Ram Gandikota
/
ABCD
A metronome using the FRDM K64F board
easy-connect/esp8266-driver/ESP8266/ESP8266.cpp
- Committer:
- ram54288
- Date:
- 2017-05-14
- Revision:
- 0:a7a43371b306
File content as of revision 0:a7a43371b306:
/* ESP8266 Example * Copyright (c) 2015 ARM Limited * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "ESP8266.h" ESP8266::ESP8266(PinName tx, PinName rx, bool debug) : _serial(tx, rx, 1024), _parser(_serial) , _packets(0), _packets_end(&_packets) { _serial.baud(115200); _parser.debugOn(debug); } bool ESP8266::startup(int mode) { //only 3 valid modes if(mode < 1 || mode > 3) { return false; } bool success = reset() && _parser.send("AT+CWMODE=%d", mode) && _parser.recv("OK") && _parser.send("AT+CIPMUX=1") && _parser.recv("OK"); _parser.oob("+IPD", this, &ESP8266::_packet_handler); return success; } bool ESP8266::reset(void) { for (int i = 0; i < 2; i++) { if (_parser.send("AT+RST") && _parser.recv("OK\r\nready")) { return true; } } return false; } bool ESP8266::dhcp(bool enabled, int mode) { //only 3 valid modes if(mode < 0 || mode > 2) { return false; } return _parser.send("AT+CWDHCP=%d,%d", enabled?1:0, mode) && _parser.recv("OK"); } bool ESP8266::connect(const char *ap, const char *passPhrase) { return _parser.send("AT+CWJAP=\"%s\",\"%s\"", ap, passPhrase) && _parser.recv("OK"); } bool ESP8266::disconnect(void) { return _parser.send("AT+CWQAP") && _parser.recv("OK"); } const char *ESP8266::getIPAddress(void) { if (!(_parser.send("AT+CIFSR") && _parser.recv("+CIFSR:STAIP,\"%15[^\"]\"", _ip_buffer) && _parser.recv("OK"))) { return 0; } return _ip_buffer; } const char *ESP8266::getMACAddress(void) { if (!(_parser.send("AT+CIFSR") && _parser.recv("+CIFSR:STAMAC,\"%17[^\"]\"", _mac_buffer) && _parser.recv("OK"))) { return 0; } return _mac_buffer; } const char *ESP8266::getGateway() { if (!(_parser.send("AT+CIPSTA?") && _parser.recv("+CIPSTA:gateway:\"%15[^\"]\"", _gateway_buffer) && _parser.recv("OK"))) { return 0; } return _gateway_buffer; } const char *ESP8266::getNetmask() { if (!(_parser.send("AT+CIPSTA?") && _parser.recv("+CIPSTA:netmask:\"%15[^\"]\"", _netmask_buffer) && _parser.recv("OK"))) { return 0; } return _netmask_buffer; } int8_t ESP8266::getRSSI() { int8_t rssi; char bssid[18]; if (!(_parser.send("AT+CWJAP?") && _parser.recv("+CWJAP:\"%*[^\"]\",\"%17[^\"]\"", bssid) && _parser.recv("OK"))) { return 0; } if (!(_parser.send("AT+CWLAP=\"\",\"%s\",", bssid) && _parser.recv("+CWLAP:(%*d,\"%*[^\"]\",%hhd,", &rssi) && _parser.recv("OK"))) { return 0; } return rssi; } bool ESP8266::isConnected(void) { return getIPAddress() != 0; } int ESP8266::scan(WiFiAccessPoint *res, unsigned limit) { unsigned cnt = 0; nsapi_wifi_ap_t ap; if (!_parser.send("AT+CWLAP")) { return NSAPI_ERROR_DEVICE_ERROR; } while (recv_ap(&ap)) { if (cnt < limit) { res[cnt] = WiFiAccessPoint(ap); } cnt++; if (limit != 0 && cnt >= limit) { break; } } return cnt; } bool ESP8266::open(const char *type, int id, const char* addr, int port) { //IDs only 0-4 if(id > 4) { return false; } return _parser.send("AT+CIPSTART=%d,\"%s\",\"%s\",%d", id, type, addr, port) && _parser.recv("OK"); } bool ESP8266::send(int id, const void *data, uint32_t amount) { //May take a second try if device is busy for (unsigned i = 0; i < 2; i++) { if (_parser.send("AT+CIPSEND=%d,%d", id, amount) && _parser.recv(">") && _parser.write((char*)data, (int)amount) >= 0) { return true; } } return false; } void ESP8266::_packet_handler() { int id; uint32_t amount; // parse out the packet if (!_parser.recv(",%d,%d:", &id, &amount)) { return; } struct packet *packet = (struct packet*)malloc( sizeof(struct packet) + amount); if (!packet) { return; } packet->id = id; packet->len = amount; packet->next = 0; if (!(_parser.read((char*)(packet + 1), amount))) { free(packet); return; } // append to packet list *_packets_end = packet; _packets_end = &packet->next; } int32_t ESP8266::recv(int id, void *data, uint32_t amount) { while (true) { // check if any packets are ready for us for (struct packet **p = &_packets; *p; p = &(*p)->next) { if ((*p)->id == id) { struct packet *q = *p; if (q->len <= amount) { // Return and remove full packet memcpy(data, q+1, q->len); if (_packets_end == &(*p)->next) { _packets_end = p; } *p = (*p)->next; uint32_t len = q->len; free(q); return len; } else { // return only partial packet memcpy(data, q+1, amount); q->len -= amount; memmove(q+1, (uint8_t*)(q+1) + amount, q->len); return amount; } } } // Wait for inbound packet if (!_parser.recv("OK")) { return -1; } } } bool ESP8266::close(int id) { //May take a second try if device is busy for (unsigned i = 0; i < 2; i++) { if (_parser.send("AT+CIPCLOSE=%d", id) && _parser.recv("OK")) { return true; } } return false; } void ESP8266::setTimeout(uint32_t timeout_ms) { _parser.setTimeout(timeout_ms); } bool ESP8266::readable() { return _serial.readable(); } bool ESP8266::writeable() { return _serial.writeable(); } void ESP8266::attach(Callback<void()> func) { _serial.attach(func); } bool ESP8266::recv_ap(nsapi_wifi_ap_t *ap) { int sec; bool ret = _parser.recv("+CWLAP:(%d,\"%32[^\"]\",%hhd,\"%hhx:%hhx:%hhx:%hhx:%hhx:%hhx\",%d", &sec, ap->ssid, &ap->rssi, &ap->bssid[0], &ap->bssid[1], &ap->bssid[2], &ap->bssid[3], &ap->bssid[4], &ap->bssid[5], &ap->channel); ap->security = sec < 5 ? (nsapi_security_t)sec : NSAPI_SECURITY_UNKNOWN; return ret; }