Example project

Dependencies:   PM2_Libary Eigen

Revision:
36:23addefb97af
Parent:
31:1b2a1bd1bccb
Child:
39:f336caef17d9
--- a/main.cpp	Tue May 10 07:18:28 2022 +0000
+++ b/main.cpp	Tue May 10 10:03:51 2022 +0200
@@ -1,196 +1,70 @@
-#include "mbed.h"
-#include "PM2_Libary.h"
-
-// logical variable main task
-bool do_execute_main_task = false;  // this variable will be toggled via the user button (blue button) to or not to execute the main task
-
-// user button on nucleo board
-Timer user_button_timer;            // create Timer object which we use to check if user button was pressed for a certain time (robust against signal bouncing)
-InterruptIn user_button(PC_13);     // create InterruptIn interface object to evaluate user button falling and rising edge (no blocking code in ISR)
-void user_button_pressed_fcn();     // custom functions which gets executed when user button gets pressed and released, definition below
-void user_button_released_fcn();
-
-// while loop gets executed every main_task_period_ms milliseconds
-int main_task_period_ms = 50;   // define main task period time in ms e.g. 50 ms -> main task runns 20 times per second
-Timer main_task_timer;          // create Timer object which we use to run the main task every main task period time in ms
-
-// led on nucleo board
-DigitalOut user_led(LED1);      // create DigitalOut object to command user led
-
-// additional Led
-DigitalOut extra_led(PB_9);     // create DigitalOut object to command extra led (do add an aditional resistor, e.g. 220...500 Ohm)
-
-// mechanical button
-DigitalIn mechanical_button(PC_5);  // create DigitalIn object to evaluate extra mechanical button, you need to specify the mode for proper usage, see below
-
-// Sharp GP2Y0A41SK0F, 4-40 cm IR Sensor
-float ir_distance_mV = 0.0f;    // define variable to store measurement
-AnalogIn ir_analog_in(PC_2);    // create AnalogIn object to read in infrared distance sensor, 0...3.3V are mapped to 0...1
-
-// 78:1, 100:1, ... Metal Gearmotor 20Dx44L mm 12V CB
-DigitalOut enable_motors(PB_15);    // create DigitalOut object to enable dc motors
-
-float   pwm_period_s = 0.00005f;    // define pwm period time in seconds and create FastPWM objects to command dc motors
-FastPWM pwm_M1(PB_13);              // motor M1 is used open loop
-FastPWM pwm_M2(PA_9);               // motor M2 is closed-loop speed controlled (angle velocity)
-FastPWM pwm_M3(PA_10);              // motor M3 is closed-loop position controlled (angle controlled)
-
-EncoderCounter  encoder_M1(PA_6, PC_7); // create encoder objects to read in the encoder counter values
-EncoderCounter  encoder_M2(PB_6, PB_7);
-EncoderCounter  encoder_M3(PA_0, PA_1);
+/*
+ * Main.cpp
+ * Copyright (c) 2022, ZHAW
+ * All rights reserved.
+ */
 
-// create SpeedController and PositionController objects, default parametrization is for 78.125:1 gear box
-float max_voltage = 12.0f;                  // define maximum voltage of battery packs, adjust this to 6.0f V if you only use one batterypack
-float counts_per_turn = 20.0f * 78.125f;    // define counts per turn at gearbox end: counts/turn * gearratio
-float kn = 180.0f / 12.0f;                  // define motor constant in rpm per V
-float k_gear = 100.0f / 78.125f;            // define additional ratio in case you are using a dc motor with a different gear box, e.g. 100:1
-float kp = 0.1f;                            // define custom kp, this is the default speed controller gain for gear box 78.125:1
-
-// SpeedController speedController_M2(counts_per_turn, kn, max_voltage, pwm_M2, encoder_M2); // default 78.125:1 gear box  with default contoller parameters
-SpeedController speedController_M2(counts_per_turn * k_gear, kn / k_gear, max_voltage, pwm_M2, encoder_M2); // parameters adjusted to 100:1 gear
-
-float max_speed_rps = 0.5f;                 // define maximum speed that the position controller is changig the speed, has to be smaller or equal to kn * max_voltage
-// PositionController positionController_M3(counts_per_turn, kn, max_voltage, pwm_M3, encoder_M3); // default 78.125:1 gear with default contoller parameters
-PositionController positionController_M3(counts_per_turn * k_gear, kn / k_gear, kp * k_gear, max_voltage, pwm_M3, encoder_M3); // parameters adjusted to 100:1 gear, we need a different speed controller gain here
-
-// Futaba Servo S3001 20mm 3kg Analog
-Servo servo_S1(PB_2);           // create servo objects
-Servo servo_S2(PC_8);
-float servo_S1_angle = 0;       // servo S1 normalized angle
-float servo_S2_angle = 0;       // servo S2 normalized angle
-int servo_period_mus = 20000;   // define servo period time in mus
-
-int servo_counter = 0;          // define servo counter, this is an additional variable to make the servos move
-int loops_per_seconds = static_cast<int>(ceilf(1.0f/(0.001f*(float)main_task_period_ms))); // define loops per second
-
-// Groove Ultrasonic Ranger V2.0
-float us_distance_cm = 0.0f;    // define variable to store measurement
-RangeFinder us_range_finder(PB_12, 5782.0f, 0.02f, 17500); // create range finder object (ultra sonic distance sensor), 20 Hz parametrization
-// RangeFinder us_range_finder(PB_12, 5782.0f, 0.02f,  7000); // create range finder object (ultra sonic distance sensor), 50 Hz parametrization
-
-// LSM9DS1 IMU, carefull: not all PES boards have an imu (chip shortage)
-// LSM9DS1 imu(PC_9, PA_8); // create LSM9DS1 comunication object, if you want to be able to use the imu you need to #include "LSM9DS1_i2c.h"
-
-int main()
-{
-    // attach button fall and rise functions to user button object
-    user_button.fall(&user_button_pressed_fcn);
-    user_button.rise(&user_button_released_fcn);
-
-    // start timer
-    main_task_timer.start();
-
-    // set pullup mode: add resistor between pin and 3.3 V, so that there is a defined potential
-    mechanical_button.mode(PullUp);
-
-    // enable hardwaredriver dc motors: 0 -> disabled, 1 -> enabled
-    enable_motors = 1;
+#include <stdio.h>
+#include <mbed.h>
+#include "IRSensor.h"
+#include "EncoderCounterROME2.h"
+#include "Controller.h"
+#include "StateMachine.h"
 
-    // motor M1 is used open-loop, we need to initialize the pwm and set pwm output to zero at the beginning, range: 0...1 -> u_min...u_max: 0.5 -> 0 V
-    pwm_M1.period(pwm_period_s);
-    pwm_M1.write(0.5f);
-
-    // set the soft pwm period for the servo objects
-    servo_S1.SetPeriod(servo_period_mus);
-    servo_S2.SetPeriod(servo_period_mus);
-
-    while (true) { // this loop will run forever
-
-        main_task_timer.reset();
-
-        if (do_execute_main_task) {
-
-            // read analog input
-            ir_distance_mV = 1.0e3f * ir_analog_in.read() * 3.3f;
-
-            // command dc motors if mechanical button is pressed
-            if (mechanical_button.read()) {
-                pwm_M1.write(0.75f); // write output voltage to motor M1
-                speedController_M2.setDesiredSpeedRPS(0.5f); // set a desired speed for speed controlled dc motors M2
-                positionController_M3.setDesiredRotation(1.5f, max_speed_rps); // set a desired rotation for position controlled dc motors M3
-            } else {
-                pwm_M1.write(0.5f);
-                speedController_M2.setDesiredSpeedRPS(0.0f);
-                positionController_M3.setDesiredRotation(0.0f, max_speed_rps);
-            }
-
-            // check if servos are enabled
-            if (!servo_S1.isEnabled()) servo_S1.Enable();
-            if (!servo_S2.isEnabled()) servo_S2.Enable();
-            // command servo position, this needs to be calibrated
-            servo_S1.SetPosition(servo_S1_angle);
-            if (servo_S1_angle < 1.0f & servo_counter%loops_per_seconds == 0 & servo_counter != 0) {
-                servo_S1_angle += 0.01f;
-            }
-            servo_S2.SetPosition(servo_S2_angle);
-            if (servo_S2_angle < 1.0f & servo_counter%loops_per_seconds == 0 & servo_counter != 0) {
-                servo_S2_angle += 0.01f;
-            }
-            servo_counter++;
-
-            // read ultra sonic distance sensor
-            us_distance_cm = us_range_finder.read_cm();
-
-            // visual feedback that the main task is executed
-            extra_led = 1;
-
-        } else {
-
-            ir_distance_mV = 0.0f;
-
-            pwm_M1.write(0.5f);
-            speedController_M2.setDesiredSpeedRPS(0.0f);
-            positionController_M3.setDesiredRotation(0.0f, max_speed_rps);
-
-            servo_S1_angle = 0;
-            servo_S2_angle = 0;
-            // servo_S1.SetPosition(servo_S1_angle);
-            // servo_S2.SetPosition(servo_S2_angle);
-            if (servo_S1.isEnabled()) servo_S1.Disable();
-            if (servo_S2.isEnabled()) servo_S2.Disable();
-
-            us_distance_cm = 0.0f;
-
-            extra_led = 0;
-        }
-
-        user_led = !user_led;
-
-        // do only output via serial what's really necessary (this makes your code slow)
-        printf("IR sensor (mV): %3.3f, Encoder M1: %3d, Speed M2 (rps) %3.3f, Position M3 (rot): %3.3f, Servo S1 angle (normalized): %3.3f, Servo S2 angle (normalized): %3.3f, US sensor (cm): %3.3f\r\n",
-               ir_distance_mV,
-               encoder_M1.read(),
-               speedController_M2.getSpeedRPS(),
-               positionController_M3.getRotation(),
-               servo_S1_angle,
-               servo_S2_angle,
-               us_distance_cm);
-
-        // read out the imu, the actual frames of the sensor reading needs to be figured out
-        // imu.updateGyro();
-        // imu.updateAcc();
-        // imu.updateMag();
-        // printf("%.6f, %.6f, %.6f, %.6f, %.6f, %.6f, %.6f, %.6f, %.6f\r\n", imu.readGyroX(), imu.readGyroY(), imu.readGyroZ(),
-        // imu.readAccX(), imu.readAccY(), imu.readAccZ(), imu.readMagX(), imu.readMagY(), imu.readMagZ());
-
-        // read timer and make the main thread sleep for the remaining time span (non blocking)
-        int main_task_elapsed_time_ms = std::chrono::duration_cast<std::chrono::milliseconds>(main_task_timer.elapsed_time()).count();
-        thread_sleep_for(main_task_period_ms - main_task_elapsed_time_ms);
+int main() {
+    
+    // create miscellaneous periphery objects
+    
+    DigitalIn button(BUTTON1);
+    DigitalOut led(LED1);
+    
+    DigitalOut led0(PD_4);
+    DigitalOut led1(PD_3);
+    DigitalOut led2(PD_6);
+    DigitalOut led3(PD_2);
+    DigitalOut led4(PD_7);
+    DigitalOut led5(PD_5);
+    
+    // create IR sensor objects
+    
+    AnalogIn distance(PA_0);
+    DigitalOut enable(PG_1);
+    DigitalOut bit0(PF_0);
+    DigitalOut bit1(PF_1);
+    DigitalOut bit2(PF_2);
+    
+    IRSensor irSensor0(distance, bit0, bit1, bit2, 0);
+    IRSensor irSensor1(distance, bit0, bit1, bit2, 1);
+    IRSensor irSensor2(distance, bit0, bit1, bit2, 2);
+    IRSensor irSensor3(distance, bit0, bit1, bit2, 3);
+    IRSensor irSensor4(distance, bit0, bit1, bit2, 4);
+    IRSensor irSensor5(distance, bit0, bit1, bit2, 5);
+    
+    enable = 1;
+    
+    // create motor control objects
+    
+    DigitalOut enableMotorDriver(PG_0); 
+    DigitalIn motorDriverFault(PD_1);
+    DigitalIn motorDriverWarning(PD_0);
+    
+    PwmOut pwmLeft(PF_9);
+    PwmOut pwmRight(PF_8);
+    
+    EncoderCounterROME2 counterLeft(PD_12, PD_13);
+    EncoderCounterROME2 counterRight(PB_4, PC_7);
+    
+    // create robot controller objects
+    
+    Controller controller(pwmLeft, pwmRight, counterLeft, counterRight);
+    StateMachine stateMachine(controller, enableMotorDriver, led0, led1, led2, led3, led4, led5, button, irSensor0, irSensor1, irSensor2, irSensor3, irSensor4, irSensor5);
+    
+    while (true) {
+        
+        led = !led;
+        
+        printf("actual velocity: %.3f [m/s] / %.3f [rad/s]\r\n", controller.getActualTranslationalVelocity(), controller.getActualRotationalVelocity());
+        
+        ThisThread::sleep_for(100ms);
     }
 }
-
-void user_button_pressed_fcn()
-{
-    user_button_timer.start();
-    user_button_timer.reset();
-}
-
-void user_button_released_fcn()
-{
-    // read timer and toggle do_execute_main_task if the button was pressed longer than the below specified time
-    int user_button_elapsed_time_ms = std::chrono::duration_cast<std::chrono::milliseconds>(user_button_timer.elapsed_time()).count();
-    user_button_timer.stop();
-    if (user_button_elapsed_time_ms > 200) {
-        do_execute_main_task = !do_execute_main_task;
-    }
-}
\ No newline at end of file