mbed library sources. Supersedes mbed-src.
Fork of mbed-dev by
targets/TARGET_ublox/TARGET_HI2110/serial_api.c
- Committer:
- ranaumarnaeem
- Date:
- 2017-05-23
- Revision:
- 165:2dd56e6daeec
- Parent:
- 150:02e0a0aed4ec
File content as of revision 165:2dd56e6daeec:
/* mbed Microcontroller Library * Copyright (c) 2016 u-blox * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /* The serial driver connects UART HW to mbed and also associates the UART * HW with physical pins. Any physical pin can be linked to any UART, * however the mbed serial port initialisation API makes no mention of * which UART HW is to be used (only the pins) and hence the driver needs * to make some decisions for itself. * * There are two and a half UARTs on the chip: UART0, UART1 and a * lower-power, receive-only UART that is clocked from 32 kHz and can * therefore be awake while the rest of the chip is sleeping peacefully. * This provides maximal power saving, however the LP UART can only run * at 9600 bits/s (which is quite sufficient for all NB-IoT needs). * * So, if the baud rate is 9600 the driver code configures the LP UART * for Rx and UART0 for Tx. If the baud rate is not 9600 then it configures * UART0 for both Rx and Tx. Unless... the Tx pin is the pin UART1_TX (it * is an mbed convention to use the Tx pin), which is p6, in which case UART1 * is configured instead. This latter is not the normal case as this pin * is intended to be used as a GPIO. * * If the baud rate is changed the driver reconfigures to match. * * TODO: implement asynchronous and flow control APIs. */ #include "mbed_assert.h" #include "serial_api.h" #include "pinmap.h" #include "cmsis.h" /* ---------------------------------------------------------------- * MACROS * ----------------------------------------------------------------*/ /* Registers banks for the standard UARTs */ #define UART0_REG (*(volatile uart_ctrl_t *) UART0_BASE) #define UART1_REG (*(volatile uart_ctrl_t *) UART1_BASE) /* Masks for the UART control bits in the reset and clock enable registers */ #define UART0_CTRL (1 << 3) #define UART1_CTRL (1 << 4) #define UARTLP_CTRL (1 << 6) /* Convert number of data bits to register values */ #define MIN_NUM_UART_DATA_BITS 5 #define MAX_NUM_UART_DATA_BITS 8 #define REGISTER_DATA_BITS(x) ((x) - MIN_NUM_UART_DATA_BITS) /* Number of stop bits */ #define NUM_UART_STOP_BITS_1 1 #define NUM_UART_STOP_BITS_2 2 /* ---------------------------------------------------------------- * TYPES * ----------------------------------------------------------------*/ /* Enum to identify the interrupt to the UART handler */ typedef enum { IRQ_UART_ID_0_AND_LP, IRQ_UART_ID_1, NUM_IRQ_IDS } irq_uart_id_t; /* ---------------------------------------------------------------- * GLOBAL VARIABLES * ----------------------------------------------------------------*/ /* The IRQ configuration variables, set up and named by mbed */ static uint32_t serial_irq_ids[NUM_IRQ_IDS] = {0}; static uart_irq_handler irq_handler = NULL; /* RTX needs these */ int stdio_uart_inited = 0; serial_t stdio_uart; /* ---------------------------------------------------------------- * FUNCTION PROTOTYPES * ----------------------------------------------------------------*/ static void init_config(serial_t *obj); static void deinit_config(serial_t *obj); static void set_baud(serial_t *obj, uint32_t baud_rate); static void irq_enable(serial_t *obj); static void irq_disable(serial_t *obj); /* ---------------------------------------------------------------- * NON-API FUNCTIONS * ----------------------------------------------------------------*/ /* Initialise the given serial config by setting the pin functions * and then resetting the relevant HW */ static void init_config(serial_t *obj) { uint32_t x; switch (obj->config) { case SERIAL_CONFIG_UARTLP_RX_UART0_TX: { pin_function(obj->rx_pin, PIN_FUNCTION_LP_UART); pin_function(obj->tx_pin, PIN_FUNCTION_UART0_TXD); CLKEN_REG_BITSET = UARTLP_CTRL | UART0_CTRL; obj->reg_base = &UART0_REG; obj->index = IRQ_UART_ID_0_AND_LP; /* Reset the LPUART and UART0 HW */ /* NOTE: RESET_REG_BITTOG doesn't have the desired * effect, need to use BITSET and then BITCLR */ RESET_REG_BITSET |= 1ul << 6; RESET_REG_BITCLR |= 1ul << 6; RESET_REG_BITSET |= 1ul << 3; RESET_REG_BITCLR |= 1ul << 3; } break; case SERIAL_CONFIG_UART0_RX_UART0_TX: { pin_function(obj->rx_pin, PIN_FUNCTION_UART0_RXD); pin_function(obj->tx_pin, PIN_FUNCTION_UART0_TXD); CLKEN_REG_BITSET = UART0_CTRL; obj->reg_base = &UART0_REG; obj->index = IRQ_UART_ID_0_AND_LP; /* Reset the UART0 HW */ RESET_REG_BITSET |= 1ul << 3; RESET_REG_BITCLR |= 1ul << 3; } break; case SERIAL_CONFIG_UART1_RX_UART1_TX: { pin_function(obj->rx_pin, PIN_FUNCTION_UART1_RXD); pin_function(obj->tx_pin, PIN_FUNCTION_UART1_TXD); CLKEN_REG_BITSET = UART1_CTRL; obj->reg_base = &UART1_REG; obj->index = IRQ_UART_ID_1; /* Reset the UART1 HW */ RESET_REG_BITSET |= 1ul << 4; RESET_REG_BITCLR |= 1ul << 4; } break; default: { MBED_ASSERT(false); } break; } /* Tickle the UART control register to make sure it is updated */ x = obj->reg_base->UARTLCR_H; obj->reg_base->UARTLCR_H = x; /* Set the FIFO. The meaning of the three FIFO interrupt-level * bits are as follows: * * 0 = 1/8 full * 1 = 1/4 full * 2 = 1/2 full * 3 = 3/4 full * 4 = 7/8 full * * Set up the Rx FIFO to be used fully (but we will also set * a timeout to get immediate notice) and also the Tx FIFO * to be fully used. */ obj->reg_base->UARTIFLS = (obj->reg_base->UARTIFLS & ~(0x07 << 0)) | (4 << 0); obj->reg_base->UARTIFLS = (obj->reg_base->UARTIFLS & ~(0x07 << 3)) | (4 << 3); obj->reg_base->UARTLCR_H |= 1 << 4; /* Enable for Tx and Rx (TODO: add CTS when we add flow control) */ obj->reg_base->UARTCR |= (1 << 8) | (1 << 9); /* Now enable it */ obj->reg_base->UARTCR |= 1 << 0; obj->format_set = false; obj->baud_rate = 0; obj->irq_rx_setting = IRQ_NOT_SET; obj->irq_tx_setting = IRQ_NOT_SET; } /* Release a serial port */ static void deinit_config(serial_t *obj) { pin_function(obj->rx_pin, PIN_FUNCTION_UNCLAIMED); pin_function(obj->tx_pin, PIN_FUNCTION_UNCLAIMED); /* Disable UART */ obj->reg_base->UARTCR &= ~(1 << 0); /* Flush transmit FIFO */ obj->reg_base->UARTLCR_H = 0; /* Disable everything */ obj->reg_base->UARTCR = 0; switch (obj->config) { case SERIAL_CONFIG_UARTLP_RX_UART0_TX: { CLKEN_REG_BITCLR = UARTLP_CTRL | UART0_CTRL; LP_UART_CTRL &= ~(0xF << 20); /* Disable all LP interrupts */ } break; case SERIAL_CONFIG_UART0_RX_UART0_TX: { CLKEN_REG_BITCLR = UART0_CTRL; } break; case SERIAL_CONFIG_UART1_RX_UART1_TX: { CLKEN_REG_BITCLR = UART1_CTRL; } break; default: { MBED_ASSERT(false); } break; } obj->config = MAX_NUM_SERIAL_CONFIGS; obj->reg_base = NULL; } /* Set the baud rate for either of the two (non-LP) UARTS */ static void set_baud(serial_t *obj, uint32_t baud_rate) { uint32_t baud_rate_divider_i; uint32_t baud_rate_divider_f; uint32_t remainder; uint32_t core_clock; uint32_t x; /* Baud rate divider calculation: * * The integer part is: clock / (16 * baud) * * The fractional part is: round (decimal_part * 64), * ...where decimal part is, for example, 0.085 * * decimal_part is: remainder / (16 * baud), * ...where: remainder = core_clock % (baud * 16), * * So the fractional part becomes: * round (decimal_part * 64) = round (remainder * 64 / (16 * baud)) = round (remainder * 4 / baud) */ /* Get the mean clock frequency */ core_clock = (CLK_FREQ_HIGHTARGET >> 1) + (CLK_FREQ_LOWTARGET >> 1); /* Work out the actual clock frequency */ core_clock = (core_clock * CLOCKS_REFERENCE_CLOCK_FREQ) / (((CLK_FREQ_NREFCLKS + 1) & 0xFFFF) * (CLK_GATE_SYS & 0xFF)); baud_rate_divider_i = core_clock / (baud_rate << 4); remainder = core_clock % (baud_rate << 4); baud_rate_divider_f = ((remainder << 3) / baud_rate) >> 1; /* Round it */ baud_rate_divider_f += ((remainder << 3) / baud_rate) & 1; /* Disable UART while writing to control registers */ obj->reg_base->UARTCR &= ~(1 << 0); obj->reg_base->UARTIBRD = baud_rate_divider_i; obj->reg_base->UARTFBRD = baud_rate_divider_f; /* Make IBRD and FBRD update */ x = obj->reg_base->UARTLCR_H; obj->reg_base->UARTLCR_H = x; /* Now enable the UART again */ obj->reg_base->UARTCR |= 1 << 0; } /* Set the NVIC bits */ static void irq_enable(serial_t *obj) { switch (obj->config) { case SERIAL_CONFIG_UARTLP_RX_UART0_TX: { NVIC_EnableIRQ(UART0_IRQn); NVIC_EnableIRQ(LPUART_IRQn); } break; case SERIAL_CONFIG_UART0_RX_UART0_TX: { NVIC_EnableIRQ(UART0_IRQn); } break; case SERIAL_CONFIG_UART1_RX_UART1_TX: { NVIC_EnableIRQ(UART1_IRQn); } break; default: { MBED_ASSERT(false); } break; } } /* Unset the NVIC bits */ static void irq_disable(serial_t *obj) { switch (obj->config) { case SERIAL_CONFIG_UARTLP_RX_UART0_TX: { NVIC_DisableIRQ(UART0_IRQn); NVIC_DisableIRQ(LPUART_IRQn); } break; case SERIAL_CONFIG_UART0_RX_UART0_TX: { NVIC_DisableIRQ(UART0_IRQn); } break; case SERIAL_CONFIG_UART1_RX_UART1_TX: { NVIC_DisableIRQ(UART1_IRQn); } break; default: { MBED_ASSERT(false); } break; } } /* UART0 IRQ */ void IRQ7_UART0_Handler() { uint32_t id = serial_irq_ids[IRQ_UART_ID_0_AND_LP]; /* Check Rx and Rx Timeout bit */ if (UART0_REG.UARTMIS & ((1 << 4) | (1 << 6))) { if (id != 0) { irq_handler(id, RxIrq); /* Reading the character clears the interrupt, * no way to protect against another arriving * while processing one */ } } /* Check Tx bit */ if (UART0_REG.UARTMIS & (1 << 5)) { if (id != 0) { irq_handler(id, TxIrq); } /* Not sure what clears the interrupt so clear it explicitly */ NVIC_ClearPendingIRQ(UART1_IRQn); } } /* UART1 IRQ */ void IRQ8_UART1_Handler() { uint32_t id = serial_irq_ids[IRQ_UART_ID_1]; /* Check Rx and Rx Timeout bit */ if (UART1_REG.UARTMIS & ((1 << 4) | (1 << 6))) { if (id != 0) { irq_handler(id, RxIrq); } /* Reading the character clears the interrupt, * no way to protect against another arriving * while processing one */ } /* Check Tx bit */ if (UART1_REG.UARTMIS & (1 << 5)) { if (id != 0) { irq_handler(id, TxIrq); } /* Not sure what clears the interrupt so clear it explicitly */ NVIC_ClearPendingIRQ(UART1_IRQn); } } /* LP UART IRQ, receive only */ void IRQ16_LPUART_Handler() { uint32_t id = serial_irq_ids[IRQ_UART_ID_0_AND_LP]; if (id != 0) { irq_handler(id, RxIrq); /* Another character might have arrived while * we are processing the last, so * check status bits 8 to 10 again and pend * interrupt if there's something there */ if (((LP_UART_STATUS >> 8) & 0x07) != 0) { NVIC_SetPendingIRQ(LPUART_IRQn); } else { LP_UART_CTRL |= 1 << 27; /* Clear the interrupt */ } } } /* ---------------------------------------------------------------- * MBED API CALLS: SETUP FUNCTIONS * ----------------------------------------------------------------*/ void serial_init(serial_t *obj, PinName tx, PinName rx) { uint32_t clock = CLK_FREQ_DIG_CLKS; /* There are two and a half UARTs on the chip. The normal * configuration is to use the LP_UART for Rx and UART0 for * Tx. This gives maximal power saving in that the chip can * wake up on receipt of data. However, this only works if the * data rate is 9600 because that's the only data rate that * the 32 kHz (i.e. RTC) clock driving the LP UART can support. * * So, if the data rate is 9600, use the LP_UART/UART0 * combination, otherwise use UART0 for both Rx and Tx. However, * we don't know the data rate at this point so assume LP_UART * (as this works at the default baud rate) and we can change * our minds later. * * There is another serial port, UART1, which is normally used * by the modem processor to send out debug. We only initialise * that here if the Tx pin is UART1_TX. */ /* Wait for the clock to be stable */ while ((clock < CLK_FREQ_LOWTARGET) || (clock > CLK_FREQ_HIGHTARGET)) { clock = CLK_FREQ_DIG_CLKS; } if (tx == UART1_TX) { /* Use UART1 for Rx and Tx */ obj->config = SERIAL_CONFIG_UART1_RX_UART1_TX; } else { /* Use LP_UART for Rx, UART0 for Tx */ obj->config = SERIAL_CONFIG_UARTLP_RX_UART0_TX; } obj->rx_pin = rx; obj->tx_pin = tx; init_config(obj); /* TODO: set rx pin Pull mode ? */ /* set default baud rate and format */ serial_baud(obj, 9600); serial_format(obj, 8, ParityNone, 1); if (tx == UART0_TX) { /* The UART0 pins are the stdio pins */ stdio_uart_inited = 1; stdio_uart = *obj; } } void serial_free(serial_t *obj) { if (obj->tx_pin == UART0_TX) { stdio_uart_inited = 0; } serial_irq_ids[obj->index] = 0; /* Release the port HW */ deinit_config(obj); } void serial_baud(serial_t *obj, int baudrate) { bool switch_port_config = false; bool format_set = obj->format_set; uint8_t stop_bits = obj->format.stop_bits; uint8_t data_bits = obj->format.data_bits; SerialParity parity = (SerialParity) obj->format.parity; irq_setting_t irq_rx_setting = obj->irq_rx_setting; irq_setting_t irq_tx_setting = obj->irq_tx_setting; if ((obj->config == SERIAL_CONFIG_UARTLP_RX_UART0_TX) && (baudrate != 9600)) { /* If we were on LP UART but the baud rate is not 9600 then * switch to the standard UART (as the LP UART can't go any higher * because it's clocked from 32 kHz) */ deinit_config(obj); obj->config = SERIAL_CONFIG_UART0_RX_UART0_TX; init_config(obj); switch_port_config = true; } else if ((obj->config == SERIAL_CONFIG_UART0_RX_UART0_TX) && (baudrate == 9600)) { /* If we were on UART0 but the baud rate is 9600 then switch to the * LP UART for receive */ deinit_config(obj); obj->config = SERIAL_CONFIG_UARTLP_RX_UART0_TX; init_config(obj); switch_port_config = true; } /* Disable UART while writing to control registers */ obj->reg_base->UARTCR &= ~(1 << 0); if (switch_port_config) { /* If the port was switched, switch the port configuration also */ if (format_set) { /* This serial port has been previously set up so switch the * settings across to this new configuration */ serial_format(obj, data_bits, parity, stop_bits); } if (irq_rx_setting != IRQ_NOT_SET) { /* Do the same for Rx interrupts, if they were set */ serial_irq_set(obj, RxIrq, (irq_rx_setting == IRQ_ON)); } if (irq_tx_setting != IRQ_NOT_SET) { /* Do the same for Tx interrupts, if they were set */ serial_irq_set(obj, TxIrq, (irq_tx_setting == IRQ_ON)); } } switch (obj->config) { case SERIAL_CONFIG_UARTLP_RX_UART0_TX: { /* Set LP UART to 9600 (numerator 75 (0x4B), denominator 256 (00 == 256)) */ LP_UART_CTRL = (LP_UART_CTRL & ~0xFFFF) | 0x004B; set_baud(obj, baudrate); } break; case SERIAL_CONFIG_UART0_RX_UART0_TX: case SERIAL_CONFIG_UART1_RX_UART1_TX: { set_baud(obj, baudrate); } break; default: { MBED_ASSERT(false); } break; } /* Enable the UART again */ obj->reg_base->UARTCR |= 1 << 0; obj->baud_rate = baudrate; } void serial_format(serial_t *obj, int data_bits, SerialParity parity, int stop_bits) { bool lp_also = false; MBED_ASSERT(data_bits >= MIN_NUM_UART_DATA_BITS); MBED_ASSERT(data_bits <= MAX_NUM_UART_DATA_BITS); MBED_ASSERT(stop_bits >= NUM_UART_STOP_BITS_1); MBED_ASSERT(stop_bits <= NUM_UART_STOP_BITS_2); /* The LP UART is different to UARTs 0 and 1 so deal with it * explicitly when required */ if (obj->config == SERIAL_CONFIG_UARTLP_RX_UART0_TX) { lp_also = true; } /* Disable UART while writing to control registers */ obj->reg_base->UARTCR &= ~(1 << 0); /* Set data bits (bits 5 and 6 of the UART0/1 register, bits 18 and 19 of the LP UART register) */ obj->reg_base->UARTLCR_H = (obj->reg_base->UARTLCR_H & ~(0x03 << 5)) | (REGISTER_DATA_BITS(data_bits) << 5); if (lp_also) { LP_UART_CTRL = (LP_UART_CTRL & ~(0x03 << 18)) | (REGISTER_DATA_BITS(data_bits) << 18); } obj->format.data_bits = (uint8_t) data_bits; /* Set stop bits (bit 7 of the UART0/1 register) (there is no such setting for the LP UART) */ if (stop_bits == NUM_UART_STOP_BITS_1) { /* Clear 2-stop-bits bit */ obj->reg_base->UARTLCR_H &= ~(1 << 7); } else { /* Set 2-stop-bits bit */ obj->reg_base->UARTLCR_H |= 1 << 7; } obj->format.stop_bits = (uint8_t) stop_bits; /* Set parity */ switch (parity) { case ParityNone: { /* Disable parity */ obj->reg_base->UARTLCR_H &= ~0x02; if (lp_also) { LP_UART_CTRL &= ~(1 << 24); } } break; case ParityOdd: { /* Set even bit and enable parity */ obj->reg_base->UARTLCR_H = (obj->reg_base->UARTLCR_H | (1 << 3)) | (1 << 2); if (lp_also) { LP_UART_CTRL |= (1 << 24) | (1 << 25); } } break; case ParityEven: { /* Clear even bit and enable parity */ obj->reg_base->UARTLCR_H = (obj->reg_base->UARTLCR_H & ~(1 << 3)) | (1 << 2); if (lp_also) { LP_UART_CTRL &= ~(1 << 25); LP_UART_CTRL |= 1 << 24; } } break; default: { MBED_ASSERT(false); } break; } /* Enable the UART again */ obj->reg_base->UARTCR |= 1 << 0; obj->format.parity = (uint8_t) parity; obj->format_set = true; } /* ---------------------------------------------------------------- * MBED API CALLS: INTERRUPT FUNCTIONS * ----------------------------------------------------------------*/ void serial_irq_handler(serial_t *obj, uart_irq_handler handler, uint32_t id) { irq_handler = handler; serial_irq_ids[obj->index] = id; } void serial_irq_set(serial_t *obj, SerialIrq irq, uint32_t enable) { bool lp_also = false; if (obj->config == SERIAL_CONFIG_UARTLP_RX_UART0_TX) { lp_also = true; } /* Disable UART while writing to control registers */ obj->reg_base->UARTCR &= ~(1 << 0); if (enable) { switch (irq) { case RxIrq: { /* Bit 4 for Rx and bit 6 for Rx Timeout */ obj->reg_base->UARTIMSC |= (1 << 4) | (1 << 6); if (lp_also) { /* "Word Received" IRQ */ LP_UART_CTRL |= 1 << 23; } obj->irq_rx_setting = IRQ_ON; irq_enable(obj); } break; case TxIrq: { /* Bit 5 */ obj->reg_base->UARTIMSC |= 1 << 5; obj->irq_tx_setting = IRQ_ON; irq_enable(obj); } break; default: { MBED_ASSERT(false); } break; } } else { switch (irq) { case RxIrq: { /* Bit 4 for Rx and bit 6 for Rx Timeout */ obj->reg_base->UARTIMSC &= ~((1 << 4) | (1 << 6)); if (lp_also) { /* "Word Received" IRQ */ LP_UART_CTRL &= ~(1 << 23); } obj->irq_rx_setting = IRQ_OFF; } break; case TxIrq: { /* Bit 5 */ obj->reg_base->UARTIMSC &= ~(1 << 5); obj->irq_tx_setting = IRQ_OFF; } break; default: { MBED_ASSERT(false); } break; } if ((obj->irq_rx_setting == IRQ_OFF) && (obj->irq_tx_setting == IRQ_OFF)) { irq_disable(obj); } } /* Enable the UART again */ obj->reg_base->UARTCR |= 1 << 0; } /* ---------------------------------------------------------------- * MBED API CALLS: TRANSMIT AND RECEIVE FUNCTIONS * ----------------------------------------------------------------*/ int serial_getc(serial_t *obj) { uint8_t data = 0; /* Block until there is data to read */ while (!serial_readable(obj)) {} /* Read the data */ switch (obj->config) { case SERIAL_CONFIG_UARTLP_RX_UART0_TX: { data = (uint8_t) LP_UART_DATA; } break; case SERIAL_CONFIG_UART0_RX_UART0_TX: case SERIAL_CONFIG_UART1_RX_UART1_TX: { data = (uint8_t) obj->reg_base->UARTDR; } break; default: { MBED_ASSERT(false); } break; } return (int) data; } void serial_putc(serial_t *obj, int c) { /* Block until there is room to write */ while (!serial_writable(obj)) {} /* Write the data */ obj->reg_base->UARTDR = (uint8_t) c; } int serial_readable(serial_t *obj) { bool readable = false; switch (obj->config) { case SERIAL_CONFIG_UARTLP_RX_UART0_TX: { /* Check the status register, bits 8 to 10 indicate * the number of Rx bytes (make sure it's the status * register not the data register as a read from that * register would clear the Rx interrupt) */ readable = (((LP_UART_STATUS >> 8) & 0x07) != 0); } break; case SERIAL_CONFIG_UART0_RX_UART0_TX: case SERIAL_CONFIG_UART1_RX_UART1_TX: { /* Check the Rx FIFO Empty bit */ readable = ((obj->reg_base->UARTFR & (1 << 4)) != (1 << 4)); } break; default: { MBED_ASSERT(false); } break; } return (int) readable; } int serial_writable(serial_t *obj) { /* Check the "UART TX FIFO full" bit: * only if this is 0 can we transmit */ return (obj->reg_base->UARTFR & (1 << 5)) != (1 << 5); } void serial_break_set(serial_t *obj) { /* Disable UART while writing to control registers */ obj->reg_base->UARTCR &= ~(1 << 0); /* Set bit 1 of the line control register */ obj->reg_base->UARTLCR_H |= 1 << 0; /* Enable the UART again */ obj->reg_base->UARTCR |= 1 << 0; } void serial_break_clear(serial_t *obj) { /* Disable UART while writing to control registers */ obj->reg_base->UARTCR &= ~(1 << 0); /* Clear bit 1 of the line control register */ obj->reg_base->UARTLCR_H &= ~(1 << 0); /* Enable the UART again */ obj->reg_base->UARTCR |= 1 << 0; }