Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Dependencies: FreescaleIAP SimpleDMA mbed-rtos mbed
Fork of CDMS_CODE by
Diff: SDC_init.h
- Revision:
- 1:a0055b3280c8
- Child:
- 55:39e59903bc3a
- Child:
- 69:20f09a0c3fd2
diff -r f016e9e8d48b -r a0055b3280c8 SDC_init.h
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/SDC_init.h Mon Dec 14 12:04:01 2015 +0000
@@ -0,0 +1,427 @@
+//Serial PC(USBTX, USBRX);
+//DigitalOut cs_SDCard(PTE22);
+DigitalOut cs_SDCard(PTB1);
+
+#define SD_COMMAND_TIMEOUT 5000
+
+#define SD_DBG 0
+
+#define R1_IDLE_STATE (1 << 0)
+#define R1_ERASE_RESET (1 << 1)
+#define R1_ILLEGAL_COMMAND (1 << 2)
+#define R1_COM_CRC_ERROR (1 << 3)
+#define R1_ERASE_SEQUENCE_ERROR (1 << 4)
+#define R1_ADDRESS_ERROR (1 << 5)
+#define R1_PARAMETER_ERROR (1 << 6)
+//SPI spi(PTA16, PTA17, PTA15); // mosi, miso, sclk
+
+
+int initialise_card();
+int initialise_card_v1();
+int initialise_card_v2();
+int disk_initialize();
+//int disk_write(const uint8_t *, uint64_t);
+
+int disk_erase(int,int);
+
+uint64_t sd_sectors();
+uint64_t sectors;
+
+int cmd(int, int);
+int cmd58();
+int cmdx(int, int);
+int cmd8();
+int read(uint8_t*, uint32_t );
+int write(const uint8_t*, uint32_t );
+static uint32_t ext_bits(unsigned char *, int , int );
+
+int cdv;
+
+#define SDCARD_FAIL 0
+#define SDCARD_V1 1
+#define SDCARD_V2 2
+#define SDCARD_V2HC 3
+
+int count_bro;
+int i;
+int random[1000];
+
+
+void initialisation_SDCard(){
+//*******************************
+
+// cs_adf =1;
+
+//**************************
+
+// start_block_num =10 ; // Read from TC
+// end_block_num =Science_TMframe::SDC_address ; // Read from TC
+// printf("welcome\n");
+ initialise_card();
+ int result= initialise_card();
+// printf("initialise card result=%d\n",result);
+ disk_initialize();
+}
+
+
+
+
+int initialise_card()
+{
+ // Set to 100kHz for initialisation, and clock card with cs_SDCard = 1
+ spi.frequency(100000);
+ cs_SDCard = 1;
+ for (int i = 0; i < 16; i++) {
+ spi.write(0xFF);
+ }
+
+ // send CMD0, should return with all zeros except IDLE STATE set (bit 0)
+ if (cmd(0, 0) != R1_IDLE_STATE) {
+ debug("No disk, or could not put SD card in to SPI idle state\n");
+ return SDCARD_FAIL;
+ }
+
+// send CMD8 to determine whther it is ver 2.x
+ int r = cmd8();
+ if (r == R1_IDLE_STATE) {
+// printf("Entering v2 bro\n");
+ return initialise_card_v2();
+
+ } else if (r == (R1_IDLE_STATE | R1_ILLEGAL_COMMAND)) {
+ printf("Entering v1 bro\n");
+ return initialise_card_v1();
+
+ } else {
+ debug("Not in idle state after sending CMD8 (not an SD card?)\n");
+ return SDCARD_FAIL;
+ }
+}
+
+int initialise_card_v1()
+{
+ for (int i = 0; i < SD_COMMAND_TIMEOUT; i++) {
+ cmd(55, 0);
+ if (cmd(41, 0) == 0) {
+ // printf("Yuppie v1 successful\n");
+ cdv = 512;
+ debug_if(SD_DBG, "\n\rInit: SEDCARD_V1\n\r");
+
+ return SDCARD_V1;
+ }
+ }
+
+ debug("Timeout waiting for v1.x card\n");
+ return SDCARD_FAIL;
+}
+
+
+int initialise_card_v2()
+{
+ for (int i = 0; i < SD_COMMAND_TIMEOUT; i++) {
+ wait_ms(50);
+ cmd58();
+ cmd(55, 0);
+ if (cmd(41, 0x40000000) == 0) {
+ // printf("Yuppie,v2 successful\n");
+ cmd58();
+ debug_if(SD_DBG, "\n\rInit: SDCARD_V2\n\r");
+ cdv = 1;
+
+ return SDCARD_V2;
+ }
+ }
+
+ debug("Timeout waiting for v2.x card\n");
+ return SDCARD_FAIL;
+}
+
+int cmd(int cmd, int arg)
+{
+ cs_SDCard = 0;
+
+ // send a command
+ spi.write(0x40 | cmd);
+ spi.write(arg >> 24);
+ spi.write(arg >> 16);
+ spi.write(arg >> 8);
+ spi.write(arg >> 0);
+ spi.write(0x95);
+
+ // wait for the repsonse (response[7] == 0)
+ for (int i = 0; i < SD_COMMAND_TIMEOUT; i++) {
+ int response = spi.write(0xFF);
+ if (!(response & 0x80)) {
+ cs_SDCard = 1;
+ spi.write(0xFF);
+ return response;
+ }
+ }
+ cs_SDCard = 1;
+ spi.write(0xFF);
+ return -1; // timeout
+}
+
+
+int cmd58()
+{
+ cs_SDCard = 0;
+ int arg = 0;
+
+ // send a command
+ spi.write(0x40 | 58);
+ spi.write(arg >> 24);
+ spi.write(arg >> 16);
+ spi.write(arg >> 8);
+ spi.write(arg >> 0);
+ spi.write(0x95);
+
+ // wait for the repsonse (response[7] == 0)
+ for (int i = 0; i < SD_COMMAND_TIMEOUT; i++) {
+ int response = spi.write(0xFF);
+ if (!(response & 0x80)) {
+ int ocr = spi.write(0xFF) << 24;
+ ocr |= spi.write(0xFF) << 16;
+ ocr |= spi.write(0xFF) << 8;
+ ocr |= spi.write(0xFF) << 0;
+ cs_SDCard = 1;
+ spi.write(0xFF);
+ return response;
+ }
+ }
+ cs_SDCard = 1;
+ spi.write(0xFF);
+ return -1; // timeout
+}
+
+
+int cmd8()
+{
+ cs_SDCard = 0;
+
+ // send a command
+ spi.write(0x40 | 8); // CMD8
+ spi.write(0x00); // reserved
+ spi.write(0x00); // reserved
+ spi.write(0x01); // 3.3v
+ spi.write(0xAA); // check pattern
+ spi.write(0x87); // crc
+
+ // wait for the repsonse (response[7] == 0)
+ for (int i = 0; i < SD_COMMAND_TIMEOUT * 1000; i++) {
+ char response[5];
+ response[0] = spi.write(0xFF);
+ if (!(response[0] & 0x80)) {
+ for (int j = 1; j < 5; j++) {
+ response[i] = spi.write(0xFF);
+ }
+ cs_SDCard = 1;
+ spi.write(0xFF);
+ return response[0];
+ }
+ }
+ cs_SDCard = 1;
+ spi.write(0xFF);
+ return -1; // timeout
+}
+
+uint64_t sd_sectors()
+{
+ uint32_t c_size, c_size_mult, read_bl_len;
+ uint32_t block_len, mult, blocknr, capacity;
+ uint32_t hc_c_size;
+ uint64_t blocks;
+
+ // CMD9, Response R2 (R1 byte + 16-byte block read)
+ if (cmdx(9, 0) != 0) {
+ debug("Didn't get a response from the disk\n");
+ return 0;
+ }
+
+ uint8_t csd[16];
+ if (read(csd, 16) != 0) {
+ debug("Couldn't read csd response from disk\n");
+ return 0;
+ }
+
+ // csd_structure : csd[127:126]
+ // c_size : csd[73:62]
+ // c_size_mult : csd[49:47]
+ // read_bl_len : csd[83:80] - the *maximum* read block length
+
+ int csd_structure = ext_bits(csd, 127, 126);
+
+ switch (csd_structure) {
+ case 0:
+ cdv = 512;
+ c_size = ext_bits(csd, 73, 62);
+ c_size_mult = ext_bits(csd, 49, 47);
+ read_bl_len = ext_bits(csd, 83, 80);
+
+ block_len = 1 << read_bl_len;
+ mult = 1 << (c_size_mult + 2);
+ blocknr = (c_size + 1) * mult;
+ capacity = blocknr * block_len;
+ blocks = capacity / 512;
+ debug_if(SD_DBG, "\n\rSDCard\n\rc_size: %d \n\rcapacity: %ld \n\rsectors: %lld\n\r", c_size, capacity, blocks);
+ break;
+
+ case 1:
+ cdv = 1;
+ hc_c_size = ext_bits(csd, 63, 48);
+ blocks = (hc_c_size+1)*1024;
+ debug_if(SD_DBG, "\n\rSDHC Card \n\rhc_c_size: %d\n\rcapacity: %lld \n\rsectors: %lld\n\r", hc_c_size, blocks*512, blocks);
+ break;
+
+ default:
+ debug("CSD struct unsupported\r\n");
+ return 0;
+ };
+ return blocks;
+}
+
+int cmdx(int cmd, int arg)
+{
+ cs_SDCard = 0;
+
+ // send a command
+ spi.write(0x40 | cmd);
+ spi.write(arg >> 24);
+ spi.write(arg >> 16);
+ spi.write(arg >> 8);
+ spi.write(arg >> 0);
+ spi.write(0x95);
+
+ // wait for the repsonse (response[7] == 0)
+ for (int i = 0; i < SD_COMMAND_TIMEOUT; i++) {
+ int response = spi.write(0xFF);
+ if (!(response & 0x80)) {
+ return response;
+ }
+ }
+ cs_SDCard = 1;
+ spi.write(0xFF);
+ return -1; // timeout
+}
+
+static uint32_t ext_bits(unsigned char *data, int msb, int lsb)
+{
+ uint32_t bits = 0;
+ uint32_t size = 1 + msb - lsb;
+ for (int i = 0; i < size; i++) {
+ uint32_t position = lsb + i;
+ uint32_t byte = 15 - (position >> 3);
+ uint32_t bit = position & 0x7;
+ uint32_t value = (data[byte] >> bit) & 1;
+ bits |= value << i;
+ }
+ return bits;
+}
+
+int disk_initialize()
+{
+ int i = initialise_card();
+ debug_if(SD_DBG, "init card = %d\n", i);
+ sectors = sd_sectors();
+
+ // Set block length to 512 (CMD16)
+ if (cmd(16, 512) != 0) {
+ debug("Set 512-byte block timed out\n");
+ return 1;
+ } else {
+ // printf("Hey,block init succesful\n");
+ }
+
+ spi.frequency(1000000); // Set to 1MHz for data transfer
+ return 0;
+}
+
+int disk_write(const uint8_t *buffer, uint64_t block_number)
+
+{
+ // set write address for single block (CMD24)
+ if (cmd(24, block_number * cdv) != 0) {
+ return 1;
+ }
+
+ // send the data block
+ write(buffer, 512);
+ //printf("Written Successfully bro \n");
+ return 0;
+}
+
+int write(const uint8_t*buffer, uint32_t length)
+{
+ cs_SDCard = 0;
+
+ // indicate start of block
+ spi.write(0xFE);
+
+ // write the data
+ for (int i = 0; i < length; i++) {
+ spi.write(buffer[i]);
+ }
+
+ // write the checksum
+ spi.write(0xFF);
+ spi.write(0xFF);
+
+ // check the response token
+ if ((spi.write(0xFF) & 0x1F) != 0x05) {
+ cs_SDCard = 1;
+ spi.write(0xFF);
+ return 1;
+ }
+
+ // wait for write to finish
+ while (spi.write(0xFF) == 0);
+
+ cs_SDCard = 1;
+ spi.write(0xFF);
+ return 0;
+}
+
+int disk_read(uint8_t *buffer, uint64_t block_number)
+{
+ // set read address for single block (CMD17)
+ if (cmd(17, block_number * cdv) != 0) {
+ return 1;
+ }
+
+ // receive the data
+ read(buffer, 512);
+ return 0;
+}
+
+int read(uint8_t *buffer, uint32_t length)
+{
+ cs_SDCard = 0;
+
+ // read until start byte (0xFF)
+ while (spi.write(0xFF) != 0xFE);
+
+ // read data
+ for (int i = 0; i < length; i++) {
+ buffer[i] = spi.write(0xFF);
+ }
+ spi.write(0xFF); // checksum
+ spi.write(0xFF);
+
+ cs_SDCard = 1;
+ spi.write(0xFF);
+ return 0;
+}
+
+int disk_erase(int startBlock, int totalBlocks)
+{
+ if(cmd(32, startBlock * cdv) != 0) {
+ return 1;
+ }
+ if (cmd(33, (startBlock+totalBlocks-1) * cdv) != 0) {
+ return 1;
+ }
+ if (cmd(38,0) != 0) {
+ return 1;
+ }
+
+ return 0; //normal return
+}
\ No newline at end of file
