Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
main.cpp
- Committer:
- pmic
- Date:
- 2022-06-02
- Revision:
- 51:6a158dcc7457
- Parent:
- 50:84723ac07ea5
- Child:
- 52:4c282feb57eb
File content as of revision 51:6a158dcc7457:
#include <mbed.h>
//#include "greentea-client/test_env.h"
//#include "unity.h"
//#include "utest.h"
#include <gnss.h>
//using namespace utest::v1;
// ----------------------------------------------------------------
// COMPILE-TIME MACROS
// ----------------------------------------------------------------
// How long to wait for a GNSS result
#define GNSS_WAIT_SECONDS 120
// ----------------------------------------------------------------
// PRIVATE VARIABLES
// ----------------------------------------------------------------
// ----------------------------------------------------------------
// PRIVATE FUNCTIONS
// ----------------------------------------------------------------
static void printHex (char * pData, uint32_t lenData)
{
char * pEnd = pData + lenData;
uint8_t x;
printf (" 0 1 2 3 4 5 6 7 8 9 A B C D E F\n");
while (pData < pEnd) {
for (x = 1; (x <= 32) && (pData < pEnd); x++) {
if (x % 16 == 8) {
printf ("%02x ", *pData);
} else if (x % 16 == 0) {
printf ("%02x\n", *pData);
} else {
printf ("%02x-", *pData);
}
pData++;
}
if (x % 16 != 1) {
printf("\n");
}
}
}
// ----------------------------------------------------------------
// TESTS
// ----------------------------------------------------------------
// Test sending a u-blox command over serial
void test_serial_ubx() {
char buffer[64];
int responseLength = 0;
int returnCode;
bool gotAck = false;
Timer timer;
GnssSerial *pGnss = new GnssSerial(PA_9, PA_10, 38400);
// Initialise the GNSS chip
pGnss->init(NC);
// Try this a few times as we might get no response
// if the GNSS chip is busy
for (int x = 0; (x < 3) && !gotAck; x++) {
// See ublox7-V14_ReceiverDescrProtSpec section 30.11.15 (CFG-NAV5)
// Set automotive mode, which should be acknowledged
memset (buffer, 0, sizeof (buffer));
buffer[0] = 0x00;
buffer[1] = 0x01; // Mask: set dynamic config only
buffer[2] = 0x04; // Dynamic platform model: automotive
// Send length is 32 bytes of payload + 6 bytes header + 2 bytes CRC
//TEST_ASSERT_EQUAL_INT (40, pGnss->sendUbx(0x06, 0x24, buffer, 32));
printf ("CFG_NAV5 command sent, try %d.\n", x);
timer.start();
while ((!gotAck) && (std::chrono::duration_cast<std::chrono::milliseconds>(timer.elapsed_time()).count() < 1000)) {
// Wait for the required Ack
returnCode = pGnss->getMessage(buffer, sizeof(buffer));
if ((returnCode != GnssSerial::WAIT) && (returnCode != GnssSerial::NOT_FOUND)) {
responseLength = LENGTH(returnCode);
if ((PROTOCOL(returnCode) == GnssSerial::UBX)) {
printHex(buffer, responseLength);
// Ack is 0xb5-62-05-00-02-00-msgclass-msgid-crcA-crcB
// Nack is 0xb5-62-05-01-02-00-msgclass-msgid-crcA-crcB
//TEST_ASSERT_EQUAL_UINT8(0xb5, buffer[0]);
//TEST_ASSERT_EQUAL_UINT8(0x62, buffer[1]);
//TEST_ASSERT_EQUAL_UINT8(0x05, buffer[2]);
//TEST_ASSERT_EQUAL_UINT8(0x00, buffer[3]);
//TEST_ASSERT_EQUAL_UINT8(0x02, buffer[4]);
//TEST_ASSERT_EQUAL_UINT8(0x00, buffer[5]);
//TEST_ASSERT_EQUAL_UINT8(0x06, buffer[6]);
//TEST_ASSERT_EQUAL_UINT8(0x24, buffer[7]);
gotAck = true;
} else if ((PROTOCOL(returnCode) == GnssSerial::NMEA)) {
printf ("%.*s", responseLength, buffer);
} else {
printHex(buffer, responseLength);
}
}
thread_sleep_for(100); //wait_ms (100);
}
timer.stop();
timer.reset();
}
}
// Test getting a response from GNSS using the serial interface
void test_serial_time() {
GnssSerial *pGnss = new GnssSerial(PA_9, PA_10, 38400);
bool gotLatLong = false;
bool gotElevation = false;
bool gotSpeed = false;
bool gotTime = false;
char buffer[256];
int returnCode;
double latitude;
double longitude;
double elevation;
double speed;
printf("GNSS: powering up and waiting up to %d second(s) for something to happen.\n", GNSS_WAIT_SECONDS);
pGnss->init();
memset(buffer, 0, sizeof(buffer));
for (uint32_t x = 0; (x < GNSS_WAIT_SECONDS) && !gotTime; x++)
{
while (((returnCode = pGnss->getMessage(buffer, sizeof(buffer))) > 0) &&
!(gotLatLong && gotElevation && gotSpeed && gotTime))
{
int32_t length = LENGTH(returnCode);
if ((PROTOCOL(returnCode) == GnssParser::NMEA) && (length > 6))
{
printf(".");
// talker is $GA=Galileo $GB=Beidou $GL=Glonass $GN=Combined $GP=GNSS
if ((buffer[0] == '$') || buffer[1] == 'G')
{
#define _CHECK_TALKER(s) ((buffer[3] == s[0]) && (buffer[4] == s[1]) && (buffer[5] == s[2]))
if (_CHECK_TALKER("GLL"))
{
char ch;
if (pGnss->getNmeaAngle(1, buffer, length, latitude) &&
pGnss->getNmeaAngle(3, buffer, length, longitude) &&
pGnss->getNmeaItem(6, buffer, length, ch) &&
ch == 'A')
{
gotLatLong = true;
latitude *= 60000;
longitude *= 60000;
printf("\nGNSS: location %.5f %.5f %c.\n", latitude, longitude, ch);
}
}
else if (_CHECK_TALKER("GGA") || _CHECK_TALKER("GNS"))
{
const char *pTimeString = NULL;
// Retrieve the time
pTimeString = pGnss->findNmeaItemPos(1, buffer, buffer + length);
if (pTimeString != NULL)
{
gotTime = true;
printf("\nGNSS: time is %.6s.", pTimeString);
}
if (pGnss->getNmeaItem(9, buffer, length, elevation)) // altitude msl [m]
{
gotElevation = true;
printf("\nGNSS: elevation: %.1f.", elevation);
}
}
else if (_CHECK_TALKER("VTG"))
{
if (pGnss->getNmeaItem(7, buffer, length, speed)) // speed [km/h]
{
gotSpeed = true;
printf("\nGNSS: speed: %.1f.", speed);
}
}
}
}
}
thread_sleep_for(1000); //wait_ms(1000);
}
printf("\n");
// Depending on antenna positioning we may not be able to get a GNSS fix but we
// should at least be able to receive the time from a satellite
//TEST_ASSERT(gotTime);
}
int main() {
DigitalOut user_led(LED1); // create DigitalOut object to command user led
test_serial_time();
while (true) {
printf(" main ended\r\n");
user_led = !user_led;
thread_sleep_for(1000);
}
}
// End Of File
/*
#include <mbed.h>
// GNSS and Compass test programm for Mateksys GNSS&Compass M9N-5883
// #include "Eigen/Dense.h"
#include "QMC5883L.h"
#include "LinearCharacteristics.h"
#include "NEOM9N.h"
// logical variable main task
bool do_execute_main_task = true; // this variable will be toggled via the user button (blue button) to or not to execute the main task
// user button on nucleo board
Timer user_button_timer; // create Timer object which we use to check if user button was pressed for a certain time (robust against signal bouncing)
InterruptIn user_button(PC_13); // create InterruptIn interface object to evaluate user button falling and rising edge (no blocking code in ISR)
void user_button_pressed_fcn(); // custom functions which gets executed when user button gets pressed and released, definition below
void user_button_released_fcn();
int main()
{
// while loop gets executed every main_task_period_ms milliseconds
const int main_task_period_ms = 100; // define main task period time in ms e.g. 50 ms -> main task runns 20 times per second
Timer main_task_timer; // create Timer object which we use to run the main task every main task period time in ms
// led on nucleo board
DigitalOut user_led(LED1); // create DigitalOut object to command user led
// create QMC5883L compass object
I2C i2c(PB_9, PB_8); // I2C1
QMC5883L mag(i2c);
LinearCharacteristics raw_mx2mx, raw_my2my, raw_mz2mz;
raw_mx2mx.setup(0.9991f, 0.0088f);
raw_my2my.setup(0.9982f, 0.2092f);
raw_mz2mz.setup(1.0027f, -0.0903f);
float mag_val[3] = {0.0f, 0.0f, 0.0f};
// create object for GNSS Sensor NEO-M9N
NEOM9N neom9n(PA_9, PA_10); // UART1
//NEOM9N neom9n(PA_2, PA_3); // UART2
// attach button fall and rise functions to user button object
user_button.fall(&user_button_pressed_fcn);
user_button.rise(&user_button_released_fcn);
// start timer
main_task_timer.start();
while (true) { // this loop will run forever
main_task_timer.reset();
mag.readMag();
if (do_execute_main_task) {
mag_val[0] = raw_mx2mx.evaluate(mag.magX());
mag_val[1] = raw_my2my.evaluate(mag.magY());
mag_val[2] = raw_mz2mz.evaluate(mag.magZ());
} else {
for (uint8_t i = 0; i <= 3; i++) {
mag_val[i] = 0;
}
}
user_led = !user_led;
// do only output via serial what's really necessary (this makes your code slow)
printf("%f, %f, %f\r\n", mag_val[0], mag_val[1], mag_val[2]);
printf("GPS time: %d, num sat: %d, lat: %d, lon: %d, speed: %d, heading: %d\r\n", neom9n.actualPVT.itow, neom9n.actualPVT.numSV, neom9n.actualPVT.lat, neom9n.actualPVT.lon, neom9n.actualPVT.speed, neom9n.actualPVT.headMot);
// read timer and make the main thread sleep for the remaining time span (non blocking)
int main_task_elapsed_time_ms = std::chrono::duration_cast<std::chrono::milliseconds>(main_task_timer.elapsed_time()).count();
thread_sleep_for(main_task_period_ms - main_task_elapsed_time_ms);
}
}
void user_button_pressed_fcn()
{
user_button_timer.start();
user_button_timer.reset();
}
void user_button_released_fcn()
{
// read timer and toggle do_execute_main_task if the button was pressed longer than the below specified time
int user_button_elapsed_time_ms = std::chrono::duration_cast<std::chrono::milliseconds>(user_button_timer.elapsed_time()).count();
user_button_timer.stop();
if (user_button_elapsed_time_ms > 200) {
do_execute_main_task = !do_execute_main_task;
}
}
*/