Allows for reading accelerometer, gyroscope, and magnetometer data from an LSM9DS0 IMU device

Dependencies:   mbed

Dependents:   uVGA_4180 uLCD_4180_mini ECE4781_Project

LSM9DS0.h

Committer:
randrews33
Date:
2015-01-11
Revision:
5:e6a15dcba942
Parent:
4:bf8f4e7c9905

File content as of revision 5:e6a15dcba942:

//Most of the Credit goes to jimblom
#ifndef _LSM9DS0_H__
#define _LSM9DS0_H__

#include "mbed.h"
#include "I2Cdev.h"


////////////////////////////
// LSM9DS0 Gyro Registers //
////////////////////////////
#define WHO_AM_I_G          0x0F
#define CTRL_REG1_G         0x20
#define CTRL_REG2_G         0x21
#define CTRL_REG3_G         0x22
#define CTRL_REG4_G         0x23
#define CTRL_REG5_G         0x24
#define REFERENCE_G         0x25
#define STATUS_REG_G        0x27
#define OUT_X_L_G           0x28
#define OUT_X_H_G           0x29
#define OUT_Y_L_G           0x2A
#define OUT_Y_H_G           0x2B
#define OUT_Z_L_G           0x2C
#define OUT_Z_H_G           0x2D
#define FIFO_CTRL_REG_G     0x2E
#define FIFO_SRC_REG_G      0x2F
#define INT1_CFG_G          0x30
#define INT1_SRC_G          0x31
#define INT1_THS_XH_G       0x32
#define INT1_THS_XL_G       0x33
#define INT1_THS_YH_G       0x34
#define INT1_THS_YL_G       0x35
#define INT1_THS_ZH_G       0x36
#define INT1_THS_ZL_G       0x37
#define INT1_DURATION_G     0x38

//////////////////////////////////////////
// LSM9DS0 Accel/Magneto (XM) Registers //
//////////////////////////////////////////
#define OUT_TEMP_L_XM       0x05
#define OUT_TEMP_H_XM       0x06
#define STATUS_REG_M        0x07
#define OUT_X_L_M           0x08
#define OUT_X_H_M           0x09
#define OUT_Y_L_M           0x0A
#define OUT_Y_H_M           0x0B
#define OUT_Z_L_M           0x0C
#define OUT_Z_H_M           0x0D
#define WHO_AM_I_XM         0x0F
#define INT_CTRL_REG_M      0x12
#define INT_SRC_REG_M       0x13
#define INT_THS_L_M         0x14
#define INT_THS_H_M         0x15
#define OFFSET_X_L_M        0x16
#define OFFSET_X_H_M        0x17
#define OFFSET_Y_L_M        0x18
#define OFFSET_Y_H_M        0x19
#define OFFSET_Z_L_M        0x1A
#define OFFSET_Z_H_M        0x1B
#define REFERENCE_X         0x1C
#define REFERENCE_Y         0x1D
#define REFERENCE_Z         0x1E
#define CTRL_REG0_XM        0x1F
#define CTRL_REG1_XM        0x20
#define CTRL_REG2_XM        0x21
#define CTRL_REG3_XM        0x22
#define CTRL_REG4_XM        0x23
#define CTRL_REG5_XM        0x24
#define CTRL_REG6_XM        0x25
#define CTRL_REG7_XM        0x26
#define STATUS_REG_A        0x27
#define OUT_X_L_A           0x28
#define OUT_X_H_A           0x29
#define OUT_Y_L_A           0x2A
#define OUT_Y_H_A           0x2B
#define OUT_Z_L_A           0x2C
#define OUT_Z_H_A           0x2D
#define FIFO_CTRL_REG       0x2E
#define FIFO_SRC_REG        0x2F
#define INT_GEN_1_REG       0x30
#define INT_GEN_1_SRC       0x31
#define INT_GEN_1_THS       0x32
#define INT_GEN_1_DURATION  0x33
#define INT_GEN_2_REG       0x34
#define INT_GEN_2_SRC       0x35
#define INT_GEN_2_THS       0x36
#define INT_GEN_2_DURATION  0x37
#define CLICK_CFG           0x38
#define CLICK_SRC           0x39
#define CLICK_THS           0x3A
#define TIME_LIMIT          0x3B
#define TIME_LATENCY        0x3C
#define TIME_WINDOW         0x3D
#define ACT_THS             0x3E
#define ACT_DUR             0x3F


class LSM9DS0
{
public:
    // gyro_scale defines the possible full-scale ranges of the gyroscope:
    enum gyro_scale
    {
        G_SCALE_245DPS,     // 00: +/- 245 degrees per second
        G_SCALE_500DPS,     // 01: +/- 500 dps
        G_SCALE_2000DPS,    // 10: +/- 2000 dps
    };
    // accel_scale defines all possible FSR's of the accelerometer:
    enum accel_scale
    {
        A_SCALE_2G, // 000: +/- 2g
        A_SCALE_4G, // 001: +/- 4g
        A_SCALE_6G, // 010: +/- 6g
        A_SCALE_8G, // 011: +/- 8g
        A_SCALE_16G // 100: +/- 16g
    };
    // mag_scale defines all possible FSR's of the magnetometer:
    enum mag_scale
    {
        M_SCALE_2GS,    // 00: +/- 2Gs
        M_SCALE_4GS,    // 01: +/- 4Gs
        M_SCALE_8GS,    // 10: +/- 8Gs
        M_SCALE_12GS,   // 11: +/- 12Gs
    };
    // gyro_odr defines all possible data rate/bandwidth combos of the gyro:
    enum gyro_odr
    {                           // ODR (Hz) --- Cutoff
        G_ODR_95_BW_125  = 0x0, //   95         12.5
        G_ODR_95_BW_25   = 0x1, //   95          25
        // 0x2 and 0x3 define the same data rate and bandwidth
        G_ODR_190_BW_125 = 0x4, //   190        12.5
        G_ODR_190_BW_25  = 0x5, //   190         25
        G_ODR_190_BW_50  = 0x6, //   190         50
        G_ODR_190_BW_70  = 0x7, //   190         70
        G_ODR_380_BW_20  = 0x8, //   380         20
        G_ODR_380_BW_25  = 0x9, //   380         25
        G_ODR_380_BW_50  = 0xA, //   380         50
        G_ODR_380_BW_100 = 0xB, //   380         100
        G_ODR_760_BW_30  = 0xC, //   760         30
        G_ODR_760_BW_35  = 0xD, //   760         35
        G_ODR_760_BW_50  = 0xE, //   760         50
        G_ODR_760_BW_100 = 0xF, //   760         100
    };
    // accel_oder defines all possible output data rates of the accelerometer:
    enum accel_odr
    {
        A_POWER_DOWN,   // Power-down mode (0x0)
        A_ODR_3125,     // 3.125 Hz (0x1)
        A_ODR_625,      // 6.25 Hz (0x2)
        A_ODR_125,      // 12.5 Hz (0x3)
        A_ODR_25,       // 25 Hz (0x4)
        A_ODR_50,       // 50 Hz (0x5)
        A_ODR_100,      // 100 Hz (0x6)
        A_ODR_200,      // 200 Hz (0x7)
        A_ODR_400,      // 400 Hz (0x8)
        A_ODR_800,      // 800 Hz (9)
        A_ODR_1600      // 1600 Hz (0xA)
    };
    // accel_oder defines all possible output data rates of the magnetometer:
    enum mag_odr
    {
        M_ODR_3125, // 3.125 Hz (0x00)
        M_ODR_625,  // 6.25 Hz (0x01)
        M_ODR_125,  // 12.5 Hz (0x02)
        M_ODR_25,   // 25 Hz (0x03)
        M_ODR_50,   // 50 (0x04)
        M_ODR_100,  // 100 Hz (0x05)
    };

    // We'll store the gyro, accel, and magnetometer readings in a series of
    // public class variables. Each sensor gets three variables -- one for each
    // axis. Call readGyro(), readAccel(), and readMag() first, before using
    // these variables!
    // These values are the RAW signed 16-bit readings from the sensors.
    int16_t gx, gy, gz; // x, y, and z axis readings of the gyroscope
    int16_t ax, ay, az; // x, y, and z axis readings of the accelerometer
    int16_t mx, my, mz; // x, y, and z axis readings of the magnetometer
    int16_t temperature;
    float abias[3];
    float gbias[3];

    
    // LSM9DS0 -- LSM9DS0 class constructor
    // The constructor will set up a handful of private variables, and set the
    // communication mode as well.
    // Input:
    //  - interface = Either MODE_SPI or MODE_I2C, whichever you're using
    //              to talk to the IC.
    //  - gAddr = If MODE_I2C, this is the I2C address of the gyroscope.
    //              If MODE_SPI, this is the chip select pin of the gyro (CSG)
    //  - xmAddr = If MODE_I2C, this is the I2C address of the accel/mag.
    //              If MODE_SPI, this is the cs pin of the accel/mag (CSXM)
    LSM9DS0(PinName sda, PinName scl, uint8_t gAddr, uint8_t xmAddr);
    
    // begin() -- Initialize the gyro, accelerometer, and magnetometer.
    // This will set up the scale and output rate of each sensor. It'll also
    // "turn on" every sensor and every axis of every sensor.
    // Input:
    //  - gScl = The scale of the gyroscope. This should be a gyro_scale value.
    //  - aScl = The scale of the accelerometer. Should be a accel_scale value.
    //  - mScl = The scale of the magnetometer. Should be a mag_scale value.
    //  - gODR = Output data rate of the gyroscope. gyro_odr value.
    //  - aODR = Output data rate of the accelerometer. accel_odr value.
    //  - mODR = Output data rate of the magnetometer. mag_odr value.
    // Output: The function will return an unsigned 16-bit value. The most-sig
    //      bytes of the output are the WHO_AM_I reading of the accel. The
    //      least significant two bytes are the WHO_AM_I reading of the gyro.
    // All parameters have a defaulted value, so you can call just "begin()".
    // Default values are FSR's of: +/- 245DPS, 2g, 2Gs; ODRs of 95 Hz for 
    // gyro, 100 Hz for accelerometer, 100 Hz for magnetometer.
    // Use the return value of this function to verify communication.
    uint16_t begin(gyro_scale gScl = G_SCALE_245DPS, 
                accel_scale aScl = A_SCALE_2G, mag_scale mScl = M_SCALE_2GS,
                gyro_odr gODR = G_ODR_95_BW_125, accel_odr aODR = A_ODR_50, 
                mag_odr mODR = M_ODR_50);
    
    // readGyro() -- Read the gyroscope output registers.
    // This function will read all six gyroscope output registers.
    // The readings are stored in the class' gx, gy, and gz variables. Read
    // those _after_ calling readGyro().
    void readGyro();
    
    // readAccel() -- Read the accelerometer output registers.
    // This function will read all six accelerometer output registers.
    // The readings are stored in the class' ax, ay, and az variables. Read
    // those _after_ calling readAccel().
    void readAccel();
    
    // readMag() -- Read the magnetometer output registers.
    // This function will read all six magnetometer output registers.
    // The readings are stored in the class' mx, my, and mz variables. Read
    // those _after_ calling readMag().
    void readMag();
    
    // readTemp() -- Read the temperature output register.
    // This function will read two temperature output registers.
    // The combined readings are stored in the class' temperature variables. Read
    // those _after_ calling readTemp().
    void readTemp();
    
    // calcGyro() -- Convert from RAW signed 16-bit value to degrees per second
    // This function reads in a signed 16-bit value and returns the scaled
    // DPS. This function relies on gScale and gRes being correct.
    // Input:
    //  - gyro = A signed 16-bit raw reading from the gyroscope.
    float calcGyro(int16_t gyro);
    
    // calcAccel() -- Convert from RAW signed 16-bit value to gravity (g's).
    // This function reads in a signed 16-bit value and returns the scaled
    // g's. This function relies on aScale and aRes being correct.
    // Input:
    //  - accel = A signed 16-bit raw reading from the accelerometer.
    float calcAccel(int16_t accel);
    
    // calcMag() -- Convert from RAW signed 16-bit value to Gauss (Gs)
    // This function reads in a signed 16-bit value and returns the scaled
    // Gs. This function relies on mScale and mRes being correct.
    // Input:
    //  - mag = A signed 16-bit raw reading from the magnetometer.
    float calcMag(int16_t mag);
    
    // setGyroScale() -- Set the full-scale range of the gyroscope.
    // This function can be called to set the scale of the gyroscope to 
    // 245, 500, or 200 degrees per second.
    // Input:
    //  - gScl = The desired gyroscope scale. Must be one of three possible
    //      values from the gyro_scale enum.
    void setGyroScale(gyro_scale gScl);
    
    // setAccelScale() -- Set the full-scale range of the accelerometer.
    // This function can be called to set the scale of the accelerometer to
    // 2, 4, 6, 8, or 16 g's.
    // Input:
    //  - aScl = The desired accelerometer scale. Must be one of five possible
    //      values from the accel_scale enum.
    void setAccelScale(accel_scale aScl);
    
    // setMagScale() -- Set the full-scale range of the magnetometer.
    // This function can be called to set the scale of the magnetometer to
    // 2, 4, 8, or 12 Gs.
    // Input:
    //  - mScl = The desired magnetometer scale. Must be one of four possible
    //      values from the mag_scale enum.
    void setMagScale(mag_scale mScl);
    
    // setGyroODR() -- Set the output data rate and bandwidth of the gyroscope
    // Input:
    //  - gRate = The desired output rate and cutoff frequency of the gyro.
    //      Must be a value from the gyro_odr enum (check above, there're 14).
    void setGyroODR(gyro_odr gRate);
    
    // setAccelODR() -- Set the output data rate of the accelerometer
    // Input:
    //  - aRate = The desired output rate of the accel.
    //      Must be a value from the accel_odr enum (check above, there're 11).
    void setAccelODR(accel_odr aRate);
    
    // setMagODR() -- Set the output data rate of the magnetometer
    // Input:
    //  - mRate = The desired output rate of the mag.
    //      Must be a value from the mag_odr enum (check above, there're 6).
    void setMagODR(mag_odr mRate);
    
    // configGyroInt() -- Configure the gyro interrupt output.
    // Triggers can be set to either rising above or falling below a specified
    // threshold. This function helps setup the interrupt configuration and 
    // threshold values for all axes.
    // Input:
    //  - int1Cfg = A 8-bit value that is sent directly to the INT1_CFG_G
    //      register. This sets AND/OR and high/low interrupt gen for each axis
    //  - int1ThsX = 16-bit interrupt threshold value for x-axis
    //  - int1ThsY = 16-bit interrupt threshold value for y-axis
    //  - int1ThsZ = 16-bit interrupt threshold value for z-axis
    //  - duration = Duration an interrupt holds after triggered. This value
    //      is copied directly into the INT1_DURATION_G register.
    // Before using this function, read about the INT1_CFG_G register and
    // the related INT1* registers in the LMS9DS0 datasheet.
    void configGyroInt(uint8_t int1Cfg, uint16_t int1ThsX = 0,
                          uint16_t int1ThsY = 0, uint16_t int1ThsZ = 0, 
                          uint8_t duration = 0);
                          
    void calLSM9DS0(float gbias[3], float abias[3]);


private:    
    // xmAddress and gAddress store the I2C address
    // for each sensor.
    uint8_t xmAddress, gAddress;
    
    // gScale, aScale, and mScale store the current scale range for each 
    // sensor. Should be updated whenever that value changes.
    gyro_scale gScale;
    accel_scale aScale;
    mag_scale mScale;
    
    // gRes, aRes, and mRes store the current resolution for each sensor. 
    // Units of these values would be DPS (or g's or Gs's) per ADC tick.
    // This value is calculated as (sensor scale) / (2^15).
    float gRes, aRes, mRes;
    
    // initGyro() -- Sets up the gyroscope to begin reading.
    // This function steps through all five gyroscope control registers.
    // Upon exit, the following parameters will be set:
    //  - CTRL_REG1_G = 0x0F: Normal operation mode, all axes enabled. 
    //      95 Hz ODR, 12.5 Hz cutoff frequency.
    //  - CTRL_REG2_G = 0x00: HPF set to normal mode, cutoff frequency
    //      set to 7.2 Hz (depends on ODR).
    //  - CTRL_REG3_G = 0x88: Interrupt enabled on INT_G (set to push-pull and
    //      active high). Data-ready output enabled on DRDY_G.
    //  - CTRL_REG4_G = 0x00: Continuous update mode. Data LSB stored in lower
    //      address. Scale set to 245 DPS. SPI mode set to 4-wire.
    //  - CTRL_REG5_G = 0x00: FIFO disabled. HPF disabled.
    void initGyro();
    
    // initAccel() -- Sets up the accelerometer to begin reading.
    // This function steps through all accelerometer related control registers.
    // Upon exit these registers will be set as:
    //  - CTRL_REG0_XM = 0x00: FIFO disabled. HPF bypassed. Normal mode.
    //  - CTRL_REG1_XM = 0x57: 100 Hz data rate. Continuous update.
    //      all axes enabled.
    //  - CTRL_REG2_XM = 0x00: +/- 2g scale. 773 Hz anti-alias filter BW.
    //  - CTRL_REG3_XM = 0x04: Accel data ready signal on INT1_XM pin.
    void initAccel();
    
    // initMag() -- Sets up the magnetometer to begin reading.
    // This function steps through all magnetometer-related control registers.
    // Upon exit these registers will be set as:
    //  - CTRL_REG4_XM = 0x04: Mag data ready signal on INT2_XM pin.
    //  - CTRL_REG5_XM = 0x14: 100 Hz update rate. Low resolution. Interrupt
    //      requests don't latch. Temperature sensor disabled.
    //  - CTRL_REG6_XM = 0x00: +/- 2 Gs scale.
    //  - CTRL_REG7_XM = 0x00: Continuous conversion mode. Normal HPF mode.
    //  - INT_CTRL_REG_M = 0x09: Interrupt active-high. Enable interrupts.
    void initMag();
    
    // gReadByte() -- Reads a byte from a specified gyroscope register.
    // Input:
    //  - subAddress = Register to be read from.
    // Output:
    //  - An 8-bit value read from the requested address.
    uint8_t gReadByte(uint8_t subAddress);
    
    // gReadBytes() -- Reads a number of bytes -- beginning at an address
    // and incrementing from there -- from the gyroscope.
    // Input:
    //  - subAddress = Register to be read from.
    //  - * dest = A pointer to an array of uint8_t's. Values read will be
    //      stored in here on return.
    //  - count = The number of bytes to be read.
    // Output: No value is returned, but the `dest` array will store
    //  the data read upon exit.
    void gReadBytes(uint8_t subAddress, uint8_t * dest, uint8_t count);
    
    // gWriteByte() -- Write a byte to a register in the gyroscope.
    // Input:
    //  - subAddress = Register to be written to.
    //  - data = data to be written to the register.
    void gWriteByte(uint8_t subAddress, uint8_t data);
    
    // xmReadByte() -- Read a byte from a register in the accel/mag sensor
    // Input:
    //  - subAddress = Register to be read from.
    // Output:
    //  - An 8-bit value read from the requested register.
    uint8_t xmReadByte(uint8_t subAddress);
    
    // xmReadBytes() -- Reads a number of bytes -- beginning at an address
    // and incrementing from there -- from the accelerometer/magnetometer.
    // Input:
    //  - subAddress = Register to be read from.
    //  - * dest = A pointer to an array of uint8_t's. Values read will be
    //      stored in here on return.
    //  - count = The number of bytes to be read.
    // Output: No value is returned, but the `dest` array will store
    //  the data read upon exit.
    void xmReadBytes(uint8_t subAddress, uint8_t * dest, uint8_t count);
    
    // xmWriteByte() -- Write a byte to a register in the accel/mag sensor.
    // Input:
    //  - subAddress = Register to be written to.
    //  - data = data to be written to the register.
    void xmWriteByte(uint8_t subAddress, uint8_t data);
    
    // calcgRes() -- Calculate the resolution of the gyroscope.
    // This function will set the value of the gRes variable. gScale must
    // be set prior to calling this function.
    void calcgRes();
    
    // calcmRes() -- Calculate the resolution of the magnetometer.
    // This function will set the value of the mRes variable. mScale must
    // be set prior to calling this function.
    void calcmRes();
    
    // calcaRes() -- Calculate the resolution of the accelerometer.
    // This function will set the value of the aRes variable. aScale must
    // be set prior to calling this function.
    void calcaRes();
    
    
    ///////////////////
    // I2C Functions //
    ///////////////////
    I2Cdev* i2c_;

    
    // I2CwriteByte() -- Write a byte out of I2C to a register in the device
    // Input:
    //  - address = The 7-bit I2C address of the slave device.
    //  - subAddress = The register to be written to.
    //  - data = Byte to be written to the register.
    void I2CwriteByte(uint8_t address, uint8_t subAddress, uint8_t data);
    
    // I2CreadByte() -- Read a single byte from a register over I2C.
    // Input:
    //  - address = The 7-bit I2C address of the slave device.
    //  - subAddress = The register to be read from.
    // Output:
    //  - The byte read from the requested address.
    uint8_t I2CreadByte(uint8_t address, uint8_t subAddress);
    
    // I2CreadBytes() -- Read a series of bytes, starting at a register via SPI
    // Input:
    //  - address = The 7-bit I2C address of the slave device.
    //  - subAddress = The register to begin reading.
    //  - * dest = Pointer to an array where we'll store the readings.
    //  - count = Number of registers to be read.
    // Output: No value is returned by the function, but the registers read are
    //      all stored in the *dest array given.
    void I2CreadBytes(uint8_t address, uint8_t subAddress, uint8_t * dest, uint8_t count);
};

#endif // _LSM9DS0_H //