mbed library sources. Supersedes mbed-src.

Fork of mbed-dev by Umar Naeem

Committer:
<>
Date:
Fri Oct 28 11:17:30 2016 +0100
Revision:
149:156823d33999
Child:
150:02e0a0aed4ec
This updates the lib to the mbed lib v128

NOTE: This release includes a restructuring of the file and directory locations and thus some
include paths in your code may need updating accordingly.

Who changed what in which revision?

UserRevisionLine numberNew contents of line
<> 149:156823d33999 1 /**
<> 149:156823d33999 2 ******************************************************************************
<> 149:156823d33999 3 * @file Serial.c
<> 149:156823d33999 4 * @brief Implementation of a 16C550 UART driver
<> 149:156823d33999 5 * @internal
<> 149:156823d33999 6 * @author ON Semiconductor
<> 149:156823d33999 7 * $Rev: 0.1 $
<> 149:156823d33999 8 * $Date: 2015-11-04 05:30:00 +0530 (Wed, 04 Nov 2015) $
<> 149:156823d33999 9 ******************************************************************************
<> 149:156823d33999 10 * Copyright 2016 Semiconductor Components Industries LLC (d/b/a “ON Semiconductor”).
<> 149:156823d33999 11 * All rights reserved. This software and/or documentation is licensed by ON Semiconductor
<> 149:156823d33999 12 * under limited terms and conditions. The terms and conditions pertaining to the software
<> 149:156823d33999 13 * and/or documentation are available at http://www.onsemi.com/site/pdf/ONSEMI_T&C.pdf
<> 149:156823d33999 14 * (“ON Semiconductor Standard Terms and Conditions of Sale, Section 8 Software”) and
<> 149:156823d33999 15 * if applicable the software license agreement. Do not use this software and/or
<> 149:156823d33999 16 * documentation unless you have carefully read and you agree to the limited terms and
<> 149:156823d33999 17 * conditions. By using this software and/or documentation, you agree to the limited
<> 149:156823d33999 18 * terms and conditions.
<> 149:156823d33999 19 *
<> 149:156823d33999 20 * THIS SOFTWARE IS PROVIDED "AS IS". NO WARRANTIES, WHETHER EXPRESS, IMPLIED
<> 149:156823d33999 21 * OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF
<> 149:156823d33999 22 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE APPLY TO THIS SOFTWARE.
<> 149:156823d33999 23 * ON SEMICONDUCTOR SHALL NOT, IN ANY CIRCUMSTANCES, BE LIABLE FOR SPECIAL,
<> 149:156823d33999 24 * INCIDENTAL, OR CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER.
<> 149:156823d33999 25 * @endinternal
<> 149:156823d33999 26 *
<> 149:156823d33999 27 * @ingroup uart_16c550
<> 149:156823d33999 28 *
<> 149:156823d33999 29 */
<> 149:156823d33999 30 #if DEVICE_SERIAL
<> 149:156823d33999 31
<> 149:156823d33999 32 #include "serial_api.h"
<> 149:156823d33999 33
<> 149:156823d33999 34 #include "cmsis.h"
<> 149:156823d33999 35 #include "pinmap.h"
<> 149:156823d33999 36 #include "PeripheralPins.h"
<> 149:156823d33999 37
<> 149:156823d33999 38 #include "mbed_assert.h"
<> 149:156823d33999 39 #include <string.h>
<> 149:156823d33999 40 #include "uart_16c550.h"
<> 149:156823d33999 41 #include "cmsis_nvic.h"
<> 149:156823d33999 42
<> 149:156823d33999 43 static IRQn_Type Irq;
<> 149:156823d33999 44
<> 149:156823d33999 45 uint32_t stdio_uart_inited = 0;
<> 149:156823d33999 46 serial_t stdio_uart;
<> 149:156823d33999 47
<> 149:156823d33999 48 static uint32_t serial_irq_ids[UART_NUM] = {0};
<> 149:156823d33999 49 static uart_irq_handler irq_handler;
<> 149:156823d33999 50 static inline void uart_irq(uint8_t status, uint32_t index);
<> 149:156823d33999 51
<> 149:156823d33999 52
<> 149:156823d33999 53 /** Opens UART device.
<> 149:156823d33999 54 * @details
<> 149:156823d33999 55 * Sets the necessary registers. Set to default Baud rate 115200, 8 bit, parity None and stop bit 1.
<> 149:156823d33999 56 * The UART interrupt is enabled.
<> 149:156823d33999 57 *
<> 149:156823d33999 58 * @note The UART transmit interrupt is not enabled, because sending is controlled
<> 149:156823d33999 59 * by the task.
<> 149:156823d33999 60 *
<> 149:156823d33999 61 * @param UartNum A UART device instance.
<> 149:156823d33999 62 * @param options The options parameter containing the baud rate.
<> 149:156823d33999 63 * @return True if opening was successful.
<> 149:156823d33999 64 */
<> 149:156823d33999 65
<> 149:156823d33999 66 void serial_init(serial_t *obj, PinName tx, PinName rx)
<> 149:156823d33999 67 {
<> 149:156823d33999 68 uint16_t clockDivisor;
<> 149:156823d33999 69
<> 149:156823d33999 70 CrossbReg_t *CbRegOffSet;
<> 149:156823d33999 71 PadReg_t *PadRegOffset;
<> 149:156823d33999 72
<> 149:156823d33999 73 //find which peripheral is associated with the rx and tx pins
<> 149:156823d33999 74 uint32_t uart_tx = pinmap_peripheral(tx, PinMap_UART_TX);
<> 149:156823d33999 75 uint32_t uart_rx = pinmap_peripheral(rx, PinMap_UART_RX);
<> 149:156823d33999 76 //check if the peripherals for each pin are the same or not
<> 149:156823d33999 77 //returns the enum associated with the peripheral
<> 149:156823d33999 78 //in the case of this target, the enum is the base address of the peripheral
<> 149:156823d33999 79 obj->UARTREG = (Uart16C550Reg_pt) pinmap_merge(uart_tx, uart_rx);
<> 149:156823d33999 80 MBED_ASSERT(obj->UARTREG != (Uart16C550Reg_pt) NC);
<> 149:156823d33999 81
<> 149:156823d33999 82 pinmap_pinout(tx, PinMap_UART_TX);
<> 149:156823d33999 83 pinmap_pinout(rx, PinMap_UART_RX);
<> 149:156823d33999 84
<> 149:156823d33999 85 /*TODO: Mac Lobdell - we should recommend using the instance method and not using base addresses as index */
<> 149:156823d33999 86
<> 149:156823d33999 87 if (obj->UARTREG == (Uart16C550Reg_pt)STDIO_UART) {
<> 149:156823d33999 88 stdio_uart_inited = 1;
<> 149:156823d33999 89 memcpy(&stdio_uart, obj, sizeof(serial_t));
<> 149:156823d33999 90 }
<> 149:156823d33999 91 /*TODO: determine if pullups are needed/recommended */
<> 149:156823d33999 92 /* if (tx != NC) {
<> 149:156823d33999 93 pin_mode(tx, PullUp);
<> 149:156823d33999 94 }
<> 149:156823d33999 95 if (rx != NC) {
<> 149:156823d33999 96 pin_mode(rx, PullUp);
<> 149:156823d33999 97 }
<> 149:156823d33999 98 */
<> 149:156823d33999 99 /* Configure IOs to UART using cross bar, pad and GPIO settings */
<> 149:156823d33999 100
<> 149:156823d33999 101 if(obj->UARTREG == UART2REG) {
<> 149:156823d33999 102 /* UART 2 */
<> 149:156823d33999 103 CLOCK_ENABLE(CLOCK_UART2);
<> 149:156823d33999 104 Irq = Uart2_IRQn;
<> 149:156823d33999 105 } else if(obj->UARTREG == UART1REG) {
<> 149:156823d33999 106 /* UART 1 */
<> 149:156823d33999 107 CLOCK_ENABLE(CLOCK_UART1);
<> 149:156823d33999 108
<> 149:156823d33999 109 Irq = Uart1_IRQn;
<> 149:156823d33999 110 } else {
<> 149:156823d33999 111 MBED_ASSERT(False);
<> 149:156823d33999 112 }
<> 149:156823d33999 113
<> 149:156823d33999 114 CLOCK_ENABLE(CLOCK_GPIO);
<> 149:156823d33999 115 CLOCK_ENABLE(CLOCK_CROSSB);
<> 149:156823d33999 116 CLOCK_ENABLE(CLOCK_PAD);
<> 149:156823d33999 117
<> 149:156823d33999 118 /*TODO: determine if tx and rx are used correctly in this case - this depends on the pin enum matching the position in the crossbar*/
<> 149:156823d33999 119
<> 149:156823d33999 120 /* Configure tx pin as UART */
<> 149:156823d33999 121 CbRegOffSet = (CrossbReg_t*)(CROSSBREG_BASE + (tx * CROSS_REG_ADRS_BYTE_SIZE));
<> 149:156823d33999 122 CbRegOffSet->DIOCTRL0 = CONFIGURE_AS_UART; /* tx pin as UART */
<> 149:156823d33999 123
<> 149:156823d33999 124 /* Configure rx pin as UART */
<> 149:156823d33999 125 CbRegOffSet = (CrossbReg_t*)(CROSSBREG_BASE + (rx * CROSS_REG_ADRS_BYTE_SIZE));
<> 149:156823d33999 126 CbRegOffSet->DIOCTRL0 = CONFIGURE_AS_UART; /* rx pin as UART */
<> 149:156823d33999 127
<> 149:156823d33999 128 /** - Set pad parameters, output drive strength, pull piece control, output drive type */
<> 149:156823d33999 129 PadRegOffset = (PadReg_t*)(PADREG_BASE + (tx * PAD_REG_ADRS_BYTE_SIZE));
<> 149:156823d33999 130 PadRegOffset->PADIO0.WORD = PAD_UART_TX; /* Pad setting for UART Tx */
<> 149:156823d33999 131
<> 149:156823d33999 132 PadRegOffset = (PadReg_t*)(PADREG_BASE + (rx * PAD_REG_ADRS_BYTE_SIZE));
<> 149:156823d33999 133 PadRegOffset->PADIO0.WORD = PAD_UART_RX; /* Pad settings for UART Rx */
<> 149:156823d33999 134
<> 149:156823d33999 135 GPIOREG->W_OUT |= (True << tx); /* tx as OUT direction */
<> 149:156823d33999 136 GPIOREG->W_IN |= (True << rx); /* rx as IN directon */
<> 149:156823d33999 137
<> 149:156823d33999 138 CLOCK_DISABLE(CLOCK_PAD);
<> 149:156823d33999 139 CLOCK_DISABLE(CLOCK_CROSSB);
<> 149:156823d33999 140 CLOCK_DISABLE(CLOCK_GPIO);
<> 149:156823d33999 141
<> 149:156823d33999 142 /* Set the divisor value. To do so, LCR[7] needs to be set to 1 in order to access the divisor registers.
<> 149:156823d33999 143 * The right-shift of 4 is a division of 16, representing the oversampling rate. */
<> 149:156823d33999 144 clockDivisor = (fClockGetPeriphClockfrequency() / UART_DEFAULT_BAUD) >> 4;
<> 149:156823d33999 145 obj->UARTREG->LCR.WORD = 0x80;
<> 149:156823d33999 146 obj->UARTREG->DLL = clockDivisor & 0xFF;
<> 149:156823d33999 147 obj->UARTREG->DLM = clockDivisor >> 8;
<> 149:156823d33999 148
<> 149:156823d33999 149 /* Set the character width to 8 data bits, no parity, 1 stop bit. Write the entire line control register,
<> 149:156823d33999 150 * effectively disabling the divisor latch. */
<> 149:156823d33999 151 obj->UARTREG->LCR.WORD = 0x03;
<> 149:156823d33999 152
<> 149:156823d33999 153 /* Enable the FIFOs, reset the Tx and Rx FIFOs, set the Rx FIFO trigger level to 8 bytes, and set DMA Mode
<> 149:156823d33999 154 to 1. */
<> 149:156823d33999 155 obj->UARTREG->FCR.WORD = (FCR_RXFIFOTRIGGERLEVEL_8 | FCR_DMA_MODE_1 |
<> 149:156823d33999 156 FCR_TXFIFO_RESET | FCR_RXFIFO_RESET | FCR_FIFO_ENABLE);
<> 149:156823d33999 157
<> 149:156823d33999 158 /* Make a copy of the current MSR to the SCR register. This is used from task space to determine the
<> 149:156823d33999 159 * flow control state. */
<> 149:156823d33999 160 obj->UARTREG->SCR = obj->UARTREG->MSR.WORD;
<> 149:156823d33999 161
<> 149:156823d33999 162 if((int)obj->UARTREG == STDIO_UART) {
<> 149:156823d33999 163 stdio_uart_inited = 1;
<> 149:156823d33999 164 memcpy(&stdio_uart, obj, sizeof(serial_t));
<> 149:156823d33999 165 }
<> 149:156823d33999 166
<> 149:156823d33999 167 NVIC_ClearPendingIRQ(Irq);
<> 149:156823d33999 168
<> 149:156823d33999 169 return;
<> 149:156823d33999 170 }
<> 149:156823d33999 171
<> 149:156823d33999 172 /** Closes a UART device.
<> 149:156823d33999 173 * @details
<> 149:156823d33999 174 * Disables the UART interrupt.
<> 149:156823d33999 175 *
<> 149:156823d33999 176 * @param device The UART device to close.
<> 149:156823d33999 177 */
<> 149:156823d33999 178 void serial_free(serial_t *obj)
<> 149:156823d33999 179 {
<> 149:156823d33999 180 NVIC_DisableIRQ(obj->IRQType);
<> 149:156823d33999 181 }
<> 149:156823d33999 182
<> 149:156823d33999 183 void serial_baud(serial_t *obj, int baudrate)
<> 149:156823d33999 184 {
<> 149:156823d33999 185 /* Set the divisor value. To do so, LCR[7] needs to be set to 1 in order to access the divisor registers.
<> 149:156823d33999 186 * The right-shift of 4 is a division of 16, representing the oversampling rate. */
<> 149:156823d33999 187 uint16_t clockDivisor = (fClockGetPeriphClockfrequency() / baudrate) >> 4;
<> 149:156823d33999 188
<> 149:156823d33999 189 obj->UARTREG->LCR.BITS.DLAB = True;
<> 149:156823d33999 190 obj->UARTREG->DLL = clockDivisor & 0xFF;
<> 149:156823d33999 191 obj->UARTREG->DLM = clockDivisor >> 8;
<> 149:156823d33999 192 obj->UARTREG->LCR.BITS.DLAB = False;
<> 149:156823d33999 193 }
<> 149:156823d33999 194
<> 149:156823d33999 195 /*
<> 149:156823d33999 196 Parity XX0 – Parity disabled; 001 – Odd Parity; 011 – Even Parity; 101 – Stick Parity, checked as 1; 111 – Stick Parity, checked as 0.
<> 149:156823d33999 197 StopBit 0 – 1 stop bit; 1 – 2 stop bits.
<> 149:156823d33999 198 DataLen 00 – 5 bits; 01 – 6 bits; 10 – 7 bits; 11 – 8 bits
<> 149:156823d33999 199 */
<> 149:156823d33999 200 void serial_format(serial_t *obj, int data_bits, SerialParity parity, int stop_bits)
<> 149:156823d33999 201 {
<> 149:156823d33999 202 if(data_bits >= 5 && data_bits <= 8 && parity <= 7 && stop_bits >= 1 && stop_bits <= 2) {
<> 149:156823d33999 203 if(parity == (SerialParity)0) {
<> 149:156823d33999 204 parity = (SerialParity)0;
<> 149:156823d33999 205 } else {
<> 149:156823d33999 206 parity = (SerialParity)(parity + parity - 1) ;
<> 149:156823d33999 207 }
<> 149:156823d33999 208
<> 149:156823d33999 209 obj->UARTREG->LCR.WORD |= ((((data_bits - 5) << UART_LCR_DATALEN_BIT_POS) |
<> 149:156823d33999 210 (parity << UART_LCR_PARITY_BIT_POS) |
<> 149:156823d33999 211 ((stop_bits - 1) << UART_LCR_STPBIT_BIT_POS)) & 0x3F);
<> 149:156823d33999 212 } else {
<> 149:156823d33999 213 MBED_ASSERT(False);
<> 149:156823d33999 214 }
<> 149:156823d33999 215 }
<> 149:156823d33999 216
<> 149:156823d33999 217 void serial_irq_handler(serial_t *obj, uart_irq_handler handler, uint32_t id)
<> 149:156823d33999 218 {
<> 149:156823d33999 219 irq_handler = handler;
<> 149:156823d33999 220 serial_irq_ids[obj->index] = id;
<> 149:156823d33999 221 }
<> 149:156823d33999 222
<> 149:156823d33999 223 /******************************************************
<> 149:156823d33999 224 ************* Internal IRQ functions ******************
<> 149:156823d33999 225 *******************************************************/
<> 149:156823d33999 226 void Uart1_Irq()
<> 149:156823d33999 227 {
<> 149:156823d33999 228 uint8_t active_irq = (uint8_t)(UART1REG->LSR.WORD) & 0xFF;
<> 149:156823d33999 229 uint8_t irq_mask = 0;
<> 149:156823d33999 230
<> 149:156823d33999 231 if(UART1REG->IER.WORD & UART_IER_TX_EMPTY_MASK) { /*check if TX interrupt is enabled*/
<> 149:156823d33999 232 irq_mask |= active_irq & UART_LSR_TX_EMPTY_MASK;
<> 149:156823d33999 233 }
<> 149:156823d33999 234
<> 149:156823d33999 235 if(UART1REG->IER.WORD & UART_IER_RX_DATA_READY_MASK) { /*check if RX interrupt is enabled*/
<> 149:156823d33999 236 irq_mask |= active_irq & UART_LSR_RX_DATA_READY_MASK;
<> 149:156823d33999 237 }
<> 149:156823d33999 238
<> 149:156823d33999 239 //uart_irq((uint8_t)(UART1REG->LSR.WORD & 0xFF), 0);
<> 149:156823d33999 240 uart_irq(active_irq & irq_mask, 0);
<> 149:156823d33999 241 }
<> 149:156823d33999 242
<> 149:156823d33999 243 void Uart2_Irq()
<> 149:156823d33999 244 {
<> 149:156823d33999 245 uint8_t active_irq = (uint8_t)(UART2REG->LSR.WORD) & 0xFF;
<> 149:156823d33999 246 uint8_t irq_mask = 0;
<> 149:156823d33999 247
<> 149:156823d33999 248 if(UART2REG->IER.WORD & UART_IER_TX_EMPTY_MASK) { /*check if TX interrupt is enabled*/
<> 149:156823d33999 249 irq_mask |= active_irq & UART_LSR_TX_EMPTY_MASK;
<> 149:156823d33999 250 }
<> 149:156823d33999 251
<> 149:156823d33999 252 if(UART2REG->IER.WORD & UART_IER_RX_DATA_READY_MASK) { /*check if RX interrupt is enabled*/
<> 149:156823d33999 253 irq_mask |= active_irq & UART_LSR_RX_DATA_READY_MASK;
<> 149:156823d33999 254 }
<> 149:156823d33999 255
<> 149:156823d33999 256 //uart_irq((uint8_t)(UART2REG->LSR.WORD & 0xFF), 1);
<> 149:156823d33999 257 uart_irq(active_irq & irq_mask, 1);
<> 149:156823d33999 258
<> 149:156823d33999 259 }
<> 149:156823d33999 260
<> 149:156823d33999 261 static inline void uart_irq(uint8_t status, uint32_t index)
<> 149:156823d33999 262 {
<> 149:156823d33999 263 if (serial_irq_ids[index] != 0) {
<> 149:156823d33999 264 if (status & UART_LSR_TX_EMPTY_MASK) {
<> 149:156823d33999 265 irq_handler(serial_irq_ids[index], TxIrq);
<> 149:156823d33999 266 }
<> 149:156823d33999 267 if (status & UART_LSR_RX_DATA_READY_MASK) {
<> 149:156823d33999 268 irq_handler(serial_irq_ids[index], RxIrq);
<> 149:156823d33999 269 }
<> 149:156823d33999 270 }
<> 149:156823d33999 271 }
<> 149:156823d33999 272 /******************************************************/
<> 149:156823d33999 273
<> 149:156823d33999 274 void serial_irq_set(serial_t *obj, SerialIrq irq, uint32_t enable)
<> 149:156823d33999 275 {
<> 149:156823d33999 276 IRQn_Type irq_n = (IRQn_Type)0;
<> 149:156823d33999 277 uint32_t Vector = 0;
<> 149:156823d33999 278
<> 149:156823d33999 279 /* Check UART number & assign irq handler */
<> 149:156823d33999 280 if(obj->UARTREG == UART1REG) {
<> 149:156823d33999 281 /* UART 2 */
<> 149:156823d33999 282 Vector = (uint32_t)&Uart1_Irq;
<> 149:156823d33999 283 irq_n = Uart1_IRQn;
<> 149:156823d33999 284 } else if(obj->UARTREG == UART2REG) {
<> 149:156823d33999 285 /* UART 1 */
<> 149:156823d33999 286 Vector = (uint32_t)&Uart2_Irq;
<> 149:156823d33999 287 irq_n = Uart2_IRQn;
<> 149:156823d33999 288 } else {
<> 149:156823d33999 289 MBED_ASSERT(False);
<> 149:156823d33999 290 }
<> 149:156823d33999 291
<> 149:156823d33999 292 /* Check IRQ type & enable/disable accordingly */
<> 149:156823d33999 293 if(enable) {
<> 149:156823d33999 294 /* Enable */
<> 149:156823d33999 295 if(irq == RxIrq) {
<> 149:156823d33999 296 /* Rx IRQ */
<> 149:156823d33999 297 obj->UARTREG->FCR.BITS.RX_FIFO_TRIG = 0x0;
<> 149:156823d33999 298 obj->UARTREG->IER.BITS.RX_DATA_INT = True;
<> 149:156823d33999 299 } else if(irq == TxIrq) {
<> 149:156823d33999 300 /* Tx IRQ */
<> 149:156823d33999 301 obj->UARTREG->IER.BITS.TX_HOLD_INT = True;
<> 149:156823d33999 302 } else {
<> 149:156823d33999 303 MBED_ASSERT(False);
<> 149:156823d33999 304 }
<> 149:156823d33999 305 NVIC_SetVector(irq_n, Vector);
<> 149:156823d33999 306 NVIC_EnableIRQ(irq_n);
<> 149:156823d33999 307 } else {
<> 149:156823d33999 308 /* Disable */
<> 149:156823d33999 309 NVIC_DisableIRQ(irq_n);
<> 149:156823d33999 310 if(irq == RxIrq) {
<> 149:156823d33999 311 /* Rx IRQ */
<> 149:156823d33999 312 obj->UARTREG->IER.BITS.RX_DATA_INT = False;
<> 149:156823d33999 313 } else if(irq == TxIrq) {
<> 149:156823d33999 314 /* Tx IRQ */
<> 149:156823d33999 315
<> 149:156823d33999 316 obj->UARTREG->IER.BITS.TX_HOLD_INT = False;
<> 149:156823d33999 317 } else {
<> 149:156823d33999 318 MBED_ASSERT(False);
<> 149:156823d33999 319 }
<> 149:156823d33999 320 }
<> 149:156823d33999 321 }
<> 149:156823d33999 322
<> 149:156823d33999 323 int serial_getc(serial_t *obj)
<> 149:156823d33999 324 {
<> 149:156823d33999 325 uint8_t c;
<> 149:156823d33999 326
<> 149:156823d33999 327 while(!obj->UARTREG->LSR.BITS.READY); /* Wait for received data is ready */
<> 149:156823d33999 328 c = obj->UARTREG->RBR & 0xFF; /* Get received character */
<> 149:156823d33999 329 return c;
<> 149:156823d33999 330 }
<> 149:156823d33999 331
<> 149:156823d33999 332 void serial_putc(serial_t *obj, int c)
<> 149:156823d33999 333 {
<> 149:156823d33999 334
<> 149:156823d33999 335 while(!obj->UARTREG->LSR.BITS.TX_HOLD_EMPTY);/* Wait till THR is empty */
<> 149:156823d33999 336 obj->UARTREG->THR = c; /* Transmit byte */
<> 149:156823d33999 337
<> 149:156823d33999 338 }
<> 149:156823d33999 339
<> 149:156823d33999 340 int serial_readable(serial_t *obj)
<> 149:156823d33999 341 {
<> 149:156823d33999 342 return obj->UARTREG->LSR.BITS.READY;
<> 149:156823d33999 343 }
<> 149:156823d33999 344
<> 149:156823d33999 345 int serial_writable(serial_t *obj)
<> 149:156823d33999 346 {
<> 149:156823d33999 347 return obj->UARTREG->LSR.BITS.TX_HOLD_EMPTY;
<> 149:156823d33999 348 }
<> 149:156823d33999 349
<> 149:156823d33999 350 void serial_clear(serial_t *obj)
<> 149:156823d33999 351 {
<> 149:156823d33999 352 /* Reset TX & RX FIFO */
<> 149:156823d33999 353 obj->UARTREG->FCR.WORD |= ((True << UART_FCS_TX_FIFO_RST_BIT_POS) |
<> 149:156823d33999 354 (True << UART_FCS_RX_FIFO_RST_BIT_POS));
<> 149:156823d33999 355 }
<> 149:156823d33999 356
<> 149:156823d33999 357 void serial_break_set(serial_t *obj)
<> 149:156823d33999 358 {
<> 149:156823d33999 359 obj->UARTREG->LCR.BITS.BREAK = True;
<> 149:156823d33999 360 }
<> 149:156823d33999 361
<> 149:156823d33999 362 void serial_break_clear(serial_t *obj)
<> 149:156823d33999 363 {
<> 149:156823d33999 364 obj->UARTREG->LCR.BITS.BREAK = False;
<> 149:156823d33999 365 }
<> 149:156823d33999 366
<> 149:156823d33999 367 void serial_pinout_tx(PinName tx)
<> 149:156823d33999 368 {
<> 149:156823d33999 369 /* COnfigure PinNo to drive strength of 1, Push pull and pull none */
<> 149:156823d33999 370 fPadIOCtrl(tx, 1, 0, 1);
<> 149:156823d33999 371 }
<> 149:156823d33999 372
<> 149:156823d33999 373 /** Configure the serial for the flow control. It sets flow control in the hardware
<> 149:156823d33999 374 * if a serial peripheral supports it, otherwise software emulation is used.
<> 149:156823d33999 375 *
<> 149:156823d33999 376 * @param obj The serial object
<> 149:156823d33999 377 * @param type The type of the flow control. Look at the available FlowControl types.
<> 149:156823d33999 378 * @param rxflow The TX pin name
<> 149:156823d33999 379 * @param txflow The RX pin name
<> 149:156823d33999 380 */
<> 149:156823d33999 381 void serial_set_flow_control(serial_t *obj, FlowControl type, PinName rxflow, PinName txflow)
<> 149:156823d33999 382 {
<> 149:156823d33999 383 /* TODO: This is an empty implementation for now.*/
<> 149:156823d33999 384 }
<> 149:156823d33999 385
<> 149:156823d33999 386 #endif /* DEVICE_SERIAL */