0dcb43ecc 1727 #endif
wim 34:e5a0dcb43ecc 1728
wim 34:e5a0dcb43ecc 1729
wim 17:652ab113bc2e 1730 // Write a nibble using the 4-bit interface
wim 21:9eb628d9e164 1731 void TextLCD_Base::_writeNibble(int value) {
wim 17:652ab113bc2e 1732
wim 17:652ab113bc2e 1733 // Enable is Low
wim 21:9eb628d9e164 1734 this->_setEnable(true);
wim 38:cbe275b0b647 1735 this->_setData(value); // Low nibble of value on D4..D7
wim 17:652ab113bc2e 1736 wait_us(1); // Data setup time
wim 21:9eb628d9e164 1737 this->_setEnable(false);
wim 17:652ab113bc2e 1738 wait_us(1); // Datahold time
wim 17:652ab113bc2e 1739 // Enable is Low
wim 17:652ab113bc2e 1740 }
wim 17:652ab113bc2e 1741
wim 16:c276b75e6585 1742 // Write a byte using the 4-bit interface
wim 21:9eb628d9e164 1743 void TextLCD_Base::_writeByte(int value) {
wim 15:b70ebfffb258 1744
wim 15:b70ebfffb258 1745 // Enable is Low
wim 21:9eb628d9e164 1746 this->_setEnable(true);
wim 21:9eb628d9e164 1747 this->_setData(value >> 4); // High nibble
wim 15:b70ebfffb258 1748 wait_us(1); // Data setup time
wim 21:9eb628d9e164 1749 this->_setEnable(false);
wim 15:b70ebfffb258 1750 wait_us(1); // Data hold time
wim 15:b70ebfffb258 1751
wim 21:9eb628d9e164 1752 this->_setEnable(true);
wim 37:ce348c002929 1753 this->_setData(value); // Low nibble
wim 15:b70ebfffb258 1754 wait_us(1); // Data setup time
wim 21:9eb628d9e164 1755 this->_setEnable(false);
wim 15:b70ebfffb258 1756 wait_us(1); // Datahold time
wim 15:b70ebfffb258 1757
wim 15:b70ebfffb258 1758 // Enable is Low
simon 1:ac48b187213c 1759 }
simon 1:ac48b187213c 1760
wim 21:9eb628d9e164 1761 // Write a command byte to the LCD controller
wim 21:9eb628d9e164 1762 void TextLCD_Base::_writeCommand(int command) {
wim 15:b70ebfffb258 1763
wim 21:9eb628d9e164 1764 this->_setRS(false);
wim 16:c276b75e6585 1765 wait_us(1); // Data setup time for RS
wim 15:b70ebfffb258 1766
wim 21:9eb628d9e164 1767 this->_writeByte(command);
wim 15:b70ebfffb258 1768 wait_us(40); // most instructions take 40us
simon 1:ac48b187213c 1769 }
simon 1:ac48b187213c 1770
wim 21:9eb628d9e164 1771 // Write a data byte to the LCD controller
wim 21:9eb628d9e164 1772 void TextLCD_Base::_writeData(int data) {
wim 15:b70ebfffb258 1773
wim 21:9eb628d9e164 1774 this->_setRS(true);
wim 16:c276b75e6585 1775 wait_us(1); // Data setup time for RS
wim 15:b70ebfffb258 1776
wim 21:9eb628d9e164 1777 this->_writeByte(data);
wim 15:b70ebfffb258 1778 wait_us(40); // data writes take 40us
simon 1:ac48b187213c 1779 }
simon 1:ac48b187213c 1780
wim 8:03116f75b66e 1781
wim 32:59c4b8f648d4 1782 // This replaces the original _address() method.
wim 8:03116f75b66e 1783 // It is confusing since it returns the memoryaddress or-ed with the set memorycommand 0x80.
wim 8:03116f75b66e 1784 // Left it in here for compatibility with older code. New applications should use getAddress() instead.
wim 21:9eb628d9e164 1785 int TextLCD_Base::_address(int column, int row) {
wim 8:03116f75b66e 1786 return 0x80 | getAddress(column, row);
wim 8:03116f75b66e 1787 }
wim 8:03116f75b66e 1788
wim 30:033048611c01 1789
wim 30:033048611c01 1790 // This is new method to return the memory address based on row, column and displaytype.
wim 30:033048611c01 1791 //
wim 30:033048611c01 1792 /** Return the memoryaddress of screen column and row location
wim 30:033048611c01 1793 *
wim 30:033048611c01 1794 * @param column The horizontal position from the left, indexed from 0
wim 30:033048611c01 1795 * @param row The vertical position from the top, indexed from 0
wim 36:9f5f86dfd44a 1796 * @return The memoryaddress of screen column and row location
wim 30:033048611c01 1797 *
wim 30:033048611c01 1798 */
wim 30:033048611c01 1799 int TextLCD_Base::getAddress(int column, int row) {
wim 30:033048611c01 1800
wim 30:033048611c01 1801 switch (_addr_mode) {
wim 30:033048611c01 1802
wim 30:033048611c01 1803 case LCD_T_A:
wim 30:033048611c01 1804 //Default addressing mode for 1, 2 and 4 rows (except 40x4)
wim 30:033048611c01 1805 //The two available rows are split and stacked on top of eachother. Addressing for 3rd and 4th line continues where lines 1 and 2 were split.
wim 30:033048611c01 1806 //Displays top rows when less than four are used.
wim 30:033048611c01 1807 switch (row) {
wim 30:033048611c01 1808 case 0:
wim 30:033048611c01 1809 return 0x00 + column;
wim 30:033048611c01 1810 case 1:
wim 30:033048611c01 1811 return 0x40 + column;
wim 30:033048611c01 1812 case 2:
wim 30:033048611c01 1813 return 0x00 + _nr_cols + column;
wim 30:033048611c01 1814 case 3:
wim 30:033048611c01 1815 return 0x40 + _nr_cols + column;
wim 30:033048611c01 1816 // Should never get here.
wim 39:e9c2319de9c5 1817 // default:
wim 39:e9c2319de9c5 1818 // return 0x00;
wim 30:033048611c01 1819 }
wim 30:033048611c01 1820
wim 30:033048611c01 1821 case LCD_T_B:
wim 30:033048611c01 1822 // LCD8x2B is a special layout of LCD16x1
wim 30:033048611c01 1823 if (row==0)
wim 30:033048611c01 1824 return 0x00 + column;
wim 30:033048611c01 1825 else
wim 30:033048611c01 1826 // return _nr_cols + column;
wim 30:033048611c01 1827 return 0x08 + column;
wim 30:033048611c01 1828
wim 30:033048611c01 1829 case LCD_T_C:
wim 30:033048611c01 1830 // LCD16x1C is a special layout of LCD8x2
wim 33:900a94bc7585 1831 // LCD32x1C is a special layout of LCD16x2
wim 33:900a94bc7585 1832 // LCD40x1C is a special layout of LCD20x2
wim 33:900a94bc7585 1833 #if(0)
wim 32:59c4b8f648d4 1834 if (column < 8)
wim 30:033048611c01 1835 return 0x00 + column;
wim 30:033048611c01 1836 else
wim 30:033048611c01 1837 return 0x40 + (column - 8);
wim 32:59c4b8f648d4 1838 #else
wim 32:59c4b8f648d4 1839 if (column < (_nr_cols >> 1))
wim 32:59c4b8f648d4 1840 return 0x00 + column;
wim 32:59c4b8f648d4 1841 else
wim 32:59c4b8f648d4 1842 return 0x40 + (column - (_nr_cols >> 1));
wim 32:59c4b8f648d4 1843 #endif
wim 30:033048611c01 1844
wim 30:033048611c01 1845 case LCD_T_D:
wim 36:9f5f86dfd44a 1846 //Alternate addressing mode for 3 and 4 row displays (except 40x4). Used by PCF21XX, KS0073, KS0078, SSD1803
wim 30:033048611c01 1847 //The 4 available rows start at a hardcoded address.
wim 30:033048611c01 1848 //Displays top rows when less than four are used.
wim 30:033048611c01 1849 switch (row) {
wim 30:033048611c01 1850 case 0:
wim 30:033048611c01 1851 return 0x00 + column;
wim 30:033048611c01 1852 case 1:
wim 30:033048611c01 1853 return 0x20 + column;
wim 30:033048611c01 1854 case 2:
wim 30:033048611c01 1855 return 0x40 + column;
wim 30:033048611c01 1856 case 3:
wim 30:033048611c01 1857 return 0x60 + column;
wim 30:033048611c01 1858 // Should never get here.
wim 39:e9c2319de9c5 1859 // default:
wim 39:e9c2319de9c5 1860 // return 0x00;
wim 30:033048611c01 1861 }
wim 30:033048611c01 1862
wim 30:033048611c01 1863 case LCD_T_D1:
wim 36:9f5f86dfd44a 1864 //Alternate addressing mode for 3 row displays. Used by PCF21XX, KS0073, KS0078, SSD1803
wim 30:033048611c01 1865 //The 4 available rows start at a hardcoded address.
wim 30:033048611c01 1866 //Skips top row of 4 row display and starts display at row 1
wim 30:033048611c01 1867 switch (row) {
wim 30:033048611c01 1868 case 0:
wim 30:033048611c01 1869 return 0x20 + column;
wim 30:033048611c01 1870 case 1:
wim 30:033048611c01 1871 return 0x40 + column;
wim 30:033048611c01 1872 case 2:
wim 30:033048611c01 1873 return 0x60 + column;
wim 30:033048611c01 1874 // Should never get here.
wim 39:e9c2319de9c5 1875 // default:
wim 39:e9c2319de9c5 1876 // return 0x00;
wim 30:033048611c01 1877 }
wim 30:033048611c01 1878
wim 30:033048611c01 1879 case LCD_T_E:
wim 30:033048611c01 1880 // LCD40x4 is a special case since it has 2 controllers.
wim 30:033048611c01 1881 // Each controller is configured as 40x2 (Type A)
wim 30:033048611c01 1882 if (row<2) {
wim 30:033048611c01 1883 // Test to see if we need to switch between controllers
wim 30:033048611c01 1884 if (_ctrl_idx != _LCDCtrl_0) {
wim 30:033048611c01 1885
wim 30:033048611c01 1886 // Second LCD controller Cursor Off
wim 30:033048611c01 1887 _setCursorAndDisplayMode(_currentMode, CurOff_BlkOff);
wim 30:033048611c01 1888
wim 30:033048611c01 1889 // Select primary controller
wim 30:033048611c01 1890 _ctrl_idx = _LCDCtrl_0;
wim 30:033048611c01 1891
wim 30:033048611c01 1892 // Restore cursormode on primary LCD controller
wim 30:033048611c01 1893 _setCursorAndDisplayMode(_currentMode, _currentCursor);
wim 30:033048611c01 1894 }
wim 30:033048611c01 1895
wim 30:033048611c01 1896 return 0x00 + (row * 0x40) + column;
wim 30:033048611c01 1897 }
wim 30:033048611c01 1898 else {
wim 30:033048611c01 1899
wim 30:033048611c01 1900 // Test to see if we need to switch between controllers
wim 30:033048611c01 1901 if (_ctrl_idx != _LCDCtrl_1) {
wim 30:033048611c01 1902 // Primary LCD controller Cursor Off
wim 30:033048611c01 1903 _setCursorAndDisplayMode(_currentMode, CurOff_BlkOff);
wim 30:033048611c01 1904
wim 30:033048611c01 1905 // Select secondary controller
wim 30:033048611c01 1906 _ctrl_idx = _LCDCtrl_1;
wim 30:033048611c01 1907
wim 30:033048611c01 1908 // Restore cursormode on secondary LCD controller
wim 30:033048611c01 1909 _setCursorAndDisplayMode(_currentMode, _currentCursor);
wim 30:033048611c01 1910 }
wim 30:033048611c01 1911
wim 30:033048611c01 1912 return 0x00 + ((row-2) * 0x40) + column;
wim 30:033048611c01 1913 }
wim 30:033048611c01 1914
wim 32:59c4b8f648d4 1915 case LCD_T_F:
wim 32:59c4b8f648d4 1916 //Alternate addressing mode for 3 row displays.
wim 32:59c4b8f648d4 1917 //The first half of 3rd row continues from 1st row, the second half continues from 2nd row.
wim 32:59c4b8f648d4 1918 switch (row) {
wim 32:59c4b8f648d4 1919 case 0:
wim 32:59c4b8f648d4 1920 return 0x00 + column;
wim 32:59c4b8f648d4 1921 case 1:
wim 32:59c4b8f648d4 1922 return 0x40 + column;
wim 32:59c4b8f648d4 1923 case 2:
wim 32:59c4b8f648d4 1924 if (column < (_nr_cols >> 1)) // check first or second half of line
wim 32:59c4b8f648d4 1925 return (0x00 + _nr_cols + column);
wim 32:59c4b8f648d4 1926 else
wim 32:59c4b8f648d4 1927 return (0x40 + _nr_cols + (column - (_nr_cols >> 1)));
wim 32:59c4b8f648d4 1928 // Should never get here.
wim 39:e9c2319de9c5 1929 // default:
wim 39:e9c2319de9c5 1930 // return 0x00;
wim 32:59c4b8f648d4 1931 }
wim 32:59c4b8f648d4 1932
wim 32:59c4b8f648d4 1933 case LCD_T_G:
wim 32:59c4b8f648d4 1934 //Alternate addressing mode for 3 row displays. Used by ST7036
wim 32:59c4b8f648d4 1935 switch (row) {
wim 32:59c4b8f648d4 1936 case 0:
wim 32:59c4b8f648d4 1937 return 0x00 + column;
wim 32:59c4b8f648d4 1938 case 1:
wim 32:59c4b8f648d4 1939 return 0x10 + column;
wim 32:59c4b8f648d4 1940 case 2:
wim 32:59c4b8f648d4 1941 return 0x20 + column;
wim 32:59c4b8f648d4 1942 // Should never get here.
wim 39:e9c2319de9c5 1943 // default:
wim 39:e9c2319de9c5 1944 // return 0x00;
wim 32:59c4b8f648d4 1945 }
wim 32:59c4b8f648d4 1946
wim 30:033048611c01 1947 // Should never get here.
wim 30:033048611c01 1948 default:
wim 30:033048611c01 1949 return 0x00;
wim 32:59c4b8f648d4 1950
wim 32:59c4b8f648d4 1951 } // switch _addr_mode
wim 30:033048611c01 1952 }
wim 30:033048611c01 1953
wim 30:033048611c01 1954
wim 29:a3663151aa65 1955 /** Set the memoryaddress of screen column and row location
wim 29:a3663151aa65 1956 *
wim 29:a3663151aa65 1957 * @param column The horizontal position from the left, indexed from 0
wim 29:a3663151aa65 1958 * @param row The vertical position from the top, indexed from 0
wim 29:a3663151aa65 1959 */
wim 21:9eb628d9e164 1960 void TextLCD_Base::setAddress(int column, int row) {
wim 15:b70ebfffb258 1961
wim 15:b70ebfffb258 1962 // Sanity Check column
wim 15:b70ebfffb258 1963 if (column < 0) {
wim 15:b70ebfffb258 1964 _column = 0;
wim 15:b70ebfffb258 1965 }
wim 36:9f5f86dfd44a 1966 else if (column >= _nr_cols) {
wim 36:9f5f86dfd44a 1967 _column = _nr_cols - 1;
wim 15:b70ebfffb258 1968 } else _column = column;
wim 8:03116f75b66e 1969
wim 15:b70ebfffb258 1970 // Sanity Check row
wim 15:b70ebfffb258 1971 if (row < 0) {
wim 15:b70ebfffb258 1972 _row = 0;
wim 15:b70ebfffb258 1973 }
wim 36:9f5f86dfd44a 1974 else if (row >= _nr_rows) {
wim 36:9f5f86dfd44a 1975 _row = _nr_rows - 1;
wim 15:b70ebfffb258 1976 } else _row = row;
wim 15:b70ebfffb258 1977
wim 15:b70ebfffb258 1978
wim 15:b70ebfffb258 1979 // Compute the memory address
wim 15:b70ebfffb258 1980 // For LCD40x4: switch controllers if needed
wim 15:b70ebfffb258 1981 // switch cursor if needed
wim 15:b70ebfffb258 1982 int addr = getAddress(_column, _row);
wim 8:03116f75b66e 1983
wim 13:24506ba22480 1984 _writeCommand(0x80 | addr);
wim 8:03116f75b66e 1985 }
simon 1:ac48b187213c 1986
wim 29:a3663151aa65 1987
wim 29:a3663151aa65 1988 /** Return the number of columns
wim 29:a3663151aa65 1989 *
wim 36:9f5f86dfd44a 1990 * @return The number of columns
wim 30:033048611c01 1991 *
wim 30:033048611c01 1992 * Note: some configurations are commented out because they have not yet been tested due to lack of hardware
wim 29:a3663151aa65 1993 */
wim 21:9eb628d9e164 1994 int TextLCD_Base::columns() {
wim 30:033048611c01 1995
wim 30:033048611c01 1996 // Columns encoded in b7..b0
wim 30:033048611c01 1997 //return (_type & 0xFF);
wim 31:ef31cd8a00d1 1998 return _nr_cols;
simon 1:ac48b187213c 1999 }
simon 1:ac48b187213c 2000
wim 29:a3663151aa65 2001 /** Return the number of rows
wim 29:a3663151aa65 2002 *
wim 36:9f5f86dfd44a 2003 * @return The number of rows
wim 30:033048611c01 2004 *
wim 30:033048611c01 2005 * Note: some configurations are commented out because they have not yet been tested due to lack of hardware
wim 29:a3663151aa65 2006 */
wim 21:9eb628d9e164 2007 int TextLCD_Base::rows() {
wim 30:033048611c01 2008
wim 30:033048611c01 2009 // Rows encoded in b15..b8
wim 30:033048611c01 2010 //return ((_type >> 8) & 0xFF);
wim 30:033048611c01 2011 return _nr_rows;
simon 1:ac48b187213c 2012 }
wim 10:dd9b3a696acd 2013
wim 29:a3663151aa65 2014 /** Set the Cursormode
wim 29:a3663151aa65 2015 *
wim 29:a3663151aa65 2016 * @param cursorMode The Cursor mode (CurOff_BlkOff, CurOn_BlkOff, CurOff_BlkOn, CurOn_BlkOn)
wim 29:a3663151aa65 2017 */
wim 21:9eb628d9e164 2018 void TextLCD_Base::setCursor(LCDCursor cursorMode) {
wim 15:b70ebfffb258 2019
wim 17:652ab113bc2e 2020 // Save new cursor mode, needed when 2 controllers are in use or when display is switched off/on
wim 17:652ab113bc2e 2021 _currentCursor = cursorMode;
wim 10:dd9b3a696acd 2022
wim 17:652ab113bc2e 2023 // Configure only current LCD controller
wim 31:ef31cd8a00d1 2024 _setCursorAndDisplayMode(_currentMode, _currentCursor);
wim 15:b70ebfffb258 2025 }
wim 15:b70ebfffb258 2026
wim 29:a3663151aa65 2027 /** Set the Displaymode
wim 29:a3663151aa65 2028 *
wim 29:a3663151aa65 2029 * @param displayMode The Display mode (DispOff, DispOn)
wim 29:a3663151aa65 2030 */
wim 21:9eb628d9e164 2031 void TextLCD_Base::setMode(LCDMode displayMode) {
wim 17:652ab113bc2e 2032
wim 17:652ab113bc2e 2033 // Save new displayMode, needed when 2 controllers are in use or when cursor is changed
wim 17:652ab113bc2e 2034 _currentMode = displayMode;
wim 41:111ca62e8a59 2035
wim 41:111ca62e8a59 2036 #if (LCD_TWO_CTRL == 1)
wim 17:652ab113bc2e 2037 // Select and configure second LCD controller when needed
wim 17:652ab113bc2e 2038 if(_type==LCD40x4) {
wim 21:9eb628d9e164 2039 if (_ctrl_idx==_LCDCtrl_0) {
wim 17:652ab113bc2e 2040 // Configure primary LCD controller
wim 17:652ab113bc2e 2041 _setCursorAndDisplayMode(_currentMode, _currentCursor);
wim 11:9ec02df863a1 2042
wim 17:652ab113bc2e 2043 // Select 2nd controller
wim 21:9eb628d9e164 2044 _ctrl_idx=_LCDCtrl_1;
wim 17:652ab113bc2e 2045
wim 17:652ab113bc2e 2046 // Configure secondary LCD controller
wim 21:9eb628d9e164 2047 _setCursorAndDisplayMode(_currentMode, CurOff_BlkOff);
wim 11:9ec02df863a1 2048
wim 17:652ab113bc2e 2049 // Restore current controller
wim 21:9eb628d9e164 2050 _ctrl_idx=_LCDCtrl_0;
wim 17:652ab113bc2e 2051 }
wim 17:652ab113bc2e 2052 else {
wim 17:652ab113bc2e 2053 // Select primary controller
wim 21:9eb628d9e164 2054 _ctrl_idx=_LCDCtrl_0;
wim 17:652ab113bc2e 2055
wim 17:652ab113bc2e 2056 // Configure primary LCD controller
wim 21:9eb628d9e164 2057 _setCursorAndDisplayMode(_currentMode, CurOff_BlkOff);
wim 17:652ab113bc2e 2058
wim 17:652ab113bc2e 2059 // Restore current controller
wim 21:9eb628d9e164 2060 _ctrl_idx=_LCDCtrl_1;
wim 11:9ec02df863a1 2061
wim 17:652ab113bc2e 2062 // Configure secondary LCD controller
wim 17:652ab113bc2e 2063 _setCursorAndDisplayMode(_currentMode, _currentCursor);
wim 10:dd9b3a696acd 2064 }
wim 17:652ab113bc2e 2065 }
wim 17:652ab113bc2e 2066 else {
wim 17:652ab113bc2e 2067 // Configure primary LCD controller
wim 17:652ab113bc2e 2068 _setCursorAndDisplayMode(_currentMode, _currentCursor);
wim 30:033048611c01 2069 }
wim 41:111ca62e8a59 2070 #else
wim 41:111ca62e8a59 2071 // Support only one LCD controller
wim 41:111ca62e8a59 2072 _setCursorAndDisplayMode(_currentMode, _currentCursor);
wim 41:111ca62e8a59 2073
wim 41:111ca62e8a59 2074 #endif
wim 17:652ab113bc2e 2075 }
wim 17:652ab113bc2e 2076
wim 29:a3663151aa65 2077 /** Low level method to restore the cursortype and display mode for current controller
wim 29:a3663151aa65 2078 */
wim 36:9f5f86dfd44a 2079 void TextLCD_Base::_setCursorAndDisplayMode(LCDMode displayMode, LCDCursor cursorType) {
wim 36:9f5f86dfd44a 2080
wim 36:9f5f86dfd44a 2081 // Configure current LCD controller
wim 36:9f5f86dfd44a 2082 switch (_ctrl) {
wim 36:9f5f86dfd44a 2083 case ST7070:
wim 36:9f5f86dfd44a 2084 //ST7070 does not support Cursorblink. The P bit selects the font instead !
wim 36:9f5f86dfd44a 2085 _writeCommand(0x08 | displayMode | (cursorType & 0x02));
wim 36:9f5f86dfd44a 2086 break;
wim 36:9f5f86dfd44a 2087 default:
wim 36:9f5f86dfd44a 2088 _writeCommand(0x08 | displayMode | cursorType);
wim 36:9f5f86dfd44a 2089 break;
wim 36:9f5f86dfd44a 2090 } //switch
wim 10:dd9b3a696acd 2091 }
wim 10:dd9b3a696acd 2092
wim 29:a3663151aa65 2093 /** Set the Backlight mode
wim 29:a3663151aa65 2094 *
wim 29:a3663151aa65 2095 * @param backlightMode The Backlight mode (LightOff, LightOn)
wim 29:a3663151aa65 2096 */
wim 21:9eb628d9e164 2097 void TextLCD_Base::setBacklight(LCDBacklight backlightMode) {
wim 20:e0da005a777f 2098
wim 35:311be6444a39 2099 #if (BACKLIGHT_INV==0)
wim 35:311be6444a39 2100 // Positive Backlight control pin logic
wim 20:e0da005a777f 2101 if (backlightMode == LightOn) {
wim 35:311be6444a39 2102 this->_setBL(true);
wim 20:e0da005a777f 2103 }
wim 20:e0da005a777f 2104 else {
wim 21:9eb628d9e164 2105 this->_setBL(false);
wim 20:e0da005a777f 2106 }
wim 35:311be6444a39 2107 #else
wim 35:311be6444a39 2108 // Inverted Backlight control pin logic
wim 35:311be6444a39 2109 if (backlightMode == LightOn) {
wim 35:311be6444a39 2110 this->_setBL(false);
wim 35:311be6444a39 2111 }
wim 35:311be6444a39 2112 else {
wim 35:311be6444a39 2113 this->_setBL(true);
wim 35:311be6444a39 2114 }
wim 35:311be6444a39 2115 #endif
wim 20:e0da005a777f 2116 }
wim 20:e0da005a777f 2117
wim 29:a3663151aa65 2118 /** Set User Defined Characters
wim 29:a3663151aa65 2119 *
wim 34:e5a0dcb43ecc 2120 * @param unsigned char c The Index of the UDC (0..7) for HD44780 or clones and (0..15) for some more advanced controllers
wim 34:e5a0dcb43ecc 2121 * @param char *udc_data The bitpatterns for the UDC (8 bytes of 5 significant bits for bitpattern and 3 bits for blinkmode (advanced types))
wim 29:a3663151aa65 2122 */
wim 21:9eb628d9e164 2123 void TextLCD_Base::setUDC(unsigned char c, char *udc_data) {
wim 41:111ca62e8a59 2124
wim 41:111ca62e8a59 2125 #if (LCD_TWO_CTRL == 1)
wim 15:b70ebfffb258 2126 // Select and configure second LCD controller when needed
wim 15:b70ebfffb258 2127 if(_type==LCD40x4) {
wim 19:c747b9e2e7b8 2128 _LCDCtrl_Idx current_ctrl_idx = _ctrl_idx; // Temp save current controller
wim 15:b70ebfffb258 2129
wim 15:b70ebfffb258 2130 // Select primary controller
wim 21:9eb628d9e164 2131 _ctrl_idx=_LCDCtrl_0;
wim 15:b70ebfffb258 2132
wim 15:b70ebfffb258 2133 // Configure primary LCD controller
wim 15:b70ebfffb258 2134 _setUDC(c, udc_data);
wim 15:b70ebfffb258 2135
wim 15:b70ebfffb258 2136 // Select 2nd controller
wim 21:9eb628d9e164 2137 _ctrl_idx=_LCDCtrl_1;
wim 15:b70ebfffb258 2138
wim 15:b70ebfffb258 2139 // Configure secondary LCD controller
wim 15:b70ebfffb258 2140 _setUDC(c, udc_data);
wim 11:9ec02df863a1 2141
wim 15:b70ebfffb258 2142 // Restore current controller
wim 19:c747b9e2e7b8 2143 _ctrl_idx=current_ctrl_idx;
wim 15:b70ebfffb258 2144 }
wim 15:b70ebfffb258 2145 else {
wim 15:b70ebfffb258 2146 // Configure primary LCD controller
wim 15:b70ebfffb258 2147 _setUDC(c, udc_data);
wim 34:e5a0dcb43ecc 2148 }
wim 41:111ca62e8a59 2149 #else
wim 41:111ca62e8a59 2150 // Support only one LCD controller
wim 41:111ca62e8a59 2151 _setUDC(c, udc_data);
wim 41:111ca62e8a59 2152 #endif
wim 15:b70ebfffb258 2153 }
wim 15:b70ebfffb258 2154
wim 34:e5a0dcb43ecc 2155 /** Low level method to store user defined characters for current controller
wim 34:e5a0dcb43ecc 2156 *
wim 34:e5a0dcb43ecc 2157 * @param unsigned char c The Index of the UDC (0..7) for HD44780 clones and (0..15) for some more advanced controllers
wim 34:e5a0dcb43ecc 2158 * @param char *udc_data The bitpatterns for the UDC (8 bytes of 5 significant bits for bitpattern and 3 bits for blinkmode (advanced types))
wim 34:e5a0dcb43ecc 2159 */
wim 34:e5a0dcb43ecc 2160 void TextLCD_Base::_setUDC(unsigned char c, char *udc_data) {
wim 34:e5a0dcb43ecc 2161
wim 34:e5a0dcb43ecc 2162 switch (_ctrl) {
wim 34:e5a0dcb43ecc 2163 case PCF2103_3V3 : // Some UDCs may be used for Icons
wim 34:e5a0dcb43ecc 2164 case PCF2113_3V3 : // Some UDCs may be used for Icons
wim 34:e5a0dcb43ecc 2165 case PCF2116_3V3 :
wim 34:e5a0dcb43ecc 2166 case PCF2116_5V :
wim 40:d3496c3ea301 2167 case PCF2119_3V3 : // Some UDCs may be used for Icons
wim 40:d3496c3ea301 2168 case PCF2119R_3V3: // Some UDCs may be used for Icons
wim 34:e5a0dcb43ecc 2169 c = c & 0x0F; // mask down to valid range
wim 34:e5a0dcb43ecc 2170 break;
wim 34:e5a0dcb43ecc 2171
wim 34:e5a0dcb43ecc 2172 default:
wim 34:e5a0dcb43ecc 2173 c = c & 0x07; // mask down to valid range
wim 34:e5a0dcb43ecc 2174 break;
wim 34:e5a0dcb43ecc 2175 } //switch _ctrl
wim 34:e5a0dcb43ecc 2176
wim 34:e5a0dcb43ecc 2177 // Select DD RAM for current LCD controller
wim 34:e5a0dcb43ecc 2178 // This is needed to correctly set Bit 6 of the addresspointer for controllers that support 16 UDCs
wim 34:e5a0dcb43ecc 2179 _writeCommand(0x80 | ((c << 3) & 0x40)) ;
wim 34:e5a0dcb43ecc 2180
wim 34:e5a0dcb43ecc 2181 // Select CG RAM for current LCD controller
wim 34:e5a0dcb43ecc 2182 _writeCommand(0x40 | ((c << 3) & 0x3F)); //Set CG-RAM address, (note that Bit 6 is retained and can not be set by this command !)
wim 34:e5a0dcb43ecc 2183 //8 sequential locations needed per UDC
wim 34:e5a0dcb43ecc 2184 // Store UDC pattern
wim 34:e5a0dcb43ecc 2185 for (int i=0; i<8; i++) {
wim 34:e5a0dcb43ecc 2186 _writeData(*udc_data++);
wim 34:e5a0dcb43ecc 2187 }
wim 34:e5a0dcb43ecc 2188
wim 34:e5a0dcb43ecc 2189 //Select DD RAM again for current LCD controller and restore the addresspointer
wim 34:e5a0dcb43ecc 2190 int addr = getAddress(_column, _row);
wim 34:e5a0dcb43ecc 2191 _writeCommand(0x80 | addr);
wim 34:e5a0dcb43ecc 2192 }
wim 32:59c4b8f648d4 2193
wim 39:e9c2319de9c5 2194 #if(LCD_BLINK == 1)
wim 36:9f5f86dfd44a 2195 /** Set UDC Blink and Icon blink
wim 33:900a94bc7585 2196 * setUDCBlink method is supported by some compatible devices (eg SSD1803)
wim 33:900a94bc7585 2197 *
wim 33:900a94bc7585 2198 * @param blinkMode The Blink mode (BlinkOff, BlinkOn)
wim 33:900a94bc7585 2199 */
wim 33:900a94bc7585 2200 void TextLCD_Base::setUDCBlink(LCDBlink blinkMode){
wim 36:9f5f86dfd44a 2201 // Blinking UDCs (and icons) are enabled when a specific controlbit (BE) is set.
wim 36:9f5f86dfd44a 2202 // The blinking pixels in the UDC and icons can be controlled by setting additional bits in the UDC or icon bitpattern.
wim 36:9f5f86dfd44a 2203 // UDCs are defined by an 8 byte bitpattern. The P0..P4 form the character pattern.
wim 33:900a94bc7585 2204 // P7 P6 P5 P4 P3 P2 P1 P0
wim 33:900a94bc7585 2205 // 0 B1 B0 x 0 1 1 1 0
wim 33:900a94bc7585 2206 // 1 B1 B0 x 1 0 0 0 1
wim 33:900a94bc7585 2207 // .............
wim 33:900a94bc7585 2208 // 7 B1 B0 x 1 0 0 0 1
wim 33:900a94bc7585 2209 //
wim 33:900a94bc7585 2210 // Bit 6 and Bit 7 in the pattern will control the blinking mode when Blink is enabled through BE.
wim 33:900a94bc7585 2211 // B1 B0 Mode
wim 33:900a94bc7585 2212 // 0 0 No Blinking in this row of the UDC
wim 33:900a94bc7585 2213 // 0 1 Enabled pixels in P4 will blink
wim 33:900a94bc7585 2214 // 1 x Enabled pixels in P0..P4 will blink
wim 36:9f5f86dfd44a 2215 //
wim 36:9f5f86dfd44a 2216 // Note: the PCF2103 and PCF2113 use UDCs to set Icons
wim 36:9f5f86dfd44a 2217 // 3 x 8 rows x 5 bits = 120 bits Icons for Normal pattern (UDC 0..2) and
wim 36:9f5f86dfd44a 2218 // 3 x 8 rows x 5 bits = 120 bits Icons for Blink pattern (UDC 4..6)
wim 36:9f5f86dfd44a 2219 // Note: the PCF2119 uses UDCs to set Icons
wim 36:9f5f86dfd44a 2220 // 4 x 8 rows x 5 bits = 160 bits Icons for Normal pattern (UDC 0..3) and
wim 36:9f5f86dfd44a 2221 // 4 x 8 rows x 5 bits = 160 bits Icons for Blink pattern (UDC 4..7)
wim 33:900a94bc7585 2222 switch (blinkMode) {
wim 33:900a94bc7585 2223 case BlinkOn:
wim 36:9f5f86dfd44a 2224 // Controllers that support UDC/Icon Blink
wim 33:900a94bc7585 2225 switch (_ctrl) {
wim 40:d3496c3ea301 2226 case KS0073 :
wim 40:d3496c3ea301 2227 case KS0078 :
wim 40:d3496c3ea301 2228 case HD66712 :
wim 36:9f5f86dfd44a 2229 _function_1 |= 0x02; // Enable UDC/Icon Blink
wim 36:9f5f86dfd44a 2230 _writeCommand(0x20 | _function_1); // Function set 0 0 1 DL N RE(1) BE 0/LP (Ext Regs)
wim 33:900a94bc7585 2231
wim 33:900a94bc7585 2232 _writeCommand(0x20 | _function); // Function set 0 0 1 DL N RE(0) DH REV (Std Regs)
wim 40:d3496c3ea301 2233 break; // case KS0073, KS0078, HD66712 Controller
wim 33:900a94bc7585 2234
wim 33:900a94bc7585 2235 case US2066_3V3 :
wim 33:900a94bc7585 2236 case SSD1803_3V3 :
wim 36:9f5f86dfd44a 2237 _function_1 |= 0x04; // Enable UDC/Icon Blink
wim 33:900a94bc7585 2238 _writeCommand(0x20 | _function_1); // Set function, 0 0 1 DL N BE RE(1) REV
wim 33:900a94bc7585 2239 // Select Ext Instr Set
wim 33:900a94bc7585 2240
wim 33:900a94bc7585 2241 _writeCommand(0x20 | _function); // Set function, 0 0 1 DL N DH RE(0) IS=0 Select Instruction Set 0
wim 33:900a94bc7585 2242 // Select Std Instr set, Select IS=0
wim 33:900a94bc7585 2243 break; // case SSD1803, US2066
wim 36:9f5f86dfd44a 2244
wim 36:9f5f86dfd44a 2245 case PCF2103_3V3 :
wim 36:9f5f86dfd44a 2246 case PCF2113_3V3 :
wim 36:9f5f86dfd44a 2247 case PCF2119_3V3 :
wim 39:e9c2319de9c5 2248 case PCF2119R_3V3 :
wim 36:9f5f86dfd44a 2249 // Enable Icon Blink
wim 36:9f5f86dfd44a 2250 _writeCommand(0x20 | _function | 0x01); // Set function, Select Instr Set = 1
wim 36:9f5f86dfd44a 2251 _writeCommand(0x08 | 0x02); // ICON Conf 0000 1, IM=0 (Char mode), IB=1 (Icon blink), 0 (Instr. Set 1)
wim 36:9f5f86dfd44a 2252 _writeCommand(0x20 | _function); // Set function, Select Instr Set = 0
wim 36:9f5f86dfd44a 2253
wim 36:9f5f86dfd44a 2254 break;
wim 33:900a94bc7585 2255
wim 33:900a94bc7585 2256 default:
wim 33:900a94bc7585 2257 //Unsupported feature for other controllers
wim 33:900a94bc7585 2258 break;
wim 33:900a94bc7585 2259 } //switch _ctrl
wim 33:900a94bc7585 2260
wim 36:9f5f86dfd44a 2261 break; // BlinkOn
wim 33:900a94bc7585 2262
wim 33:900a94bc7585 2263 case BlinkOff:
wim 33:900a94bc7585 2264 // Controllers that support UDC Blink
wim 33:900a94bc7585 2265 switch (_ctrl) {
wim 40:d3496c3ea301 2266 case KS0073 :
wim 40:d3496c3ea301 2267 case KS0078 :
wim 40:d3496c3ea301 2268 case HD66712:
wim 36:9f5f86dfd44a 2269 _function_1 &= ~0x02; // Disable UDC/Icon Blink
wim 36:9f5f86dfd44a 2270 _writeCommand(0x20 | _function_1); // Function set 0 0 1 DL N RE(1) BE 0/LP (Ext Regs)
wim 33:900a94bc7585 2271
wim 33:900a94bc7585 2272 _writeCommand(0x20 | _function); // Function set 0 0 1 DL N RE(0) DH REV (Std Regs)
wim 40:d3496c3ea301 2273 break; // case KS0073, KS0078, HD66712 Controller
wim 33:900a94bc7585 2274
wim 33:900a94bc7585 2275 case US2066_3V3 :
wim 33:900a94bc7585 2276 case SSD1803_3V3 :
wim 36:9f5f86dfd44a 2277 _function_1 &= ~0x04; // Disable UDC/Icon Blink
wim 33:900a94bc7585 2278 _writeCommand(0x20 | _function_1); // Set function, 0 0 1 DL N BE RE(1) REV
wim 33:900a94bc7585 2279 // Select Ext Instr Set
wim 33:900a94bc7585 2280
wim 33:900a94bc7585 2281 _writeCommand(0x20 | _function); // Set function, 0 0 1 DL N DH RE(0) IS=0 Select Instruction Set 0
wim 33:900a94bc7585 2282 // Select Std Instr set, Select IS=0
wim 33:900a94bc7585 2283 break; // case SSD1803, US2066
wim 36:9f5f86dfd44a 2284
wim 36:9f5f86dfd44a 2285 case PCF2103_3V3 :
wim 39:e9c2319de9c5 2286 case PCF2113_3V3 :
wim 39:e9c2319de9c5 2287 case PCF2119_3V3 :
wim 39:e9c2319de9c5 2288 case PCF2119R_3V3 :
wim 36:9f5f86dfd44a 2289 // Disable Icon Blink
wim 36:9f5f86dfd44a 2290 _writeCommand(0x20 | _function | 0x01); // Set function, Select Instr Set = 1
wim 36:9f5f86dfd44a 2291 _writeCommand(0x08); // ICON Conf 0000 1, IM=0 (Char mode), IB=1 (Icon blink), 0 (Instr. Set 1)
wim 36:9f5f86dfd44a 2292 _writeCommand(0x20 | _function); // Set function, Select Instr Set = 0
wim 36:9f5f86dfd44a 2293
wim 36:9f5f86dfd44a 2294 break;
wim 33:900a94bc7585 2295
wim 33:900a94bc7585 2296 default:
wim 33:900a94bc7585 2297 //Unsupported feature for other controllers
wim 33:900a94bc7585 2298 break;
wim 33:900a94bc7585 2299 } //switch _ctrl
wim 33:900a94bc7585 2300
wim 36:9f5f86dfd44a 2301 break; //BlinkOff
wim 33:900a94bc7585 2302
wim 33:900a94bc7585 2303 default:
wim 33:900a94bc7585 2304 break;
wim 33:900a94bc7585 2305 } // blinkMode
wim 33:900a94bc7585 2306
wim 33:900a94bc7585 2307 } // setUDCBlink()
wim 39:e9c2319de9c5 2308 #endif
wim 33:900a94bc7585 2309
wim 41:111ca62e8a59 2310 #if(LCD_CONTRAST == 1)
wim 32:59c4b8f648d4 2311 /** Set Contrast
wim 32:59c4b8f648d4 2312 * setContrast method is supported by some compatible devices (eg ST7032i) that have onboard LCD voltage generation
wim 32:59c4b8f648d4 2313 * Initial code for ST70XX imported from fork by JH1PJL
wim 32:59c4b8f648d4 2314 *
wim 32:59c4b8f648d4 2315 * @param unsigned char c contrast data (6 significant bits, valid range 0..63, Value 0 will disable the Vgen)
wim 32:59c4b8f648d4 2316 * @return none
wim 32:59c4b8f648d4 2317 */
wim 32:59c4b8f648d4 2318 //@TODO Add support for 40x4 dual controller
wim 32:59c4b8f648d4 2319 void TextLCD_Base::setContrast(unsigned char c) {
wim 32:59c4b8f648d4 2320
wim 32:59c4b8f648d4 2321 // Function set mode stored during Init. Make sure we dont accidentally switch between 1-line and 2-line mode!
wim 32:59c4b8f648d4 2322 // Icon/Booster mode stored during Init. Make sure we dont accidentally change this!
wim 32:59c4b8f648d4 2323
wim 32:59c4b8f648d4 2324 _contrast = c & 0x3F; // Sanity check
wim 32:59c4b8f648d4 2325
wim 33:900a94bc7585 2326 switch (_ctrl) {
wim 32:59c4b8f648d4 2327 case PCF2113_3V3 :
wim 39:e9c2319de9c5 2328 case PCF2119_3V3 :
wim 39:e9c2319de9c5 2329 case PCF2119R_3V3 :
wim 32:59c4b8f648d4 2330 if (_contrast < 5) _contrast = 0; // See datasheet. Sanity check for PCF2113/PCF2119
wim 32:59c4b8f648d4 2331 if (_contrast > 55) _contrast = 55;
wim 32:59c4b8f648d4 2332
wim 32:59c4b8f648d4 2333 _writeCommand(0x20 | _function | 0x01); // Set function, Select Instruction Set = 1
wim 32:59c4b8f648d4 2334 _writeCommand(0x80 | 0x00 | (_contrast & 0x3F)); // VLCD_set (Instr. Set 1) V=0, VA=contrast
wim 32:59c4b8f648d4 2335 _writeCommand(0x80 | 0x40 | (_contrast & 0x3F)); // VLCD_set (Instr. Set 1) V=1, VB=contrast
wim 32:59c4b8f648d4 2336 _writeCommand(0x20 | _function); // Select Instruction Set = 0
wim 32:59c4b8f648d4 2337 break;
wim 32:59c4b8f648d4 2338
wim 32:59c4b8f648d4 2339 case ST7032_3V3 :
wim 32:59c4b8f648d4 2340 case ST7032_5V :
wim 32:59c4b8f648d4 2341 case ST7036_3V3 :
wim 32:59c4b8f648d4 2342 // case ST7036_5V :
wim 41:111ca62e8a59 2343 case SSD1803_3V3 :
wim 41:111ca62e8a59 2344 case SPLC792A_3V3 :
wim 32:59c4b8f648d4 2345 _writeCommand(0x20 | _function | 0x01); // Select Instruction Set = 1
wim 32:59c4b8f648d4 2346 _writeCommand(0x70 | (_contrast & 0x0F)); // Contrast Low bits
wim 32:59c4b8f648d4 2347 _writeCommand(0x50 | _icon_power | ((_contrast >> 4) & 0x03)); // Contrast High bits
wim 32:59c4b8f648d4 2348 _writeCommand(0x20 | _function); // Select Instruction Set = 0
wim 32:59c4b8f648d4 2349 break;
wim 32:59c4b8f648d4 2350
wim 33:900a94bc7585 2351 case US2066_3V3 :
wim 33:900a94bc7585 2352 _writeCommand(0x20 | _function_1); // Set function, 0 0 1 DL N BE RE(1) REV
wim 33:900a94bc7585 2353 // Select Extended Instruction Set
wim 33:900a94bc7585 2354
wim 33:900a94bc7585 2355 _writeCommand(0x79); // Function Select OLED: 0 1 1 1 1 0 0 1 (Ext Instr Set)
wim 33:900a94bc7585 2356
wim 33:900a94bc7585 2357 _writeCommand(0x81); // Set Contrast Control: 1 0 0 0 0 0 0 1 (Ext Instr Set, OLED)
wim 33:900a94bc7585 2358 _writeCommand((_contrast << 2) | 0x03); // Set Contrast Value: 8 bits. Use 6 bits for compatibility
wim 33:900a94bc7585 2359
wim 33:900a94bc7585 2360 _writeCommand(0x78); // Function Disable OLED: 0 1 1 1 1 0 0 0 (Ext Instr Set)
wim 33:900a94bc7585 2361
wim 33:900a94bc7585 2362 _writeCommand(0x20 | _function); // Set function, 0 0 1 DL N DH RE(0) IS=0 Select Instruction Set 0
wim 33:900a94bc7585 2363 // Select Std Instr set, Select IS=0
wim 33:900a94bc7585 2364 break;
wim 33:900a94bc7585 2365
wim 34:e5a0dcb43ecc 2366 //not yet tested on hardware
wim 32:59c4b8f648d4 2367 case PT6314 :
wim 32:59c4b8f648d4 2368 // Only 2 significant bits
wim 32:59c4b8f648d4 2369 // 0x00 = 100%
wim 32:59c4b8f648d4 2370 // 0x01 = 75%
wim 32:59c4b8f648d4 2371 // 0x02 = 50%
wim 32:59c4b8f648d4 2372 // 0x03 = 25%
wim 32:59c4b8f648d4 2373 _writeCommand(0x20 | _function | ((~_contrast) >> 4)); // Invert and shift to use 2 MSBs
wim 32:59c4b8f648d4 2374 break;
wim 32:59c4b8f648d4 2375
wim 32:59c4b8f648d4 2376 default:
wim 32:59c4b8f648d4 2377 //Unsupported feature for other controllers
wim 33:900a94bc7585 2378 break;
wim 33:900a94bc7585 2379 } // end switch
wim 33:900a94bc7585 2380 } // end setContrast()
wim 41:111ca62e8a59 2381 #endif
wim 32:59c4b8f648d4 2382
wim 39:e9c2319de9c5 2383 #if(LCD_POWER == 1)
wim 32:59c4b8f648d4 2384 /** Set Power
wim 32:59c4b8f648d4 2385 * setPower method is supported by some compatible devices (eg SSD1803) that have power down modes
wim 32:59c4b8f648d4 2386 *
wim 32:59c4b8f648d4 2387 * @param bool powerOn Power on/off
wim 32:59c4b8f648d4 2388 * @return none
wim 32:59c4b8f648d4 2389 */
wim 32:59c4b8f648d4 2390 //@TODO Add support for 40x4 dual controller
wim 32:59c4b8f648d4 2391 void TextLCD_Base::setPower(bool powerOn) {
wim 32:59c4b8f648d4 2392
wim 32:59c4b8f648d4 2393 if (powerOn) {
wim 32:59c4b8f648d4 2394 // Switch on
wim 32:59c4b8f648d4 2395 setMode(DispOn);
wim 32:59c4b8f648d4 2396
wim 32:59c4b8f648d4 2397 // Controllers that supports specific Power Down mode
wim 32:59c4b8f648d4 2398 switch (_ctrl) {
wim 32:59c4b8f648d4 2399
wim 32:59c4b8f648d4 2400 // case PCF2113_3V3 :
wim 39:e9c2319de9c5 2401 // case PCF2119_3V3 :
wim 39:e9c2319de9c5 2402 // case PCF2119R_3V3 :
wim 32:59c4b8f648d4 2403 // case ST7032_3V3 :
wim 32:59c4b8f648d4 2404 //@todo
wim 33:900a94bc7585 2405 // enable Booster Bon
wim 33:900a94bc7585 2406
wim 33:900a94bc7585 2407 case WS0010:
wim 33:900a94bc7585 2408 _writeCommand(0x17); // Char mode, DC/DC on
reedas 42:1962dc501f94 2409 ThisThread::sleep_for(10); // Wait 10ms to ensure powered up
wim 33:900a94bc7585 2410 break;
wim 33:900a94bc7585 2411
wim 36:9f5f86dfd44a 2412 case KS0073:
wim 33:900a94bc7585 2413 case KS0078:
wim 32:59c4b8f648d4 2414 case SSD1803_3V3 :
wim 32:59c4b8f648d4 2415 // case SSD1803_5V :
wim 33:900a94bc7585 2416 _writeCommand(0x20 | _function_1); // Select Ext Instr Set
wim 33:900a94bc7585 2417 _writeCommand(0x02); // Power On
wim 32:59c4b8f648d4 2418 _writeCommand(0x20 | _function); // Select Std Instr Set
wim 32:59c4b8f648d4 2419 break;
wim 32:59c4b8f648d4 2420
wim 32:59c4b8f648d4 2421 default:
wim 32:59c4b8f648d4 2422 //Unsupported feature for other controllers
wim 32:59c4b8f648d4 2423 break;
wim 32:59c4b8f648d4 2424 } // end switch
wim 32:59c4b8f648d4 2425 }
wim 32:59c4b8f648d4 2426 else {
wim 32:59c4b8f648d4 2427 // Switch off
wim 32:59c4b8f648d4 2428 setMode(DispOff);
wim 32:59c4b8f648d4 2429
wim 32:59c4b8f648d4 2430 // Controllers that support specific Power Down mode
wim 32:59c4b8f648d4 2431 switch (_ctrl) {
wim 32:59c4b8f648d4 2432
wim 32:59c4b8f648d4 2433 // case PCF2113_3V3 :
wim 39:e9c2319de9c5 2434 // case PCF2119_3V3 :
wim 39:e9c2319de9c5 2435 // case PCF2119R_3V3 :
wim 32:59c4b8f648d4 2436 // case ST7032_3V3 :
wim 32:59c4b8f648d4 2437 //@todo
wim 33:900a94bc7585 2438 // disable Booster Bon
wim 33:900a94bc7585 2439
wim 33:900a94bc7585 2440 case WS0010:
wim 33:900a94bc7585 2441 _writeCommand(0x13); // Char mode, DC/DC off
wim 33:900a94bc7585 2442 break;
wim 33:900a94bc7585 2443
wim 36:9f5f86dfd44a 2444 case KS0073:
wim 33:900a94bc7585 2445 case KS0078:
wim 32:59c4b8f648d4 2446 case SSD1803_3V3 :
wim 32:59c4b8f648d4 2447 // case SSD1803_5V :
wim 33:900a94bc7585 2448 _writeCommand(0x20 | _function_1); // Select Ext Instr Set
wim 33:900a94bc7585 2449 _writeCommand(0x03); // Power Down
wim 32:59c4b8f648d4 2450 _writeCommand(0x20 | _function); // Select Std Instr Set
wim 32:59c4b8f648d4 2451 break;
wim 32:59c4b8f648d4 2452
wim 32:59c4b8f648d4 2453 default:
wim 32:59c4b8f648d4 2454 //Unsupported feature for other controllers
wim 32:59c4b8f648d4 2455 break;
wim 32:59c4b8f648d4 2456 } // end switch
wim 32:59c4b8f648d4 2457 }
wim 33:900a94bc7585 2458 } // end setPower()
wim 39:e9c2319de9c5 2459 #endif
wim 39:e9c2319de9c5 2460
wim 39:e9c2319de9c5 2461 #if(LCD_ORIENT == 1)
wim 33:900a94bc7585 2462 /** Set Orient
wim 33:900a94bc7585 2463 * setOrient method is supported by some compatible devices (eg SSD1803, US2066) that have top/bottom view modes
wim 33:900a94bc7585 2464 *
wim 33:900a94bc7585 2465 * @param LCDOrient orient Orientation
wim 33:900a94bc7585 2466 * @return none
wim 33:900a94bc7585 2467 */
wim 33:900a94bc7585 2468 void TextLCD_Base::setOrient(LCDOrient orient){
wim 33:900a94bc7585 2469
wim 33:900a94bc7585 2470 switch (orient) {
wim 33:900a94bc7585 2471
wim 33:900a94bc7585 2472 case Top:
wim 33:900a94bc7585 2473 switch (_ctrl) {
wim 34:e5a0dcb43ecc 2474 case PCF2103_3V3:
wim 34:e5a0dcb43ecc 2475 case PCF2116_3V3:
wim 34:e5a0dcb43ecc 2476 case PCF2116_5V:
wim 34:e5a0dcb43ecc 2477 _writeCommand(0x20 | _function | 0x01); // Set function, Select Instr Set = 1
wim 34:e5a0dcb43ecc 2478 _writeCommand(0x05); // Display Conf Set 0000 0, 1, P=0, Q=1 (Instr. Set 1)
wim 34:e5a0dcb43ecc 2479 _writeCommand(0x20 | _function); // Set function, Select Instr Set = 0
wim 34:e5a0dcb43ecc 2480 break;
wim 39:e9c2319de9c5 2481
wim 39:e9c2319de9c5 2482 case PCF2119_3V3:
wim 39:e9c2319de9c5 2483 case PCF2119R_3V3:
wim 39:e9c2319de9c5 2484 _writeCommand(0x20 | _function | 0x01); // Set function, Select Instr Set = 1
wim 39:e9c2319de9c5 2485 _writeCommand(0x07); // Display Conf Set 0000 0, 1, P=1, Q=1 (Instr. Set 1)
wim 39:e9c2319de9c5 2486 _writeCommand(0x20 | _function); // Set function, Select Instr Set = 0
wim 39:e9c2319de9c5 2487 break;
wim 34:e5a0dcb43ecc 2488
wim 33:900a94bc7585 2489 case SSD1803_3V3 :
wim 33:900a94bc7585 2490 // case SSD1803_5V :
wim 33:900a94bc7585 2491 case US2066_3V3 :
wim 33:900a94bc7585 2492 _writeCommand(0x20 | _function_1); // Set function, 0 0 1 X N BE RE(1) REV
wim 33:900a94bc7585 2493 // Select Extended Instruction Set
wim 33:900a94bc7585 2494 // _writeCommand(0x06); // Set ext entry mode, 0 0 0 0 0 1 BDC=1 COM1-32, BDS=0 SEG100-1 "Bottom View" (Ext Instr Set)
wim 33:900a94bc7585 2495 _writeCommand(0x05); // Set ext entry mode, 0 0 0 0 0 1 BDC=0 COM32-1, BDS=1 SEG1-100 "Top View" (Ext Instr Set)
wim 33:900a94bc7585 2496
wim 33:900a94bc7585 2497 _writeCommand(0x20 | _function); // Set function, 0 0 1 DL N DH RE(0) IS=0 Select Instruction Set 0
wim 33:900a94bc7585 2498 // Select Std Instr set, Select IS=0
wim 33:900a94bc7585 2499 break;
wim 36:9f5f86dfd44a 2500
wim 36:9f5f86dfd44a 2501 case ST7070:
wim 36:9f5f86dfd44a 2502 _writeCommand(0x20 | _function | 0x04); // Set function, 0 0 1 DL, N, EXT=1, x, x (Select Instr Set = 1)
wim 36:9f5f86dfd44a 2503
wim 36:9f5f86dfd44a 2504 _writeCommand(0x40 | 0x00); // COM/SEG directions 0 1 0 0 C1, C2, S1, S2 (Instr Set 1)
wim 36:9f5f86dfd44a 2505 // C1=1: Com1-8 -> Com8-1; C2=1: Com9-16 -> Com16-9
wim 36:9f5f86dfd44a 2506 // S1=1: Seg1-40 -> Seg40-1; S2=1: Seg41-80 -> Seg80-41
reedas 42:1962dc501f94 2507 ThisThread::sleep_for(5); // Wait to ensure completion or ST7070 fails to set Top/Bottom after reset..
wim 36:9f5f86dfd44a 2508
wim 36:9f5f86dfd44a 2509 _writeCommand(0x20 | _function); // Set function, EXT=0 (Select Instr Set = 0)
wim 36:9f5f86dfd44a 2510
wim 36:9f5f86dfd44a 2511 break; // case ST7070 Controller
wim 33:900a94bc7585 2512
wim 33:900a94bc7585 2513 default:
wim 33:900a94bc7585 2514 //Unsupported feature for other controllers
wim 33:900a94bc7585 2515 break;
wim 33:900a94bc7585 2516
wim 33:900a94bc7585 2517 } // end switch _ctrl
wim 33:900a94bc7585 2518 break; // end Top
wim 33:900a94bc7585 2519
wim 33:900a94bc7585 2520 case Bottom:
wim 33:900a94bc7585 2521 switch (_ctrl) {
wim 34:e5a0dcb43ecc 2522 case PCF2103_3V3:
wim 34:e5a0dcb43ecc 2523 case PCF2116_3V3:
wim 34:e5a0dcb43ecc 2524 case PCF2116_5V:
wim 34:e5a0dcb43ecc 2525 _writeCommand(0x20 | _function | 0x01); // Set function, Select Instr Set = 1
wim 34:e5a0dcb43ecc 2526 _writeCommand(0x06); // Display Conf Set 0000 0, 1, P=1, Q=0 (Instr. Set 1)
wim 34:e5a0dcb43ecc 2527 _writeCommand(0x20 | _function); // Set function, Select Instr Set = 0
wim 34:e5a0dcb43ecc 2528 break;
wim 39:e9c2319de9c5 2529
wim 39:e9c2319de9c5 2530 case PCF2119_3V3:
wim 39:e9c2319de9c5 2531 case PCF2119R_3V3 :
wim 39:e9c2319de9c5 2532 _writeCommand(0x20 | _function | 0x01); // Set function, Select Instr Set = 1
wim 39:e9c2319de9c5 2533 _writeCommand(0x04); // Display Conf Set 0000 0, 1, P=0, Q=0 (Instr. Set 1)
wim 39:e9c2319de9c5 2534 _writeCommand(0x20 | _function); // Set function, Select Instr Set = 0
wim 39:e9c2319de9c5 2535 break;
wim 34:e5a0dcb43ecc 2536
wim 33:900a94bc7585 2537 case SSD1803_3V3 :
wim 33:900a94bc7585 2538 // case SSD1803_5V :
wim 33:900a94bc7585 2539 case US2066_3V3 :
wim 33:900a94bc7585 2540 _writeCommand(0x20 | _function_1); // Set function, 0 0 1 X N BE RE(1) REV
wim 33:900a94bc7585 2541 // Select Extended Instruction Set
wim 33:900a94bc7585 2542 _writeCommand(0x06); // Set ext entry mode, 0 0 0 0 0 1 BDC=1 COM1-32, BDS=0 SEG100-1 "Bottom View" (Ext Instr Set)
wim 33:900a94bc7585 2543 // _writeCommand(0x05); // Set ext entry mode, 0 0 0 0 0 1 BDC=0 COM32-1, BDS=1 SEG1-100 "Top View" (Ext Instr Set)
wim 33:900a94bc7585 2544
wim 33:900a94bc7585 2545 _writeCommand(0x20 | _function); // Set function, 0 0 1 DL N DH RE(0) IS=0 Select Instruction Set 0
wim 33:900a94bc7585 2546 // Select Std Instr set, Select IS=0
wim 33:900a94bc7585 2547 break;
wim 36:9f5f86dfd44a 2548
wim 36:9f5f86dfd44a 2549 case ST7070:
wim 36:9f5f86dfd44a 2550 //Note: this does not result in correct top/bottom view.
wim 36:9f5f86dfd44a 2551 //The left and right half of each row are reversed and the addressing of both rows is also incorrect:
wim 36:9f5f86dfd44a 2552 //Top/bottomline when orientation is flipped:
wim 36:9f5f86dfd44a 2553 // 0x48...0x4F 0x40...0x47
wim 36:9f5f86dfd44a 2554 // 0x08...0x0F 0x00...0x07
wim 36:9f5f86dfd44a 2555 _writeCommand(0x20 | _function | 0x04); // Set function, 0 0 1 DL N EXT=1 x x (Select Instr Set = 1)
wim 36:9f5f86dfd44a 2556
wim 36:9f5f86dfd44a 2557 _writeCommand(0x40 | 0x0F); // COM/SEG directions 0 1 0 0 C1, C2, S1, S2 (Instr Set 1)
wim 36:9f5f86dfd44a 2558 // C1=1: Com1-8 -> Com8-1; C2=1: Com9-16 -> Com16-9
wim 36:9f5f86dfd44a 2559 // S1=1: Seg1-40 -> Seg40-1; S2=1: Seg41-80 -> Seg80-41
reedas 42:1962dc501f94 2560 ThisThread::sleep_for(5); // Wait to ensure completion or ST7070 fails to set Top/Bottom after reset..
wim 36:9f5f86dfd44a 2561
wim 36:9f5f86dfd44a 2562 _writeCommand(0x20 | _function); // Set function, EXT=0 (Select Instr Set = 0)
wim 36:9f5f86dfd44a 2563
wim 36:9f5f86dfd44a 2564 break; // case ST7070 Controller
wim 33:900a94bc7585 2565
wim 33:900a94bc7585 2566 default:
wim 33:900a94bc7585 2567 //Unsupported feature for other controllers
wim 33:900a94bc7585 2568 break;
wim 33:900a94bc7585 2569
wim 33:900a94bc7585 2570 } // end switch _ctrl
wim 33:900a94bc7585 2571
wim 33:900a94bc7585 2572 break; // end Bottom
wim 33:900a94bc7585 2573 } // end switch orient
wim 33:900a94bc7585 2574 } // end setOrient()
wim 39:e9c2319de9c5 2575 #endif
wim 39:e9c2319de9c5 2576
wim 39:e9c2319de9c5 2577 #if(LCD_BIGFONT == 1)
wim 34:e5a0dcb43ecc 2578 /** Set Big Font
wim 34:e5a0dcb43ecc 2579 * setBigFont method is supported by some compatible devices (eg SSD1803, US2066)
wim 34:e5a0dcb43ecc 2580 *
wim 34:e5a0dcb43ecc 2581 * @param lines The selected Big Font lines (None, TopLine, CenterLine, BottomLine, TopBottomLine)
wim 34:e5a0dcb43ecc 2582 * Double height characters can be shown on lines 1+2, 2+3, 3+4 or 1+2 and 3+4
wim 34:e5a0dcb43ecc 2583 * Valid double height lines depend on the LCDs number of rows.
wim 34:e5a0dcb43ecc 2584 */
wim 34:e5a0dcb43ecc 2585 void TextLCD_Base::setBigFont(LCDBigFont lines) {
wim 34:e5a0dcb43ecc 2586
wim 34:e5a0dcb43ecc 2587 switch (lines) {
wim 34:e5a0dcb43ecc 2588 case None:
wim 34:e5a0dcb43ecc 2589 switch (_ctrl) {
wim 34:e5a0dcb43ecc 2590 case SSD1803_3V3 :
wim 34:e5a0dcb43ecc 2591 case US2066_3V3 :
wim 34:e5a0dcb43ecc 2592 _writeCommand(0x20 | _function_1); // Set function, 0 0 1 X N BE RE(1) REV
wim 34:e5a0dcb43ecc 2593 // Select Extended Instruction Set
wim 34:e5a0dcb43ecc 2594 _writeCommand(0x1C); // Double Height, 0 0 0 1 UD2=1, UD1=1, X, DH'=0 (Ext Instr Set)
wim 34:e5a0dcb43ecc 2595 // Default
wim 34:e5a0dcb43ecc 2596 _function = _function & ~0x04; // Set function, 0 0 1 DL N DH=0 RE(0) IS=0 Select Instruction Set 0
wim 34:e5a0dcb43ecc 2597 _writeCommand(0x20 | _function); // Set function, 0 0 1 DL N DH RE(0) IS=0 Select Instruction Set 0
wim 34:e5a0dcb43ecc 2598 // Select Std Instr set, Select IS=0
wim 34:e5a0dcb43ecc 2599 break; // end US2066
wim 34:e5a0dcb43ecc 2600
wim 34:e5a0dcb43ecc 2601 default:
wim 34:e5a0dcb43ecc 2602 break; // end default
wim 34:e5a0dcb43ecc 2603 } // end switch _ctrl
wim 34:e5a0dcb43ecc 2604 break; // end None
wim 34:e5a0dcb43ecc 2605
wim 34:e5a0dcb43ecc 2606 case TopLine:
wim 34:e5a0dcb43ecc 2607 if (_nr_rows < 2) return; //Sanity check
wim 34:e5a0dcb43ecc 2608
wim 34:e5a0dcb43ecc 2609 switch (_ctrl) {
wim 34:e5a0dcb43ecc 2610 case SSD1803_3V3 :
wim 34:e5a0dcb43ecc 2611 case US2066_3V3 :
wim 34:e5a0dcb43ecc 2612 _writeCommand(0x20 | _function_1); // Set function, 0 0 1 X N BE RE(1) REV
wim 34:e5a0dcb43ecc 2613 // Select Extended Instruction Set
wim 34:e5a0dcb43ecc 2614 _writeCommand(0x1C); // Double Height, 0 0 0 1 UD2=1, UD1=1, X, DH'=0 (Ext Instr Set)
wim 34:e5a0dcb43ecc 2615 // Default
wim 34:e5a0dcb43ecc 2616 _function = _function | 0x04; // Set function, 0 0 1 DL N DH=1 RE(0) IS=0 Select Instruction Set 0
wim 34:e5a0dcb43ecc 2617 _writeCommand(0x20 | _function); // Set function, 0 0 1 DL N DH RE(0) IS=0 Select Instruction Set 0
wim 34:e5a0dcb43ecc 2618 // Select Std Instr set, Select IS=0
wim 34:e5a0dcb43ecc 2619 break; // end US2066, SSD1803
wim 34:e5a0dcb43ecc 2620
wim 34:e5a0dcb43ecc 2621 default:
wim 34:e5a0dcb43ecc 2622 break; // end default
wim 34:e5a0dcb43ecc 2623 } // end switch _ctrl
wim 34:e5a0dcb43ecc 2624 break; // end TopLine
wim 34:e5a0dcb43ecc 2625
wim 34:e5a0dcb43ecc 2626 case CenterLine:
wim 34:e5a0dcb43ecc 2627 if (_nr_rows != 4) return; //Sanity check
wim 34:e5a0dcb43ecc 2628
wim 34:e5a0dcb43ecc 2629 switch (_ctrl) {
wim 34:e5a0dcb43ecc 2630 case SSD1803_3V3 :
wim 34:e5a0dcb43ecc 2631 case US2066_3V3 :
wim 34:e5a0dcb43ecc 2632 _writeCommand(0x20 | _function_1); // Set function, 0 0 1 X N BE RE(1) REV
wim 34:e5a0dcb43ecc 2633 // Select Extended Instruction Set
wim 34:e5a0dcb43ecc 2634 _writeCommand(0x14); // Double Height, 0 0 0 1 UD2=0, UD1=1, X, DH'=0 (Ext Instr Set)
wim 34:e5a0dcb43ecc 2635 // Default
wim 34:e5a0dcb43ecc 2636 _function = _function | 0x04; // Set function, 0 0 1 DL N DH=1 RE(0) IS=0 Select Instruction Set 0
wim 34:e5a0dcb43ecc 2637 _writeCommand(0x20 | _function); // Set function, 0 0 1 DL N DH RE(0) IS=0 Select Instruction Set 0
wim 34:e5a0dcb43ecc 2638 // Select Std Instr set, Select IS=0
wim 34:e5a0dcb43ecc 2639 break; // end US2066, SSD1803
wim 34:e5a0dcb43ecc 2640
wim 34:e5a0dcb43ecc 2641 default:
wim 34:e5a0dcb43ecc 2642 break; // end default
wim 34:e5a0dcb43ecc 2643 } // end switch _ctrl
wim 34:e5a0dcb43ecc 2644 break; // end CenterLine
wim 34:e5a0dcb43ecc 2645
wim 34:e5a0dcb43ecc 2646 case BottomLine:
wim 34:e5a0dcb43ecc 2647 if (_nr_rows < 3) return; //Sanity check
wim 34:e5a0dcb43ecc 2648
wim 34:e5a0dcb43ecc 2649 switch (_ctrl) {
wim 34:e5a0dcb43ecc 2650 case SSD1803_3V3 :
wim 34:e5a0dcb43ecc 2651 case US2066_3V3 :
wim 34:e5a0dcb43ecc 2652 _writeCommand(0x20 | _function_1); // Set function, 0 0 1 X N BE RE(1) REV
wim 34:e5a0dcb43ecc 2653 // Select Extended Instruction Set
wim 34:e5a0dcb43ecc 2654 if (_nr_rows == 3) {
wim 34:e5a0dcb43ecc 2655 _writeCommand(0x14); // Double Height, 0 0 0 1 UD2=0, UD1=1, X, DH'=0 (Ext Instr Set)
wim 34:e5a0dcb43ecc 2656 }
wim 34:e5a0dcb43ecc 2657 else {
wim 34:e5a0dcb43ecc 2658 _writeCommand(0x10); // Double Height, 0 0 0 1 UD2=0, UD1=0, X, DH'=0 (Ext Instr Set)
wim 34:e5a0dcb43ecc 2659 }
wim 34:e5a0dcb43ecc 2660 _function = _function | 0x04; // Set function, 0 0 1 DL N DH=1 RE(0) IS=0 Select Instruction Set 0
wim 34:e5a0dcb43ecc 2661 _writeCommand(0x20 | _function); // Set function, 0 0 1 DL N DH RE(0) IS=0 Select Instruction Set 0
wim 34:e5a0dcb43ecc 2662 // Select Std Instr set, Select IS=0
wim 34:e5a0dcb43ecc 2663 break; // end US2066, SSD1803
wim 34:e5a0dcb43ecc 2664
wim 34:e5a0dcb43ecc 2665 default:
wim 34:e5a0dcb43ecc 2666 break; // end default
wim 34:e5a0dcb43ecc 2667 } // end switch _ctrl
wim 34:e5a0dcb43ecc 2668 break; // end BottomLine
wim 34:e5a0dcb43ecc 2669
wim 34:e5a0dcb43ecc 2670 case TopBottomLine:
wim 34:e5a0dcb43ecc 2671 if (_nr_rows != 4) return; //Sanity check
wim 34:e5a0dcb43ecc 2672
wim 34:e5a0dcb43ecc 2673 switch (_ctrl) {
wim 34:e5a0dcb43ecc 2674 case SSD1803_3V3 :
wim 34:e5a0dcb43ecc 2675 case US2066_3V3 :
wim 34:e5a0dcb43ecc 2676 _writeCommand(0x20 | _function_1); // Set function, 0 0 1 X N BE RE(1) REV
wim 34:e5a0dcb43ecc 2677 // Select Extended Instruction Set
wim 34:e5a0dcb43ecc 2678 _writeCommand(0x18); // Double Height, 0 0 0 1 UD2=1, UD1=0, X, DH'=0 (Ext Instr Set)
wim 34:e5a0dcb43ecc 2679 // Default
wim 34:e5a0dcb43ecc 2680 _function = _function | 0x04; // Set function, 0 0 1 DL N DH=1 RE(0) IS=0 Select Instruction Set 0
wim 34:e5a0dcb43ecc 2681 _writeCommand(0x20 | _function); // Set function, 0 0 1 DL N DH RE(0) IS=0 Select Instruction Set 0
wim 34:e5a0dcb43ecc 2682 // Select Std Instr set, Select IS=0
wim 34:e5a0dcb43ecc 2683 break; // end US2066, SSD1803
wim 34:e5a0dcb43ecc 2684
wim 34:e5a0dcb43ecc 2685 default:
wim 34:e5a0dcb43ecc 2686 break; // end default
wim 34:e5a0dcb43ecc 2687 } // end switch _ctrl
wim 34:e5a0dcb43ecc 2688 break; // end TopBottomLine
wim 34:e5a0dcb43ecc 2689
wim 34:e5a0dcb43ecc 2690 } // end switch lines
wim 34:e5a0dcb43ecc 2691
wim 34:e5a0dcb43ecc 2692 } // end setBigFont()
wim 39:e9c2319de9c5 2693 #endif
wim 39:e9c2319de9c5 2694
wim 41:111ca62e8a59 2695
wim 41:111ca62e8a59 2696 #if (LCD_FONTSEL == 1)
wim 41:111ca62e8a59 2697 /** Set Font
wim 41:111ca62e8a59 2698 * setFont method is supported by some compatible devices (eg SSD1803, US2066, ST7070)
wim 41:111ca62e8a59 2699 *
wim 41:111ca62e8a59 2700 * @param LCDFont font The selected Font
wim 41:111ca62e8a59 2701 * @return none
wim 41:111ca62e8a59 2702 *
wim 41:111ca62e8a59 2703 * Note: most controllers support only one font and the hardware specific
wim 41:111ca62e8a59 2704 * fonttable is encoded as part of the controller type number (eg PCF21XXC or PCF21XXR).
wim 41:111ca62e8a59 2705 * Some controllers support multiple tables that can only be selected by logic levels on a few pins.
wim 41:111ca62e8a59 2706 * Some controllers also support runtime fontable switching through a specific instruction
wim 41:111ca62e8a59 2707 */
wim 41:111ca62e8a59 2708 void TextLCD_Base::setFont(LCDFont font) {
wim 41:111ca62e8a59 2709
wim 41:111ca62e8a59 2710 switch (font) {
wim 41:111ca62e8a59 2711 case Font_RA: // UK/EU
wim 41:111ca62e8a59 2712 switch (_ctrl) {
wim 41:111ca62e8a59 2713 case SSD1803_3V3 :
wim 41:111ca62e8a59 2714 case US2066_3V3 :
wim 41:111ca62e8a59 2715 _writeCommand(0x20 | _function_1); // Set function, 0 0 1 X N BE RE(1) REV
wim 41:111ca62e8a59 2716 // Select Extended Instruction Set
wim 41:111ca62e8a59 2717 _writeCommand(0x72); // ROM Select command, 0 1 1 1 0 0 1 0 (Ext Instr Set)
wim 41:111ca62e8a59 2718 _writeData(0x00); // ROM_0 Select data, 0 0 0 0 ROM2 ROM1 0 0 (Ext Instr Set)
wim 41:111ca62e8a59 2719
wim 41:111ca62e8a59 2720 _writeCommand(0x20 | _function); // Set function, 0 0 1 DL N DH RE(0) IS (Std Instr Set)
wim 41:111ca62e8a59 2721
wim 41:111ca62e8a59 2722 _font = font; // Save active font
wim 41:111ca62e8a59 2723 break; // end SSD1803, US2066
wim 41:111ca62e8a59 2724
wim 41:111ca62e8a59 2725 case ST7070:
wim 41:111ca62e8a59 2726 //ST7070 does not support Cursorblink. The P bit selects the font instead !
wim 41:111ca62e8a59 2727 _writeCommand(0x08 | _currentMode | (_currentCursor & 0x02));
wim 41:111ca62e8a59 2728
wim 41:111ca62e8a59 2729 _font = font; // Save active font
wim 41:111ca62e8a59 2730 break; // end ST7070
wim 41:111ca62e8a59 2731
wim 41:111ca62e8a59 2732 default:
wim 41:111ca62e8a59 2733 break; // end default
wim 41:111ca62e8a59 2734 } // end switch _ctrl
wim 41:111ca62e8a59 2735 break; // end Font_RA
wim 41:111ca62e8a59 2736
wim 41:111ca62e8a59 2737 case Font_RB: // UK/CYR
wim 41:111ca62e8a59 2738 switch (_ctrl) {
wim 41:111ca62e8a59 2739 case SSD1803_3V3 :
wim 41:111ca62e8a59 2740 case US2066_3V3 :
wim 41:111ca62e8a59 2741 _writeCommand(0x20 | _function_1); // Set function, 0 0 1 X N BE RE(1) REV
wim 41:111ca62e8a59 2742 // Select Extended Instruction Set
wim 41:111ca62e8a59 2743 _writeCommand(0x72); // ROM Select command, 0 1 1 1 0 0 1 0 (Ext Instr Set)
wim 41:111ca62e8a59 2744 _writeData(0x04); // ROM_0 Select data, 0 0 0 0 ROM2 ROM1 0 0 (Ext Instr Set)
wim 41:111ca62e8a59 2745
wim 41:111ca62e8a59 2746 _writeCommand(0x20 | _function); // Set function, 0 0 1 DL N DH RE(0) IS (Std Instr Set)
wim 41:111ca62e8a59 2747
wim 41:111ca62e8a59 2748 _font = font; // Save active font
wim 41:111ca62e8a59 2749 break; // end SSD1803, US2066
wim 41:111ca62e8a59 2750
wim 41:111ca62e8a59 2751 case ST7070:
wim 41:111ca62e8a59 2752 //ST7070 does not support Cursorblink. The P bit selects the font instead !
wim 41:111ca62e8a59 2753 _writeCommand(0x08 | _currentMode | (_currentCursor & 0x02) | 0x01);
wim 41:111ca62e8a59 2754
wim 41:111ca62e8a59 2755 _font = font; // Save active font
wim 41:111ca62e8a59 2756 break; // end ST7070
wim 41:111ca62e8a59 2757
wim 41:111ca62e8a59 2758 default:
wim 41:111ca62e8a59 2759 break; // end default
wim 41:111ca62e8a59 2760 } // end switch _ctrl
wim 41:111ca62e8a59 2761 break; // end Font_RB
wim 41:111ca62e8a59 2762
wim 41:111ca62e8a59 2763 case Font_0: //Font_O is pretty similar to ROM_C
wim 41:111ca62e8a59 2764 case Font_RC: // UK/JAP
wim 41:111ca62e8a59 2765 switch (_ctrl) {
wim 41:111ca62e8a59 2766 case SSD1803_3V3 :
wim 41:111ca62e8a59 2767 case US2066_3V3 :
wim 41:111ca62e8a59 2768 _writeCommand(0x20 | _function_1); // Set function, 0 0 1 X N BE RE(1) REV
wim 41:111ca62e8a59 2769 // Select Extended Instruction Set
wim 41:111ca62e8a59 2770 _writeCommand(0x72); // ROM Select command, 0 1 1 1 0 0 1 0 (Ext Instr Set)
wim 41:111ca62e8a59 2771 _writeData(0x08); // ROM_0 Select data, 0 0 0 0 ROM2 ROM1 0 0 (Ext Instr Set)
wim 41:111ca62e8a59 2772
wim 41:111ca62e8a59 2773 _writeCommand(0x20 | _function); // Set function, 0 0 1 DL N DH RE(0) IS (Std Instr Set)
wim 41:111ca62e8a59 2774
wim 41:111ca62e8a59 2775 _font = font; // Save active font
wim 41:111ca62e8a59 2776 break; // end SSD1803, US2066
wim 41:111ca62e8a59 2777
wim 41:111ca62e8a59 2778 default:
wim 41:111ca62e8a59 2779 break; // end default
wim 41:111ca62e8a59 2780 } // end switch _ctrl
wim 41:111ca62e8a59 2781 break; // end Font_RC
wim 41:111ca62e8a59 2782 } // end switch font
wim 41:111ca62e8a59 2783
wim 41:111ca62e8a59 2784 //SSD1803 seems to screw up cursor position after selecting new font. Restore to make sure...
wim 41:111ca62e8a59 2785 //Set next memoryaddress, make sure cursor blinks at next location
wim 41:111ca62e8a59 2786 int addr = getAddress(_column, _row);
wim 41:111ca62e8a59 2787 _writeCommand(0x80 | addr);
wim 41:111ca62e8a59 2788
wim 41:111ca62e8a59 2789 }
wim 41:111ca62e8a59 2790 #endif
wim 41:111ca62e8a59 2791
wim 41:111ca62e8a59 2792
wim 39:e9c2319de9c5 2793 #if(LCD_ICON==1)
wim 36:9f5f86dfd44a 2794 /** Set Icons
wim 36:9f5f86dfd44a 2795 *
wim 36:9f5f86dfd44a 2796 * @param unsigned char idx The Index of the icon pattern (0..15) for KS0073 and similar controllers
wim 36:9f5f86dfd44a 2797 * and Index (0..31) for PCF2103 and similar controllers
wim 36:9f5f86dfd44a 2798 * @param unsigned char data The bitpattern for the icons (6 lsb for KS0073 bitpattern (5 lsb for KS0078) and 2 msb for blinkmode)
wim 36:9f5f86dfd44a 2799 * The bitpattern for the PCF2103 icons is 5 lsb (UDC 0..2) and 5 lsb for blinkmode (UDC 4..6)
wim 36:9f5f86dfd44a 2800 */
wim 36:9f5f86dfd44a 2801 void TextLCD_Base::setIcon(unsigned char idx, unsigned char data) {
wim 36:9f5f86dfd44a 2802 // Blinking icons are enabled when a specific controlbit (BE) is set.
wim 36:9f5f86dfd44a 2803 // The blinking pixels in the icons can be controlled by setting additional bits in the icon bitpattern.
wim 36:9f5f86dfd44a 2804 // Icons are defined by a byte bitpattern. The P0..P5 form the Icon pattern for KS0073, and P0..P4 for KS0078
wim 36:9f5f86dfd44a 2805 // P7 P6 P5 P4 P3 P2 P1 P0
wim 36:9f5f86dfd44a 2806 // 0 B1 B0 0 0 1 1 1 0
wim 36:9f5f86dfd44a 2807 // 1 B1 B0 1 1 0 0 0 1
wim 36:9f5f86dfd44a 2808 // .............
wim 36:9f5f86dfd44a 2809 // 15 B1 B0 1 1 0 0 0 1
wim 36:9f5f86dfd44a 2810 //
wim 36:9f5f86dfd44a 2811 // Bit 6 and Bit 7 in the pattern will control the blinking mode when Blink is enabled through BE.
wim 36:9f5f86dfd44a 2812 // B1 B0 Mode
wim 36:9f5f86dfd44a 2813 // 0 0 No Blinking for this icon row
wim 36:9f5f86dfd44a 2814 // 0 1 Enabled pixels in P5 will blink
wim 36:9f5f86dfd44a 2815 // 1 x Enabled pixels in P0..P5 will blink
wim 36:9f5f86dfd44a 2816 //
wim 36:9f5f86dfd44a 2817 // Note: the PCF2103 and PCF2113 use UDCs to set Icons
wim 36:9f5f86dfd44a 2818 // 3 x 8 rows x 5 bits = 120 bits Icons for Normal pattern (UDC 0..2) and
wim 36:9f5f86dfd44a 2819 // 3 x 8 rows x 5 bits = 120 bits Icons for Blink pattern (UDC 4..6)
wim 36:9f5f86dfd44a 2820 // Note: the PCF2119 uses UDCs to set Icons
wim 36:9f5f86dfd44a 2821 // 4 x 8 rows x 5 bits = 160 bits Icons for Normal pattern (UDC 0..3) and
wim 36:9f5f86dfd44a 2822 // 4 x 8 rows x 5 bits = 160 bits Icons for Blink pattern (UDC 4..7)
wim 36:9f5f86dfd44a 2823
wim 36:9f5f86dfd44a 2824 switch (_ctrl) {
wim 36:9f5f86dfd44a 2825 case KS0073:
wim 36:9f5f86dfd44a 2826 case KS0078:
wim 36:9f5f86dfd44a 2827 _writeCommand(0x20 | _function_1); // Set function, 0 0 1 DL N RE(1) BE LP
wim 36:9f5f86dfd44a 2828 // Select Extended Instruction Set
wim 36:9f5f86dfd44a 2829 _writeCommand(0x40 | (idx & 0x0F)); // Set Icon Address, mask Address to valid range (Ext Instr Set)
wim 36:9f5f86dfd44a 2830
wim 36:9f5f86dfd44a 2831 _writeData(data); // Set Icon pattern (Ext Instr Set)
wim 36:9f5f86dfd44a 2832
wim 36:9f5f86dfd44a 2833 _writeCommand(0x20 | _function); // Set function, 0 0 1 DL N RE(0) DH REV Select Instruction Set 0
wim 36:9f5f86dfd44a 2834 // Select Std Instr set, Select IS=0
wim 36:9f5f86dfd44a 2835 break; // end KS0073, KS0078
wim 36:9f5f86dfd44a 2836
wim 36:9f5f86dfd44a 2837 case ST7032_3V3:
wim 36:9f5f86dfd44a 2838 case ST7032_5V:
wim 41:111ca62e8a59 2839 case SPLC792A_3V3:
wim 36:9f5f86dfd44a 2840 _writeCommand(0x20 | _function | 0x01); // Set function, 0 0 1 DL N F 0 IS=1 Select Instr Set = 1
wim 36:9f5f86dfd44a 2841 _writeCommand(0x40 | (idx & 0x0F)); // Set Icon Address, mask Address to valid range (Instr Set 1)
wim 36:9f5f86dfd44a 2842
wim 36:9f5f86dfd44a 2843 _writeData(data & 0x1F); // Set Icon pattern, no blink support (Instr Set 1)
wim 36:9f5f86dfd44a 2844
wim 36:9f5f86dfd44a 2845 _writeCommand(0x20 | _function); // Set function, 0 0 1 DL N RE(0) DH REV Select Instruction Set 0
wim 36:9f5f86dfd44a 2846 // Select Std Instr set, Select IS=0
wim 36:9f5f86dfd44a 2847 break; // end ST7032
wim 36:9f5f86dfd44a 2848
wim 36:9f5f86dfd44a 2849 case ST7036_3V3:
wim 36:9f5f86dfd44a 2850 case ST7036_5V:
wim 36:9f5f86dfd44a 2851 _writeCommand(0x20 | _function | 0x01); // Set function, 0 0 1 DL N DH IS2,IS1 = 01 (Select Instr Set = 1)
wim 36:9f5f86dfd44a 2852 _writeCommand(0x40 | (idx & 0x0F)); // Set Icon Address, mask Address to valid range (Instr Set 1)
wim 36:9f5f86dfd44a 2853
wim 36:9f5f86dfd44a 2854 _writeData(data & 0x1F); // Set Icon pattern, no blink support (Instr Set 1)
wim 36:9f5f86dfd44a 2855
wim 36:9f5f86dfd44a 2856 _writeCommand(0x20 | _function); // Set function, IS2,IS1 = 00 (Select Instr Set = 0)
wim 36:9f5f86dfd44a 2857 // Select Std Instr set, Select IS=0
wim 36:9f5f86dfd44a 2858 break; // end ST7036
wim 36:9f5f86dfd44a 2859
wim 36:9f5f86dfd44a 2860 case SSD1803_3V3:
wim 36:9f5f86dfd44a 2861 // case SSD1803_5V:
wim 36:9f5f86dfd44a 2862 _writeCommand(0x20 | _function | 0x01); // Set function, 0 0 1 DL N DH RE(0) IS
wim 36:9f5f86dfd44a 2863 // Select Instruction Set 1
wim 36:9f5f86dfd44a 2864 _writeCommand(0x40 | (idx & 0x0F)); // Set Icon Address, mask Address to valid range (Instr Set = 1)
wim 36:9f5f86dfd44a 2865 _writeData(data); // Set Icon pattern (Instr Set = 1)
wim 36:9f5f86dfd44a 2866
wim 36:9f5f86dfd44a 2867 _writeCommand(0x20 | _function); // Set function, 0 0 1 DL N DH RE(0) IS
wim 36:9f5f86dfd44a 2868 // Select IS=0
wim 36:9f5f86dfd44a 2869 break; // end SSD1803
wim 36:9f5f86dfd44a 2870
wim 36:9f5f86dfd44a 2871 case PCF2103_3V3:
wim 36:9f5f86dfd44a 2872 case PCF2113_3V3:
wim 39:e9c2319de9c5 2873 case PCF2119_3V3:
wim 39:e9c2319de9c5 2874 case PCF2119R_3V3:
wim 36:9f5f86dfd44a 2875 // Store UDC/Icon pattern for PCF2103 and PCF2113:
wim 36:9f5f86dfd44a 2876 // 3 x 8 rows x 5 bits = 120 bits for Normal pattern (UDC 0..2) and
wim 36:9f5f86dfd44a 2877 // 3 x 8 rows x 5 bits = 120 bits for Blink pattern (UDC 4..6)
wim 36:9f5f86dfd44a 2878 // Store UDC/Icon pattern for PCF2119:
wim 36:9f5f86dfd44a 2879 // 4 x 8 rows x 5 bits = 160 bits for Normal pattern (UDC 0..3) and
wim 36:9f5f86dfd44a 2880 // 4 x 8 rows x 5 bits = 160 bits for Blink pattern (UDC 4..7)
wim 36:9f5f86dfd44a 2881 _writeCommand(0x40 | (idx & 0x3F)); //Set CG-RAM address, 8 sequential locations needed per UDC
wim 36:9f5f86dfd44a 2882 _writeData(data); // Set Icon pattern (Instr Set = 1)
wim 36:9f5f86dfd44a 2883 break; // case PCF2103_3V3 Controller
wim 36:9f5f86dfd44a 2884
wim 36:9f5f86dfd44a 2885 default:
wim 36:9f5f86dfd44a 2886 break; // end default
wim 36:9f5f86dfd44a 2887 } // end switch _ctrl
wim 36:9f5f86dfd44a 2888
wim 36:9f5f86dfd44a 2889 //Select DD RAM again for current LCD controller and restore the addresspointer
wim 36:9f5f86dfd44a 2890 int addr = getAddress(_column, _row);
wim 36:9f5f86dfd44a 2891 _writeCommand(0x80 | addr);
wim 36:9f5f86dfd44a 2892
wim 36:9f5f86dfd44a 2893 } // end setIcon()
wim 36:9f5f86dfd44a 2894
wim 36:9f5f86dfd44a 2895 /** Clear Icons
wim 36:9f5f86dfd44a 2896 *
wim 36:9f5f86dfd44a 2897 * @param none
wim 36:9f5f86dfd44a 2898 * @return none
wim 36:9f5f86dfd44a 2899 */
wim 36:9f5f86dfd44a 2900 //@TODO Add support for 40x4 dual controller
wim 36:9f5f86dfd44a 2901 void TextLCD_Base::clrIcon() {
wim 36:9f5f86dfd44a 2902 // Icons are defined by a byte bitpattern. The P0..P5 form the Icon pattern for KS0073, and P0..P4 for KS0078
wim 36:9f5f86dfd44a 2903 // P7 P6 P5 P4 P3 P2 P1 P0
wim 36:9f5f86dfd44a 2904 // 0 B1 B0 0 0 0 0 0 0
wim 36:9f5f86dfd44a 2905 // 1 B1 B0 0 0 0 0 0 0
wim 36:9f5f86dfd44a 2906 // .............
wim 36:9f5f86dfd44a 2907 // 15 B1 B0 0 0 0 0 0 0
wim 36:9f5f86dfd44a 2908 //
wim 36:9f5f86dfd44a 2909 // Bit 6 and Bit 7 in the pattern will control the blinking mode when Blink is enabled through BE.
wim 36:9f5f86dfd44a 2910 // B1 B0 Mode
wim 36:9f5f86dfd44a 2911 // 0 0 No Blinking for this icon row
wim 36:9f5f86dfd44a 2912 // 0 1 Enabled pixels in P5 will blink
wim 36:9f5f86dfd44a 2913 // 1 x Enabled pixels in P0..P5 will blink
wim 36:9f5f86dfd44a 2914 //
wim 36:9f5f86dfd44a 2915 // Note: the PCF2103 and PCF2113 use UDCs to set Icons
wim 36:9f5f86dfd44a 2916 // 3 x 8 rows x 5 bits = 120 bits Icons for Normal pattern (UDC 0..2) and
wim 36:9f5f86dfd44a 2917 // 3 x 8 rows x 5 bits = 120 bits Icons for Blink pattern (UDC 4..6)
wim 36:9f5f86dfd44a 2918 // Note: the PCF2119 uses UDCs to set Icons
wim 36:9f5f86dfd44a 2919 // 4 x 8 rows x 5 bits = 160 bits Icons for Normal pattern (UDC 0..3) and
wim 36:9f5f86dfd44a 2920 // 4 x 8 rows x 5 bits = 160 bits Icons for Blink pattern (UDC 4..7)
wim 36:9f5f86dfd44a 2921 int idx;
wim 36:9f5f86dfd44a 2922
wim 36:9f5f86dfd44a 2923 switch (_ctrl) {
wim 36:9f5f86dfd44a 2924 case KS0073:
wim 36:9f5f86dfd44a 2925 case KS0078:
wim 36:9f5f86dfd44a 2926 _writeCommand(0x20 | _function_1); // Set function, 0 0 1 DL N RE(1) BE LP
wim 36:9f5f86dfd44a 2927 // Select Extended Instruction Set
wim 36:9f5f86dfd44a 2928 for (idx=0; idx<16; idx++) {
wim 36:9f5f86dfd44a 2929 _writeCommand(0x40 | idx); // Set Icon Address, mask Address to valid range (Ext Instr Set)
wim 36:9f5f86dfd44a 2930 _writeData(0x00); // Clear Icon pattern (Ext Instr Set)
wim 36:9f5f86dfd44a 2931 }
wim 36:9f5f86dfd44a 2932 _writeCommand(0x20 | _function); // Set function, 0 0 1 DL N RE(0) DH REV Select Std Instruction Set
wim 36:9f5f86dfd44a 2933 // Select Std Instr set
wim 36:9f5f86dfd44a 2934 break; // end KS0073, KS0078
wim 36:9f5f86dfd44a 2935
wim 36:9f5f86dfd44a 2936 case ST7032_3V3:
wim 36:9f5f86dfd44a 2937 case ST7032_5V:
wim 41:111ca62e8a59 2938 case SPLC792A_3V3:
wim 36:9f5f86dfd44a 2939 _writeCommand(0x20 | _function | 0x01); // Set function, 0 0 1 DL N F 0 IS=1 Select Instr Set = 1
wim 36:9f5f86dfd44a 2940
wim 36:9f5f86dfd44a 2941 for (idx=0; idx<16; idx++) {
wim 36:9f5f86dfd44a 2942 _writeCommand(0x40 | idx); // Set Icon Address, mask Address to valid range (Instr Set 1)
wim 36:9f5f86dfd44a 2943 _writeData(0x00); // Clear Icon pattern (Instr Set 1)
wim 36:9f5f86dfd44a 2944 }
wim 36:9f5f86dfd44a 2945
wim 36:9f5f86dfd44a 2946 _writeCommand(0x20 | _function); // Set function, 0 0 1 DL N RE(0) DH REV Select Instruction Set 0
wim 36:9f5f86dfd44a 2947 // Select Std Instr set, Select IS=0
wim 36:9f5f86dfd44a 2948 break; // end ST7032
wim 36:9f5f86dfd44a 2949
wim 36:9f5f86dfd44a 2950 case ST7036_3V3:
wim 36:9f5f86dfd44a 2951 case ST7036_5V:
wim 36:9f5f86dfd44a 2952 _writeCommand(0x20 | _function | 0x01); // Set function, 0 0 1 DL N DH IS2,IS1 = 01 (Select Instr Set = 1)
wim 36:9f5f86dfd44a 2953
wim 36:9f5f86dfd44a 2954 for (idx=0; idx<16; idx++) {
wim 36:9f5f86dfd44a 2955 _writeCommand(0x40 | idx); // Set Icon Address, mask Address to valid range (Instr Set 1)
wim 36:9f5f86dfd44a 2956 _writeData(0x00); // Clear Icon pattern (Instr Set 1)
wim 36:9f5f86dfd44a 2957 }
wim 36:9f5f86dfd44a 2958
wim 36:9f5f86dfd44a 2959 _writeCommand(0x20 | _function); // Set function, IS2,IS1 = 00 (Select Instr Set = 0)
wim 36:9f5f86dfd44a 2960 // Select Std Instr set, Select IS=0
wim 36:9f5f86dfd44a 2961 break; // end ST7036
wim 36:9f5f86dfd44a 2962
wim 36:9f5f86dfd44a 2963 case SSD1803_3V3:
wim 36:9f5f86dfd44a 2964 // case SSD1803_5V:
wim 36:9f5f86dfd44a 2965 _writeCommand(0x20 | _function | 0x01); // Set function, 0 0 1 DL N DH RE(0) IS
wim 36:9f5f86dfd44a 2966 // Select Instruction Set 1
wim 36:9f5f86dfd44a 2967 for (idx=0; idx<16; idx++) {
wim 36:9f5f86dfd44a 2968 _writeCommand(0x40 | idx); // Set Icon Address, mask Address to valid range (Ext Instr Set)
wim 36:9f5f86dfd44a 2969 _writeData(0x00); // Clear Icon pattern (Ext Instr Set)
wim 36:9f5f86dfd44a 2970 }
wim 36:9f5f86dfd44a 2971 _writeCommand(0x20 | _function); // Set function, 0 0 1 DL N DH RE(0) IS
wim 36:9f5f86dfd44a 2972 // Select IS=0
wim 36:9f5f86dfd44a 2973 break; // end SSD1803
wim 36:9f5f86dfd44a 2974
wim 36:9f5f86dfd44a 2975 case PCF2103_3V3:
wim 36:9f5f86dfd44a 2976 case PCF2113_3V3:
wim 36:9f5f86dfd44a 2977 // PCF2103 and PCF2113 use part of the UDC RAM to control Icons
wim 36:9f5f86dfd44a 2978 // Select CG RAM
wim 36:9f5f86dfd44a 2979
wim 36:9f5f86dfd44a 2980 _writeCommand(0x40 | (0 * 8)); //Set CG-RAM address, 8 sequential locations needed per UDC
wim 36:9f5f86dfd44a 2981 // Store UDC/Icon pattern:
wim 36:9f5f86dfd44a 2982 // 3 x 8 rows x 5 bits = 120 bits for Normal pattern (UDC 0..2) and
wim 36:9f5f86dfd44a 2983 for (int i=0; i<(3 * 8); i++) {
wim 36:9f5f86dfd44a 2984 // _writeData(0x1F); // All On
wim 36:9f5f86dfd44a 2985 _writeData(0x00); // All Off
wim 36:9f5f86dfd44a 2986 }
wim 36:9f5f86dfd44a 2987
wim 36:9f5f86dfd44a 2988 _writeCommand(0x40 | (4 * 8)); //Set CG-RAM address, 8 sequential locations needed per UDC
wim 36:9f5f86dfd44a 2989 // 3 x 8 rows x 5 bits = 120 bits for Blink pattern (UDC 4..6)
wim 36:9f5f86dfd44a 2990 for (int i=0; i<(3 * 8); i++) {
wim 36:9f5f86dfd44a 2991 // _writeData(0x1F); // All On
wim 36:9f5f86dfd44a 2992 _writeData(0x00); // All Off
wim 36:9f5f86dfd44a 2993 }
wim 36:9f5f86dfd44a 2994 break; // case PCF2103_3V3 Controller
wim 36:9f5f86dfd44a 2995
wim 39:e9c2319de9c5 2996 case PCF2119_3V3:
wim 39:e9c2319de9c5 2997 case PCF2119R_3V3:
wim 36:9f5f86dfd44a 2998 // PCF2119 uses part of the UDC RAM to control Icons
wim 36:9f5f86dfd44a 2999 // Select CG RAM
wim 36:9f5f86dfd44a 3000
wim 36:9f5f86dfd44a 3001 _writeCommand(0x40 | (0 * 8)); //Set CG-RAM address, 8 sequential locations needed per UDC
wim 36:9f5f86dfd44a 3002 // Store UDC/Icon pattern:
wim 36:9f5f86dfd44a 3003 // 4 x 8 rows x 5 bits = 160 bits for Normal pattern (UDC 0..3) and
wim 36:9f5f86dfd44a 3004 for (int i=0; i<(4 * 8); i++) {
wim 36:9f5f86dfd44a 3005 // _writeData(0x1F); // All On
wim 36:9f5f86dfd44a 3006 _writeData(0x00); // All Off
wim 36:9f5f86dfd44a 3007 }
wim 36:9f5f86dfd44a 3008
wim 36:9f5f86dfd44a 3009 _writeCommand(0x40 | (4 * 8)); //Set CG-RAM address, 8 sequential locations needed per UDC
wim 36:9f5f86dfd44a 3010 // 4 x 8 rows x 5 bits = 160 bits for Blink pattern (UDC 4..7)
wim 36:9f5f86dfd44a 3011 for (int i=0; i<(4 * 8); i++) {
wim 36:9f5f86dfd44a 3012 // _writeData(0x1F); // All On
wim 36:9f5f86dfd44a 3013 _writeData(0x00); // All Off
wim 36:9f5f86dfd44a 3014 }
wim 36:9f5f86dfd44a 3015 break; // case PCF2119_3V3 Controller
wim 36:9f5f86dfd44a 3016
wim 36:9f5f86dfd44a 3017 default:
wim 36:9f5f86dfd44a 3018 break; // end default
wim 36:9f5f86dfd44a 3019 } // end switch _ctrl
wim 36:9f5f86dfd44a 3020
wim 36:9f5f86dfd44a 3021 //Select DD RAM again for current LCD controller and restore the addresspointer
wim 36:9f5f86dfd44a 3022 int addr = getAddress(_column, _row);
wim 36:9f5f86dfd44a 3023 _writeCommand(0x80 | addr);
wim 36:9f5f86dfd44a 3024 } //end clrIcon()
wim 39:e9c2319de9c5 3025 #endif
wim 39:e9c2319de9c5 3026
wim 39:e9c2319de9c5 3027 #if(LCD_INVERT == 1)
wim 36:9f5f86dfd44a 3028 /** Set Invert
wim 36:9f5f86dfd44a 3029 * setInvert method is supported by some compatible devices (eg KS0073) to swap between black and white
wim 36:9f5f86dfd44a 3030 *
wim 36:9f5f86dfd44a 3031 * @param bool invertOn Invert on/off
wim 36:9f5f86dfd44a 3032 * @return none
wim 36:9f5f86dfd44a 3033 */
wim 36:9f5f86dfd44a 3034 //@TODO Add support for 40x4 dual controller
wim 36:9f5f86dfd44a 3035 void TextLCD_Base::setInvert(bool invertOn) {
wim 36:9f5f86dfd44a 3036
wim 36:9f5f86dfd44a 3037 if (invertOn) {
wim 36:9f5f86dfd44a 3038 // Controllers that support Invert
wim 36:9f5f86dfd44a 3039 switch (_ctrl) {
wim 36:9f5f86dfd44a 3040 case KS0073:
wim 36:9f5f86dfd44a 3041 case KS0078:
wim 36:9f5f86dfd44a 3042 _function = _function | 0x01; // Enable Invert
wim 36:9f5f86dfd44a 3043 _writeCommand(0x20 | _function); // Activate Invert (Std Instr Set)
wim 36:9f5f86dfd44a 3044 break;
wim 36:9f5f86dfd44a 3045 case SSD1803_3V3 :
wim 36:9f5f86dfd44a 3046 // case SSD1803_5V :
wim 36:9f5f86dfd44a 3047 case US2066_3V3:
wim 36:9f5f86dfd44a 3048 // case USS2066_5V:
wim 36:9f5f86dfd44a 3049 _function_1 = _function_1 | 0x01; // Enable Invert
wim 36:9f5f86dfd44a 3050 // Set function, 0 0 1 DL N BE RE(1) REV (SSD1803)
wim 36:9f5f86dfd44a 3051 // Set function, 0 0 1 X N BE RE(1) REV (US2066)
wim 36:9f5f86dfd44a 3052 _writeCommand(0x20 | _function_1); // Activate Invert (Ext Instr Set)
wim 36:9f5f86dfd44a 3053 _writeCommand(0x20 | _function); // Return to Std Instr Set
wim 36:9f5f86dfd44a 3054 break;
wim 36:9f5f86dfd44a 3055 default:
wim 36:9f5f86dfd44a 3056 //Unsupported feature for other controllers
wim 36:9f5f86dfd44a 3057 break;
wim 36:9f5f86dfd44a 3058 } // end switch
wim 36:9f5f86dfd44a 3059 }
wim 36:9f5f86dfd44a 3060 else {
wim 36:9f5f86dfd44a 3061 // Controllers that support Invert
wim 36:9f5f86dfd44a 3062 switch (_ctrl) {
wim 36:9f5f86dfd44a 3063 case KS0073:
wim 36:9f5f86dfd44a 3064 case KS0078:
wim 36:9f5f86dfd44a 3065 _function = _function & ~0x01; // Disable Invert
wim 36:9f5f86dfd44a 3066 _writeCommand(0x20 | _function); // Disable Invert (Std Instr Set)
wim 36:9f5f86dfd44a 3067 break;
wim 36:9f5f86dfd44a 3068 case SSD1803_3V3 :
wim 36:9f5f86dfd44a 3069 // case SSD1803_5V :
wim 36:9f5f86dfd44a 3070 case US2066_3V3:
wim 36:9f5f86dfd44a 3071 // case USS2066_5V:
wim 36:9f5f86dfd44a 3072 _function_1 = _function_1 & ~0x01; // Disable Invert
wim 36:9f5f86dfd44a 3073 // Set function, 0 0 1 DL N BE RE(1) REV (SSD1803)
wim 36:9f5f86dfd44a 3074 // Set function, 0 0 1 X N BE RE(1) REV (US2066)
wim 36:9f5f86dfd44a 3075 _writeCommand(0x20 | _function_1); // Activate Invert (Ext Instr Set)
wim 36:9f5f86dfd44a 3076 _writeCommand(0x20 | _function); // Return to Std Instr Set
wim 36:9f5f86dfd44a 3077 break;
wim 36:9f5f86dfd44a 3078
wim 36:9f5f86dfd44a 3079 default:
wim 36:9f5f86dfd44a 3080 //Unsupported feature for other controllers
wim 36:9f5f86dfd44a 3081 break;
wim 36:9f5f86dfd44a 3082 } // end switch
wim 36:9f5f86dfd44a 3083 }
wim 36:9f5f86dfd44a 3084 } // end setInvert()
wim 39:e9c2319de9c5 3085 #endif
wim 36:9f5f86dfd44a 3086
wim 23:d47f226efb24 3087 //--------- End TextLCD_Base -----------
wim 21:9eb628d9e164 3088
wim 22:35742ec80c24 3089
wim 23:d47f226efb24 3090 //--------- Start TextLCD Bus -----------
wim 21:9eb628d9e164 3091
wim 21:9eb628d9e164 3092 /* Create a TextLCD interface for using regular mbed pins
wim 21:9eb628d9e164 3093 *
wim 21:9eb628d9e164 3094 * @param rs Instruction/data control line
wim 21:9eb628d9e164 3095 * @param e Enable line (clock)
wim 21:9eb628d9e164 3096 * @param d4-d7 Data lines for using as a 4-bit interface
wim 21:9eb628d9e164 3097 * @param type Sets the panel size/addressing mode (default = LCD16x2)
wim 21:9eb628d9e164 3098 * @param bl Backlight control line (optional, default = NC)
wim 21:9eb628d9e164 3099 * @param e2 Enable2 line (clock for second controller, LCD40x4 only)
wim 21:9eb628d9e164 3100 * @param ctrl LCD controller (default = HD44780)
wim 21:9eb628d9e164 3101 */
wim 21:9eb628d9e164 3102 TextLCD::TextLCD(PinName rs, PinName e,
wim 21:9eb628d9e164 3103 PinName d4, PinName d5, PinName d6, PinName d7,
wim 21:9eb628d9e164 3104 LCDType type, PinName bl, PinName e2, LCDCtrl ctrl) :
wim 21:9eb628d9e164 3105 TextLCD_Base(type, ctrl),
wim 22:35742ec80c24 3106 _rs(rs), _e(e), _d(d4, d5, d6, d7) {
wim 22:35742ec80c24 3107
wim 22:35742ec80c24 3108 // The hardware Backlight pin is optional. Test and make sure whether it exists or not to prevent illegal access.
wim 22:35742ec80c24 3109 if (bl != NC) {
wim 22:35742ec80c24 3110 _bl = new DigitalOut(bl); //Construct new pin
wim 22:35742ec80c24 3111 _bl->write(0); //Deactivate
wim 22:35742ec80c24 3112 }
wim 22:35742ec80c24 3113 else {
wim 22:35742ec80c24 3114 // No Hardware Backlight pin
wim 22:35742ec80c24 3115 _bl = NULL; //Construct dummy pin
wim 22:35742ec80c24 3116 }
wim 22:35742ec80c24 3117
wim 22:35742ec80c24 3118 // The hardware Enable2 pin is only needed for LCD40x4. Test and make sure whether it exists or not to prevent illegal access.
wim 22:35742ec80c24 3119 if (e2 != NC) {
wim 22:35742ec80c24 3120 _e2 = new DigitalOut(e2); //Construct new pin
wim 22:35742ec80c24 3121 _e2->write(0); //Deactivate
wim 22:35742ec80c24 3122 }
wim 22:35742ec80c24 3123 else {
wim 22:35742ec80c24 3124 // No Hardware Enable pin
wim 22:35742ec80c24 3125 _e2 = NULL; //Construct dummy pin
wim 22:35742ec80c24 3126 }
wim 38:cbe275b0b647 3127
wim 38:cbe275b0b647 3128 _init(_LCD_DL_4); // Set Datalength to 4 bit for mbed bus interfaces
wim 21:9eb628d9e164 3129 }
wim 21:9eb628d9e164 3130
wim 29:a3663151aa65 3131 /** Destruct a TextLCD interface for using regular mbed pins
wim 29:a3663151aa65 3132 *
wim 29:a3663151aa65 3133 * @param none
wim 29:a3663151aa65 3134 * @return none
wim 29:a3663151aa65 3135 */
wim 29:a3663151aa65 3136 TextLCD::~TextLCD() {
wim 29:a3663151aa65 3137 if (_bl != NULL) {delete _bl;} // BL pin
wim 29:a3663151aa65 3138 if (_e2 != NULL) {delete _e2;} // E2 pin
wim 29:a3663151aa65 3139 }
wim 29:a3663151aa65 3140
wim 22:35742ec80c24 3141 /** Set E pin (or E2 pin)
wim 22:35742ec80c24 3142 * Used for mbed pins, I2C bus expander or SPI shiftregister
wim 22:35742ec80c24 3143 * Default PinName value for E2 is NC, must be used as pointer to avoid issues with mbed lib and DigitalOut pins
wim 22:35742ec80c24 3144 * @param value true or false
wim 22:35742ec80c24 3145 * @return none
wim 22:35742ec80c24 3146 */
wim 21:9eb628d9e164 3147 void TextLCD::_setEnable(bool value) {
wim 21:9eb628d9e164 3148
wim 22:35742ec80c24 3149 if(_ctrl_idx==_LCDCtrl_0) {
wim 22:35742ec80c24 3150 if (value) {
wim 22:35742ec80c24 3151 _e = 1; // Set E bit
wim 22:35742ec80c24 3152 }
wim 22:35742ec80c24 3153 else {
wim 22:35742ec80c24 3154 _e = 0; // Reset E bit
wim 22:35742ec80c24 3155 }
wim 22:35742ec80c24 3156 }
wim 22:35742ec80c24 3157 else {
wim 22:35742ec80c24 3158 if (value) {
wim 22:35742ec80c24 3159 if (_e2 != NULL) {_e2->write(1);} //Set E2 bit
wim 22:35742ec80c24 3160 }
wim 22:35742ec80c24 3161 else {
wim 22:35742ec80c24 3162 if (_e2 != NULL) {_e2->write(0);} //Reset E2 bit
wim 22:35742ec80c24 3163 }
wim 22:35742ec80c24 3164 }
wim 21:9eb628d9e164 3165 }
wim 21:9eb628d9e164 3166
wim 21:9eb628d9e164 3167 // Set RS pin
wim 21:9eb628d9e164 3168 // Used for mbed pins, I2C bus expander or SPI shiftregister
wim 21:9eb628d9e164 3169 void TextLCD::_setRS(bool value) {
wim 21:9eb628d9e164 3170
wim 22:35742ec80c24 3171 if (value) {
wim 21:9eb628d9e164 3172 _rs = 1; // Set RS bit
wim 22:35742ec80c24 3173 }
wim 22:35742ec80c24 3174 else {
wim 21:9eb628d9e164 3175 _rs = 0; // Reset RS bit
wim 22:35742ec80c24 3176 }
wim 21:9eb628d9e164 3177 }
wim 21:9eb628d9e164 3178
wim 22:35742ec80c24 3179 /** Set BL pin
wim 22:35742ec80c24 3180 * Used for mbed pins, I2C bus expander or SPI shiftregister
wim 22:35742ec80c24 3181 * Default PinName value is NC, must be used as pointer to avoid issues with mbed lib and DigitalOut pins
wim 22:35742ec80c24 3182 * @param value true or false
wim 22:35742ec80c24 3183 * @return none
wim 22:35742ec80c24 3184 */
wim 21:9eb628d9e164 3185 void TextLCD::_setBL(bool value) {
wim 21:9eb628d9e164 3186
wim 22:35742ec80c24 3187 if (value) {
wim 22:35742ec80c24 3188 if (_bl != NULL) {_bl->write(1);} //Set BL bit
wim 22:35742ec80c24 3189 }
wim 22:35742ec80c24 3190 else {
wim 22:35742ec80c24 3191 if (_bl != NULL) {_bl->write(0);} //Reset BL bit
wim 22:35742ec80c24 3192 }
wim 21:9eb628d9e164 3193 }
wim 21:9eb628d9e164 3194
wim 21:9eb628d9e164 3195 // Place the 4bit data on the databus
wim 21:9eb628d9e164 3196 // Used for mbed pins, I2C bus expander or SPI shifregister
wim 21:9eb628d9e164 3197 void TextLCD::_setData(int value) {
wim 21:9eb628d9e164 3198 _d = value & 0x0F; // Write Databits
wim 21:9eb628d9e164 3199 }
wim 34:e5a0dcb43ecc 3200
wim 23:d47f226efb24 3201 //----------- End TextLCD ---------------
wim 21:9eb628d9e164 3202
wim 21:9eb628d9e164 3203
wim 23:d47f226efb24 3204 //--------- Start TextLCD_I2C -----------
wim 34:e5a0dcb43ecc 3205 #if(LCD_I2C == 1) /* I2C Expander PCF8574/MCP23008 */
wim 26:bd897a001012 3206 /** Create a TextLCD interface using an I2C PC8574 (or PCF8574A) or MCP23008 portexpander
wim 22:35742ec80c24 3207 *
wim 22:35742ec80c24 3208 * @param i2c I2C Bus
wim 26:bd897a001012 3209 * @param deviceAddress I2C slave address (PCF8574, PCF8574A or MCP23008, default = 0x40)
wim 22:35742ec80c24 3210 * @param type Sets the panel size/addressing mode (default = LCD16x2)
wim 22:35742ec80c24 3211 * @param ctrl LCD controller (default = HD44780)
wim 22:35742ec80c24 3212 */
wim 21:9eb628d9e164 3213 TextLCD_I2C::TextLCD_I2C(I2C *i2c, char deviceAddress, LCDType type, LCDCtrl ctrl) :
wim 21:9eb628d9e164 3214 TextLCD_Base(type, ctrl),
wim 21:9eb628d9e164 3215 _i2c(i2c){
wim 21:9eb628d9e164 3216
wim 22:35742ec80c24 3217 _slaveAddress = deviceAddress & 0xFE;
wim 28:30fa94f7341c 3218
wim 28:30fa94f7341c 3219 // Setup the I2C bus
wim 28:30fa94f7341c 3220 // The max bitrate for PCF8574 is 100kbit, the max bitrate for MCP23008 is 400kbit,
wim 32:59c4b8f648d4 3221 _i2c->frequency(100000);
wim 21:9eb628d9e164 3222
wim 26:bd897a001012 3223 #if (MCP23008==1)
wim 26:bd897a001012 3224 // MCP23008 portexpander Init
wim 37:ce348c002929 3225 _writeRegister(IODIR, 0x00); // All pins are outputs
wim 37:ce348c002929 3226 _writeRegister(IPOL, 0x00); // No reverse polarity on inputs
wim 37:ce348c002929 3227 _writeRegister(GPINTEN, 0x00); // No interrupt on change of input pins
wim 37:ce348c002929 3228 _writeRegister(DEFVAL, 0x00); // Default value to compare against for interrupts
wim 37:ce348c002929 3229 _writeRegister(INTCON, 0x00); // No interrupt on changes, compare against previous pin value
wim 37:ce348c002929 3230 _writeRegister(IOCON, 0x20); // b1=0 - Interrupt polarity active low
wim 37:ce348c002929 3231 // b2=0 - Interrupt pin active driver output
wim 37:ce348c002929 3232 // b4=0 - Slew rate enable on SDA
wim 37:ce348c002929 3233 // b5=0 - Auto-increment on registeraddress
wim 37:ce348c002929 3234 // b5=1 - No auto-increment on registeraddress => needed for performance improved I2C expander mode
wim 37:ce348c002929 3235 _writeRegister(GPPU, 0x00); // No Pullup
wim 37:ce348c002929 3236 // INTF // Interrupt flags read (Read-Only)
wim 37:ce348c002929 3237 // INTCAP // Captured inputpins at time of interrupt (Read-Only)
wim 37:ce348c002929 3238 // _writeRegister(GPIO, 0x00); // Output/Input pins
wim 37:ce348c002929 3239 // _writeRegister(OLAT, 0x00); // Output Latch
wim 26:bd897a001012 3240
wim 21:9eb628d9e164 3241 // Init the portexpander bus
wim 38:cbe275b0b647 3242 _lcd_bus = LCD_BUS_I2C_DEF;
wim 21:9eb628d9e164 3243
wim 21:9eb628d9e164 3244 // write the new data to the portexpander
wim 37:ce348c002929 3245 _writeRegister(GPIO, _lcd_bus);
wim 26:bd897a001012 3246 #else
wim 26:bd897a001012 3247 // PCF8574 of PCF8574A portexpander
wim 26:bd897a001012 3248
wim 26:bd897a001012 3249 // Init the portexpander bus
wim 38:cbe275b0b647 3250 _lcd_bus = LCD_BUS_I2C_DEF;
wim 26:bd897a001012 3251
wim 26:bd897a001012 3252 // write the new data to the portexpander
wim 21:9eb628d9e164 3253 _i2c->write(_slaveAddress, &_lcd_bus, 1);
wim 26:bd897a001012 3254 #endif
wim 21:9eb628d9e164 3255
wim 37:ce348c002929 3256 _init(_LCD_DL_4); // Set Datalength to 4 bit for all serial expander interfaces
wim 21:9eb628d9e164 3257 }
wim 21:9eb628d9e164 3258
wim 37:ce348c002929 3259 // Set E bit (or E2 bit) in the databus shadowvalue
wim 37:ce348c002929 3260 // Used for mbed I2C bus expander
wim 37:ce348c002929 3261 void TextLCD_I2C::_setEnableBit(bool value) {
wim 21:9eb628d9e164 3262
wim 41:111ca62e8a59 3263 #if (LCD_TWO_CTRL == 1)
wim 22:35742ec80c24 3264 if(_ctrl_idx==_LCDCtrl_0) {
wim 26:bd897a001012 3265 if (value) {
wim 38:cbe275b0b647 3266 _lcd_bus |= LCD_BUS_I2C_E; // Set E bit
wim 26:bd897a001012 3267 }
wim 26:bd897a001012 3268 else {
wim 38:cbe275b0b647 3269 _lcd_bus &= ~LCD_BUS_I2C_E; // Reset E bit
wim 26:bd897a001012 3270 }
wim 22:35742ec80c24 3271 }
wim 22:35742ec80c24 3272 else {
wim 26:bd897a001012 3273 if (value) {
wim 38:cbe275b0b647 3274 _lcd_bus |= LCD_BUS_I2C_E2; // Set E2 bit
wim 26:bd897a001012 3275 }
wim 26:bd897a001012 3276 else {
wim 38:cbe275b0b647 3277 _lcd_bus &= ~LCD_BUS_I2C_E2; // Reset E2bit
wim 26:bd897a001012 3278 }
wim 26:bd897a001012 3279 }
wim 41:111ca62e8a59 3280 #else
wim 41:111ca62e8a59 3281 // Support only one controller
wim 41:111ca62e8a59 3282 if (value) {
wim 41:111ca62e8a59 3283 _lcd_bus |= LCD_BUS_I2C_E; // Set E bit
wim 41:111ca62e8a59 3284 }
wim 41:111ca62e8a59 3285 else {
wim 41:111ca62e8a59 3286 _lcd_bus &= ~LCD_BUS_I2C_E; // Reset E bit
wim 41:111ca62e8a59 3287 }
wim 41:111ca62e8a59 3288
wim 41:111ca62e8a59 3289 #endif
wim 37:ce348c002929 3290 }
wim 37:ce348c002929 3291
wim 37:ce348c002929 3292 // Set E pin (or E2 pin)
wim 37:ce348c002929 3293 // Used for mbed pins, I2C bus expander or SPI shiftregister
wim 37:ce348c002929 3294 void TextLCD_I2C::_setEnable(bool value) {
wim 37:ce348c002929 3295
wim 37:ce348c002929 3296 // Place the E or E2 bit data on the databus shadowvalue
wim 37:ce348c002929 3297 _setEnableBit(value);
wim 26:bd897a001012 3298
wim 26:bd897a001012 3299 #if (MCP23008==1)
wim 26:bd897a001012 3300 // MCP23008 portexpander
wim 26:bd897a001012 3301
wim 26:bd897a001012 3302 // write the new data to the portexpander
wim 37:ce348c002929 3303 _writeRegister(GPIO, _lcd_bus);
wim 26:bd897a001012 3304 #else
wim 26:bd897a001012 3305 // PCF8574 of PCF8574A portexpander
wim 21:9eb628d9e164 3306
wim 22:35742ec80c24 3307 // write the new data to the I2C portexpander
wim 22:35742ec80c24 3308 _i2c->write(_slaveAddress, &_lcd_bus, 1);
wim 26:bd897a001012 3309 #endif
wim 21:9eb628d9e164 3310 }
wim 21:9eb628d9e164 3311
wim 37:ce348c002929 3312
wim 21:9eb628d9e164 3313 // Set RS pin
wim 21:9eb628d9e164 3314 // Used for mbed pins, I2C bus expander or SPI shiftregister
wim 21:9eb628d9e164 3315 void TextLCD_I2C::_setRS(bool value) {
wim 21:9eb628d9e164 3316
wim 26:bd897a001012 3317 if (value) {
wim 38:cbe275b0b647 3318 _lcd_bus |= LCD_BUS_I2C_RS; // Set RS bit
wim 26:bd897a001012 3319 }
wim 26:bd897a001012 3320 else {
wim 38:cbe275b0b647 3321 _lcd_bus &= ~LCD_BUS_I2C_RS; // Reset RS bit
wim 26:bd897a001012 3322 }
wim 26:bd897a001012 3323
wim 26:bd897a001012 3324 #if (MCP23008==1)
wim 26:bd897a001012 3325 // MCP23008 portexpander
wim 26:bd897a001012 3326
wim 26:bd897a001012 3327 // write the new data to the portexpander
wim 37:ce348c002929 3328 _writeRegister(GPIO, _lcd_bus);
wim 26:bd897a001012 3329 #else
wim 26:bd897a001012 3330 // PCF8574 of PCF8574A portexpander
wim 21:9eb628d9e164 3331
wim 22:35742ec80c24 3332 // write the new data to the I2C portexpander
wim 22:35742ec80c24 3333 _i2c->write(_slaveAddress, &_lcd_bus, 1);
wim 30:033048611c01 3334 #endif
wim 21:9eb628d9e164 3335 }
wim 21:9eb628d9e164 3336
wim 21:9eb628d9e164 3337 // Set BL pin
wim 21:9eb628d9e164 3338 // Used for mbed pins, I2C bus expander or SPI shiftregister
wim 21:9eb628d9e164 3339 void TextLCD_I2C::_setBL(bool value) {
wim 21:9eb628d9e164 3340
wim 26:bd897a001012 3341 if (value) {
wim 38:cbe275b0b647 3342 _lcd_bus |= LCD_BUS_I2C_BL; // Set BL bit
wim 26:bd897a001012 3343 }
wim 26:bd897a001012 3344 else {
wim 38:cbe275b0b647 3345 _lcd_bus &= ~LCD_BUS_I2C_BL; // Reset BL bit
wim 26:bd897a001012 3346 }
wim 26:bd897a001012 3347
wim 26:bd897a001012 3348 #if (MCP23008==1)
wim 26:bd897a001012 3349 // MCP23008 portexpander
wim 26:bd897a001012 3350
wim 26:bd897a001012 3351 // write the new data to the portexpander
wim 37:ce348c002929 3352 _writeRegister(GPIO, _lcd_bus);
wim 37:ce348c002929 3353 #else
wim 37:ce348c002929 3354 // PCF8574 of PCF8574A portexpander
wim 37:ce348c002929 3355
wim 37:ce348c002929 3356 // write the new data to the I2C portexpander
wim 37:ce348c002929 3357 _i2c->write(_slaveAddress, &_lcd_bus, 1);
wim 37:ce348c002929 3358 #endif
wim 37:ce348c002929 3359 }
wim 37:ce348c002929 3360
wim 38:cbe275b0b647 3361 #if(0)
wim 38:cbe275b0b647 3362 // New optimized v018
wim 38:cbe275b0b647 3363 // Test faster _writeByte 0.11s vs 0.27s for a 20x4 fillscreen (PCF8574), same as v018
wim 38:cbe275b0b647 3364 // Place the 4bit data in the databus shadowvalue
wim 38:cbe275b0b647 3365 // Used for mbed I2C bus expander
wim 38:cbe275b0b647 3366 const char _LCD_DATA_BITS[16] = {
wim 38:cbe275b0b647 3367 0x00,
wim 38:cbe275b0b647 3368 ( LCD_BUS_I2C_D4),
wim 38:cbe275b0b647 3369 ( LCD_BUS_I2C_D5 ),
wim 38:cbe275b0b647 3370 ( LCD_BUS_I2C_D5 | LCD_BUS_I2C_D4),
wim 38:cbe275b0b647 3371 ( LCD_BUS_I2C_D6 ),
wim 38:cbe275b0b647 3372 ( LCD_BUS_I2C_D6 | LCD_BUS_I2C_D4),
wim 38:cbe275b0b647 3373 ( LCD_BUS_I2C_D6 | LCD_BUS_I2C_D5 ),
wim 38:cbe275b0b647 3374 ( LCD_BUS_I2C_D6 | LCD_BUS_I2C_D5 | LCD_BUS_I2C_D4),
wim 38:cbe275b0b647 3375 (LCD_BUS_I2C_D7 ),
wim 38:cbe275b0b647 3376 (LCD_BUS_I2C_D7 | LCD_BUS_I2C_D4),
wim 38:cbe275b0b647 3377 (LCD_BUS_I2C_D7 | LCD_BUS_I2C_D5 ),
wim 38:cbe275b0b647 3378 (LCD_BUS_I2C_D7 | LCD_BUS_I2C_D5 | LCD_BUS_I2C_D4),
wim 38:cbe275b0b647 3379 (LCD_BUS_I2C_D7 | LCD_BUS_I2C_D6 ),
wim 38:cbe275b0b647 3380 (LCD_BUS_I2C_D7 | LCD_BUS_I2C_D6 | LCD_BUS_I2C_D4),
wim 38:cbe275b0b647 3381 (LCD_BUS_I2C_D7 | LCD_BUS_I2C_D6 | LCD_BUS_I2C_D5 ),
wim 38:cbe275b0b647 3382 (LCD_BUS_I2C_D7 | LCD_BUS_I2C_D6 | LCD_BUS_I2C_D5 | LCD_BUS_I2C_D4)
wim 38:cbe275b0b647 3383 };
wim 38:cbe275b0b647 3384 void TextLCD_I2C::_setDataBits(int value) {
wim 38:cbe275b0b647 3385
wim 38:cbe275b0b647 3386 //Clear all databits
wim 38:cbe275b0b647 3387 _lcd_bus &= ~LCD_BUS_I2C_MSK;
wim 38:cbe275b0b647 3388
wim 38:cbe275b0b647 3389 // Set bit by bit to support any mapping of expander portpins to LCD pins
wim 38:cbe275b0b647 3390 _lcd_bus |= _LCD_DATA_BITS[value & 0x0F];
wim 38:cbe275b0b647 3391 }
wim 39:e9c2319de9c5 3392 #endif
wim 39:e9c2319de9c5 3393
wim 39:e9c2319de9c5 3394 // Test faster _writeByte 0.11s vs 0.27s for a 20x4 fillscreen (PCF8574)
wim 39:e9c2319de9c5 3395 // Place the 4bit data in the databus shadowvalue
wim 39:e9c2319de9c5 3396 // Used for mbed I2C bus expander
wim 39:e9c2319de9c5 3397 void TextLCD_I2C::_setDataBits(int value) {
wim 39:e9c2319de9c5 3398
wim 39:e9c2319de9c5 3399 //Clear all databits
wim 39:e9c2319de9c5 3400 _lcd_bus &= ~LCD_BUS_I2C_MSK;
wim 39:e9c2319de9c5 3401
wim 39:e9c2319de9c5 3402 // Set bit by bit to support any mapping of expander portpins to LCD pins
wim 39:e9c2319de9c5 3403 if (value & 0x01){
wim 39:e9c2319de9c5 3404 _lcd_bus |= LCD_BUS_I2C_D4; // Set Databit
wim 39:e9c2319de9c5 3405 }
wim 39:e9c2319de9c5 3406
wim 39:e9c2319de9c5 3407 if (value & 0x02){
wim 39:e9c2319de9c5 3408 _lcd_bus |= LCD_BUS_I2C_D5; // Set Databit
wim 39:e9c2319de9c5 3409 }
wim 39:e9c2319de9c5 3410
wim 39:e9c2319de9c5 3411 if (value & 0x04) {
wim 39:e9c2319de9c5 3412 _lcd_bus |= LCD_BUS_I2C_D6; // Set Databit
wim 39:e9c2319de9c5 3413 }
wim 39:e9c2319de9c5 3414
wim 39:e9c2319de9c5 3415 if (value & 0x08) {
wim 39:e9c2319de9c5 3416 _lcd_bus |= LCD_BUS_I2C_D7; // Set Databit
wim 39:e9c2319de9c5 3417 }
wim 39:e9c2319de9c5 3418 }
wim 41:111ca62e8a59 3419
wim 37:ce348c002929 3420
wim 37:ce348c002929 3421 // Place the 4bit data on the databus
wim 37:ce348c002929 3422 // Used for mbed pins, I2C bus expander or SPI shifregister
wim 37:ce348c002929 3423 void TextLCD_I2C::_setData(int value) {
wim 37:ce348c002929 3424
wim 37:ce348c002929 3425 // Place the 4bit data on the databus shadowvalue
wim 37:ce348c002929 3426 _setDataBits(value);
wim 37:ce348c002929 3427
wim 37:ce348c002929 3428 // Place the 4bit data on the databus
wim 37:ce348c002929 3429 #if (MCP23008==1)
wim 37:ce348c002929 3430 // MCP23008 portexpander
wim 37:ce348c002929 3431
wim 37:ce348c002929 3432 // write the new data to the portexpander
wim 37:ce348c002929 3433 _writeRegister(GPIO, _lcd_bus);
wim 26:bd897a001012 3434 #else
wim 26:bd897a001012 3435 // PCF8574 of PCF8574A portexpander
wim 21:9eb628d9e164 3436
wim 21:9eb628d9e164 3437 // write the new data to the I2C portexpander
wim 21:9eb628d9e164 3438 _i2c->write(_slaveAddress, &_lcd_bus, 1);
wim 30:033048611c01 3439 #endif
wim 21:9eb628d9e164 3440 }
wim 21:9eb628d9e164 3441
wim 37:ce348c002929 3442 // Write data to MCP23008 I2C portexpander
wim 37:ce348c002929 3443 // Used for mbed I2C bus expander
wim 37:ce348c002929 3444 void TextLCD_I2C::_writeRegister (int reg, int value) {
reedas 42:1962dc501f94 3445 char data[] = {(char)reg, (char)value};
wim 37:ce348c002929 3446
wim 37:ce348c002929 3447 _i2c->write(_slaveAddress, data, 2);
wim 37:ce348c002929 3448 }
wim 37:ce348c002929 3449
wim 37:ce348c002929 3450 //New optimized
wim 37:ce348c002929 3451 //Test faster _writeByte 0.11s vs 0.27s for a 20x4 fillscreen (PCF8574)
wim 37:ce348c002929 3452 //Test faster _writeByte 0.14s vs 0.34s for a 20x4 fillscreen (MCP23008)
wim 37:ce348c002929 3453
wim 37:ce348c002929 3454 // Write a byte using I2C
wim 37:ce348c002929 3455 void TextLCD_I2C::_writeByte(int value) {
wim 37:ce348c002929 3456 char data[6];
wim 37:ce348c002929 3457
wim 37:ce348c002929 3458 #if (MCP23008==1)
wim 37:ce348c002929 3459 // MCP23008 portexpander
wim 37:ce348c002929 3460
wim 37:ce348c002929 3461 data[0] = GPIO; // set registeraddres
wim 37:ce348c002929 3462 // Note: auto-increment is disabled so all data will go to GPIO register
wim 37:ce348c002929 3463
wim 37:ce348c002929 3464 _setEnableBit(true); // set E
wim 37:ce348c002929 3465 _setDataBits(value >> 4); // set data high
wim 37:ce348c002929 3466 data[1] = _lcd_bus;
wim 37:ce348c002929 3467
wim 37:ce348c002929 3468 _setEnableBit(false); // clear E
wim 37:ce348c002929 3469 data[2] = _lcd_bus;
wim 37:ce348c002929 3470
wim 37:ce348c002929 3471 _setEnableBit(true); // set E
wim 37:ce348c002929 3472 _setDataBits(value); // set data low
wim 37:ce348c002929 3473 data[3] = _lcd_bus;
wim 37:ce348c002929 3474
wim 37:ce348c002929 3475 _setEnableBit(false); // clear E
wim 37:ce348c002929 3476 data[4] = _lcd_bus;
wim 37:ce348c002929 3477
wim 37:ce348c002929 3478 // write the packed data to the I2C portexpander
wim 37:ce348c002929 3479 _i2c->write(_slaveAddress, data, 5);
wim 37:ce348c002929 3480 #else
wim 37:ce348c002929 3481 // PCF8574 of PCF8574A portexpander
wim 37:ce348c002929 3482
wim 37:ce348c002929 3483 _setEnableBit(true); // set E
wim 37:ce348c002929 3484 _setDataBits(value >> 4); // set data high
wim 37:ce348c002929 3485 data[0] = _lcd_bus;
wim 37:ce348c002929 3486
wim 37:ce348c002929 3487 _setEnableBit(false); // clear E
wim 37:ce348c002929 3488 data[1] = _lcd_bus;
wim 37:ce348c002929 3489
wim 37:ce348c002929 3490 _setEnableBit(true); // set E
wim 37:ce348c002929 3491 _setDataBits(value); // set data low
wim 37:ce348c002929 3492 data[2] = _lcd_bus;
wim 37:ce348c002929 3493
wim 37:ce348c002929 3494 _setEnableBit(false); // clear E
wim 37:ce348c002929 3495 data[3] = _lcd_bus;
wim 37:ce348c002929 3496
wim 37:ce348c002929 3497 // write the packed data to the I2C portexpander
wim 37:ce348c002929 3498 _i2c->write(_slaveAddress, data, 4);
wim 37:ce348c002929 3499 #endif
wim 37:ce348c002929 3500 }
wim 37:ce348c002929 3501
wim 37:ce348c002929 3502 #endif /* I2C Expander PCF8574/MCP23008 */
wim 37:ce348c002929 3503 //---------- End TextLCD_I2C ------------
wim 37:ce348c002929 3504
wim 37:ce348c002929 3505
wim 37:ce348c002929 3506 //--------- Start TextLCD_SPI -----------
wim 37:ce348c002929 3507 #if(LCD_SPI == 1) /* SPI Expander SN74595 */
wim 37:ce348c002929 3508
wim 37:ce348c002929 3509 /** Create a TextLCD interface using an SPI 74595 portexpander
wim 37:ce348c002929 3510 *
wim 37:ce348c002929 3511 * @param spi SPI Bus
wim 37:ce348c002929 3512 * @param cs chip select pin (active low)
wim 37:ce348c002929 3513 * @param type Sets the panel size/addressing mode (default = LCD16x2)
wim 37:ce348c002929 3514 * @param ctrl LCD controller (default = HD44780)
wim 37:ce348c002929 3515 */
wim 37:ce348c002929 3516 TextLCD_SPI::TextLCD_SPI(SPI *spi, PinName cs, LCDType type, LCDCtrl ctrl) :
wim 37:ce348c002929 3517 TextLCD_Base(type, ctrl),
wim 37:ce348c002929 3518 _spi(spi),
wim 38:cbe275b0b647 3519 _cs(cs) {
wim 37:ce348c002929 3520 // Init cs
wim 37:ce348c002929 3521 _cs = 1;
wim 37:ce348c002929 3522
wim 37:ce348c002929 3523 // Setup the spi for 8 bit data, low steady state clock,
wim 37:ce348c002929 3524 // rising edge capture, with a 500KHz or 1MHz clock rate
wim 37:ce348c002929 3525 _spi->format(8,0);
wim 37:ce348c002929 3526 _spi->frequency(500000);
wim 37:ce348c002929 3527 //_spi.frequency(1000000);
wim 37:ce348c002929 3528
reedas 42:1962dc501f94 3529 ThisThread::sleep_for(100); // Wait 100ms to ensure LCD powered up
wim 38:cbe275b0b647 3530
wim 37:ce348c002929 3531 // Init the portexpander bus
wim 38:cbe275b0b647 3532 _lcd_bus = LCD_BUS_SPI_DEF;
wim 37:ce348c002929 3533
wim 37:ce348c002929 3534 // write the new data to the portexpander
wim 37:ce348c002929 3535 _cs = 0;
wim 37:ce348c002929 3536 _spi->write(_lcd_bus);
wim 37:ce348c002929 3537 _cs = 1;
wim 37:ce348c002929 3538
wim 37:ce348c002929 3539 _init(_LCD_DL_4); // Set Datalength to 4 bit for all serial expander interfaces
wim 37:ce348c002929 3540 }
wim 37:ce348c002929 3541
wim 37:ce348c002929 3542 // Set E pin (or E2 pin)
wim 37:ce348c002929 3543 // Used for mbed pins, I2C bus expander or SPI shiftregister
wim 37:ce348c002929 3544 void TextLCD_SPI::_setEnable(bool value) {
wim 37:ce348c002929 3545
wim 37:ce348c002929 3546 if(_ctrl_idx==_LCDCtrl_0) {
wim 37:ce348c002929 3547 if (value) {
wim 38:cbe275b0b647 3548 _lcd_bus |= LCD_BUS_SPI_E; // Set E bit
wim 37:ce348c002929 3549 }
wim 37:ce348c002929 3550 else {
wim 38:cbe275b0b647 3551 _lcd_bus &= ~LCD_BUS_SPI_E; // Reset E bit
wim 37:ce348c002929 3552 }
wim 37:ce348c002929 3553 }
wim 37:ce348c002929 3554 else {
wim 37:ce348c002929 3555 if (value) {
wim 38:cbe275b0b647 3556 _lcd_bus |= LCD_BUS_SPI_E2; // Set E2 bit
wim 37:ce348c002929 3557 }
wim 37:ce348c002929 3558 else {
wim 38:cbe275b0b647 3559 _lcd_bus &= ~LCD_BUS_SPI_E2; // Reset E2 bit
wim 37:ce348c002929 3560 }
wim 37:ce348c002929 3561 }
wim 37:ce348c002929 3562
wim 37:ce348c002929 3563 // write the new data to the SPI portexpander
wim 37:ce348c002929 3564 _cs = 0;
wim 37:ce348c002929 3565 _spi->write(_lcd_bus);
wim 37:ce348c002929 3566 _cs = 1;
wim 37:ce348c002929 3567 }
wim 37:ce348c002929 3568
wim 37:ce348c002929 3569 // Set RS pin
wim 37:ce348c002929 3570 // Used for mbed pins, I2C bus expander or SPI shiftregister and SPI_N
wim 37:ce348c002929 3571 void TextLCD_SPI::_setRS(bool value) {
wim 37:ce348c002929 3572
wim 37:ce348c002929 3573 if (value) {
wim 38:cbe275b0b647 3574 _lcd_bus |= LCD_BUS_SPI_RS; // Set RS bit
wim 37:ce348c002929 3575 }
wim 37:ce348c002929 3576 else {
wim 38:cbe275b0b647 3577 _lcd_bus &= ~LCD_BUS_SPI_RS; // Reset RS bit
wim 37:ce348c002929 3578 }
wim 37:ce348c002929 3579
wim 37:ce348c002929 3580 // write the new data to the SPI portexpander
wim 37:ce348c002929 3581 _cs = 0;
wim 37:ce348c002929 3582 _spi->write(_lcd_bus);
wim 37:ce348c002929 3583 _cs = 1;
wim 37:ce348c002929 3584 }
wim 37:ce348c002929 3585
wim 37:ce348c002929 3586 // Set BL pin
wim 37:ce348c002929 3587 // Used for mbed pins, I2C bus expander or SPI shiftregister
wim 37:ce348c002929 3588 void TextLCD_SPI::_setBL(bool value) {
wim 37:ce348c002929 3589
wim 37:ce348c002929 3590 if (value) {
wim 38:cbe275b0b647 3591 _lcd_bus |= LCD_BUS_SPI_BL; // Set BL bit
wim 37:ce348c002929 3592 }
wim 37:ce348c002929 3593 else {
wim 38:cbe275b0b647 3594 _lcd_bus &= ~LCD_BUS_SPI_BL; // Reset BL bit
wim 37:ce348c002929 3595 }
wim 37:ce348c002929 3596
wim 37:ce348c002929 3597 // write the new data to the SPI portexpander
wim 37:ce348c002929 3598 _cs = 0;
wim 37:ce348c002929 3599 _spi->write(_lcd_bus);
wim 37:ce348c002929 3600 _cs = 1;
wim 37:ce348c002929 3601 }
wim 21:9eb628d9e164 3602
wim 21:9eb628d9e164 3603 // Place the 4bit data on the databus
wim 37:ce348c002929 3604 // Used for mbed pins, I2C bus expander or SPI shiftregister
wim 37:ce348c002929 3605 void TextLCD_SPI::_setData(int value) {
wim 22:35742ec80c24 3606
wim 22:35742ec80c24 3607 // Set bit by bit to support any mapping of expander portpins to LCD pins
wim 37:ce348c002929 3608 if (value & 0x01) {
wim 38:cbe275b0b647 3609 _lcd_bus |= LCD_BUS_SPI_D4; // Set Databit
wim 26:bd897a001012 3610 }
wim 37:ce348c002929 3611 else {
wim 38:cbe275b0b647 3612 _lcd_bus &= ~LCD_BUS_SPI_D4; // Reset Databit
wim 37:ce348c002929 3613 }
wim 37:ce348c002929 3614
wim 37:ce348c002929 3615 if (value & 0x02) {
wim 38:cbe275b0b647 3616 _lcd_bus |= LCD_BUS_SPI_D5; // Set Databit
wim 26:bd897a001012 3617 }
wim 26:bd897a001012 3618 else {
wim 38:cbe275b0b647 3619 _lcd_bus &= ~LCD_BUS_SPI_D5; // Reset Databit
wim 37:ce348c002929 3620 }
wim 37:ce348c002929 3621
wim 37:ce348c002929 3622 if (value & 0x04) {
wim 38:cbe275b0b647 3623 _lcd_bus |= LCD_BUS_SPI_D6; // Set Databit
wim 26:bd897a001012 3624 }
wim 37:ce348c002929 3625 else {
wim 38:cbe275b0b647 3626 _lcd_bus &= ~LCD_BUS_SPI_D6; // Reset Databit
wim 37:ce348c002929 3627 }
wim 37:ce348c002929 3628
wim 37:ce348c002929 3629 if (value & 0x08) {
wim 38:cbe275b0b647 3630 _lcd_bus |= LCD_BUS_SPI_D7; // Set Databit
wim 26:bd897a001012 3631 }
wim 26:bd897a001012 3632 else {
wim 38:cbe275b0b647 3633 _lcd_bus &= ~LCD_BUS_SPI_D7; // Reset Databit
wim 26:bd897a001012 3634 }
wim 21:9eb628d9e164 3635
wim 37:ce348c002929 3636 // write the new data to the SPI portexpander
wim 37:ce348c002929 3637 _cs = 0;
wim 37:ce348c002929 3638 _spi->write(_lcd_bus);
wim 37:ce348c002929 3639 _cs = 1;
wim 22:35742ec80c24 3640 }
wim 21:9eb628d9e164 3641
wim 37:ce348c002929 3642 #endif /* SPI Expander SN74595 */
wim 37:ce348c002929 3643 //---------- End TextLCD_SPI ------------
wim 21:9eb628d9e164 3644
wim 21:9eb628d9e164 3645
wim 28:30fa94f7341c 3646 //--------- Start TextLCD_I2C_N ---------
wim 34:e5a0dcb43ecc 3647 #if(LCD_I2C_N == 1) /* Native I2C */
wim 28:30fa94f7341c 3648
wim 28:30fa94f7341c 3649 /** Create a TextLCD interface using a controller with native I2C interface
wim 28:30fa94f7341c 3650 *
wim 28:30fa94f7341c 3651 * @param i2c I2C Bus
wim 28:30fa94f7341c 3652 * @param deviceAddress I2C slave address (default = 0x7C)
wim 28:30fa94f7341c 3653 * @param type Sets the panel size/addressing mode (default = LCD16x2)
wim 28:30fa94f7341c 3654 * @param bl Backlight control line (optional, default = NC)
wim 28:30fa94f7341c 3655 * @param ctrl LCD controller (default = ST7032_3V3)
wim 28:30fa94f7341c 3656 */
wim 28:30fa94f7341c 3657 TextLCD_I2C_N::TextLCD_I2C_N(I2C *i2c, char deviceAddress, LCDType type, PinName bl, LCDCtrl ctrl) :
wim 28:30fa94f7341c 3658 TextLCD_Base(type, ctrl),
wim 32:59c4b8f648d4 3659
wim 33:900a94bc7585 3660 _i2c(i2c){
wim 30:033048611c01 3661
wim 28:30fa94f7341c 3662 _slaveAddress = deviceAddress & 0xFE;
wim 28:30fa94f7341c 3663
wim 28:30fa94f7341c 3664 // Setup the I2C bus
wim 29:a3663151aa65 3665 // The max bitrate for ST7032i is 400kbit, lets stick to default here
wim 29:a3663151aa65 3666 _i2c->frequency(100000);
wim 32:59c4b8f648d4 3667
wim 30:033048611c01 3668
wim 28:30fa94f7341c 3669 // The hardware Backlight pin is optional. Test and make sure whether it exists or not to prevent illegal access.
wim 28:30fa94f7341c 3670 if (bl != NC) {
wim 28:30fa94f7341c 3671 _bl = new DigitalOut(bl); //Construct new pin
wim 28:30fa94f7341c 3672 _bl->write(0); //Deactivate
wim 28:30fa94f7341c 3673 }
wim 28:30fa94f7341c 3674 else {
wim 28:30fa94f7341c 3675 // No Hardware Backlight pin
wim 28:30fa94f7341c 3676 _bl = NULL; //Construct dummy pin
wim 28:30fa94f7341c 3677 }
wim 28:30fa94f7341c 3678
wim 30:033048611c01 3679 //Sanity check
wim 30:033048611c01 3680 if (_ctrl & LCD_C_I2C) {
wim 36:9f5f86dfd44a 3681 _init(_LCD_DL_8); // Set Datalength to 8 bit for all native serial interfaces
wim 30:033048611c01 3682 }
wim 30:033048611c01 3683 else {
wim 30:033048611c01 3684 error("Error: LCD Controller type does not support native I2C interface\n\r");
wim 30:033048611c01 3685 }
wim 28:30fa94f7341c 3686 }
wim 28:30fa94f7341c 3687
wim 28:30fa94f7341c 3688 TextLCD_I2C_N::~TextLCD_I2C_N() {
wim 28:30fa94f7341c 3689 if (_bl != NULL) {delete _bl;} // BL pin
wim 28:30fa94f7341c 3690 }
wim 28:30fa94f7341c 3691
wim 28:30fa94f7341c 3692 // Not used in this mode
wim 28:30fa94f7341c 3693 void TextLCD_I2C_N::_setEnable(bool value) {
wim 28:30fa94f7341c 3694 }
wim 28:30fa94f7341c 3695
wim 28:30fa94f7341c 3696 // Set RS pin
wim 28:30fa94f7341c 3697 // Used for mbed pins, I2C bus expander or SPI shiftregister and native I2C or SPI
wim 28:30fa94f7341c 3698 void TextLCD_I2C_N::_setRS(bool value) {
wim 30:033048611c01 3699 // The controlbyte defines the meaning of the next byte. This next byte can either be data or command.
wim 30:033048611c01 3700 // Start Slaveaddress+RW b7 b6 b5 b4 b3 b2 b1 b0 b7...........b0 Stop
wim 30:033048611c01 3701 // Co RS RW 0 0 0 0 0 command or data
wim 30:033048611c01 3702 //
wim 30:033048611c01 3703 // C0=1 indicates that another controlbyte will follow after the next data or command byte
wim 30:033048611c01 3704 // RS=1 means that next byte is data, RS=0 means that next byte is command
wim 30:033048611c01 3705 // RW=0 means write to controller. RW=1 means that controller will be read from after the next command.
wim 30:033048611c01 3706 // Many native I2C controllers dont support this option and it is not used by this lib.
wim 30:033048611c01 3707 //
wim 30:033048611c01 3708
wim 28:30fa94f7341c 3709 if (value) {
wim 28:30fa94f7341c 3710 _controlbyte = 0x40; // Next byte is data, No more control bytes will follow
wim 28:30fa94f7341c 3711 }
wim 28:30fa94f7341c 3712 else {
wim 28:30fa94f7341c 3713 _controlbyte = 0x00; // Next byte is command, No more control bytes will follow
wim 28:30fa94f7341c 3714 }
wim 28:30fa94f7341c 3715 }
wim 28:30fa94f7341c 3716
wim 28:30fa94f7341c 3717 // Set BL pin
wim 28:30fa94f7341c 3718 void TextLCD_I2C_N::_setBL(bool value) {
wim 28:30fa94f7341c 3719 if (_bl) {
wim 28:30fa94f7341c 3720 _bl->write(value);
wim 28:30fa94f7341c 3721 }
wim 28:30fa94f7341c 3722 }
wim 29:a3663151aa65 3723
wim 29:a3663151aa65 3724 // Not used in this mode
wim 29:a3663151aa65 3725 void TextLCD_I2C_N::_setData(int value) {
wim 29:a3663151aa65 3726 }
wim 29:a3663151aa65 3727
wim 28:30fa94f7341c 3728 // Write a byte using I2C
wim 28:30fa94f7341c 3729 void TextLCD_I2C_N::_writeByte(int value) {
wim 30:033048611c01 3730 // The controlbyte defines the meaning of the next byte. This next byte can either be data or command.
wim 30:033048611c01 3731 // Start Slaveaddress+RW b7 b6 b5 b4 b3 b2 b1 b0 b7...........b0 Stop
wim 30:033048611c01 3732 // Co RS RW 0 0 0 0 0 command or data
wim 30:033048611c01 3733 //
wim 30:033048611c01 3734 // C0=1 indicates that another controlbyte will follow after the next data or command byte
wim 30:033048611c01 3735 // RS=1 means that next byte is data, RS=0 means that next byte is command
wim 30:033048611c01 3736 // RW=0 means write to controller. RW=1 means that controller will be read from after the next command.
wim 30:033048611c01 3737 // Many native I2C controllers dont support this option and it is not used by this lib.
wim 30:033048611c01 3738 //
reedas 42:1962dc501f94 3739 char data[] = {(char)_controlbyte, (char)value};
wim 28:30fa94f7341c 3740
wim 32:59c4b8f648d4 3741 #if(LCD_I2C_ACK==1)
wim 32:59c4b8f648d4 3742 //Controllers that support ACK
wim 30:033048611c01 3743 _i2c->write(_slaveAddress, data, 2);
wim 32:59c4b8f648d4 3744 #else
wim 32:59c4b8f648d4 3745 //Controllers that dont support ACK
wim 37:ce348c002929 3746 //Note: This may be issue with some mbed platforms that dont fully/correctly support I2C byte operations.
wim 32:59c4b8f648d4 3747 _i2c->start();
wim 32:59c4b8f648d4 3748 _i2c->write(_slaveAddress);
wim 32:59c4b8f648d4 3749 _i2c->write(data[0]);
wim 32:59c4b8f648d4 3750 _i2c->write(data[1]);
wim 32:59c4b8f648d4 3751 _i2c->stop();
wim 32:59c4b8f648d4 3752 #endif
wim 28:30fa94f7341c 3753 }
wim 34:e5a0dcb43ecc 3754 #endif /* Native I2C */
wim 28:30fa94f7341c 3755 //-------- End TextLCD_I2C_N ------------
wim 28:30fa94f7341c 3756
wim 28:30fa94f7341c 3757
wim 25:6162b31128c9 3758 //--------- Start TextLCD_SPI_N ---------
wim 34:e5a0dcb43ecc 3759 #if(LCD_SPI_N == 1) /* Native SPI bus */
wim 30:033048611c01 3760 /** Create a TextLCD interface using a controller with a native SPI4 interface
Sissors 24:fb3399713710 3761 *
Sissors 24:fb3399713710 3762 * @param spi SPI Bus
Sissors 24:fb3399713710 3763 * @param cs chip select pin (active low)
wim 25:6162b31128c9 3764 * @param rs Instruction/data control line
Sissors 24:fb3399713710 3765 * @param type Sets the panel size/addressing mode (default = LCD16x2)
wim 25:6162b31128c9 3766 * @param bl Backlight control line (optional, default = NC)
wim 26:bd897a001012 3767 * @param ctrl LCD controller (default = ST7032_3V3)
wim 25:6162b31128c9 3768 */
wim 25:6162b31128c9 3769 TextLCD_SPI_N::TextLCD_SPI_N(SPI *spi, PinName cs, PinName rs, LCDType type, PinName bl, LCDCtrl ctrl) :
wim 25:6162b31128c9 3770 TextLCD_Base(type, ctrl),
wim 25:6162b31128c9 3771 _spi(spi),
wim 25:6162b31128c9 3772 _cs(cs),
wim 25:6162b31128c9 3773 _rs(rs) {
Sissors 24:fb3399713710 3774
wim 32:59c4b8f648d4 3775 // Init CS
wim 32:59c4b8f648d4 3776 _cs = 1;
wim 32:59c4b8f648d4 3777
wim 36:9f5f86dfd44a 3778 // Setup the spi for 8 bit data, high steady state clock,
wim 36:9f5f86dfd44a 3779 // rising edge capture, with a 500KHz or 1MHz clock rate
wim 36:9f5f86dfd44a 3780 // _spi->format(8,3);
wim 37:ce348c002929 3781 // _spi->frequency(500000);
wim 36:9f5f86dfd44a 3782 // _spi->frequency(1000000);
wim 36:9f5f86dfd44a 3783
Sissors 24:fb3399713710 3784 // Setup the spi for 8 bit data, low steady state clock,
Sissors 24:fb3399713710 3785 // rising edge capture, with a 500KHz or 1MHz clock rate
Sissors 24:fb3399713710 3786 _spi->format(8,0);
wim 36:9f5f86dfd44a 3787 // _spi->frequency(500000);
Sissors 24:fb3399713710 3788 _spi->frequency(1000000);
wim 36:9f5f86dfd44a 3789
Sissors 24:fb3399713710 3790 // The hardware Backlight pin is optional. Test and make sure whether it exists or not to prevent illegal access.
Sissors 24:fb3399713710 3791 if (bl != NC) {
Sissors 24:fb3399713710 3792 _bl = new DigitalOut(bl); //Construct new pin
Sissors 24:fb3399713710 3793 _bl->write(0); //Deactivate
Sissors 24:fb3399713710 3794 }
Sissors 24:fb3399713710 3795 else {
Sissors 24:fb3399713710 3796 // No Hardware Backlight pin
Sissors 24:fb3399713710 3797 _bl = NULL; //Construct dummy pin
Sissors 24:fb3399713710 3798 }
wim 30:033048611c01 3799
wim 30:033048611c01 3800 //Sanity check
wim 30:033048611c01 3801 if (_ctrl & LCD_C_SPI4) {
wim 36:9f5f86dfd44a 3802 _init(_LCD_DL_8); // Set Datalength to 8 bit for all native serial interfaces
wim 36:9f5f86dfd44a 3803 // ST7070 must set datalength to 8 bits!
wim 30:033048611c01 3804 }
wim 30:033048611c01 3805 else {
wim 30:033048611c01 3806 error("Error: LCD Controller type does not support native SPI4 interface\n\r");
wim 30:033048611c01 3807 }
Sissors 24:fb3399713710 3808 }
Sissors 24:fb3399713710 3809
wim 25:6162b31128c9 3810 TextLCD_SPI_N::~TextLCD_SPI_N() {
Sissors 24:fb3399713710 3811 if (_bl != NULL) {delete _bl;} // BL pin
Sissors 24:fb3399713710 3812 }
Sissors 24:fb3399713710 3813
Sissors 24:fb3399713710 3814 // Not used in this mode
wim 25:6162b31128c9 3815 void TextLCD_SPI_N::_setEnable(bool value) {
Sissors 24:fb3399713710 3816 }
Sissors 24:fb3399713710 3817
Sissors 24:fb3399713710 3818 // Set RS pin
wim 36:9f5f86dfd44a 3819 // Used for mbed pins, I2C bus expander or SPI shiftregister, SPI_N
wim 25:6162b31128c9 3820 void TextLCD_SPI_N::_setRS(bool value) {
Sissors 24:fb3399713710 3821 _rs = value;
Sissors 24:fb3399713710 3822 }
Sissors 24:fb3399713710 3823
Sissors 24:fb3399713710 3824 // Set BL pin
wim 25:6162b31128c9 3825 void TextLCD_SPI_N::_setBL(bool value) {
wim 26:bd897a001012 3826 if (_bl) {
Sissors 24:fb3399713710 3827 _bl->write(value);
wim 26:bd897a001012 3828 }
Sissors 24:fb3399713710 3829 }
Sissors 24:fb3399713710 3830
wim 29:a3663151aa65 3831 // Not used in this mode
wim 29:a3663151aa65 3832 void TextLCD_SPI_N::_setData(int value) {
wim 29:a3663151aa65 3833 }
wim 29:a3663151aa65 3834
Sissors 24:fb3399713710 3835 // Write a byte using SPI
wim 25:6162b31128c9 3836 void TextLCD_SPI_N::_writeByte(int value) {
Sissors 24:fb3399713710 3837 _cs = 0;
Sissors 24:fb3399713710 3838 wait_us(1);
Sissors 24:fb3399713710 3839 _spi->write(value);
Sissors 24:fb3399713710 3840 wait_us(1);
Sissors 24:fb3399713710 3841 _cs = 1;
Sissors 24:fb3399713710 3842 }
wim 34:e5a0dcb43ecc 3843 #endif /* Native SPI bus */
wim 25:6162b31128c9 3844 //-------- End TextLCD_SPI_N ------------
wim 21:9eb628d9e164 3845
wim 21:9eb628d9e164 3846
wim 36:9f5f86dfd44a 3847 //-------- Start TextLCD_SPI_N_3_8 --------
wim 36:9f5f86dfd44a 3848 #if(LCD_SPI_N_3_8 == 1) /* Native SPI bus */
wim 36:9f5f86dfd44a 3849
wim 36:9f5f86dfd44a 3850 /** Create a TextLCD interface using a controller with a native SPI3 8 bits interface
wim 36:9f5f86dfd44a 3851 * This mode is supported by ST7070. Note that implementation in TexTLCD is not very efficient due to
wim 36:9f5f86dfd44a 3852 * structure of the TextLCD library: each databyte is written separately and requires a separate 'count command' set to 1 byte.
wim 36:9f5f86dfd44a 3853 *
wim 36:9f5f86dfd44a 3854 * @param spi SPI Bus
wim 36:9f5f86dfd44a 3855 * @param cs chip select pin (active low)
wim 36:9f5f86dfd44a 3856 * @param type Sets the panel size/addressing mode (default = LCD16x2)
wim 36:9f5f86dfd44a 3857 * @param bl Backlight control line (optional, default = NC)
wim 36:9f5f86dfd44a 3858 * @param ctrl LCD controller (default = ST7070)
wim 36:9f5f86dfd44a 3859 */
wim 36:9f5f86dfd44a 3860 TextLCD_SPI_N_3_8::TextLCD_SPI_N_3_8(SPI *spi, PinName cs, LCDType type, PinName bl, LCDCtrl ctrl) :
wim 36:9f5f86dfd44a 3861 TextLCD_Base(type, ctrl),
wim 36:9f5f86dfd44a 3862 _spi(spi),
wim 36:9f5f86dfd44a 3863 _cs(cs) {
wim 36:9f5f86dfd44a 3864
wim 36:9f5f86dfd44a 3865 // Init CS
wim 36:9f5f86dfd44a 3866 _cs = 1;
wim 36:9f5f86dfd44a 3867
wim 36:9f5f86dfd44a 3868 // Setup the spi for 8 bit data, high steady state clock,
wim 36:9f5f86dfd44a 3869 // rising edge capture, with a 500KHz or 1MHz clock rate
wim 36:9f5f86dfd44a 3870 // _spi->format(8,3);
wim 37:ce348c002929 3871 // _spi->frequency(500000);
wim 36:9f5f86dfd44a 3872 // _spi->frequency(1000000);
wim 36:9f5f86dfd44a 3873
wim 36:9f5f86dfd44a 3874 // Setup the spi for 8 bit data, low steady state clock,
wim 36:9f5f86dfd44a 3875 // rising edge capture, with a 500KHz or 1MHz clock rate
wim 36:9f5f86dfd44a 3876 _spi->format(8,0);
wim 36:9f5f86dfd44a 3877 // _spi->frequency(500000);
wim 36:9f5f86dfd44a 3878 _spi->frequency(1000000);
wim 36:9f5f86dfd44a 3879
wim 36:9f5f86dfd44a 3880
wim 36:9f5f86dfd44a 3881 // The hardware Backlight pin is optional. Test and make sure whether it exists or not to prevent illegal access.
wim 36:9f5f86dfd44a 3882 if (bl != NC) {
wim 36:9f5f86dfd44a 3883 _bl = new DigitalOut(bl); //Construct new pin
wim 36:9f5f86dfd44a 3884 _bl->write(0); //Deactivate
wim 36:9f5f86dfd44a 3885 }
wim 36:9f5f86dfd44a 3886 else {
wim 36:9f5f86dfd44a 3887 // No Hardware Backlight pin
wim 36:9f5f86dfd44a 3888 _bl = NULL; //Construct dummy pin
wim 36:9f5f86dfd44a 3889 }
wim 36:9f5f86dfd44a 3890
wim 36:9f5f86dfd44a 3891 //Sanity check
wim 36:9f5f86dfd44a 3892 if (_ctrl & LCD_C_SPI3_8) {
wim 36:9f5f86dfd44a 3893 _init(_LCD_DL_8); // Set Datalength to 8 bit for all native serial interfaces
wim 36:9f5f86dfd44a 3894 }
wim 36:9f5f86dfd44a 3895 else {
wim 36:9f5f86dfd44a 3896 error("Error: LCD Controller type does not support native SPI3 8 bits interface\n\r");
wim 36:9f5f86dfd44a 3897 }
wim 36:9f5f86dfd44a 3898 }
wim 36:9f5f86dfd44a 3899
wim 36:9f5f86dfd44a 3900 TextLCD_SPI_N_3_8::~TextLCD_SPI_N_3_8() {
wim 36:9f5f86dfd44a 3901 if (_bl != NULL) {delete _bl;} // BL pin
wim 36:9f5f86dfd44a 3902 }
wim 36:9f5f86dfd44a 3903
wim 36:9f5f86dfd44a 3904 // Not used in this mode
wim 36:9f5f86dfd44a 3905 void TextLCD_SPI_N_3_8::_setEnable(bool value) {
wim 36:9f5f86dfd44a 3906 }
wim 36:9f5f86dfd44a 3907
wim 36:9f5f86dfd44a 3908 // Used for mbed pins, I2C bus expander or SPI shiftregister, SPI_N
wim 36:9f5f86dfd44a 3909 // RS=1 means that next byte is data, RS=0 means that next byte is command
wim 36:9f5f86dfd44a 3910 void TextLCD_SPI_N_3_8::_setRS(bool value) {
wim 36:9f5f86dfd44a 3911
wim 36:9f5f86dfd44a 3912 if (value) {
wim 36:9f5f86dfd44a 3913 _controlbyte = 0x01; // Next byte is data, No more control bytes will follow
wim 36:9f5f86dfd44a 3914 }
wim 36:9f5f86dfd44a 3915 else {
wim 36:9f5f86dfd44a 3916 _controlbyte = 0x00; // Next byte is command, No more control bytes will follow
wim 36:9f5f86dfd44a 3917 }
wim 36:9f5f86dfd44a 3918 }
wim 36:9f5f86dfd44a 3919
wim 36:9f5f86dfd44a 3920 // Set BL pin
wim 36:9f5f86dfd44a 3921 void TextLCD_SPI_N_3_8::_setBL(bool value) {
wim 36:9f5f86dfd44a 3922 if (_bl) {
wim 36:9f5f86dfd44a 3923 _bl->write(value);
wim 36:9f5f86dfd44a 3924 }
wim 36:9f5f86dfd44a 3925 }
wim 36:9f5f86dfd44a 3926
wim 36:9f5f86dfd44a 3927 // Not used in this mode
wim 36:9f5f86dfd44a 3928 void TextLCD_SPI_N_3_8::_setData(int value) {
wim 36:9f5f86dfd44a 3929 }
wim 36:9f5f86dfd44a 3930
wim 36:9f5f86dfd44a 3931 // Write a byte using SPI3 8 bits mode (ST7070)
wim 36:9f5f86dfd44a 3932 void TextLCD_SPI_N_3_8::_writeByte(int value) {
wim 36:9f5f86dfd44a 3933
wim 36:9f5f86dfd44a 3934 if (_controlbyte == 0x00) { // Byte is command
wim 36:9f5f86dfd44a 3935 _cs = 0;
wim 36:9f5f86dfd44a 3936 wait_us(1);
wim 36:9f5f86dfd44a 3937 _spi->write(value);
wim 36:9f5f86dfd44a 3938 wait_us(1);
wim 36:9f5f86dfd44a 3939 _cs = 1;
wim 36:9f5f86dfd44a 3940 }
wim 36:9f5f86dfd44a 3941 else { // Byte is data
wim 36:9f5f86dfd44a 3942 // Select Extended Instr Set
wim 36:9f5f86dfd44a 3943 _cs = 0;
wim 36:9f5f86dfd44a 3944 wait_us(1);
wim 36:9f5f86dfd44a 3945 _spi->write(0x20 | _function | 0x04); // Set function, 0 0 1 DL N EXT=1 x x (Select Instr Set = 1));
wim 36:9f5f86dfd44a 3946 wait_us(1);
wim 36:9f5f86dfd44a 3947 _cs = 1;
wim 36:9f5f86dfd44a 3948
wim 36:9f5f86dfd44a 3949 wait_us(40); // Wait until command has finished...
wim 36:9f5f86dfd44a 3950
wim 36:9f5f86dfd44a 3951 // Set Count to 1 databyte
wim 36:9f5f86dfd44a 3952 _cs = 0;
wim 36:9f5f86dfd44a 3953 wait_us(1);
wim 36:9f5f86dfd44a 3954 _spi->write(0x80); // Set display data length, 1 L6 L5 L4 L3 L2 L1 L0 (Instr Set = 1)
wim 36:9f5f86dfd44a 3955 wait_us(1);
wim 36:9f5f86dfd44a 3956 _cs = 1;
wim 36:9f5f86dfd44a 3957
wim 36:9f5f86dfd44a 3958 wait_us(40);
wim 36:9f5f86dfd44a 3959
wim 36:9f5f86dfd44a 3960 // Write 1 databyte
wim 36:9f5f86dfd44a 3961 _cs = 0;
wim 36:9f5f86dfd44a 3962 wait_us(1);
wim 36:9f5f86dfd44a 3963 _spi->write(value); // Write data (Instr Set = 1)
wim 36:9f5f86dfd44a 3964 wait_us(1);
wim 36:9f5f86dfd44a 3965 _cs = 1;
wim 36:9f5f86dfd44a 3966
wim 36:9f5f86dfd44a 3967 wait_us(40);
wim 36:9f5f86dfd44a 3968
wim 36:9f5f86dfd44a 3969 // Select Standard Instr Set
wim 36:9f5f86dfd44a 3970 _cs = 0;
wim 36:9f5f86dfd44a 3971 wait_us(1);
wim 36:9f5f86dfd44a 3972 _spi->write(0x20 | _function); // Set function, 0 0 1 DL N EXT=0 x x (Select Instr Set = 0));
wim 36:9f5f86dfd44a 3973 wait_us(1);
wim 36:9f5f86dfd44a 3974 _cs = 1;
wim 36:9f5f86dfd44a 3975 }
wim 36:9f5f86dfd44a 3976 }
wim 36:9f5f86dfd44a 3977 #endif /* Native SPI bus */
wim 36:9f5f86dfd44a 3978 //------- End TextLCD_SPI_N_3_8 -----------
wim 36:9f5f86dfd44a 3979
wim 36:9f5f86dfd44a 3980
wim 30:033048611c01 3981 //-------- Start TextLCD_SPI_N_3_9 --------
wim 34:e5a0dcb43ecc 3982 #if(LCD_SPI_N_3_9 == 1) /* Native SPI bus */
wim 34:e5a0dcb43ecc 3983 //Code checked out on logic analyser. Not yet tested on hardware..
wim 30:033048611c01 3984
wim 30:033048611c01 3985 /** Create a TextLCD interface using a controller with a native SPI3 9 bits interface
wim 30:033048611c01 3986 *
wim 30:033048611c01 3987 * @param spi SPI Bus
wim 30:033048611c01 3988 * @param cs chip select pin (active low)
wim 30:033048611c01 3989 * @param type Sets the panel size/addressing mode (default = LCD16x2)
wim 30:033048611c01 3990 * @param bl Backlight control line (optional, default = NC)
wim 30:033048611c01 3991 * @param ctrl LCD controller (default = AIP31068)
wim 30:033048611c01 3992 */
wim 30:033048611c01 3993 TextLCD_SPI_N_3_9::TextLCD_SPI_N_3_9(SPI *spi, PinName cs, LCDType type, PinName bl, LCDCtrl ctrl) :
wim 30:033048611c01 3994 TextLCD_Base(type, ctrl),
wim 30:033048611c01 3995 _spi(spi),
wim 33:900a94bc7585 3996 _cs(cs) {
wim 32:59c4b8f648d4 3997
wim 32:59c4b8f648d4 3998 // Init CS
wim 32:59c4b8f648d4 3999 _cs = 1;
wim 32:59c4b8f648d4 4000
wim 34:e5a0dcb43ecc 4001 // Setup the spi for 9 bit data, high steady state clock,
wim 30:033048611c01 4002 // rising edge capture, with a 500KHz or 1MHz clock rate
wim 32:59c4b8f648d4 4003 _spi->format(9,3);
wim 30:033048611c01 4004 _spi->frequency(1000000);
wim 30:033048611c01 4005
wim 30:033048611c01 4006 // The hardware Backlight pin is optional. Test and make sure whether it exists or not to prevent illegal access.
wim 30:033048611c01 4007 if (bl != NC) {
wim 30:033048611c01 4008 _bl = new DigitalOut(bl); //Construct new pin
wim 30:033048611c01 4009 _bl->write(0); //Deactivate
wim 30:033048611c01 4010 }
wim 30:033048611c01 4011 else {
wim 30:033048611c01 4012 // No Hardware Backlight pin
wim 30:033048611c01 4013 _bl = NULL; //Construct dummy pin
wim 30:033048611c01 4014 }
wim 30:033048611c01 4015
wim 30:033048611c01 4016 //Sanity check
wim 36:9f5f86dfd44a 4017 if (_ctrl & LCD_C_SPI3_9) {
wim 36:9f5f86dfd44a 4018 _init(_LCD_DL_8); // Set Datalength to 8 bit for all native serial interfaces
wim 30:033048611c01 4019 }
wim 30:033048611c01 4020 else {
wim 30:033048611c01 4021 error("Error: LCD Controller type does not support native SPI3 9 bits interface\n\r");
wim 30:033048611c01 4022 }
wim 30:033048611c01 4023 }
wim 30:033048611c01 4024
wim 30:033048611c01 4025 TextLCD_SPI_N_3_9::~TextLCD_SPI_N_3_9() {
wim 30:033048611c01 4026 if (_bl != NULL) {delete _bl;} // BL pin
wim 30:033048611c01 4027 }
wim 30:033048611c01 4028
wim 30:033048611c01 4029 // Not used in this mode
wim 30:033048611c01 4030 void TextLCD_SPI_N_3_9::_setEnable(bool value) {
wim 30:033048611c01 4031 }
wim 30:033048611c01 4032
wim 30:033048611c01 4033 // Set RS pin
wim 30:033048611c01 4034 // Used for mbed pins, I2C bus expander or SPI shiftregister
wim 30:033048611c01 4035 void TextLCD_SPI_N_3_9::_setRS(bool value) {
wim 30:033048611c01 4036 // The controlbits define the meaning of the next byte. This next byte can either be data or command.
wim 30:033048611c01 4037 // b8 b7...........b0
wim 30:033048611c01 4038 // RS command or data
wim 30:033048611c01 4039 //
wim 30:033048611c01 4040 // RS=1 means that next byte is data, RS=0 means that next byte is command
wim 30:033048611c01 4041 //
wim 30:033048611c01 4042
wim 30:033048611c01 4043 if (value) {
wim 30:033048611c01 4044 _controlbyte = 0x01; // Next byte is data
wim 30:033048611c01 4045 }
wim 30:033048611c01 4046 else {
wim 30:033048611c01 4047 _controlbyte = 0x00; // Next byte is command
wim 34:e5a0dcb43ecc 4048 }
wim 30:033048611c01 4049 }
wim 30:033048611c01 4050
wim 30:033048611c01 4051 // Set BL pin
wim 30:033048611c01 4052 void TextLCD_SPI_N_3_9::_setBL(bool value) {
wim 30:033048611c01 4053 if (_bl) {
wim 30:033048611c01 4054 _bl->write(value);
wim 30:033048611c01 4055 }
wim 30:033048611c01 4056 }
wim 30:033048611c01 4057
wim 30:033048611c01 4058 // Not used in this mode
wim 30:033048611c01 4059 void TextLCD_SPI_N_3_9::_setData(int value) {
wim 30:033048611c01 4060 }
wim 30:033048611c01 4061
wim 30:033048611c01 4062 // Write a byte using SPI3 9 bits mode
wim 30:033048611c01 4063 void TextLCD_SPI_N_3_9::_writeByte(int value) {
wim 30:033048611c01 4064 _cs = 0;
wim 30:033048611c01 4065 wait_us(1);
wim 30:033048611c01 4066 _spi->write( (_controlbyte << 8) | (value & 0xFF));
wim 30:033048611c01 4067 wait_us(1);
wim 30:033048611c01 4068 _cs = 1;
wim 30:033048611c01 4069 }
wim 34:e5a0dcb43ecc 4070 #endif /* Native SPI bus */
wim 30:033048611c01 4071 //------- End TextLCD_SPI_N_3_9 -----------
wim 34:e5a0dcb43ecc 4072
wim 34:e5a0dcb43ecc 4073
wim 30:033048611c01 4074 //------- Start TextLCD_SPI_N_3_10 --------
wim 34:e5a0dcb43ecc 4075 #if(LCD_SPI_N_3_10 == 1) /* Native SPI bus */
wim 30:033048611c01 4076
wim 30:033048611c01 4077 /** Create a TextLCD interface using a controller with a native SPI3 10 bits interface
wim 30:033048611c01 4078 *
wim 30:033048611c01 4079 * @param spi SPI Bus
wim 30:033048611c01 4080 * @param cs chip select pin (active low)
wim 30:033048611c01 4081 * @param type Sets the panel size/addressing mode (default = LCD16x2)
wim 30:033048611c01 4082 * @param bl Backlight control line (optional, default = NC)
wim 30:033048611c01 4083 * @param ctrl LCD controller (default = AIP31068)
wim 30:033048611c01 4084 */
wim 30:033048611c01 4085 TextLCD_SPI_N_3_10::TextLCD_SPI_N_3_10(SPI *spi, PinName cs, LCDType type, PinName bl, LCDCtrl ctrl) :
wim 30:033048611c01 4086 TextLCD_Base(type, ctrl),
wim 30:033048611c01 4087 _spi(spi),
wim 30:033048611c01 4088 _cs(cs) {
wim 30:033048611c01 4089
wim 32:59c4b8f648d4 4090 // Init CS
wim 32:59c4b8f648d4 4091 _cs = 1;
wim 32:59c4b8f648d4 4092
wim 30:033048611c01 4093 // Setup the spi for 10 bit data, low steady state clock,
wim 30:033048611c01 4094 // rising edge capture, with a 500KHz or 1MHz clock rate
wim 30:033048611c01 4095 _spi->format(10,0);
wim 30:033048611c01 4096 _spi->frequency(1000000);
wim 30:033048611c01 4097
wim 30:033048611c01 4098 // The hardware Backlight pin is optional. Test and make sure whether it exists or not to prevent illegal access.
wim 30:033048611c01 4099 if (bl != NC) {
wim 30:033048611c01 4100 _bl = new DigitalOut(bl); //Construct new pin
wim 30:033048611c01 4101 _bl->write(0); //Deactivate
wim 30:033048611c01 4102 }
wim 30:033048611c01 4103 else {
wim 30:033048611c01 4104 // No Hardware Backlight pin
wim 30:033048611c01 4105 _bl = NULL; //Construct dummy pin
wim 30:033048611c01 4106 }
wim 30:033048611c01 4107
wim 30:033048611c01 4108 //Sanity check
wim 30:033048611c01 4109 if (_ctrl & LCD_C_SPI3_10) {
wim 36:9f5f86dfd44a 4110 _init(_LCD_DL_8); // Set Datalength to 8 bit for all native serial interfaces
wim 30:033048611c01 4111 }
wim 30:033048611c01 4112 else {
wim 30:033048611c01 4113 error("Error: LCD Controller type does not support native SPI3 10 bits interface\n\r");
wim 30:033048611c01 4114 }
wim 30:033048611c01 4115 }
wim 30:033048611c01 4116
wim 30:033048611c01 4117 TextLCD_SPI_N_3_10::~TextLCD_SPI_N_3_10() {
wim 30:033048611c01 4118 if (_bl != NULL) {delete _bl;} // BL pin
wim 30:033048611c01 4119 }
wim 30:033048611c01 4120
wim 30:033048611c01 4121 // Not used in this mode
wim 30:033048611c01 4122 void TextLCD_SPI_N_3_10::_setEnable(bool value) {
wim 30:033048611c01 4123 }
wim 30:033048611c01 4124
wim 30:033048611c01 4125 // Set RS pin
wim 30:033048611c01 4126 // Used for mbed pins, I2C bus expander or SPI shiftregister
wim 30:033048611c01 4127 void TextLCD_SPI_N_3_10::_setRS(bool value) {
wim 30:033048611c01 4128 // The controlbits define the meaning of the next byte. This next byte can either be data or command.
wim 30:033048611c01 4129 // b9 b8 b7...........b0
wim 30:033048611c01 4130 // RS RW command or data
wim 30:033048611c01 4131 //
wim 30:033048611c01 4132 // RS=1 means that next byte is data, RS=0 means that next byte is command
wim 30:033048611c01 4133 // RW=0 means that next byte is writen, RW=1 means that next byte is read (not used in this lib)
wim 30:033048611c01 4134 //
wim 30:033048611c01 4135
wim 30:033048611c01 4136 if (value) {
wim 30:033048611c01 4137 _controlbyte = 0x02; // Next byte is data
wim 30:033048611c01 4138 }
wim 30:033048611c01 4139 else {
wim 30:033048611c01 4140 _controlbyte = 0x00; // Next byte is command
wim 34:e5a0dcb43ecc 4141 }
wim 30:033048611c01 4142 }
wim 30:033048611c01 4143
wim 30:033048611c01 4144 // Set BL pin
wim 30:033048611c01 4145 void TextLCD_SPI_N_3_10::_setBL(bool value) {
wim 30:033048611c01 4146 if (_bl) {
wim 30:033048611c01 4147 _bl->write(value);
wim 30:033048611c01 4148 }
wim 30:033048611c01 4149 }
wim 30:033048611c01 4150
wim 30:033048611c01 4151 // Not used in this mode
wim 30:033048611c01 4152 void TextLCD_SPI_N_3_10::_setData(int value) {
wim 30:033048611c01 4153 }
wim 30:033048611c01 4154
wim 30:033048611c01 4155 // Write a byte using SPI3 10 bits mode
wim 30:033048611c01 4156 void TextLCD_SPI_N_3_10::_writeByte(int value) {
wim 30:033048611c01 4157 _cs = 0;
wim 30:033048611c01 4158 wait_us(1);
wim 30:033048611c01 4159 _spi->write( (_controlbyte << 8) | (value & 0xFF));
wim 30:033048611c01 4160 wait_us(1);
wim 30:033048611c01 4161 _cs = 1;
wim 30:033048611c01 4162 }
wim 34:e5a0dcb43ecc 4163 #endif /* Native SPI bus */
wim 30:033048611c01 4164 //------- End TextLCD_SPI_N_3_10 ----------
wim 34:e5a0dcb43ecc 4165
wim 32:59c4b8f648d4 4166
wim 32:59c4b8f648d4 4167 //------- Start TextLCD_SPI_N_3_16 --------
wim 34:e5a0dcb43ecc 4168 #if(LCD_SPI_N_3_16 == 1) /* Native SPI bus */
wim 32:59c4b8f648d4 4169
wim 32:59c4b8f648d4 4170 /** Create a TextLCD interface using a controller with a native SPI3 16 bits interface
wim 32:59c4b8f648d4 4171 *
wim 32:59c4b8f648d4 4172 * @param spi SPI Bus
wim 32:59c4b8f648d4 4173 * @param cs chip select pin (active low)
wim 32:59c4b8f648d4 4174 * @param type Sets the panel size/addressing mode (default = LCD16x2)
wim 32:59c4b8f648d4 4175 * @param bl Backlight control line (optional, default = NC)
wim 32:59c4b8f648d4 4176 * @param ctrl LCD controller (default = PT6314)
wim 32:59c4b8f648d4 4177 */
wim 32:59c4b8f648d4 4178 TextLCD_SPI_N_3_16::TextLCD_SPI_N_3_16(SPI *spi, PinName cs, LCDType type, PinName bl, LCDCtrl ctrl) :
wim 32:59c4b8f648d4 4179 TextLCD_Base(type, ctrl),
wim 32:59c4b8f648d4 4180 _spi(spi),
wim 32:59c4b8f648d4 4181 _cs(cs) {
wim 32:59c4b8f648d4 4182
wim 32:59c4b8f648d4 4183 // Init CS
wim 32:59c4b8f648d4 4184 _cs = 1;
wim 32:59c4b8f648d4 4185
wim 32:59c4b8f648d4 4186 // Setup the spi for 8 bit data, low steady state clock,
wim 32:59c4b8f648d4 4187 // rising edge capture, with a 500KHz or 1MHz clock rate
wim 32:59c4b8f648d4 4188 _spi->format(8,0);
wim 32:59c4b8f648d4 4189 _spi->frequency(1000000);
wim 32:59c4b8f648d4 4190
wim 32:59c4b8f648d4 4191 // The hardware Backlight pin is optional. Test and make sure whether it exists or not to prevent illegal access.
wim 32:59c4b8f648d4 4192 if (bl != NC) {
wim 32:59c4b8f648d4 4193 _bl = new DigitalOut(bl); //Construct new pin
wim 32:59c4b8f648d4 4194 _bl->write(0); //Deactivate
wim 32:59c4b8f648d4 4195 }
wim 32:59c4b8f648d4 4196 else {
wim 32:59c4b8f648d4 4197 // No Hardware Backlight pin
wim 32:59c4b8f648d4 4198 _bl = NULL; //Construct dummy pin
wim 32:59c4b8f648d4 4199 }
wim 32:59c4b8f648d4 4200
wim 32:59c4b8f648d4 4201 //Sanity check
wim 32:59c4b8f648d4 4202 if (_ctrl & LCD_C_SPI3_16) {
wim 36:9f5f86dfd44a 4203 _init(_LCD_DL_8); // Set Datalength to 8 bit for all native serial interfaces
wim 32:59c4b8f648d4 4204 }
wim 32:59c4b8f648d4 4205 else {
wim 32:59c4b8f648d4 4206 error("Error: LCD Controller type does not support native SPI3 16 bits interface\n\r");
wim 32:59c4b8f648d4 4207 }
wim 32:59c4b8f648d4 4208 }
wim 32:59c4b8f648d4 4209
wim 32:59c4b8f648d4 4210 TextLCD_SPI_N_3_16::~TextLCD_SPI_N_3_16() {
wim 32:59c4b8f648d4 4211 if (_bl != NULL) {delete _bl;} // BL pin
wim 32:59c4b8f648d4 4212 }
wim 32:59c4b8f648d4 4213
wim 32:59c4b8f648d4 4214 // Not used in this mode
wim 32:59c4b8f648d4 4215 void TextLCD_SPI_N_3_16::_setEnable(bool value) {
wim 32:59c4b8f648d4 4216 }
wim 32:59c4b8f648d4 4217
wim 32:59c4b8f648d4 4218 // Set RS pin
wim 32:59c4b8f648d4 4219 // Used for mbed pins, I2C bus expander or SPI shiftregister
wim 32:59c4b8f648d4 4220 void TextLCD_SPI_N_3_16::_setRS(bool value) {
wim 32:59c4b8f648d4 4221 // The 16bit mode is split in 2 bytes. The first byte is for synchronisation and controlbits. The controlbits define the meaning of the next byte.
wim 32:59c4b8f648d4 4222 // The 8 actual bits represent either a data or a command byte.
wim 32:59c4b8f648d4 4223 // b15 b14 b13 b12 b11 b10 b9 b8 - b7 b6 b5 b4 b3 b2 b1 b0
wim 32:59c4b8f648d4 4224 // 1 1 1 1 1 RW RS 0 d7 d6 d5 d4 d3 d2 d1 d0
wim 32:59c4b8f648d4 4225 //
wim 32:59c4b8f648d4 4226 // RS=1 means that next byte is data, RS=0 means that next byte is command
wim 32:59c4b8f648d4 4227 // RW=0 means that next byte is writen, RW=1 means that next byte is read (not used in this lib)
wim 32:59c4b8f648d4 4228 //
wim 32:59c4b8f648d4 4229
wim 32:59c4b8f648d4 4230 if (value) {
wim 32:59c4b8f648d4 4231 _controlbyte = 0xFA; // Next byte is data
wim 32:59c4b8f648d4 4232 }
wim 32:59c4b8f648d4 4233 else {
wim 32:59c4b8f648d4 4234 _controlbyte = 0xF8; // Next byte is command
wim 32:59c4b8f648d4 4235 }
wim 32:59c4b8f648d4 4236 }
wim 32:59c4b8f648d4 4237
wim 32:59c4b8f648d4 4238 // Set BL pin
wim 32:59c4b8f648d4 4239 void TextLCD_SPI_N_3_16::_setBL(bool value) {
wim 32:59c4b8f648d4 4240 if (_bl) {
wim 32:59c4b8f648d4 4241 _bl->write(value);
wim 32:59c4b8f648d4 4242 }
wim 32:59c4b8f648d4 4243 }
wim 32:59c4b8f648d4 4244
wim 32:59c4b8f648d4 4245 // Not used in this mode
wim 32:59c4b8f648d4 4246 void TextLCD_SPI_N_3_16::_setData(int value) {
wim 32:59c4b8f648d4 4247 }
wim 34:e5a0dcb43ecc 4248
wim 32:59c4b8f648d4 4249 // Write a byte using SPI3 16 bits mode
wim 32:59c4b8f648d4 4250 void TextLCD_SPI_N_3_16::_writeByte(int value) {
wim 32:59c4b8f648d4 4251 _cs = 0;
wim 32:59c4b8f648d4 4252 wait_us(1);
wim 32:59c4b8f648d4 4253
wim 32:59c4b8f648d4 4254 _spi->write(_controlbyte);
wim 32:59c4b8f648d4 4255
wim 32:59c4b8f648d4 4256 _spi->write(value);
wim 32:59c4b8f648d4 4257
wim 32:59c4b8f648d4 4258 wait_us(1);
wim 32:59c4b8f648d4 4259 _cs = 1;
wim 32:59c4b8f648d4 4260 }
wim 34:e5a0dcb43ecc 4261 #endif /* Native SPI bus */
wim 32:59c4b8f648d4 4262 //------- End TextLCD_SPI_N_3_16 ----------
wim 34:e5a0dcb43ecc 4263
wim 34:e5a0dcb43ecc 4264
wim 32:59c4b8f648d4 4265 //------- Start TextLCD_SPI_N_3_24 --------
wim 34:e5a0dcb43ecc 4266 #if(LCD_SPI_N_3_24 == 1) /* Native SPI bus */
wim 32:59c4b8f648d4 4267
wim 32:59c4b8f648d4 4268 /** Create a TextLCD interface using a controller with a native SPI3 24 bits interface
wim 32:59c4b8f648d4 4269 *
wim 32:59c4b8f648d4 4270 * @param spi SPI Bus
wim 32:59c4b8f648d4 4271 * @param cs chip select pin (active low)
wim 32:59c4b8f648d4 4272 * @param type Sets the panel size/addressing mode (default = LCD16x2)
wim 32:59c4b8f648d4 4273 * @param bl Backlight control line (optional, default = NC)
wim 32:59c4b8f648d4 4274 * @param ctrl LCD controller (default = SSD1803)
wim 32:59c4b8f648d4 4275 */
wim 32:59c4b8f648d4 4276 TextLCD_SPI_N_3_24::TextLCD_SPI_N_3_24(SPI *spi, PinName cs, LCDType type, PinName bl, LCDCtrl ctrl) :
wim 32:59c4b8f648d4 4277 TextLCD_Base(type, ctrl),
wim 32:59c4b8f648d4 4278 _spi(spi),
wim 32:59c4b8f648d4 4279 _cs(cs) {
wim 32:59c4b8f648d4 4280
wim 32:59c4b8f648d4 4281 // Init CS
wim 32:59c4b8f648d4 4282 _cs = 1;
wim 32:59c4b8f648d4 4283
wim 34:e5a0dcb43ecc 4284 // Setup the spi for 8 bit data, high steady state clock,
wim 32:59c4b8f648d4 4285 // rising edge capture, with a 500KHz or 1MHz clock rate
wim 34:e5a0dcb43ecc 4286 _spi->format(8,3);
wim 32:59c4b8f648d4 4287 _spi->frequency(1000000);
wim 32:59c4b8f648d4 4288
wim 32:59c4b8f648d4 4289 // The hardware Backlight pin is optional. Test and make sure whether it exists or not to prevent illegal access.
wim 32:59c4b8f648d4 4290 if (bl != NC) {
wim 32:59c4b8f648d4 4291 _bl = new DigitalOut(bl); //Construct new pin
wim 32:59c4b8f648d4 4292 _bl->write(0); //Deactivate
wim 32:59c4b8f648d4 4293 }
wim 32:59c4b8f648d4 4294 else {
wim 32:59c4b8f648d4 4295 // No Hardware Backlight pin
wim 32:59c4b8f648d4 4296 _bl = NULL; //Construct dummy pin
wim 32:59c4b8f648d4 4297 }
wim 32:59c4b8f648d4 4298
wim 32:59c4b8f648d4 4299 //Sanity check
wim 32:59c4b8f648d4 4300 if (_ctrl & LCD_C_SPI3_24) {
wim 36:9f5f86dfd44a 4301 _init(_LCD_DL_8); // Set Datalength to 8 bit for all native serial interfaces
wim 32:59c4b8f648d4 4302 }
wim 32:59c4b8f648d4 4303 else {
wim 32:59c4b8f648d4 4304 error("Error: LCD Controller type does not support native SPI3 24 bits interface\n\r");
wim 32:59c4b8f648d4 4305 }
wim 32:59c4b8f648d4 4306 }
wim 32:59c4b8f648d4 4307
wim 32:59c4b8f648d4 4308 TextLCD_SPI_N_3_24::~TextLCD_SPI_N_3_24() {
wim 32:59c4b8f648d4 4309 if (_bl != NULL) {delete _bl;} // BL pin
wim 32:59c4b8f648d4 4310 }
wim 32:59c4b8f648d4 4311
wim 32:59c4b8f648d4 4312 // Not used in this mode
wim 32:59c4b8f648d4 4313 void TextLCD_SPI_N_3_24::_setEnable(bool value) {
wim 32:59c4b8f648d4 4314 }
wim 32:59c4b8f648d4 4315
wim 32:59c4b8f648d4 4316 // Set RS pin
wim 32:59c4b8f648d4 4317 // Used for mbed pins, I2C bus expander or SPI shiftregister
wim 32:59c4b8f648d4 4318 void TextLCD_SPI_N_3_24::_setRS(bool value) {
wim 32:59c4b8f648d4 4319 // The 24bit mode is split in 3 bytes. The first byte is for synchronisation and controlbits. The controlbits define the meaning of the next two bytes.
wim 32:59c4b8f648d4 4320 // Each byte encodes 4 actual bits. The 8 actual bits represent either a data or a command byte.
wim 32:59c4b8f648d4 4321 // b23 b22 b21 b20 b19 b18 b17 b16 - b15 b14 b13 b12 b11 b10 b9 b8 - b7 b6 b5 b4 b3 b2 b1 b0
wim 32:59c4b8f648d4 4322 // 1 1 1 1 1 RW RS 0 d0 d1 d2 d3 0 0 0 0 d4 d5 d6 d7 0 0 0 0
wim 32:59c4b8f648d4 4323 //
wim 32:59c4b8f648d4 4324 // RS=1 means that next byte is data, RS=0 means that next byte is command
wim 32:59c4b8f648d4 4325 // RW=0 means that next byte is writen, RW=1 means that next byte is read (not used in this lib)
wim 32:59c4b8f648d4 4326 //
wim 32:59c4b8f648d4 4327 // Note: SPI3_24 expects LSB first. This is inconsistent with regular SPI convention (and hardware) that sends MSB first.
wim 32:59c4b8f648d4 4328
wim 32:59c4b8f648d4 4329 if (value) {
wim 32:59c4b8f648d4 4330 _controlbyte = 0xFA; // Next byte is data
wim 32:59c4b8f648d4 4331 }
wim 32:59c4b8f648d4 4332 else {
wim 32:59c4b8f648d4 4333 _controlbyte = 0xF8; // Next byte is command
wim 34:e5a0dcb43ecc 4334 }
wim 32:59c4b8f648d4 4335 }
wim 32:59c4b8f648d4 4336
wim 32:59c4b8f648d4 4337 // Set BL pin
wim 32:59c4b8f648d4 4338 void TextLCD_SPI_N_3_24::_setBL(bool value) {
wim 32:59c4b8f648d4 4339 if (_bl) {
wim 32:59c4b8f648d4 4340 _bl->write(value);
wim 32:59c4b8f648d4 4341 }
wim 32:59c4b8f648d4 4342 }
wim 32:59c4b8f648d4 4343
wim 32:59c4b8f648d4 4344 // Not used in this mode
wim 32:59c4b8f648d4 4345 void TextLCD_SPI_N_3_24::_setData(int value) {
wim 32:59c4b8f648d4 4346 }
wim 32:59c4b8f648d4 4347
wim 32:59c4b8f648d4 4348 //Mapping table to flip the bits around cause SPI3_24 expects LSB first.
wim 32:59c4b8f648d4 4349 const uint8_t map3_24[16] = {0x00, 0x80, 0x40, 0xC0, 0x20, 0xA0, 0x60, 0xE0, 0x10, 0x90, 0x50, 0xD0, 0x30, 0xB0, 0x70, 0xF0};
wim 32:59c4b8f648d4 4350
wim 32:59c4b8f648d4 4351 // Write a byte using SPI3 24 bits mode
wim 32:59c4b8f648d4 4352 void TextLCD_SPI_N_3_24::_writeByte(int value) {
wim 32:59c4b8f648d4 4353 _cs = 0;
wim 32:59c4b8f648d4 4354 wait_us(1);
wim 32:59c4b8f648d4 4355 _spi->write(_controlbyte);
wim 32:59c4b8f648d4 4356
wim 32:59c4b8f648d4 4357 //Map and send the LSB nibble
wim 32:59c4b8f648d4 4358 _spi->write( map3_24[value & 0x0F]);
wim 32:59c4b8f648d4 4359
wim 32:59c4b8f648d4 4360 //Map and send the MSB nibble
wim 32:59c4b8f648d4 4361 _spi->write( map3_24[(value >> 4) & 0x0F]);
wim 32:59c4b8f648d4 4362
wim 32:59c4b8f648d4 4363 wait_us(1);
wim 32:59c4b8f648d4 4364 _cs = 1;
wim 32:59c4b8f648d4 4365 }
wim 34:e5a0dcb43ecc 4366 #endif /* Native SPI bus */
wim 32:59c4b8f648d4 4367 //------- End TextLCD_SPI_N_3_24 ----------