I2C BAE standalone hardware testing
Dependencies: FreescaleIAP mbed-rtos mbed
Fork of ACS_Flowchart_BAE_1 by
Diff: ACS.cpp
- Revision:
- 0:7b4c00e3912f
- Child:
- 3:07e15677a75c
diff -r 000000000000 -r 7b4c00e3912f ACS.cpp --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/ACS.cpp Thu Dec 24 19:15:43 2015 +0000 @@ -0,0 +1,503 @@ +/*------------------------------------------------------------------------------------------------------------------------------------------------------ +-------------------------------------------CONTROL ALGORITHM------------------------------------------------------------------------------------------*/ +#include <mbed.h> +#include <math.h> + +#include "pni.h" //pni header file +#include "pin_config.h" +#include "ACS.h" + + +//********************************flags******************************************// +extern uint32_t BAE_STATUS; +extern uint32_t BAE_ENABLE; +extern char ACS_INIT_STATUS; +extern char ACS_DATA_ACQ_STATUS; +extern char ACS_ATS_STATUS; +extern char ACS_MAIN_STATUS; +extern char ACS_STATUS; + +extern char ACS_ATS_ENABLE; +extern char ACS_DATA_ACQ_ENABLE; +extern char ACS_STATE; + +DigitalOut phase_TR_x(PIN27); // PHASE pin for x-torquerod +DigitalOut phase_TR_y(PIN28); // PHASE pin for y-torquerod +DigitalOut phase_TR_z(PIN86); // PHASE pin for z-torquerod + +extern PwmOut PWM1; //x //Functions used to generate PWM signal +extern PwmOut PWM2; //y +extern PwmOut PWM3; //z //PWM output comes from pins p6 + +int g_err_flag_TR_x=0; // setting x-flag to zero +int g_err_flag_TR_y=0; // setting y-flag to zero +int g_err_flag_TR_z=0; // setting z-flag to zero + +extern float data[6]; + + +//DigitalOut gpo1(PTC0); // enable of att sens2 switch +//DigitalOut gpo2(PTC16); // enable of att sens switch + + +Serial pc_acs(USBTX,USBRX); //for usb communication +void inverse(float mat[3][3],float inv[3][3]); + +int ctrl_count = 0; +float bcopy[3]; +float moment[3]; + ///////algo working well +void FCTN_ACS_CNTRLALGO(float b[3],float omega[3]) +{ + float db[3]; + float bb[3]={0,0,0}; + float d[3]={0,0,0}; + float Jm[3][3]={{0.2730,0,0},{0,0.3018,0},{0,0,0.3031}}; + float den=0,den2; + int i,j; //temporary variables + float Mu[2],z[2],dv[2],v[2],u[2],tauc[3]={0,0,0}; //outputs + float invJm[3][3]; + float kmu2=0.07,gamma2=1.9e4,kz2=0.4e-2,kmu=0.003,gamma=5.6e4,kz=0.1e-4; + + //................. calculating db values........................... + if(ctrl_count!=0) + { + for(i=0;i<3;i++) + db[i]= (b[i]-bcopy[i])/10; + } + else + { + for(i=0;i<3;i++) + db[i]= 0; + } + ctrl_count++; + //.................................................................. + printf("\n\r Entered cntrl algo\n\r"); + for(int i=0; i<3; i++) + { + printf("%f\t",omega[i]); + } + for(int i=0; i<3; i++) + { + printf("%f\t",b[i]); + } + + //.........................algo...................................... + den=sqrt((b[0]*b[0])+(b[1]*b[1])+(b[2]*b[2])); + den2=(b[0]*db[0])+(b[1]*db[1])+(b[2]*db[2]); + for(i=0;i<3;i++) + { + db[i]=((db[i]*den*den)-(b[i]*(den2)))/(pow(den,3)); + //db[i]/=den*den*den; + } + for(i=0;i<3;i++) + { + b[i]/=den; + } + // select kz, kmu, gamma + if(b[0]>0.9||b[0]<-0.9) + { + kz=kz2; + kmu=kmu2; + gamma=gamma2; + } + // calculate Mu, v, dv, z, u + for(i=0;i<2;i++) + { + Mu[i]=b[i+1]; + v[i]=-kmu*Mu[i]; + dv[i]=-kmu*db[i+1]; + z[i]=db[i+1]-v[i]; + u[i]=-kz*z[i]+dv[i]-(Mu[i]/gamma); + } + inverse(Jm,invJm); + for(i=0;i<3;i++) + { + for(j=0;j<3;j++) + bb[i]+=omega[j]*(omega[(i+1)%3]*Jm[(i+2)%3][j]-omega[(i+2)%3]*Jm[(i+1)%3][j]); + } + for(i=0;i<3;i++) + { + for(j=0;j<3;j++) + d[i]+=bb[j]*invJm[i][j]; + } + bb[1]=u[0]+(d[0]*b[2])-(d[2]*b[0])-(omega[0]*db[2])+(omega[2]*db[0]); + bb[2]=u[1]-(d[0]*b[1])+(d[1]*b[0])+(omega[0]*db[1])-(omega[1]*db[0]); + bb[0]=0; + for(i=0;i<3;i++) + { + d[i]=invJm[1][i]; + invJm[1][i]=b[2]*invJm[0][i]-b[0]*invJm[2][i]; + invJm[2][i]=-b[1]*invJm[0][i]+b[0]*d[i]; + invJm[0][i]=b[i]; + } + inverse(invJm,Jm); + printf("\n \r calculating tauc"); + for(i=0;i<3;i++) + { + for(j=0;j<3;j++) + tauc[i]+=Jm[i][j]*bb[j]; // calculating torque values + printf(" %f \t",tauc[i]); + } + //..........................tauc to moment conversion.......................... + printf("\n \r calculating moment"); + for(i=0;i<3;i++) + bcopy[i]=b[i]*den; + for(i=0;i<3;i++) + { + moment[i]=bcopy[(i+1)%3]*tauc[(i+2)%3]-bcopy[(i+2)%3]*tauc[(i+1)%3]; + moment[i]/=den; + printf(" %f \t",moment[i]); + } + printf("\n\r exited control algo\n"); +} +//..........................function to find inverse.................. +void inverse(float mat[3][3],float inv[3][3]) +{ + int i,j; + float det=0; + for(i=0;i<3;i++) + { + for(j=0;j<3;j++) + inv[j][i]=(mat[(i+1)%3][(j+1)%3]*mat[(i+2)%3][(j+2)%3])-(mat[(i+2)%3][(j+1)%3]*mat[(i+1)%3][(j+2)%3]); + } + det+=(mat[0][0]*inv[0][0])+(mat[0][1]*inv[1][0])+(mat[0][2]*inv[2][0]); + for(i=0;i<3;i++) + { + for(j=0;j<3;j++) + inv[i][j]/=det; + } +} + + +I2C i2c (PTC9,PTC8); //PTC9-sda,PTC8-scl for the attitude sensors and battery gauge + +void FCTN_ACS_INIT(void); //initialization of registers happens +void FCTN_ATS_DATA_ACQ(); //data is obtained +void T_OUT(); //timeout function to stop infinite loop +Timeout to; //Timeout variable to +int toFlag; + +int count =0; // Time for which the BAE uC is running (in seconds) +void T_OUT() +{ + toFlag=0; //as T_OUT function gets called the while loop gets terminated +} + + +//DEFINING VARIABLES +char cmd[2]; +char raw_gyro[6]; +char raw_mag[6]; +char store,status; +int16_t bit_data; +float gyro_data[3], mag_data[3],combined_values[6]; +float senstivity_gyro =6.5536; //senstivity is obtained from 2^15/5000dps +float senstivity_mag =32.768; //senstivity is obtained from 2^15/1000microtesla +float gyro_error[3]= {0,0,0}, mag_error[3]= {0,0,0}; + +void FCTN_ACS_INIT() +{ + ACS_INIT_STATUS = 's'; //set ACS_INIT_STATUS flag + FLAG(); + pc_acs.printf("Attitude sensor init called \n \r"); + //FLAG(); + cmd[0]=RESETREQ; + cmd[1]=BIT_RESREQ; + i2c.write(SLAVE_ADDR,cmd,2); //When 0x01 is written in reset request register Emulates a hard power down/power up + wait_ms(2000); //waiting for loading configuration file stored in EEPROM + cmd[0]=SENTRALSTATUS; + i2c.write(SLAVE_ADDR,cmd,1); + i2c.read(SLAVE_ADDR_READ,&store,1); + wait_ms(100); + //to check whether EEPROM is uploaded + switch((int)store) { + case(3): { + break; + } + case(11): { + break; + } + default: { + cmd[0]=RESETREQ; + cmd[1]=BIT_RESREQ; + i2c.write(SLAVE_ADDR,cmd,2); + wait_ms(2000); + } + } + pc_acs.printf("Sentral Status is %x\n \r",(int)store); + cmd[0]=HOST_CTRL; //0x01 is written in HOST CONTROL register to enable the sensors + cmd[1]=BIT_RUN_ENB; + i2c.write(SLAVE_ADDR,cmd,2); + wait_ms(100); + cmd[0]=MAGRATE; //Output data rate of 100Hz is used for magnetometer + cmd[1]=BIT_MAGODR; + i2c.write(SLAVE_ADDR,cmd,2); + wait_ms(100); + cmd[0]=GYRORATE; //Output data rate of 150Hz is used for gyroscope + cmd[1]=BIT_GYROODR; + i2c.write(SLAVE_ADDR,cmd,2); + wait_ms(100); + cmd[0]=ALGO_CTRL; //When 0x00 is written to ALGO CONTROL register we get scaled sensor values + cmd[1]=0x00; + i2c.write(SLAVE_ADDR,cmd,2); + wait_ms(100); + cmd[0]=ENB_EVT; //enabling the error,gyro values and magnetometer values + cmd[1]=BIT_EVT_ENB; + i2c.write(SLAVE_ADDR,cmd,2); + wait_ms(100); + ACS_INIT_STATUS = 'c'; //set ACS_INIT_STATUS flag +} + +void FCTN_ATS_DATA_ACQ() +{ + ACS_DATA_ACQ_STATUS = 's'; //set ACS_DATA_ACQ_STATUS flag for att sens 2 + if( ACS_ATS_ENABLE == 'e') + { + FLAG(); + pc_acs.printf("attitude sensor execution called \n \r"); + toFlag=1; //toFlag is set to 1 so that it enters while loop + to.attach(&T_OUT,2); //after 2 seconds the while loop gets terminated + while(toFlag) { + cmd[0]=EVT_STATUS; + i2c.write(SLAVE_ADDR,cmd,1); + i2c.read(SLAVE_ADDR_READ,&status,1); + wait_ms(100); + pc_acs.printf("Event Status is %x\n \r",(int)status); + //if the 6th and 4th bit are 1 then it implies that gyro and magnetometer values are ready to take + if(((int)status&40)==40) { + cmd[0]=GYRO_XOUT_H; //0x22 gyro LSB of x + i2c.write(SLAVE_ADDR,cmd,1); + i2c.read(SLAVE_ADDR_READ,raw_gyro,6); + cmd[0]=MAG_XOUT_H; //LSB of x + i2c.write(SLAVE_ADDR,cmd,1); + i2c.read(SLAVE_ADDR_READ,raw_mag,6); + // pc_acs.printf("\nGyro Values:\n"); + for(int i=0; i<3; i++) { + //concatenating gyro LSB and MSB to get 16 bit signed data values + bit_data= ((int16_t)raw_gyro[2*i+1]<<8)|(int16_t)raw_gyro[2*i]; + gyro_data[i]=(float)bit_data; + gyro_data[i]=gyro_data[i]/senstivity_gyro; + gyro_data[i]+=gyro_error[i]; + // pc_acs.printf("%f\t",gyro_data[i]); + } + // pc_acs.printf("\nMag Values:\n"); + for(int i=0; i<3; i++) { + //concatenating mag LSB and MSB to get 16 bit signed data values + bit_data= ((int16_t)raw_mag[2*i+1]<<8)|(int16_t)raw_mag[2*i]; + mag_data[i]=(float)bit_data; + mag_data[i]=mag_data[i]/senstivity_mag; + mag_data[i]+=mag_error[i]; + // pc_acs.printf("%f\t",mag_data[i]); + } + for(int i=0; i<3; i++) { + data[i]=gyro_data[i]; + data[i+3]=mag_data[i]; + } + // return(combined_values); //returning poiter combined values + } + //checking for the error + else if (((int)status&2)==2) { + FCTN_ACS_INIT(); //when there is any error then Again inilization is done to remove error + } + } + } + else //ACS_DATA_ACQ_STATUS = ACS_DATA_ACQ_FAILURE + { + ACS_DATA_ACQ_STATUS = 'f'; + } + ACS_DATA_ACQ_STATUS = 'c'; //clear ACS_DATA_ACQ_STATUS flag for att sens 2 +} + +void FCTN_ACS_GENPWM_MAIN(float Moment[3]) +{ + printf("\n\rEntered executable PWMGEN function\n"); // entering the PWMGEN executable function + + float l_duty_cycle_x=0; //Duty cycle of Moment in x direction + float l_current_x=0; //Current sent in x TR's + float l_duty_cycle_y=0; //Duty cycle of Moment in y direction + float l_current_y=0; //Current sent in y TR's + float l_duty_cycle_z=0; //Duty cycle of Moment in z direction + float l_current_z=0; //Current sent in z TR's + + + for(int i = 0 ; i<3;i++) + { + // printf(" %f \t ",Moment[i]); // taking the moment values from control algorithm as inputs + } + + //----------------------------- x-direction TR --------------------------------------------// + + + float l_moment_x = Moment[0]; //Moment in x direction + + phase_TR_x = 1; // setting the default current direction + if (l_moment_x <0) + { + phase_TR_x = 0; // if the moment value is negative, we send the abs value of corresponding current in opposite direction by setting the phase pin high + l_moment_x = abs(l_moment_x); + } + + l_current_x = l_moment_x * TR_CONSTANT ; //Moment and Current always have the linear relationship + pc_acs.printf("current in trx is %f \r \n",l_current_x); + if( l_current_x>0 && l_current_x < 0.006 ) //Current and Duty cycle have the linear relationship between 1% and 100% + { + l_duty_cycle_x = 6*1000000*pow(l_current_x,4) - 377291*pow(l_current_x,3) + 4689.6*pow(l_current_x,2) + 149.19*l_current_x - 0.0008; // calculating upto 0.1% dutycycle by polynomial interpolation + pc_acs.printf("DC for trx is %f \r \n",l_duty_cycle_x); + PWM1.period(TIME_PERIOD); + PWM1 = l_duty_cycle_x/100 ; + } + else if( l_current_x >= 0.006 && l_current_x < 0.0116) + { + l_duty_cycle_x = 1*100000000*pow(l_current_x,4) - 5*1000000*pow(l_current_x,3) + 62603*pow(l_current_x,2) - 199.29*l_current_x + 0.7648;// calculating upto 1% dutycycle by polynomial interpolation + pc_acs.printf("DC for trx is %f \r \n",l_duty_cycle_x); + PWM1.period(TIME_PERIOD); + PWM1 = l_duty_cycle_x/100 ; + } + else if (l_current_x >= 0.0116 && l_current_x < 0.0624) + { + l_duty_cycle_x = 212444*pow(l_current_x,4) - 33244*pow(l_current_x,3) + 1778.4*pow(l_current_x,2) + 120.91*l_current_x + 0.3878; // calculating upto 10% dutycycle by polynomial interpolation + pc_acs.printf("DC for trx is %f \r \n",l_duty_cycle_x); + PWM1.period(TIME_PERIOD); + PWM1 = l_duty_cycle_x/100 ; + } + else if(l_current_x >= 0.0624 && l_current_x < 0.555) + { + l_duty_cycle_x = 331.15*pow(l_current_x,4) - 368.09*pow(l_current_x,3) + 140.43*pow(l_current_x,2) + 158.59*l_current_x + 0.0338; // calculating upto 100% dutycycle by polynomial interpolation + pc_acs.printf("DC for trx is %f \r \n",l_duty_cycle_x); + PWM1.period(TIME_PERIOD); + PWM1 = l_duty_cycle_x/100 ; + } + else if(l_current_x==0) + { + printf("\n \r l_current_x====0"); + l_duty_cycle_x = 0; // default value of duty cycle + pc_acs.printf("DC for trx is %f \r \n",l_duty_cycle_x); + PWM1.period(TIME_PERIOD); + PWM1 = l_duty_cycle_x/100 ; + } + else //not necessary + { + g_err_flag_TR_x = 1; + } + + //------------------------------------- y-direction TR--------------------------------------// + + + float l_moment_y = Moment[1]; //Moment in y direction + + phase_TR_y = 1; // setting the default current direction + if (l_moment_y <0) + { + phase_TR_y = 0; //if the moment value is negative, we send the abs value of corresponding current in opposite direction by setting the phase pin high + l_moment_y = abs(l_moment_y); + } + + + l_current_y = l_moment_y * TR_CONSTANT ; //Moment and Current always have the linear relationship + pc_acs.printf("current in try is %f \r \n",l_current_y); + if( l_current_y>0 && l_current_y < 0.006 )//Current and Duty cycle have the linear relationship between 1% and 100% + { + l_duty_cycle_y = 6*1000000*pow(l_current_y,4) - 377291*pow(l_current_y,3) + 4689.6*pow(l_current_y,2) + 149.19*l_current_y - 0.0008; // calculating upto 0.1% dutycycle by polynomial interpolation + pc_acs.printf("DC for try is %f \r \n",l_duty_cycle_y); + PWM2.period(TIME_PERIOD); + PWM2 = l_duty_cycle_y/100 ; + } + else if( l_current_y >= 0.006 && l_current_y < 0.0116) + { + l_duty_cycle_y = 1*100000000*pow(l_current_y,4) - 5*1000000*pow(l_current_y,3) + 62603*pow(l_current_y,2) - 199.29*l_current_y + 0.7648;// calculating upto 1% dutycycle by polynomial interpolation + pc_acs.printf("DC for try is %f \r \n",l_duty_cycle_y); + PWM2.period(TIME_PERIOD); + PWM2 = l_duty_cycle_y/100 ; + } + else if (l_current_y >= 0.0116&& l_current_y < 0.0624) + { + l_duty_cycle_y = 212444*pow(l_current_y,4) - 33244*pow(l_current_y,3) + 1778.4*pow(l_current_y,2) + 120.91*l_current_y + 0.3878;// calculating upto 10% dutycycle by polynomial interpolation + pc_acs.printf("DC for try is %f \r \n",l_duty_cycle_y); + PWM2.period(TIME_PERIOD); + PWM2 = l_duty_cycle_y/100 ; + } + else if(l_current_y >= 0.0624 && l_current_y < 0.555) + { + l_duty_cycle_y = 331.15*pow(l_current_y,4) - 368.09*pow(l_current_y,3) + 140.43*pow(l_current_y,2) + 158.59*l_current_y + 0.0338;// calculating upto 100% dutycycle by polynomial interpolation + pc_acs.printf("DC for try is %f \r \n",l_duty_cycle_y); + PWM2.period(TIME_PERIOD); + PWM2 = l_duty_cycle_y/100 ; + } + else if(l_current_y==0) + { + printf("\n \r l_current_y====0"); + l_duty_cycle_y = 0; // default value of duty cycle + pc_acs.printf("DC for try is %f \r \n",l_duty_cycle_y); + PWM2.period(TIME_PERIOD); + PWM2 = l_duty_cycle_y/100 ; + } + else // not necessary + { + g_err_flag_TR_y = 1; + } + + //----------------------------------------------- z-direction TR -------------------------// + + + float l_moment_z = Moment[2]; //Moment in z direction + + phase_TR_z = 1; // setting the default current direction + if (l_moment_z <0) + { + phase_TR_z = 0; //if the moment value is negative, we send the abs value of corresponding current in opposite direction by setting the phase pin high + l_moment_z = abs(l_moment_z); + } + + + l_current_z = l_moment_z * TR_CONSTANT ; //Moment and Current always have the linear relationship + pc_acs.printf("current in trz is %f \r \n",l_current_z); + if( l_current_z>0 && l_current_z < 0.006 )//Current and Duty cycle have the linear relationship between 1% and 100% + { + l_duty_cycle_z = 6*1000000*pow(l_current_z,4) - 377291*pow(l_current_z,3) + 4689.6*pow(l_current_z,2) + 149.19*l_current_z - 0.0008;// calculating upto 0.1% dutycycle by polynomial interpolation + pc_acs.printf("DC for trz is %f \r \n",l_duty_cycle_z); + PWM3.period(TIME_PERIOD); + PWM3 = l_duty_cycle_z/100 ; + } + else if( l_current_z >= 0.006 && l_current_z < 0.0116) + { + l_duty_cycle_z = 1*100000000*pow(l_current_z,4) - 5*1000000*pow(l_current_z,3) + 62603*pow(l_current_z,2) - 199.29*l_current_z + 0.7648;// calculating upto 1% dutycycle by polynomial interpolation + pc_acs.printf("DC for trz is %f \r \n",l_duty_cycle_z); + PWM3.period(TIME_PERIOD); + PWM3 = l_duty_cycle_z/100 ; + } + else if (l_current_z >= 0.0116 && l_current_z < 0.0624) + { + l_duty_cycle_z = 212444*pow(l_current_z,4) - 33244*pow(l_current_z,3) + 1778.4*pow(l_current_z,2) + 120.91*l_current_z + 0.3878;// calculating upto 10% dutycycle by polynomial interpolation + pc_acs.printf("DC for trz is %f \r \n",l_duty_cycle_z); + PWM3.period(TIME_PERIOD); + PWM3 = l_duty_cycle_z/100 ; + } + else if(l_current_z >= 0.0624 && l_current_z < 0.555) + { + l_duty_cycle_z = 331.15*pow(l_current_z,4) - 368.09*pow(l_current_z,3) + 140.43*pow(l_current_z,2) + 158.59*l_current_z + 0.0338;// calculating upto 100% dutycycle by polynomial interpolation + pc_acs.printf("DC for trz is %f \r \n",l_duty_cycle_z); + PWM3.period(TIME_PERIOD); + PWM3 = l_duty_cycle_z/100 ; + } + else if(l_current_z==0) + { + printf("\n \r l_current_z====0"); + l_duty_cycle_z = 0; // default value of duty cycle + pc_acs.printf("DC for trz is %f \r \n",l_duty_cycle_z); + PWM3.period(TIME_PERIOD); + PWM3 = l_duty_cycle_z/100 ; + } + else // not necessary + { + g_err_flag_TR_z = 1; + } + + //-----------------------------------------exiting the function-----------------------------------// + + printf("\n\rExited executable PWMGEN function\n\r"); // stating the successful exit of TR function + +} + + + \ No newline at end of file