Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Dependencies: FreescaleIAP SimpleDMA mbed-rtos mbed
Fork of CDMS_CODE by
CDMS_PL.h
- Committer:
- chaithanyarss
- Date:
- 2016-06-30
- Revision:
- 206:fba4aeebf004
- Child:
- 207:28a07943dded
File content as of revision 206:fba4aeebf004:
int pl_next_index=-1;
uint8_t pl_main_flag=0;
uint8_t PL_PREV_STATE=0x00;
uint8_t POWER_LEVEL = 3; //Would be present in HK data extracted
extern uint32_t pl_block[192]={0};
uint32_t pl_time;
uint16_t PL_MAIN_COUNTER=0;
uint32_t TIME_LATEST_PL=0;
uint8_t i;
uint8_t PL_BEE_SW_STATUS=0;
//Serial pc(USBTX,USBRX);
#define PL_MAIN_STATUS 0x01
#define PL_LOW_POWER 0x02
#define STATE_OFF 0x00
#define STATE_STANDBY 0x04
#define STATE_HIBERNATE 0x08
#define STATE_SCIENCE 0x0C //also used as mask for PL_STATE
#define PL_OFF 0x00
#define PL_STANDBY 0x10
#define PL_HIBERNATE 0x20
#define PL_SCIENCE 0x30
#define PL_SUCCESS_I2C 0x40
#define PL_ERR_I2C 0x50
#define PL_INVALID_STATE 0x60
#define PL_DISABLED 0x70 //also used as mask for PL_STATUS
#define EXECUTED 0x00000001
#define RETRY 0x00000002
#define UNEXECUTED 0x00000003 //also used as mask for EXEC_STATUS
DigitalOut PYLD_DFF(PIN73);
DigitalOut PYLD_DFF_CLK(PIN65);
DigitalOut PYLD_EPS_DFF_PWR(PIN64);
DigitalOut PYLD_EPS_DFF_PWR_CLK(PIN40);
Base_tm* FCTN_CDMS_RLY_TMTC(Base_tc *tc_ptr);
// waiting 1us for setup time,hold time and propagation delay
#define SET_PL_BEE_OFF {\
PYLD_DFF_CLK = 0;\
PYLD_DFF = 0;\
wait_us(1);\
PYLD_DFF_CLK = 1;\
wait_us(1);\
PYLD_DFF_CLK = 0;\
wait_us(1);\
}
#define SET_PL_BEE_ON {\
PYLD_DFF_CLK = 0;\
PYLD_DFF = 1;\
wait_us(1);\
PYLD_DFF_CLK = 1;\
wait_us(1);\
PYLD_DFF_CLK = 0;\
wait_us(1);\
}
//TC_string[0] should not be 0x00
#define SET_PL_BEE_STANDBY(tm_ptr_standby) {\
Base_tc *pl_tc_standby = new Short_tc;\
pl_tc_standby->next_TC = NULL;\
PUTshort_or_long(pl_tc_standby,0);\
PUTcrc_pass(pl_tc_standby,0x1);\
PUTexec_status(pl_tc_standby,0);\
pl_tc_standby->TC_string[0] = 0x01;\
pl_tc_standby->TC_string[1] = 0xE1;\
pl_tc_standby->TC_string[2] = 0x81;\
pl_tc_standby->TC_string[3] = 0x02;\
pl_tc_standby->TC_string[4] = 0;\
pl_tc_standby->TC_string[5] = 0;\
pl_tc_standby->TC_string[6] = 0;\
pl_tc_standby->TC_string[7] = 0;\
pl_tc_standby->TC_string[8] = 0;\
uint16_t crc16 = crc16_gen(pl_tc_standby->TC_string, 9);\
pl_tc_standby->TC_string[9] = (uint8_t)(crc16 & 0xFF00)>>8;\
pl_tc_standby->TC_string[10] = (uint8_t)(crc16 & 0x00FF);\
tm_ptr_standby = FCTN_CDMS_RLY_TMTC(pl_tc_standby);\
VERIFY_TM(tm_ptr_standby);\
}
//TC_string[0] should not be 0x00
#define SET_PL_BEE_HIBERNATE(tm_ptr_hibernate) {\
Base_tc *pl_tc_hibernate = new Short_tc;\
pl_tc_hibernate->next_TC = NULL;\
PUTshort_or_long(pl_tc_hibernate,0);\
PUTcrc_pass(pl_tc_hibernate,0x1);\
PUTexec_status(pl_tc_hibernate,0);\
pl_tc_hibernate->TC_string[0] = 0x01;\
pl_tc_hibernate->TC_string[1] = 0xE1;\
pl_tc_hibernate->TC_string[2] = 0x81;\
pl_tc_hibernate->TC_string[3] = 0x03;\
pl_tc_hibernate->TC_string[4] = 0;\
pl_tc_hibernate->TC_string[5] = 0;\
pl_tc_hibernate->TC_string[6] = 0;\
pl_tc_hibernate->TC_string[7] = 0;\
pl_tc_hibernate->TC_string[8] = 0;\
uint16_t crc16 = crc16_gen(pl_tc_hibernate->TC_string, 9);\
pl_tc_hibernate->TC_string[9] = (uint8_t)(crc16 & 0xFF00)>>8;\
pl_tc_hibernate->TC_string[10] = (uint8_t)(crc16 & 0x00FF);\
tm_ptr_hibernate = FCTN_CDMS_RLY_TMTC(pl_tc_hibernate);\
VERIFY_TM(tm_ptr_hibernate);\
}
//TC_string[0] should not be 0x00
/*
PUTshort_or_long(pl_tc_science,0);\
PUTcrc_pass(pl_tc_science,0x1);\
PUTexec_status(pl_tc_science,0);\*/
#define SET_PL_BEE_SCIENCE(tm_ptr_science) {\
Base_tc *pl_tc_science = new Short_tc;\
pl_tc_science->next_TC = NULL;\
pl_tc_science->TC_string[0] = 0x01;\
pl_tc_science->TC_string[1] = 0xE1;\
pl_tc_science->TC_string[2] = 0x81;\
pl_tc_science->TC_string[3] = 0x04;\
pl_tc_science->TC_string[4] = 0;\
pl_tc_science->TC_string[5] = 0;\
pl_tc_science->TC_string[6] = 0;\
pl_tc_science->TC_string[7] = 0;\
pl_tc_science->TC_string[8] = 0;\
uint16_t crc16 = crc16_gen(pl_tc_science->TC_string, 9);\
pl_tc_science->TC_string[9] = (uint8_t)(crc16 & 0xFF00)>>8;\
pl_tc_science->TC_string[10] = (uint8_t)(crc16 & 0x00FF);\
tm_ptr_science = FCTN_CDMS_RLY_TMTC(pl_tc_science);\
VERIFY_TM(tm_ptr_science);\
}
void print_processed_block(uint8_t index)
{
gPC.printf("\n\n\rBlock after processing:");
gPC.printf("\n\rTime of block:");
gPC.printf("\n\rYear :%d",((((pl_block[index]&0xFFFFFFF0)>>4) & 0x0C000000)>>26)+2016);
gPC.printf("\tMonth :%d",((((pl_block[index]&0xFFFFFFF0)>>4) & 0x03C00000)>>22));
gPC.printf("\tDay :%d",((((pl_block[index]&0xFFFFFFF0)>>4) & 0x003E0000)>>17));
gPC.printf("\n\rHours :%d",((((pl_block[index]&0xFFFFFFF0)>>4) & 0x0001F000)>>12));
gPC.printf("\tMin :%d",((((pl_block[index]&0xFFFFFFF0)>>4) & 0x00000FC0)>>6));
gPC.printf("\tSec :%d",(((pl_block[index]&0xFFFFFFF0)>>4) & 0x0000003F));
gPC.printf("\n\rSID :%d",(pl_block[index] & 0x0000000C)>>2);
gPC.printf("\tExecution Status :%d",pl_block[index] & UNEXECUTED);
}
void print_exit(uint8_t* temp)
{
uint8_t temp2[3];
temp2[0] = (pl_main_flag&STATE_SCIENCE)>>2;
temp2[1] = (pl_main_flag&PL_DISABLED)>>4;
temp2[2] = (PL_PREV_STATE & STATE_SCIENCE)>>2;
gPC.printf("\n\rAt exit");
char state[][17] = {"STATE_OFF","STATE_STANDBY","STATE_HIBERNATE","STATE_SCIENCE"};
char status[][17] = {"PL_OFF","PL_STANDBY","PL_HIBERNATE","PL_SCIENCE","PL_SUCCESS_I2C","PL_ERR_I2C","PL_INVALID_STATE","PL_DISABLED"};
gPC.printf("\n\rPL_state:%s -> %s",state[(uint8_t)temp[0]],state[(uint8_t)temp2[0]]);
gPC.printf("\n\rPL_status:%s -> %s",status[(uint8_t)temp[1]],status[(uint8_t)temp2[1]]);
gPC.printf("\n\rPL_PREV_state:%s -> %s",state[(uint8_t)temp[2]],state[(uint8_t)temp2[2]]);
}
void VERIFY_TM(Base_tm *tm_ptr)
{
uint8_t temp = tm_ptr->TM_string[2]; //Obatining ACK_CODE
if(GETshort_or_long_tm(tm_ptr)==1) //short TM
{
gPC.printf("\n\rSHORT TM received");
uint16_t crc16 = crc16_gen(tm_ptr->TM_string, 11);
if(tm_ptr->TM_string[12]==((uint8_t)(crc16 & 0x00FF)) && tm_ptr->TM_string[11]==((uint8_t)((crc16 & 0xFF00)>>8)))
{
if(temp!=0x00 && temp!=0x01 && temp!=0x02 && temp!=0x03 && temp!=0x84 && temp!=0x85)
{
gPC.printf("\n\rTime_Latest_PL Updated");
TIME_LATEST_PL = pl_time; //update latest time when I2C communication was successful
}
if(temp==0xA0 || temp==0xC0)
{
gPC.printf("\n\rACK_CODE Success");
if(temp==0xA0)
gPC.printf("\n\rACK_CODE = 0x%02X",temp);
else
gPC.printf("\n\rACK_CODE = 0x%02X",temp);
pl_main_flag = pl_main_flag & (~PL_DISABLED);
pl_main_flag |= PL_SUCCESS_I2C;
pl_block[pl_next_index-1] &= (~UNEXECUTED); //changing exec_status
pl_block[pl_next_index-1] |= EXECUTED;
}
else
{
gPC.printf("\n\rACK_CODE failure (0x%02X)",temp);
//gPC.printf("\n\rACK_CODE = 0x%02X",temp);
pl_main_flag = pl_main_flag & (~PL_DISABLED);
pl_main_flag |= PL_ERR_I2C;
pl_block[pl_next_index-1] &= (~UNEXECUTED); //changing exec_status
pl_block[pl_next_index-1] |= RETRY;
}
}
else
{
gPC.printf("\n\rShort_TM CRC failed");
pl_main_flag = pl_main_flag & (~PL_DISABLED);
pl_main_flag |= PL_ERR_I2C;
pl_block[pl_next_index-1] &= (~UNEXECUTED); //changing exec_status
pl_block[pl_next_index-1] |= RETRY;
}
}
else if(GETshort_or_long_tm(tm_ptr)==0) //LONG TM
{
gPC.printf("\n\rLONG TM received");
uint16_t crc16 = crc16_gen(tm_ptr->TM_string,132);
if(tm_ptr->TM_string[133]==((uint8_t)(crc16 & 0x00FF)) && tm_ptr->TM_string[132]==((uint8_t)((crc16 & 0xFF00)>>8)))
{
if(temp!=0x00 && temp!=0x01 && temp!=0x02 && temp!=0x03 && temp!=0x84 && temp!=0x85)
{
gPC.printf("\n\rTime_Latest_PL Updated");
TIME_LATEST_PL = pl_time; //update latest time when I2C communication was successful
}
if(temp==0xA0 || temp==0xC0)
{
gPC.printf("\n\rACK_CODE Success");
if(temp==0xA0)
gPC.printf("\n\rACK_CODE = 0x%02X",temp);
else
gPC.printf("\n\rACK_CODE = 0x%02X",temp);
pl_main_flag = pl_main_flag & (~PL_DISABLED);
pl_main_flag |= PL_SUCCESS_I2C;
pl_block[pl_next_index-1] &= (~UNEXECUTED); //changing exec_status
pl_block[pl_next_index-1] |= EXECUTED;
}
else
{
gPC.printf("\n\rACK_CODE failure (0x%02X)",temp);
pl_main_flag = pl_main_flag & (~PL_DISABLED);
pl_main_flag |= PL_ERR_I2C;
pl_block[pl_next_index-1] &= (~UNEXECUTED); //changing exec_status
pl_block[pl_next_index-1] |= RETRY;
}
}
else
{
gPC.printf("\n\rLong_TM CRC failed");
pl_main_flag = pl_main_flag & (~PL_DISABLED);
pl_main_flag |= PL_ERR_I2C;
pl_block[pl_next_index-1] &= (~UNEXECUTED); //changing exec_status
pl_block[pl_next_index-1] |= RETRY;
}
}
}
void test1(uint8_t t)
{
//Output should be PL_STATUS = PL_DISABLED
if(t!=0)
{
gPC.printf("\n\rTesting OC protection");
PL_BEE_SW_STATUS = 2; //OC protection
}
}
void test2(uint8_t t)
{
//output should be same as test1()
if(t!=0)
{
gPC.printf("\n\rTesting Deviced Disabled case");
PL_BEE_SW_STATUS = 3; //Device DISABLED
}
}
void test3(uint8_t t)
{
if(t!=0)
{
gPC.printf("\n\rTesting RTC failed case");
pl_time = 0; //RTC failed
}
}
/*void test4(uint8_t t)
{
if(t!=0)
{
gPC.printf("\n\rTesting No future blocks available");
schedule1[0] = {0,0,0,0,0,0,0,0};
}
}*/
void FCTN_CDMS_PL_MAIN(void const *args)
{
uint8_t temp[3];
pl_main_flag|=PL_MAIN_STATUS; //Setting PL_MAIN_STATUS
PL_MAIN_COUNTER++;
pl_main_flag&=~(PL_LOW_POWER); //Clearing PL_LOW_POWER
temp[0] = (pl_main_flag&STATE_SCIENCE)>>2;
temp[1] = (pl_main_flag&PL_DISABLED)>>4;
temp[2] = (PL_PREV_STATE & STATE_SCIENCE)>>2;
//test2(1);
if(PL_BEE_SW_STATUS==2 || PL_BEE_SW_STATUS==3)
{
gPC.printf("\n\rDevice Disabled or OC Fault");
pl_main_flag = pl_main_flag & (~PL_DISABLED);
pl_main_flag |= PL_DISABLED; //setting PL_STATUS as PL_DISABLED
pl_main_flag = pl_main_flag & (~PL_MAIN_STATUS); //Clearing pl_main status
print_exit(temp);
return;
}
PL_PREV_STATE = (pl_main_flag & STATE_SCIENCE); //saving current pl_state
uint64_t temp_time;
temp_time=FCTN_CDMS_RD_RTC();
pl_time = (uint32_t)((temp_time>>7) & 0x000000000FFFFFFF);
//call test3() here
//test3(1);
//gPC.printf("\n\rprev_state :%d",(PL_PREV_STATE)>>4);
gPC.printf("\n\n\rtTime_RTC:");
gPC.printf("\n\rYear :%d\t",((pl_time & 0x0C000000)>>26)+2016);
gPC.printf("Month :%d\t",((pl_time & 0x03C00000)>>22));
gPC.printf("Day :%d",((pl_time & 0x003E0000)>>17));
gPC.printf("\n\rHours :%d",((pl_time & 0x0001F000)>>12));
gPC.printf("\tMin :%d",((pl_time & 0x00000FC0)>>6));
gPC.printf("\t\tSec :%d",(pl_time & 0x0000003F));
if(pl_time!=0) //RTC read successful
{
// run the loop until end of schedule is reached or month and day are both zeros or future block is found
gPC.printf("\n\rRTC read success");
for(i=0;(i<192)&&(((uint16_t)((pl_block[i] & 0x3FE00000)>>21))!=0);i++)
{
if(((pl_block[i]>>4) & 0x0FFFFFFF)>pl_time) //Checking for future blocks
{
pl_next_index=i;
gPC.printf("\n\rFuture block found at index = %d",pl_next_index);
break;
}
}
}
if((pl_next_index==-1) || pl_time==0) //RTC read failed or Future block not found
{
if(PL_PREV_STATE==STATE_SCIENCE)
{
pl_main_flag = pl_main_flag & (~STATE_SCIENCE);
pl_main_flag |= STATE_HIBERNATE;
}
else
{
pl_main_flag = pl_main_flag & (~STATE_SCIENCE);
pl_main_flag |= PL_PREV_STATE;
}
if(pl_time==0)
{
gPC.printf("\n\rRTC read failed");
}
if(pl_next_index==-1)
{
gPC.printf("\n\rFuture block not found");
gPC.printf("\n\rpl_next_index = %d",pl_next_index);
}
gPC.printf("\n\rNew pl_state = %d",(pl_main_flag&(~STATE_SCIENCE))>>2);
}
//Processing the PL schedule
if(((pl_block[pl_next_index-1] & UNEXECUTED)==3)||((pl_block[pl_next_index-1] & UNEXECUTED)==2))
{
if(((pl_block[pl_next_index-1] & UNEXECUTED)==3))
gPC.printf("\n\rElapsed blocked not executed");
else
gPC.printf("\n\rElapsed block marked for retry");
gPC.printf("\n\r Retrieving pl_state from schedule");
if((pl_block[pl_next_index-1] & 0x0000000C)==0)
{
pl_main_flag = pl_main_flag & (~STATE_SCIENCE);
pl_main_flag |= STATE_OFF;
}
if((pl_block[pl_next_index-1] & 0x0000000C)==4)
{
pl_main_flag = pl_main_flag & (~STATE_SCIENCE);
pl_main_flag |= STATE_STANDBY;
}
if((pl_block[pl_next_index-1] & 0x0000000C)==8)
{
pl_main_flag = pl_main_flag & (~STATE_SCIENCE);
pl_main_flag |= STATE_HIBERNATE;
}
if((pl_block[pl_next_index-1] & 0x0000000C)==12)
{
pl_main_flag = pl_main_flag & (~STATE_SCIENCE);
pl_main_flag |= STATE_SCIENCE;
}
}
else if((pl_block[pl_next_index-1] & UNEXECUTED)==1)
{
gPC.printf("\n\rElapsed block is executed");
pl_main_flag = pl_main_flag & (~PL_MAIN_STATUS); //Clearing pl_main status
print_exit(temp);
return;
}
else if((pl_block[pl_next_index-1] & UNEXECUTED)==0)
{
gPC.printf("\n\rEmpty Schedule Block");
pl_main_flag = pl_main_flag & (~PL_MAIN_STATUS); //Clearing pl_main status
print_exit(temp);
return;
}
switch(pl_main_flag & STATE_SCIENCE) //Checking PL_STATE
{
case STATE_OFF:
{
gPC.printf("\n\rEntered PL_OFF case");
if(PL_BEE_SW_STATUS!=0)
{
gPC.printf("\n\rCommanding PL_BEE to go to Standby State");
Base_tm *tm_ptr_standby;
SET_PL_BEE_STANDBY(tm_ptr_standby); //No ack needed now
gPC.printf("\n\rPowering OFF PL_BEE");
SET_PL_BEE_OFF;
PL_BEE_SW_STATUS=0;
}
pl_main_flag = pl_main_flag & (~PL_DISABLED);
pl_main_flag |= PL_OFF;
pl_block[pl_next_index-1] &= (~UNEXECUTED); //changing exec_status
pl_block[pl_next_index-1] |= EXECUTED;
pl_main_flag = pl_main_flag & (~PL_MAIN_STATUS); //Clearing PL_MAIN_STATUS
print_processed_block(pl_next_index-1);
print_exit(temp);
return;
}
case STATE_STANDBY:
{
gPC.printf("\n\rEntered PL_STANDBY case");
if(PL_BEE_SW_STATUS==0)
{
gPC.printf("\n\rPowering on PL_BEE");
SET_PL_BEE_ON;
PL_BEE_SW_STATUS=1;
}
gPC.printf("\n\rCommanding PL_BEE to go to Standby State");
Base_tm *tm_ptr_standby;
SET_PL_BEE_STANDBY(tm_ptr_standby);
if((pl_main_flag & PL_DISABLED)==PL_SUCCESS_I2C)
{
pl_main_flag = pl_main_flag & (~PL_DISABLED);
pl_main_flag |= PL_STANDBY;
}
pl_main_flag = pl_main_flag & (~PL_MAIN_STATUS); //Clearing PL_MAIN_STATUS
print_processed_block(pl_next_index-1);
print_exit(temp);
return;
//////DELETE THE TM AND TC LATER
}
case STATE_HIBERNATE:
{
gPC.printf("\n\rEntered PL_HIBERNATE case");
if(POWER_LEVEL==2 || POWER_LEVEL==3 || POWER_LEVEL==0)
{
if(PL_BEE_SW_STATUS==0)
{
gPC.printf("Powering on PL_BEE\r\n");
SET_PL_BEE_ON;
PL_BEE_SW_STATUS=1;
}
gPC.printf("\n\rCommanding PL_BEE to go to Hibernate State");
Base_tm *tm_ptr_hibernate;
SET_PL_BEE_HIBERNATE(tm_ptr_hibernate);
if((pl_main_flag & PL_DISABLED)==PL_SUCCESS_I2C)
{
pl_main_flag = pl_main_flag & (~PL_DISABLED);
pl_main_flag |= PL_HIBERNATE;
}
}
else
{
pl_main_flag |= PL_LOW_POWER;
if(PL_BEE_SW_STATUS==0)
{
gPC.printf("\n\rPowering on PL_BEE");
SET_PL_BEE_ON;
PL_BEE_SW_STATUS=1;
}
gPC.printf("\n\rCommanding PL_BEE to go to Standby State");
Base_tm *tm_ptr_standby;
SET_PL_BEE_STANDBY(tm_ptr_standby);
if((pl_main_flag & PL_DISABLED)==PL_SUCCESS_I2C)
{
pl_main_flag = pl_main_flag & (~PL_DISABLED);
pl_main_flag |= PL_STANDBY;
}
pl_main_flag = pl_main_flag & (~PL_MAIN_STATUS); //Clearing PL_MAIN_STATUS
print_processed_block(pl_next_index-1);
print_exit(temp);
return;
//////DELETE THE TM AND TC LATER
}
pl_main_flag = pl_main_flag & (~PL_MAIN_STATUS); //Clearing PL_MAIN_STATUS
print_processed_block(pl_next_index-1);
print_exit(temp);
return;
//////DELETE THE TM LATER
}
case STATE_SCIENCE:
{
gPC.printf("\n\rEntered PL_SCIENCE case");
if(POWER_LEVEL==3 || POWER_LEVEL==0) //POWER_LEVEL = 0 = NA
{
gPC.printf("\n\rPOWER_LEVEL = 3 or NA");
if(PL_BEE_SW_STATUS==0)
{
gPC.printf("\n\rPowering on PL_BEE");
SET_PL_BEE_ON;
PL_BEE_SW_STATUS=1;
}
gPC.printf("\n\rCommanding PL_BEE to go to Science State");
Base_tm *tm_ptr_science;
SET_PL_BEE_SCIENCE(tm_ptr_science);
if((pl_main_flag & PL_DISABLED)==PL_SUCCESS_I2C)
{
pl_main_flag = pl_main_flag & (~PL_DISABLED);
pl_main_flag |= PL_SCIENCE;
}
pl_main_flag = pl_main_flag & (~PL_MAIN_STATUS); //Clearing PL_MAIN_STATUS
print_processed_block(pl_next_index-1);
print_exit(temp);
return;
}
else
{
gPC.printf("\n\rPower level = 2,3 or NA");
pl_main_flag |= PL_LOW_POWER;
if(POWER_LEVEL==2 || POWER_LEVEL==3 || POWER_LEVEL==0)
{
if(PL_BEE_SW_STATUS==0)
{
gPC.printf("\n\rPowering on PL_BEE");
SET_PL_BEE_ON;
PL_BEE_SW_STATUS=1;
}
gPC.printf("\n\rCommanding PL_BEE to go to Hibernate State");
Base_tm *tm_ptr_hibernate;
SET_PL_BEE_HIBERNATE(tm_ptr_hibernate);
if((pl_main_flag & PL_DISABLED)==PL_SUCCESS_I2C)
{
pl_main_flag = pl_main_flag & (~PL_DISABLED);
pl_main_flag |= PL_HIBERNATE;
}
}
else
{
pl_main_flag |= PL_LOW_POWER;
if(PL_BEE_SW_STATUS==0)
{
gPC.printf("\n\rPowering on PL_BEE");
SET_PL_BEE_ON;
PL_BEE_SW_STATUS=1;
}
gPC.printf("\n\rCommanding PL_BEE to go to Standby State");
Base_tm *tm_ptr_standby;
SET_PL_BEE_STANDBY(tm_ptr_standby);
if((pl_main_flag & PL_DISABLED)==PL_SUCCESS_I2C)
{
pl_main_flag = pl_main_flag & (~PL_DISABLED);
pl_main_flag |= PL_STANDBY;
}
pl_main_flag = pl_main_flag & (~PL_MAIN_STATUS); //Clearing PL_MAIN_STATUS
print_processed_block(pl_next_index-1);
print_exit(temp);
return;
//////DELETE THE TM AND TC LATER
}
pl_main_flag = pl_main_flag & (~PL_MAIN_STATUS); //Clearing PL_MAIN_STATUS
print_processed_block(pl_next_index-1);
print_exit(temp);
return;
//////DELETE THE TM LATER
}
}
default:
{
gPC.printf("\n\rInvalid PL_STATE in block at index = %d",pl_next_index-1);
pl_main_flag = pl_main_flag & (~PL_DISABLED);
pl_main_flag |= PL_INVALID_STATE;
pl_block[pl_next_index-1] &= (~UNEXECUTED); //changing exec_status
pl_block[pl_next_index-1] |= EXECUTED;
pl_main_flag = pl_main_flag & (~PL_MAIN_STATUS); //Clearing PL_MAIN_STATUS
print_processed_block(pl_next_index-1);
print_exit(temp);
return;
}
}
}
