mbed library sources. Supersedes mbed-src.
Fork of mbed-dev by
Diff: targets/TARGET_ONSEMI/TARGET_NCS36510/rfAna.c
- Revision:
- 149:156823d33999
- Child:
- 150:02e0a0aed4ec
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/targets/TARGET_ONSEMI/TARGET_NCS36510/rfAna.c Fri Oct 28 11:17:30 2016 +0100 @@ -0,0 +1,291 @@ +/** +****************************************************************************** +* @file rfAna.c +* @brief Implementation of rfAna hw module functions +* @internal +* @author ON Semiconductor +* $Rev: 3445 $ +* $Date: 2015-06-22 13:51:24 +0530 (Mon, 22 Jun 2015) $ +****************************************************************************** + * Copyright 2016 Semiconductor Components Industries LLC (d/b/a ON Semiconductor). + * All rights reserved. This software and/or documentation is licensed by ON Semiconductor + * under limited terms and conditions. The terms and conditions pertaining to the software + * and/or documentation are available at http://www.onsemi.com/site/pdf/ONSEMI_T&C.pdf + * (ON Semiconductor Standard Terms and Conditions of Sale, Section 8 Software) and + * if applicable the software license agreement. Do not use this software and/or + * documentation unless you have carefully read and you agree to the limited terms and + * conditions. By using this software and/or documentation, you agree to the limited + * terms and conditions. +* +* THIS SOFTWARE IS PROVIDED "AS IS". NO WARRANTIES, WHETHER EXPRESS, IMPLIED +* OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF +* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE APPLY TO THIS SOFTWARE. +* ON SEMICONDUCTOR SHALL NOT, IN ANY CIRCUMSTANCES, BE LIABLE FOR SPECIAL, +* INCIDENTAL, OR CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER. +* @endinternal +* +* @ingroup rfAna +* +* @details +* +* <h1> Reference document(s) </h1> +*/ + +/************************************************************************************************* +* * +* Header files * +* * +*************************************************************************************************/ + +#include "memory_map.h" +#include "rfAna.h" +#include "clock.h" + +#ifdef REVA +#include "test.h" +#endif + +/************************************************************************************************* +* * +* Global variables * +* * +*************************************************************************************************/ + +/** Rf channel and tx power lookup tables (constant) + * @details + * + * The rf channel table is used to program internal hardware register for different 15.4 rf channels. + * It has 16 entries corresponding to 16 15.4 channels. + * Entry 1 <-> Channel 11 + * ... + * Entry 16 <-> Channel 26 + * + * Each entry is compound of 4 items. + * Item 0: Rx Frequency integer divide portion + * Item 1: Rx Frequency fractional divide portion + * Item 2: Tx Frequency integer divide portion + * Item 3: Tx Frequency fractional divide portion + * + * The tx power table is used to program internal hardware register for different 15.4 tx power levels. + * It has 43 entries corresponding to tx power levels from -32dBm to +10dBm. + * Entry 1 <-> -32dB + * Entry 2 <-> -31dB + * ... + * Entry 2 <-> 9dB + * Entry 43 <-> +10dB + * + * Each entry is compound of 1 byte. + */ + +// RR: Making high side injection changes to RevD +#ifdef REVD + +/** This rf LUT is built for high side injection, using low side injection + * would requiere to change this LUT. */ +const uint32_t rfLut[16][4] = {{0x50,0x00D4A7,0x4B,0x00A000}, + {0x50,0x017F52,0x4B,0x014001}, + {0x51,0xFE29FB,0x4B,0x01E001}, + {0x51,0xFED4A6,0x4C,0xFE7FFF}, + {0x51,0xFF7F51,0x4C,0xFF1FFF}, + {0x51,0x0029FC,0x4C,0xFFC000}, + {0x51,0x00D4A7,0x4C,0x006000}, + {0x51,0x017F52,0x4C,0x010001}, + {0x52,0xFE29FB,0x4C,0x01A001}, + {0x52,0xFED4A6,0x4D,0xFE3FFF}, + {0x52,0xFF7F51,0x4D,0xFEDFFF}, + {0x52,0x0029FC,0x4D,0xFF8000}, + {0x52,0x00D4A7,0x4D,0x002000}, + {0x52,0x017F52,0x4D,0x00C001}, + {0x53,0xFE29FB,0x4D,0x016001}, + {0x53,0xFED4A6,0x4E,0xFDFFFE} +}; + +const uint8_t txPowerLut[43] = {0,0,0, // -32dBm to -30dBm + 0,0,0,0,0,0,0,0,0,0, // -29dBm to -20dBm + 0,0,0,0,0,0,0,0,1,2, // -19dBm to -10dBm + 3,4,5,6,7,8,9,10,11,12, // -9dBm to 0dBm + 13,14,15,16,17,18,19,20,20,20 + }; // +1dBm to +10 dBm + +#endif /* REVD */ + +#ifdef REVC +/** This rf LUT is built for low side injection, using high side injection + * would requiere to change this LUT. */ +const uint32_t rfLut[16][4] = {{0x47,0xFF15FC,0x4B,0x00A000}, + {0x47,0xFFAC93,0x4B,0x014001}, + {0x47,0x00432A,0x4B,0x01E001}, + {0x47,0x00D9C1,0x4C,0xFE7FFF}, + {0x47,0x017058,0x4C,0xFF1FFF}, + {0x48,0xFE06EC,0x4C,0xFFC000}, + {0x48,0xFE9D83,0x4C,0x006000}, + {0x48,0xFF341A,0x4C,0x010001}, + {0x48,0xFFCAB1,0x4C,0x01A001}, + {0x48,0x006148,0x4D,0xFE3FFF}, + {0x48,0x00F7DF,0x4D,0xFEDFFF}, + {0x48,0x018E76,0x4D,0xFF8000}, + {0x49,0xFE250A,0x4D,0x002000}, + {0x49,0xFEBBA1,0x4D,0x00C001}, + {0x49,0xFF5238,0x4D,0x016001}, + {0x49,0xFFE8CF,0x4E,0xFDFFFE} +}; + +const uint8_t txPowerLut[43] = {0,0,0, // -32dBm to -30dBm + 0,0,0,0,0,0,0,0,0,0, // -29dBm to -20dBm + 0,0,0,0,0,0,1,1,2,2, // -19dBm to -10dBm (clamp low at -14dB) + 3,3,4,6,7,9,10,12,13,15, // -9dBm to 0dBm + 17,19,20,20,20,20,20,20,20,20 + }; // +1dBm to +10 dBm (clamp high at +3dB) +#endif /* REVC */ + +#ifdef REVB +/** This rf LUT is built for low side injection, using high side injection + * would requiere to change this LUT. */ +const uint32_t rfLut[16][4] = {{0x47,0xFF15FC,0x4B,0x00A000}, + {0x47,0xFFAC93,0x4B,0x014001}, + {0x47,0x00432A,0x4B,0x01E001}, + {0x47,0x00D9C1,0x4C,0xFE7FFF}, + {0x47,0x017058,0x4C,0xFF1FFF}, + {0x48,0xFE06EC,0x4C,0xFFC000}, + {0x48,0xFE9D83,0x4C,0x006000}, + {0x48,0xFF341A,0x4C,0x010001}, + {0x48,0xFFCAB1,0x4C,0x01A001}, + {0x48,0x006148,0x4D,0xFE3FFF}, + {0x48,0x00F7DF,0x4D,0xFEDFFF}, + {0x48,0x018E76,0x4D,0xFF8000}, + {0x49,0xFE250A,0x4D,0x002000}, + {0x49,0xFEBBA1,0x4D,0x00C001}, + {0x49,0xFF5238,0x4D,0x016001}, + {0x49,0xFFE8CF,0x4E,0xFDFFFE} +}; + +const uint8_t txPowerLut[43] = {0,0,0, // -32dBm to -30dBm + 0,0,0,0,0,0,0,0,0,0, // -29dBm to -20dBm + 0,0,0,0,0,0,1,1,2,2, // -19dBm to -10dBm (clamp low at -14dB) + 3,3,4,6,7,9,10,12,13,15, // -9dBm to 0dBm + 17,19,20,20,20,20,20,20,20,20 + }; // +1dBm to +10 dBm (clamp high at +3dB) +#endif + +#ifdef REVA +const uint32_t rfLut[16][4] = {{0x57,0xFF5D2F,0x51,0x018001}, + {0x57,0x0007DA,0x52,0xFE1FFF}, + {0x57,0x00B285,0x52,0xFEBFFF}, + {0x57,0x015D30,0x52,0xFF6000}, + {0x58,0xFE07D8,0x52,0x000000}, + {0x58,0xFEB283,0x52,0x00A000}, + {0x58,0xFF5D2F,0x52,0x014001}, + {0x58,0x0007DA,0x52,0x01E001}, + {0x58,0x00B285,0x53,0xFE7FFF}, + {0x58,0x015D30,0x53,0xFF1FFF}, + {0x59,0xFE07D8,0x53,0xFFC000}, + {0x59,0xFEB283,0x53,0x006000}, + {0x59,0xFF5D2F,0x53,0x010001}, + {0x59,0x0007DA,0x53,0x01A001}, + {0x59,0x00B285,0x53,0xFE3FFF}, + {0x59,0x015D30,0x53,0xFEDFFF} +}; + +const uint8_t txPowerLut[43] = {1,2,3, // -32dBm to -30dBm + 4,5,5,5,5,5,5,5,5,5, // -29dBm to -20dBm (clamp at -28dB) + 5,5,5,5,5,5,5,5,5,5, // -19dBm to -10dBm + 5,5,5,5,5,5,5,5,5,5, // -9dBm to 0dBm + 5,5,5,5,5,5,5,5,5,5 + }; // +1dBm to +10 dBm +#endif + +/************************************************************************************************* +* * +* Functions * +* * +*************************************************************************************************/ + +void fRfAnaInit() +{ + // Enable rfana clock + CLOCK_ENABLE(CLOCK_RFANA); + +#ifdef REVA + // Force Pll lock (it shouldn't be needed for either silicon if the part is configured/trimmed properly) + fTestForcePllLock(); + // Bypass Pll regulator + fTestBypassPllReg(); +#endif + + // Set PLL timing + RFANAREG->PLL_TIMING.BITS.PLL_RESET_TIME = 0x1E; // 30us + RFANAREG->PLL_TIMING.BITS.PLL_LOCK_TIME = 0x2F; // 47us + + // Set other parameters + RFANAREG->RX_CONTROL.BITS.LNA_GAIN_MODE = 0x1; // High Gain mode + RFANAREG->RX_CONTROL.BITS.ADC_DITHER_MODE = 0x0; // Dither mode disabled +} + +boolean fRfAnaIoctl (uint32_t request, void *argument) +{ + uint8_t channel, txPower; + + // Enable rfana clock (in case fRfAnaIoctl is used before call of fRfAnaInit) + CLOCK_ENABLE(CLOCK_RFANA); + + switch(request) { + case SET_RF_CHANNEL: + channel = *(uint8_t*)argument; + + // Set tx/rx integer/fractional divide portions + RFANAREG->TX_LO_CONTROL.BITS.FRACT_WORD = rfLut[channel - 11][3]; + RFANAREG->TX_LO_CONTROL.BITS.INT_WORD = rfLut[channel - 11][2]; + RFANAREG->RX_LO_CONTROL.BITS.FRACT_WORD = rfLut[channel - 11][1]; + RFANAREG->RX_LO_CONTROL.BITS.INT_WORD = rfLut[channel - 11][0]; + + // Set tx/rx vco trims +#ifdef REVB + /** REVB is requiering to adjust tx/rx vco trims each time a new 15.4 channel is used, in revB it is done + * from trims stored in flash A, it has the drawback that it is not workable when flash A is not accessible.*/ + if (channel < 19) { + RFANATRIMREG->PLL_TRIM.BITS.TX_VCO_TRIM = (TRIMREG->TX_VCO_LUT1.WORD) >> ((channel - 11) * 4); + RFANATRIMREG->PLL_TRIM.BITS.RX_VCO_TRIM = (TRIMREG->RX_VCO_LUT1.WORD) >> ((channel - 11) * 4); + } else { + RFANATRIMREG->PLL_TRIM.BITS.TX_VCO_TRIM = (TRIMREG->TX_VCO_LUT2.WORD) >> ((channel - 19) * 4); + RFANATRIMREG->PLL_TRIM.BITS.RX_VCO_TRIM = (TRIMREG->RX_VCO_LUT2.WORD) >> ((channel - 19) * 4); + } +#endif /* REVB */ +#ifdef REVC + /** REVC is requiering to adjust tx/rx vco trims each time a new 15.4 channel is used, in revB it is done + * from trims stored in dedicated registers available in digital.*/ + if (channel < 19) { + RFANATRIMREG->PLL_TRIM.BITS.TX_VCO_TRIM = (RFANATRIMREG->TX_VCO_TRIM_LUT1) >> ((channel - 11) * 4); + RFANATRIMREG->PLL_TRIM.BITS.RX_VCO_TRIM = (RFANATRIMREG->RX_VCO_TRIM_LUT1) >> ((channel - 11) * 4); + } else { + RFANATRIMREG->PLL_TRIM.BITS.TX_VCO_TRIM = (RFANATRIMREG->TX_VCO_TRIM_LUT2) >> ((channel - 19) * 4); + RFANATRIMREG->PLL_TRIM.BITS.RX_VCO_TRIM = (RFANATRIMREG->RX_VCO_TRIM_LUT2) >> ((channel - 19) * 4); + } +#endif /* REVC */ +#ifdef REVD + /** REVD is requiering to adjust tx/rx vco trims each time a new 15.4 channel is used, in revB it is done + * from trims stored in dedicated registers available in digital.*/ + if (channel < 19) { + RFANATRIMREG->PLL_TRIM.BITS.TX_VCO_TRIM = (RFANATRIMREG->TX_VCO_TRIM_LUT1) >> ((channel - 11) * 4); + RFANATRIMREG->PLL_TRIM.BITS.RX_VCO_TRIM = (RFANATRIMREG->RX_VCO_TRIM_LUT1) >> ((channel - 11) * 4); + } else { + RFANATRIMREG->PLL_TRIM.BITS.TX_VCO_TRIM = (RFANATRIMREG->TX_VCO_TRIM_LUT2) >> ((channel - 19) * 4); + RFANATRIMREG->PLL_TRIM.BITS.RX_VCO_TRIM = (RFANATRIMREG->RX_VCO_TRIM_LUT2) >> ((channel - 19) * 4); + } +#endif /* REVD */ + break; + case SET_TX_POWER: + txPower = *(uint8_t*)argument; + + // Set tx power register + if ((txPower & 0x20) == 0) { + RFANAREG->TX_POWER = (txPowerLut[txPower + 32] & 0xFF); + } else { + RFANAREG->TX_POWER = (txPowerLut[txPower - 32] & 0xFF); + } + + break; + default: + return False; + } + return True; +}