Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Dependencies: MPU6050_tmp mbed
FreeIMU.cpp
- Committer:
- pommzorz
- Date:
- 2013-02-20
- Revision:
- 0:c7a5b6fa0171
- Child:
- 2:a79ea2f610a1
File content as of revision 0:c7a5b6fa0171:
/*
FreeIMU.cpp - A libre and easy to use orientation sensing library for Arduino
Copyright (C) 2011-2012 Fabio Varesano <fabio at varesano dot net>
Development of this code has been supported by the Department of Computer Science,
Universita' degli Studi di Torino, Italy within the Piemonte Project
http://www.piemonte.di.unito.it/
This program is free software: you can redistribute it and/or modify
it under the terms of the version 3 GNU General Public License as
published by the Free Software Foundation.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
//#include <inttypes.h>
//#include <stdint.h>
//#define DEBUG
#include "FreeIMU.h"
#define M_PI 3.1415926535897932384626433832795
#ifdef DEBUG
#define DEBUG_PRINT(x) Serial.println(x)
#else
#define DEBUG_PRINT(x)
#endif
// #include "WireUtils.h"
//#include "DebugUtils.h"
//#include "vector_math.h"
FreeIMU::FreeIMU() {
accgyro = MPU6050(0x69); // I2C
// initialize quaternion
q0 = 1.0f;
q1 = 0.0f;
q2 = 0.0f;
q3 = 0.0f;
exInt = 0.0;
eyInt = 0.0;
ezInt = 0.0;
twoKp = twoKpDef;
twoKi = twoKiDef;
integralFBx = 0.0f, integralFBy = 0.0f, integralFBz = 0.0f;
update.start();
int dt_us=0;
/*
lastUpdate = 0;
now = 0;
*/
#ifndef CALIBRATION_H
// initialize scale factors to neutral values
acc_scale_x = 1;
acc_scale_y = 1;
acc_scale_z = 1;
magn_scale_x = 1;
magn_scale_y = 1;
magn_scale_z = 1;
#else
// get values from global variables of same name defined in calibration.h
acc_off_x = ::acc_off_x;
acc_off_y = ::acc_off_y;
acc_off_z = ::acc_off_z;
acc_scale_x = ::acc_scale_x;
acc_scale_y = ::acc_scale_y;
acc_scale_z = ::acc_scale_z;
magn_off_x = ::magn_off_x;
magn_off_y = ::magn_off_y;
magn_off_z = ::magn_off_z;
magn_scale_x = ::magn_scale_x;
magn_scale_y = ::magn_scale_y;
magn_scale_z = ::magn_scale_z;
#endif
}
void FreeIMU::init() {
init(FIMU_ACCGYRO_ADDR, false);
}
void FreeIMU::init(bool fastmode) {
init(FIMU_ACCGYRO_ADDR, fastmode);
}
/**
* Initialize the FreeIMU I2C bus, sensors and performs gyro offsets calibration
*/
void FreeIMU::init(int accgyro_addr, bool fastmode) {
wait_ms(5);
/*
// disable internal pullups of the ATMEGA which Wire enable by default
#if defined(__AVR_ATmega168__) || defined(__AVR_ATmega8__) || defined(__AVR_ATmega328P__)
// deactivate internal pull-ups for twi
// as per note from atmega8 manual pg167
cbi(PORTC, 4);
cbi(PORTC, 5);
#else
// deactivate internal pull-ups for twi
// as per note from atmega128 manual pg204
cbi(PORTD, 0);
cbi(PORTD, 1);
#endif
*/
/*
if(fastmode) { // switch to 400KHz I2C - eheheh
TWBR = ((F_CPU / 400000L) - 16) / 2; // see twi_init in Wire/utility/twi.c
}
*/
//accgyro = MPU6050(false, accgyro_addr);
accgyro = MPU6050(0x69);
accgyro.initialize();
accgyro.setI2CMasterModeEnabled(0);
accgyro.setI2CBypassEnabled(1);
accgyro.setFullScaleGyroRange(MPU6050_GYRO_FS_2000);
wait_ms(5);
// zero gyro
zeroGyro();
#ifndef CALIBRATION_H
// load calibration from eeprom
calLoad();
#endif
}
/*
#ifndef CALIBRATION_H
static uint8_t location; // assuming ordered reads
void eeprom_read_var(uint8_t size, byte * var) {
for(uint8_t i = 0; i<size; i++) {
var[i] = EEPROM.read(location + i);
}
location += size;
}
*/
void FreeIMU::calLoad() {
/*
if(EEPROM.read(FREEIMU_EEPROM_BASE) == FREEIMU_EEPROM_SIGNATURE) { // check if signature is ok so we have good data
location = FREEIMU_EEPROM_BASE + 1; // reset location
eeprom_read_var(sizeof(acc_off_x), (byte *) &acc_off_x);
eeprom_read_var(sizeof(acc_off_y), (byte *) &acc_off_y);
eeprom_read_var(sizeof(acc_off_z), (byte *) &acc_off_z);
eeprom_read_var(sizeof(magn_off_x), (byte *) &magn_off_x);
eeprom_read_var(sizeof(magn_off_y), (byte *) &magn_off_y);
eeprom_read_var(sizeof(magn_off_z), (byte *) &magn_off_z);
eeprom_read_var(sizeof(acc_scale_x), (byte *) &acc_scale_x);
eeprom_read_var(sizeof(acc_scale_y), (byte *) &acc_scale_y);
eeprom_read_var(sizeof(acc_scale_z), (byte *) &acc_scale_z);
eeprom_read_var(sizeof(magn_scale_x), (byte *) &magn_scale_x);
eeprom_read_var(sizeof(magn_scale_y), (byte *) &magn_scale_y);
eeprom_read_var(sizeof(magn_scale_z), (byte *) &magn_scale_z);
}
else {
*/
acc_off_x = 0;
acc_off_y = 0;
acc_off_z = 0;
acc_scale_x = 1;
acc_scale_y = 1;
acc_scale_z = 1;
magn_off_x = 0;
magn_off_y = 0;
magn_off_z = 0;
magn_scale_x = 1;
magn_scale_y = 1;
magn_scale_z = 1;
// }
}
//#endif
/**
* Populates raw_values with the raw_values from the sensors
*/
void FreeIMU::getRawValues(int16_t * raw_values) {
accgyro.getMotion6(&raw_values[0], &raw_values[1], &raw_values[2], &raw_values[3], &raw_values[4], &raw_values[5]);
}
/**
* Populates values with calibrated readings from the sensors
*/
void FreeIMU::getValues(float * values) {
// MPU6050
int16_t accgyroval[6];
accgyro.getMotion6(&accgyroval[0], &accgyroval[1], &accgyroval[2], &accgyroval[3], &accgyroval[4], &accgyroval[5]);
// remove offsets from the gyroscope
accgyroval[3] = accgyroval[3] - gyro_off_x;
accgyroval[4] = accgyroval[4] - gyro_off_y;
accgyroval[5] = accgyroval[5] - gyro_off_z;
for(int i = 0; i<6; i++) {
if(i < 3) {
values[i] = (float) accgyroval[i];
}
else {
values[i] = ((float) accgyroval[i]) / 16.4f; // NOTE: this depends on the sensitivity chosen
}
}
#warning Accelerometer calibration active: have you calibrated your device?
// remove offsets and scale accelerometer (calibration)
values[0] = (values[0] - acc_off_x) / acc_scale_x;
values[1] = (values[1] - acc_off_y) / acc_scale_y;
values[2] = (values[2] - acc_off_z) / acc_scale_z;
}
/**
* Computes gyro offsets
*/
void FreeIMU::zeroGyro() {
const int totSamples = 3;
int16_t raw[11];
float tmpOffsets[] = {0,0,0};
for (int i = 0; i < totSamples; i++){
getRawValues(raw);
tmpOffsets[0] += raw[3];
tmpOffsets[1] += raw[4];
tmpOffsets[2] += raw[5];
}
gyro_off_x = tmpOffsets[0] / totSamples;
gyro_off_y = tmpOffsets[1] / totSamples;
gyro_off_z = tmpOffsets[2] / totSamples;
}
/**
* Quaternion implementation of the 'DCM filter' [Mayhony et al]. Incorporates the magnetic distortion
* compensation algorithms from Sebastian Madgwick's filter which eliminates the need for a reference
* direction of flux (bx bz) to be predefined and limits the effect of magnetic distortions to yaw
* axis only.
*
* @see: http://www.x-io.co.uk/node/8#open_source_ahrs_and_imu_algorithms
*/
void FreeIMU::AHRSupdate(float gx, float gy, float gz, float ax, float ay, float az) {
float recipNorm;
float q0q0, q0q1, q0q2, q0q3, q1q1, q1q2, q1q3, q2q2, q2q3, q3q3;
float halfex = 0.0f, halfey = 0.0f, halfez = 0.0f;
float qa, qb, qc;
// Auxiliary variables to avoid repeated arithmetic
q0q0 = q0 * q0;
q0q1 = q0 * q1;
q0q2 = q0 * q2;
q0q3 = q0 * q3;
q1q1 = q1 * q1;
q1q2 = q1 * q2;
q1q3 = q1 * q3;
q2q2 = q2 * q2;
q2q3 = q2 * q3;
q3q3 = q3 * q3;
// Compute feedback only if accelerometer measurement valid (avoids NaN in accelerometer normalisation)
if((ax != 0.0f) && (ay != 0.0f) && (az != 0.0f)) {
float halfvx, halfvy, halfvz;
// Normalise accelerometer measurement
recipNorm = invSqrt(ax * ax + ay * ay + az * az);
ax *= recipNorm;
ay *= recipNorm;
az *= recipNorm;
// Estimated direction of gravity
halfvx = q1q3 - q0q2;
halfvy = q0q1 + q2q3;
halfvz = q0q0 - 0.5f + q3q3;
// Error is sum of cross product between estimated direction and measured direction of field vectors
halfex += (ay * halfvz - az * halfvy);
halfey += (az * halfvx - ax * halfvz);
halfez += (ax * halfvy - ay * halfvx);
}
// Apply feedback only when valid data has been gathered from the accelerometer or magnetometer
if(halfex != 0.0f && halfey != 0.0f && halfez != 0.0f) {
// Compute and apply integral feedback if enabled
if(twoKi > 0.0f) {
integralFBx += twoKi * halfex * (1.0f / sampleFreq); // integral error scaled by Ki
integralFBy += twoKi * halfey * (1.0f / sampleFreq);
integralFBz += twoKi * halfez * (1.0f / sampleFreq);
gx += integralFBx; // apply integral feedback
gy += integralFBy;
gz += integralFBz;
}
else {
integralFBx = 0.0f; // prevent integral windup
integralFBy = 0.0f;
integralFBz = 0.0f;
}
// Apply proportional feedback
gx += twoKp * halfex;
gy += twoKp * halfey;
gz += twoKp * halfez;
}
// Integrate rate of change of quaternion
gx *= (0.5f * (1.0f / sampleFreq)); // pre-multiply common factors
gy *= (0.5f * (1.0f / sampleFreq));
gz *= (0.5f * (1.0f / sampleFreq));
qa = q0;
qb = q1;
qc = q2;
q0 += (-qb * gx - qc * gy - q3 * gz);
q1 += (qa * gx + qc * gz - q3 * gy);
q2 += (qa * gy - qb * gz + q3 * gx);
q3 += (qa * gz + qb * gy - qc * gx);
// Normalise quaternion
recipNorm = invSqrt(q0 * q0 + q1 * q1 + q2 * q2 + q3 * q3);
q0 *= recipNorm;
q1 *= recipNorm;
q2 *= recipNorm;
q3 *= recipNorm;
}
/**
* Populates array q with a quaternion representing the IMU orientation with respect to the Earth
*
* @param q the quaternion to populate
*/
void FreeIMU::getQ(float * q) {
float val[9];
getValues(val);
DEBUG_PRINT(val[3] * M_PI/180);
DEBUG_PRINT(val[4] * M_PI/180);
DEBUG_PRINT(val[5] * M_PI/180);
DEBUG_PRINT(val[0]);
DEBUG_PRINT(val[1]);
DEBUG_PRINT(val[2]);
DEBUG_PRINT(val[6]);
DEBUG_PRINT(val[7]);
DEBUG_PRINT(val[8]);
//now = micros();
dt_us=update.read_us();
sampleFreq = 1.0 / ((dt_us) / 1000000.0);
update.reset();
// lastUpdate = now;
// gyro values are expressed in deg/sec, the * M_PI/180 will convert it to radians/sec
AHRSupdate(val[3] * M_PI/180, val[4] * M_PI/180, val[5] * M_PI/180, val[0], val[1], val[2]);
q[0] = q0;
q[1] = q1;
q[2] = q2;
q[3] = q3;
}
/**
* Returns the Euler angles in radians defined in the Aerospace sequence.
* See Sebastian O.H. Madwick report "An efficient orientation filter for
* inertial and intertial/magnetic sensor arrays" Chapter 2 Quaternion representation
*
* @param angles three floats array which will be populated by the Euler angles in radians
*/
void FreeIMU::getEulerRad(float * angles) {
float q[4]; // quaternion
getQ(q);
angles[0] = atan2(2 * q[1] * q[2] - 2 * q[0] * q[3], 2 * q[0]*q[0] + 2 * q[1] * q[1] - 1); // psi
angles[1] = -asin(2 * q[1] * q[3] + 2 * q[0] * q[2]); // theta
angles[2] = atan2(2 * q[2] * q[3] - 2 * q[0] * q[1], 2 * q[0] * q[0] + 2 * q[3] * q[3] - 1); // phi
}
/**
* Returns the Euler angles in degrees defined with the Aerospace sequence.
* See Sebastian O.H. Madwick report "An efficient orientation filter for
* inertial and intertial/magnetic sensor arrays" Chapter 2 Quaternion representation
*
* @param angles three floats array which will be populated by the Euler angles in degrees
*/
void FreeIMU::getEuler(float * angles) {
getEulerRad(angles);
arr3_rad_to_deg(angles);
}
/**
* Returns the yaw pitch and roll angles, respectively defined as the angles in radians between
* the Earth North and the IMU X axis (yaw), the Earth ground plane and the IMU X axis (pitch)
* and the Earth ground plane and the IMU Y axis.
*
* @note This is not an Euler representation: the rotations aren't consecutive rotations but only
* angles from Earth and the IMU. For Euler representation Yaw, Pitch and Roll see FreeIMU::getEuler
*
* @param ypr three floats array which will be populated by Yaw, Pitch and Roll angles in radians
*/
void FreeIMU::getYawPitchRollRad(float * ypr) {
float q[4]; // quaternion
float gx, gy, gz; // estimated gravity direction
getQ(q);
gx = 2 * (q[1]*q[3] - q[0]*q[2]);
gy = 2 * (q[0]*q[1] + q[2]*q[3]);
gz = q[0]*q[0] - q[1]*q[1] - q[2]*q[2] + q[3]*q[3];
ypr[0] = atan2(2 * q[1] * q[2] - 2 * q[0] * q[3], 2 * q[0]*q[0] + 2 * q[1] * q[1] - 1);
ypr[1] = atan(gx / sqrt(gy*gy + gz*gz));
ypr[2] = atan(gy / sqrt(gx*gx + gz*gz));
}
/**
* Returns the yaw pitch and roll angles, respectively defined as the angles in degrees between
* the Earth North and the IMU X axis (yaw), the Earth ground plane and the IMU X axis (pitch)
* and the Earth ground plane and the IMU Y axis.
*
* @note This is not an Euler representation: the rotations aren't consecutive rotations but only
* angles from Earth and the IMU. For Euler representation Yaw, Pitch and Roll see FreeIMU::getEuler
*
* @param ypr three floats array which will be populated by Yaw, Pitch and Roll angles in degrees
*/
void FreeIMU::getYawPitchRoll(float * ypr) {
getYawPitchRollRad(ypr);
arr3_rad_to_deg(ypr);
}
/**
* Converts a 3 elements array arr of angles expressed in radians into degrees
*/
void arr3_rad_to_deg(float * arr) {
arr[0] *= 180/M_PI;
arr[1] *= 180/M_PI;
arr[2] *= 180/M_PI;
}
/**
* Fast inverse square root implementation
* @see http://en.wikipedia.org/wiki/Fast_inverse_square_root
*/
float invSqrt(float number) {
volatile long i;
volatile float x, y;
volatile const float f = 1.5F;
x = number * 0.5F;
y = number;
i = * ( long * ) &y;
i = 0x5f375a86 - ( i >> 1 );
y = * ( float * ) &i;
y = y * ( f - ( x * y * y ) );
return y;
}