Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Dependencies: FreescaleIAP SimpleDMA mbed-rtos mbed
Fork of CDMS_CODE by
CDMS_HK.h
- Committer:
- chaithanyarss
- Date:
- 2016-07-10
- Revision:
- 250:12de1b155715
- Parent:
- 248:407ab7e337cd
File content as of revision 250:12de1b155715:
void FCTN_CDMS_HK_MAIN();
void FCTN_CDMS_HK();
void VERIFY_COMRX();
void VERIFY_RTC();
void CDMS_HK_SD();
void HANDLE_HW_FAULTS();
void HANDLE_HW_FAULT_SD();
void HANDLE_HW_FAULT_BAE();
void HANDLE_HW_FAULT_PL();
void FUNC_CDMS_GPIO_STATUS();
void minMaxHkData();
void COLLECT_CDMS_RAM();
AnalogIn TempInput(PIN27); // Input from Current Multiplexer
AnalogIn CDMS_temp_sensor(PIN53);
AnalogIn COMRX_RSSI_volatge(PIN70);
DigitalOut SelectLinec3 (PIN79); // MSB of Select Lines
DigitalOut SelectLinec2 (PIN78);
DigitalOut SelectLinec1 (PIN77);
DigitalOut SelectLinec0 (PIN76); // LSB of Select Lines
void FCTN_CDMS_HK_MAIN(void const *args)
{
gPC.printf("Entering HK thread");
unsigned char CDMS_HK_FRAME[134] = {0};
char BAE_HK[134] = {0};
uint8_t convoluted_CDMS_HK[270];
uint8_t interleave_CDMS_HK[288];
uint8_t CDMS_HEALTH_FINAL[512] = {0};
uint8_t convoluted_BAE_HK[270];
uint8_t interleave_BAE_HK[288];
uint8_t BAE_HEALTH_FINAL[512] = {0};
unsigned char BAE_HK_FRAME[134] = {0};
CDMS_HK_MAIN_STATUS = 0x01;
CDMS_HK_MAIN_COUNTER++;
FCTN_CDMS_HK();
RSSI_volatge = COMRX_RSSI_volatge.read() * 3.3;
VERIFY_COMRX();
VERIFY_RTC();
HANDLE_HW_FAULTS();
FUNC_CDMS_GPIO_STATUS(); //yet to be done
uint8_t CDMS_quant[20];
CDMS_quant[1]= (uint8_t)quant_data.CDMS_temp_quant;
CDMS_quant[2]= (uint8_t)RSSI_volatge;
for(int i=0; i<16; i++) {
CDMS_quant[i+4]= (uint8_t)quant_data.temp_quant[i];
}
minMaxHkData();
CDMS_HEALTH_DATA[1] = GPIO_STATUS; //Reading GPIO Pins
CDMS_HEALTH_DATA[0] = GPIO_STATUS >> 8;
COLLECT_CDMS_RAM();
for(int i = 0;i<84;i++)
CDMS_HEALTH_DATA[2+i] = CDMS_RAM[i]; //Reading RAM parameters
for(int i = 0;i<20;i++) //Collecting Data from Temp sensors
CDMS_HEALTH_DATA[86+i] = CDMS_quant[i];
// Here: Have to FIT flash data.
uint64_t time = FCTN_CDMS_RD_RTC() >> 7; //Reading Time from RTC
for(int i = 124; i<128; i++)
CDMS_HEALTH_DATA[i] = time >> i*8;
FCTN_SD_MNGR(); //Adding FSC & TMID to TM frame
CDMS_HK_FRAME[0] = 0x20;
CDMS_HK_FRAME[1] = FSC_CURRENT[4]+1;
CDMS_HK_FRAME[2] = (FSC_CURRENT[4]+1) >> 8;
CDMS_HK_FRAME[3] = (FSC_CURRENT[4]+1) >> 16;
for(int i = 0; i<128; i++) /*Adding actual CDMS Health data to TM frame*/
CDMS_HK_FRAME[4+i] = CDMS_HEALTH_DATA[i];
uint16_t crc = crc16_gen(CDMS_HK_FRAME,132); /*Adding CRC to TM frame*/
CDMS_HK_FRAME[133] = crc;
CDMS_HK_FRAME[132] = crc >> 8;
Convolution CDMS_HEALTH;
Convolution BAE_HEALTH;
CDMS_HEALTH.convolutionEncode(CDMS_HK_FRAME , convoluted_CDMS_HK);
CDMS_HEALTH.convolutionEncode(CDMS_HK_FRAME + 67, convoluted_CDMS_HK + 135);
interleave(convoluted_CDMS_HK , interleave_CDMS_HK);
interleave(convoluted_CDMS_HK +135, interleave_CDMS_HK + 144);
for(int i=0; i<288; i++)
CDMS_HEALTH_FINAL[i] = interleave_CDMS_HK[i];
SD_WRITE(CDMS_HEALTH_FINAL,FSC_CURRENT[4]+1,4);
gPC.printf("\rCompleted CDMS HK\n");
/*---------------------------------- BAE HK --------------------------------------------*/
BAE_HK_I2C = FCTN_I2C_READ(BAE_HK,134);
gPC.printf("\rEntering BAE HK\n");
if(BAE_HK_I2C == 0) {
crc = crc16_gen((unsigned char *)BAE_HK,132);
if(crc == ((uint16_t)BAE_HK[132] << 8) | (uint16_t)BAE_HK[133]){
TIME_LATEST_I2C_BAE = FCTN_CDMS_RD_RTC() >> 7;
for(int i = 0; i<15; i++)
gPC.printf("\r 0x%02X\n",BAE_HK[i]);
for(int i = 0; i<4; i++)
BAE_HK[i] = time >> i;
BAE_HK_FRAME[0] = 0x28;
BAE_HK_FRAME[1] = FSC_CURRENT[5]+1;
BAE_HK_FRAME[2] = (FSC_CURRENT[5]+1) >> 8;
BAE_HK_FRAME[3] = (FSC_CURRENT[5]+1) >> 16;
for(int i = 0; i<128; i++) /*Adding actual CDMS Health data to TM frame*/
BAE_HK_FRAME[4+i] = BAE_HK[i];
crc = crc16_gen(BAE_HK_FRAME,132); /*Adding CRC to TM frame*/
BAE_HK_FRAME[133] = crc;
BAE_HK_FRAME[132] = crc >> 8;
BAE_HEALTH.convolutionEncode(BAE_HK_FRAME , convoluted_BAE_HK);
BAE_HEALTH.convolutionEncode(BAE_HK_FRAME + 67, convoluted_BAE_HK + 135);
interleave(convoluted_BAE_HK , interleave_BAE_HK);
interleave(convoluted_BAE_HK +135, interleave_BAE_HK + 144);
for(int i=0; i<288; i++)
BAE_HEALTH_FINAL[i] = interleave_BAE_HK[i];
SD_WRITE(BAE_HEALTH_FINAL,FSC_CURRENT[5]+1,5);
}
} else {
gPC.printf("\rBAE HK data not recieved through I2C\n");
for(int i = 0; i<134; i++)
BAE_HK[i] = 0;
}
gPC.printf("\rCompleted BAE HK\n");
/*----------------------------------Beacon message--------------------------------------*/
unsigned char SC_HK_LBM_0[135];
SC_HK_LBM_0[0] = 0; // Sending long beacon msg as telecommand with Packet sequence count 0x00
// Add HK bits
// Add SC bits
crc = crc16_gen(SC_HK_LBM_0,133);
SC_HK_LBM_0[132] = crc;
SC_HK_LBM_0[133] = crc >> 8;
FCTN_I2C_WRITE((char *)SC_HK_LBM_0,135);
gPC.printf("\rCompleted Beacon\n");
}
int quantiz(float start,float step,float x)
{
int y=(x-start)/step;
if(y<=0)y=0;
if(y>=255)y=255;
return y;
}
char saveMin(char x,char y)
{
return (y<x)?y:x;
}
char saveMax(char x,char y)
{
return (y>x)?y:x;
}
void minMaxHkData()
{
if(firstCount==true) {
for (int i = 0; i < 16; ++i) {
min_max_data.temp_min[i] = quant_data.temp_quant[i];
min_max_data.temp_max[i] = quant_data.temp_quant[i];
}
min_max_data.CDMS_temp_min=quant_data.CDMS_temp_quant;
min_max_data.CDMS_temp_max=quant_data.CDMS_temp_quant;
} else {
for (int i = 0; i < 16; ++i) {
min_max_data.temp_min[i] = saveMin(min_max_data.temp_min[i],quant_data.temp_quant[i]);
min_max_data.temp_max[i] = saveMax(min_max_data.temp_max[i],quant_data.temp_quant[i]);
}
min_max_data.CDMS_temp_min = saveMin(min_max_data.CDMS_temp_min,quant_data.CDMS_temp_quant);
min_max_data.CDMS_temp_max = saveMax(min_max_data.CDMS_temp_max,quant_data.CDMS_temp_quant);
}
firstCount=false;
}
void FCTN_CDMS_HK()
{
int Iteration=0;
SelectLinec0=0;
SelectLinec1=0;
SelectLinec2=0;
SelectLinec3=0;
for(Iteration=0; Iteration<16; Iteration++) {
actual_data.temp_actual[Iteration]=TempInput.read();
SelectLinec0=!(SelectLinec0);
if(Iteration%2==1)
SelectLinec1=!(SelectLinec1);
if(Iteration%4==3)
SelectLinec2=!(SelectLinec2);
if(Iteration%8==7)
SelectLinec3=!(SelectLinec3);
}
actual_data.CDMS_temp_actual=(-90.7*3.3*CDMS_temp_sensor.read())+190.1543;
for(Iteration=0; Iteration<16; Iteration++) {
if(Iteration<14) {
actual_data.temp_actual[Iteration]=actual_data.temp_actual[Iteration]*3.3;
int resistance;
resistance=24000*actual_data.temp_actual[Iteration]/(3.3-actual_data.temp_actual[Iteration]);
if(actual_data.temp_actual[Iteration]>1.47) {
actual_data.temp_actual[Iteration]=3694/log(24.032242*resistance);
} else {
actual_data.temp_actual[Iteration]=3365.4/log(7.60573*resistance);
}
} else
actual_data.temp_actual[Iteration]=(-90.7*3.3*actual_data.temp_actual[Iteration])+190.1543;
}
for(Iteration=0; Iteration<16; Iteration++) {
if(Iteration<14) {
quant_data.temp_quant[Iteration]=quantiz(tstart_thermistor,tstep_thermistor,actual_data.temp_actual[Iteration]);
} else
quant_data.temp_quant[Iteration]=quantiz(tstart,tstep,actual_data.temp_actual[Iteration]);
}
quant_data.CDMS_temp_quant=quantiz(tstart,tstep,actual_data.CDMS_temp_actual);
minMaxHkData();
}
void FUNC_CDMS_GPIO_STATUS() //Polls the status of Input GPIO PINS
{
//V_A_PGOOD //TRZ EN
GPIO_STATUS=(V_A_PGOOD)?(GPIO_STATUS)||((uint16_t)(0x1<<15)):(GPIO_STATUS)&(~((uint16_t)(0x1<<15)));
//V_B_PGOOD_1 //3V3BPGOOD //$
GPIO_STATUS=(V_B_PGOOD_1)?(GPIO_STATUS)||((uint16_t)(0x1<<14)):(GPIO_STATUS)&(~((uint16_t)(0x1<<14)));
//V_B_PGOOD_2 //3V3BEN //$
GPIO_STATUS=(V_B_PGOOD_2)?(GPIO_STATUS)||((uint16_t)(0x1<<13)):(GPIO_STATUS)&(~((uint16_t)(0x1<<13)));
//V_C_PGOOD //3V3CPGOOD //$
GPIO_STATUS=(V_C_PGOOD)?(GPIO_STATUS)||((uint16_t)(0x1<<12)):(GPIO_STATUS)&(~((uint16_t)(0x1<<12)));
//COMRX_OC_FAULT //$
GPIO_STATUS=(COMRX_OC_FAULT)?(GPIO_STATUS)||((uint16_t)(0x1<<11)):(GPIO_STATUS)&(~((uint16_t)(0x1<<11)));
// COMTX_OC_FAULT //$
GPIO_STATUS=(COMTX_OC_FAULT)?(GPIO_STATUS)||((uint16_t)(0x1<<10)):(GPIO_STATUS)&(~((uint16_t)(0x1<<10)));
//BAE_OC_FAULT //$
GPIO_STATUS=(BAE_OC_FAULT)?(GPIO_STATUS)||((uint16_t)(0x1<<9)):(GPIO_STATUS)&(~((uint16_t)(0x1<<9)));
//PL_GPIO_1_STATUS //$
GPIO_STATUS=(PL_GPIO_1_STATUS)?(GPIO_STATUS)||((uint16_t)(0x1<<8)):(GPIO_STATUS)&(~((uint16_t)(0x1<<8)));
//PL_GPIO_2_STATUS //$
GPIO_STATUS=(PL_GPIO_2_STATUS)?(GPIO_STATUS)||((uint16_t)(0x1<<7)):(GPIO_STATUS)&(~((uint16_t)(0x1<<7)));
//PL_GPIO_3_STATUS //$
GPIO_STATUS=(PL_GPIO_3_STATUS)?(GPIO_STATUS)||((uint16_t)(0x1<<6)):(GPIO_STATUS)&(~((uint16_t)(0x1<<6)));
//PL_BEE_SW_OC_FAULT //to be verified
GPIO_STATUS=(PL_BEE_SW_OC_FAULT)?(GPIO_STATUS)||((uint16_t)(0x1<<5)):(GPIO_STATUS)&(~((uint16_t)(0x1<<5)));
//PL_EPS_LATCH_SW_OC_FAULT // to be verified
GPIO_STATUS=(PL_EPS_LATCH_SW_OC_FAULT)?(GPIO_STATUS)||((uint16_t)(0x1<<4)):(GPIO_STATUS)&(~((uint16_t)(0x1<<4)));
//EPS_V_C_EN_STATUS
GPIO_STATUS=(EPS_V_C_EN_STATUS)?(GPIO_STATUS)||((uint16_t)(0x1<<3)):(GPIO_STATUS)&(~((uint16_t)(0x1<<3)));
//EPS_V_D_EN_STATUS
GPIO_STATUS=(EPS_V_D_EN_STATUS)?(GPIO_STATUS)||((uint16_t)(0x1<<2)):(GPIO_STATUS)&(~((uint16_t)(0x1<<2)));
}
void VERIFY_COMRX()
{
//COMRX_OC_FAULT //$
if(PIN68==0 && RSSI_volatge > 0.4) {
COMRX_STATUS = COMRX_ALIVE;
} else {
RESET_COMRX();
COMRX_RESET_COUNTER++;
if(PIN68==0 && RSSI_volatge > 0.4)
COMRX_STATUS = COMRX_ALIVE;
else
COMRX_STATUS = COMRX_DEAD;
}
}
void VERIFY_RTC()
{
if(RTC_STATUS == 0x00) {
SPI_mutex.lock();
gCS_RTC=1;
gCS_RTC=0;
spi.write(0x0F);
if(spi.write(0x00) & 0x04 == 0x04) {
RTC_STATUS = 0x00;
RESET_RTC();
RTC_FAULTCOUNT++;
}
gCS_RTC=1;
SPI_mutex.unlock();
}
}
void HANDLE_HW_FAULTS()
{
HANDLE_HW_FAULT_SD();
HANDLE_HW_FAULT_BAE();
HANDLE_HW_FAULT_PL();
}
void HANDLE_HW_FAULT_SD()
{
if(SD_STATUS != DEVICE_DISABLED) {
if(SD_STATUS == DEVICE_OC_FAULT)
SD_SW_EN_DS = 0; //powering on SD
if(SD_OC_FAULT == 0) {
SD_SW_EN_DS = 1; //switching off SD card
SD_FAULTCOUNT++;
SD_STATUS = (SD_FAULTCOUNT == 3) ? DEVICE_DISABLED :DEVICE_OC_FAULT;
} else {
SD_STATUS = DEVICE_POWERED;
SD_FAULTCOUNT = 0;
}
}
}
void HANDLE_HW_FAULT_BAE()
{
if(BAE_STATUS != DEVICE_DISABLED) {
if(BAE_STATUS == DEVICE_OC_FAULT)
BAE_SW_EN_DS = 0; //Power ON BAE
if(BAE_OC_FAULT == 0) { // If OC Fault
BAE_SW_EN_DS = 1; //Switch OFF BAE
BAE_FAULTCOUNT++;
BAE_STATUS = (BAE_FAULTCOUNT == 3)?DEVICE_DISABLED:DEVICE_OC_FAULT;
} else {
BAE_STATUS = DEVICE_POWERED;
BAE_FAULTCOUNT = 0;
}
}
}
void HANDLE_HW_FAULT_PL()
{
if(PL_STATUS != DEVICE_DISABLED) {
if(PL_STATUS == DEVICE_OC_FAULT){
PYLD_DFF_CLK = 0;
PYLD_DFF = 1; // Switching ON PL
wait_us(1);
PYLD_DFF_CLK = 1;
wait_us(1);
PYLD_DFF_CLK = 0;
wait_us(1);
}
if(PL_BEE_SW_OC_FAULT == 0) { // if OC Fault
PYLD_DFF_CLK = 0;
PYLD_DFF = 0; //Switching OFF PL
wait_us(1);
PYLD_DFF_CLK = 1;
wait_us(1);
PYLD_DFF_CLK = 0;
wait_us(1);
PL_FAULTCOUNT++;
PL_STATUS = (PL_FAULTCOUNT == 3)?DEVICE_DISABLED:DEVICE_OC_FAULT;
} else {
if(PL_STATUS == DEVICE_OC_FAULT){
PYLD_DFF_CLK = 0;
PYLD_DFF = 0; //Switching OFF PL
wait_us(1);
PYLD_DFF_CLK = 1;
wait_us(1);
PYLD_DFF_CLK = 0;
wait_us(1);
}
PL_STATUS = DEVICE_ENABLED;
PL_FAULTCOUNT = 0;
}
}
}
void COLLECT_CDMS_RAM()
{
CDMS_RAM[0] = ((PL_INIT_STATUS<<7)&0x80)|((PL_MAIN_STATUS<<6)&0x40)|((PL_LOW_POWER<<5)&0x20)|((PL_STATE<<3)&0x18)|(PL_STATUS&0x07);
CDMS_RAM[1] = ((PL_RCV_SC_DATA_STATUS<<7)&0x80)|((COM_SESSION<<6)&0x40)|((COM_RX<<5)&0x20)|((RF_SW_STATUS<<4)&0x10)|((COM_TX<<3)&0x08)|((COM_TX_STATUS<<2)&0x04)|((COM_MNG_TMTC<<1)&0x02)|(EN_CDMS_HK&0x01);
CDMS_RAM[2] = ((EN_PL<<7)&0x80)|((EN_RCV_SC<<6)&0x40)|((CDMS_INIT_STATUS<<5)&0x20)|((CDMS_HK_MAIN_STATUS<<4)&0x10)|((CDMS_HK_STATUS<<2)&0x0C)|((COM_RX_STATUS<<1)&0x02)|(CDMS_RTC_BL&0x01);
CDMS_RAM[3] = CDMS_I2C_ERR_SPEED_COUNTER >> 8;
CDMS_RAM[4] = CDMS_I2C_ERR_SPEED_COUNTER;
CDMS_RAM[5] = CDMS_I2C_ERR_BAE_COUNTER >> 8;
CDMS_RAM[6] = CDMS_I2C_ERR_BAE_COUNTER;
CDMS_RAM[7] = CDMS_HK_MAIN_COUNTER >> 8;
CDMS_RAM[8] = CDMS_HK_MAIN_COUNTER;
CDMS_RAM[9] = PL_MAIN_COUNTER >> 8;
CDMS_RAM[10] = PL_MAIN_COUNTER;
CDMS_RAM[11] = PL_RCV_SC_DATA_COUNTER >> 8;
CDMS_RAM[12] = PL_RCV_SC_DATA_COUNTER;
CDMS_RAM[13] = COMRX_RESET_COUNTER >> 8;
CDMS_RAM[14] = COMRX_RESET_COUNTER;
CDMS_RAM[15] = CDMS_WR_SD_FAULT_COUNTER >> 8;
CDMS_RAM[16] = CDMS_WR_SD_FAULT_COUNTER;
CDMS_RAM[17] = SD_LIB_WRITES >> 8;
CDMS_RAM[18] = SD_LIB_WRITES;
for(int i = 0; i<4; i++)
CDMS_RAM[19+i] = TIME_LATEST_RTC >> i*8;
for(int i = 0; i<4; i++)
CDMS_RAM[23+i] = TIME_LATEST_I2C_BAE >> i*8;
for(int i = 0; i<4; i++)
CDMS_RAM[27+i] = TIME_LATEST_I2C_SPEED >> i*8;
for(int i = 0; i<4; i++)
CDMS_RAM[31+i] = TIME_LATEST_SD_WR >> i*8;
for(int i = 0; i<4; i++)
CDMS_RAM[35+i] = TIME_LATEST_SD_RD >> i*8;
for(int i = 0; i<4; i++)
CDMS_RAM[39+i] = TIME_LATEST_SPI_SPEED >> i*8;
for(int i = 0; i<4; i++)
CDMS_RAM[43+i] = FSC_CURRENT[1] >> i*8;
for(int i = 0; i<4; i++)
CDMS_RAM[47+i] = FSC_LAST[1] >> i*8;
for(int i = 0; i<4; i++)
CDMS_RAM[51+i] = FSC_CURRENT[2] >> i*8;
for(int i = 0; i<4; i++)
CDMS_RAM[55+i] = FSC_LAST[2] >> i*8;
for(int i = 0; i<4; i++)
CDMS_RAM[59+i] = FSC_CURRENT[3] >> i*8;
for(int i = 0; i<4; i++)
CDMS_RAM[63+i] = FSC_LAST[3] >> i*8;
for(int i = 0; i<4; i++)
CDMS_RAM[67+i] = FSC_CURRENT[4] >> i*8;
for(int i = 0; i<4; i++)
CDMS_RAM[71+i] = FSC_LAST[4] >> i*8;
for(int i = 0; i<4; i++)
CDMS_RAM[75+i] = FSC_CURRENT[5] >> i*8;
for(int i = 0; i<4; i++)
CDMS_RAM[79+i] = FSC_LAST[5] >> i*8;
CDMS_RAM[83] = 0x00;
}
