Example project

Dependencies:   PM2_Libary Eigen

Committer:
robleiker
Date:
Wed May 18 09:50:32 2022 +0000
Revision:
47:6693bffcdfd0
Parent:
46:41c9367da539
Child:
48:31ffd88e7f99
Structuring and commenting the code

Who changed what in which revision?

UserRevisionLine numberNew contents of line
pmic 36:23addefb97af 1 #include <mbed.h>
pmic 42:d2d2db5974c9 2 #include <math.h>
pmic 40:924bdbc33391 3 #include <vector>
pmic 40:924bdbc33391 4
pmic 42:d2d2db5974c9 5 #include "PM2_Libary.h"
pmic 42:d2d2db5974c9 6 #include "Eigen/Dense.h"
pmic 42:d2d2db5974c9 7
pmic 36:23addefb97af 8 #include "IRSensor.h"
pmic 40:924bdbc33391 9
robleiker 47:6693bffcdfd0 10
pmic 40:924bdbc33391 11
pmic 42:d2d2db5974c9 12 /**
robleiker 47:6693bffcdfd0 13 * Note: Hardware related differences
pmic 42:d2d2db5974c9 14 * - IRSensor class is not available in PM2_Libary
pmic 42:d2d2db5974c9 15 * - ROME2 Robot uses different PINS than PES board
pmic 42:d2d2db5974c9 16 */
pmic 42:d2d2db5974c9 17
robleiker 47:6693bffcdfd0 18 /* ------------------------------------------------------------------------------------------- *
robleiker 47:6693bffcdfd0 19 * -- Defines
robleiker 47:6693bffcdfd0 20 * ------------------------------------------------------------------------------------------- */
robleiker 47:6693bffcdfd0 21
robleiker 47:6693bffcdfd0 22 # define M_PI 3.14159265358979323846
robleiker 47:6693bffcdfd0 23
robleiker 47:6693bffcdfd0 24 /* ------------------------------------------------------------------------------------------- *
robleiker 47:6693bffcdfd0 25 * -- Global Variables
robleiker 47:6693bffcdfd0 26 * ------------------------------------------------------------------------------------------- */
robleiker 47:6693bffcdfd0 27
pmic 39:f336caef17d9 28 // logical variable main task
pmic 39:f336caef17d9 29 bool do_execute_main_task = false; // this variable will be toggled via the user button (blue button) to or not to execute the main task
pmic 39:f336caef17d9 30
pmic 39:f336caef17d9 31 // user button on nucleo board
pmic 39:f336caef17d9 32 Timer user_button_timer; // create Timer object which we use to check if user button was pressed for a certain time (robust against signal bouncing)
pmic 42:d2d2db5974c9 33 InterruptIn user_button(PC_13); // create InterruptIn interface object to evaluate user button falling and rising edge (no blocking code in ISR)
robleiker 47:6693bffcdfd0 34
robleiker 47:6693bffcdfd0 35 /* ------------------------------------------------------------------------------------------- *
robleiker 47:6693bffcdfd0 36 * -- Constants and Parameters
robleiker 47:6693bffcdfd0 37 * ------------------------------------------------------------------------------------------- */
robleiker 47:6693bffcdfd0 38
robleiker 47:6693bffcdfd0 39 // default parameters for robots movement
robleiker 47:6693bffcdfd0 40 const float DISTANCE_THRESHOLD = 0.2f; // minimum allowed distance to obstacle in [m]
robleiker 47:6693bffcdfd0 41 const float TRANSLATIONAL_VELOCITY = 0.4f; // translational velocity in [m/s]
robleiker 47:6693bffcdfd0 42 const float ROTATIONAL_VELOCITY = 1.6f; // rotational velocity in [rad/s]
robleiker 47:6693bffcdfd0 43 const float VELOCITY_THRESHOLD = 0.05; // velocity threshold before switching off, in [m/s] and [rad/s]
pmic 39:f336caef17d9 44
robleiker 47:6693bffcdfd0 45 // discrete states of this state machine
robleiker 47:6693bffcdfd0 46 const int ROBOT_OFF = 0;
robleiker 47:6693bffcdfd0 47 const int MOVE_FORWARD = 1;
robleiker 47:6693bffcdfd0 48 const int TURN_LEFT = 2;
robleiker 47:6693bffcdfd0 49 const int TURN_RIGHT = 3;
robleiker 47:6693bffcdfd0 50 const int SLOWING_DOWN = 4;
robleiker 47:6693bffcdfd0 51
robleiker 47:6693bffcdfd0 52 /* ------------------------------------------------------------------------------------------- *
robleiker 47:6693bffcdfd0 53 * -- Static Function Declarations
robleiker 47:6693bffcdfd0 54 * ------------------------------------------------------------------------------------------- */
robleiker 47:6693bffcdfd0 55 static void user_button_pressed_fcn(); // custom functions which gets executed when user button gets pressed and released, definition below
robleiker 47:6693bffcdfd0 56 static void user_button_released_fcn();
robleiker 47:6693bffcdfd0 57
robleiker 47:6693bffcdfd0 58 /* ------------------------------------------------------------------------------------------- *
robleiker 47:6693bffcdfd0 59 * -- Main
robleiker 47:6693bffcdfd0 60 * ------------------------------------------------------------------------------------------- */
pmic 44:dd746bf0e81f 61 int main()
pmic 44:dd746bf0e81f 62 {
robleiker 47:6693bffcdfd0 63 /* ------------------------------------------------------------------------------------------- *
robleiker 47:6693bffcdfd0 64 * -- Setup: I/O
robleiker 47:6693bffcdfd0 65 * ------------------------------------------------------------------------------------------- */
pmic 39:f336caef17d9 66
pmic 42:d2d2db5974c9 67 // led on nucleo board
pmic 42:d2d2db5974c9 68 DigitalOut user_led(LED1); // create DigitalOut object to command user led
pmic 39:f336caef17d9 69
pmic 42:d2d2db5974c9 70 // create DigitalOut objects for leds
robleiker 47:6693bffcdfd0 71 DigitalOut enable_leds(PC_1);
pmic 42:d2d2db5974c9 72 DigitalOut led0(PC_8);
pmic 42:d2d2db5974c9 73 DigitalOut led1(PC_6);
pmic 42:d2d2db5974c9 74 DigitalOut led2(PB_12);
pmic 42:d2d2db5974c9 75 DigitalOut led3(PA_7);
pmic 42:d2d2db5974c9 76 DigitalOut led4(PC_0);
pmic 42:d2d2db5974c9 77 DigitalOut led5(PC_9);
pmic 42:d2d2db5974c9 78 std::vector<DigitalOut> leds = {led0, led1, led2, led3, led4, led5};
pmic 39:f336caef17d9 79
pmic 42:d2d2db5974c9 80 // create IR sensor objects
pmic 42:d2d2db5974c9 81 AnalogIn dist(PB_1);
pmic 42:d2d2db5974c9 82 DigitalOut bit0(PH_1);
pmic 42:d2d2db5974c9 83 DigitalOut bit1(PC_2);
pmic 42:d2d2db5974c9 84 DigitalOut bit2(PC_3);
pmic 42:d2d2db5974c9 85 IRSensor irSensor0(dist, bit0, bit1, bit2, 0);
pmic 42:d2d2db5974c9 86 IRSensor irSensor1(dist, bit0, bit1, bit2, 1);
pmic 42:d2d2db5974c9 87 IRSensor irSensor2(dist, bit0, bit1, bit2, 2);
pmic 42:d2d2db5974c9 88 IRSensor irSensor3(dist, bit0, bit1, bit2, 3);
pmic 42:d2d2db5974c9 89 IRSensor irSensor4(dist, bit0, bit1, bit2, 4);
pmic 42:d2d2db5974c9 90 IRSensor irSensor5(dist, bit0, bit1, bit2, 5);
pmic 42:d2d2db5974c9 91 std::vector<IRSensor> irSensors = {irSensor0, irSensor1, irSensor2, irSensor3, irSensor4, irSensor5};
pmic 39:f336caef17d9 92
robleiker 47:6693bffcdfd0 93 // attach button fall and rise functions to user button object
robleiker 47:6693bffcdfd0 94 user_button.fall(&user_button_pressed_fcn);
robleiker 47:6693bffcdfd0 95 user_button.rise(&user_button_released_fcn);
robleiker 47:6693bffcdfd0 96
pmic 42:d2d2db5974c9 97 // 19:1 Metal Gearmotor 37Dx68L mm 12V with 64 CPR Encoder (Helical Pinion)
pmic 42:d2d2db5974c9 98 DigitalOut enable_motors(PB_2);
pmic 42:d2d2db5974c9 99 DigitalIn motorDriverFault(PB_14);
pmic 42:d2d2db5974c9 100 DigitalIn motorDriverWarning(PB_15);
pmic 39:f336caef17d9 101
robleiker 47:6693bffcdfd0 102 /* ------------------------------------------------------------------------------------------- *
robleiker 47:6693bffcdfd0 103 * -- Setup: Motion Controller
robleiker 47:6693bffcdfd0 104 * ------------------------------------------------------------------------------------------- */
robleiker 47:6693bffcdfd0 105
pmic 42:d2d2db5974c9 106 // create SpeedController objects
pmic 42:d2d2db5974c9 107 FastPWM pwm_M1(PA_9); // motor M1 is closed-loop speed controlled (angle velocity)
pmic 42:d2d2db5974c9 108 FastPWM pwm_M2(PA_8); // motor M2 is closed-loop speed controlled (angle velocity)
pmic 42:d2d2db5974c9 109 EncoderCounter encoder_M1(PA_6, PC_7); // create encoder objects to read in the encoder counter values
pmic 42:d2d2db5974c9 110 EncoderCounter encoder_M2(PB_6, PB_7);
pmic 42:d2d2db5974c9 111 const float max_voltage = 12.0f; // define maximum voltage of battery packs, adjust this to 6.0f V if you only use one batterypack
pmic 42:d2d2db5974c9 112 const float counts_per_turn = 64.0f * 19.0f; // define counts per turn at gearbox end: counts/turn * gearratio
pmic 42:d2d2db5974c9 113 const float kn = 530.0f / 12.0f; // define motor constant in rpm per V
pmic 42:d2d2db5974c9 114
pmic 46:41c9367da539 115 // create Motion objects (trajectory planner)
pmic 46:41c9367da539 116 Motion* trajectoryPlaners[2];
pmic 46:41c9367da539 117 trajectoryPlaners[0] = new Motion;
pmic 46:41c9367da539 118 trajectoryPlaners[1] = new Motion;
pmic 46:41c9367da539 119 trajectoryPlaners[0]->setProfileVelocity(max_voltage * kn / 60.0f);
pmic 46:41c9367da539 120 trajectoryPlaners[1]->setProfileVelocity(max_voltage * kn / 60.0f);
pmic 46:41c9367da539 121 trajectoryPlaners[0]->setProfileAcceleration(10.0f);
pmic 46:41c9367da539 122 trajectoryPlaners[1]->setProfileAcceleration(10.0f);
pmic 46:41c9367da539 123 trajectoryPlaners[0]->setProfileDeceleration(10.0f);
pmic 46:41c9367da539 124 trajectoryPlaners[1]->setProfileDeceleration(10.0f);
pmic 46:41c9367da539 125
pmic 46:41c9367da539 126 // create SpeedController objects
pmic 42:d2d2db5974c9 127 SpeedController* speedControllers[2];
pmic 42:d2d2db5974c9 128 speedControllers[0] = new SpeedController(counts_per_turn, kn, max_voltage, pwm_M1, encoder_M1);
pmic 42:d2d2db5974c9 129 speedControllers[1] = new SpeedController(counts_per_turn, kn, max_voltage, pwm_M2, encoder_M2);
pmic 42:d2d2db5974c9 130 speedControllers[0]->setSpeedCntrlGain(0.04f); // adjust speedcontroller gains
pmic 42:d2d2db5974c9 131 speedControllers[1]->setSpeedCntrlGain(0.04f);
pmic 46:41c9367da539 132 //speedControllers[0]->setMaxAccelerationRPS(10.0f); // use this if you're not using the trajectoryPlaners
pmic 46:41c9367da539 133 //speedControllers[1]->setMaxAccelerationRPS(10.0f);
pmic 46:41c9367da539 134 speedControllers[0]->setMaxAccelerationRPS(999.0f); // adjust max. acceleration for smooth movement
pmic 46:41c9367da539 135 speedControllers[1]->setMaxAccelerationRPS(999.0f);
pmic 39:f336caef17d9 136
robleiker 47:6693bffcdfd0 137 /* ------------------------------------------------------------------------------------------- *
robleiker 47:6693bffcdfd0 138 * -- Setup: Robot Kinematics
robleiker 47:6693bffcdfd0 139 * ------------------------------------------------------------------------------------------- */
robleiker 47:6693bffcdfd0 140
pmic 42:d2d2db5974c9 141 // robot kinematics
pmic 42:d2d2db5974c9 142 const float r_wheel = 0.0766f / 2.0f; // wheel radius
pmic 42:d2d2db5974c9 143 const float L_wheel = 0.176f; // distance from wheel to wheel
pmic 42:d2d2db5974c9 144 Eigen::Matrix2f Cwheel2robot; // transform wheel to robot
pmic 42:d2d2db5974c9 145 //Eigen::Matrix2f Crobot2wheel; // transform robot to wheel
pmic 42:d2d2db5974c9 146 Cwheel2robot << -r_wheel / 2.0f , r_wheel / 2.0f ,
pmic 42:d2d2db5974c9 147 -r_wheel / L_wheel, -r_wheel / L_wheel;
pmic 42:d2d2db5974c9 148 //Crobot2wheel << -1.0f / r_wheel, -L_wheel / (2.0f * r_wheel),
pmic 42:d2d2db5974c9 149 // 1.0f / r_wheel, -L_wheel / (2.0f * r_wheel);
pmic 46:41c9367da539 150 Eigen::Vector2f robot_coord; // contains v and w (robot translational and rotational velocities)
pmic 46:41c9367da539 151 Eigen::Vector2f wheel_speed; // w1 w2 (wheel speed)
pmic 46:41c9367da539 152 Eigen::Vector2f wheel_speed_smooth; // w1 w2 (wheel speed)
pmic 46:41c9367da539 153 Eigen::Vector2f robot_coord_actual;
pmic 42:d2d2db5974c9 154 Eigen::Vector2f wheel_speed_actual;
pmic 42:d2d2db5974c9 155 robot_coord.setZero();
pmic 42:d2d2db5974c9 156 wheel_speed.setZero();
pmic 46:41c9367da539 157 wheel_speed_smooth.setZero();
pmic 46:41c9367da539 158 robot_coord_actual.setZero();
pmic 42:d2d2db5974c9 159 wheel_speed_actual.setZero();
pmic 39:f336caef17d9 160
robleiker 47:6693bffcdfd0 161 /* ------------------------------------------------------------------------------------------- *
robleiker 47:6693bffcdfd0 162 * -- Setup: State Machine
robleiker 47:6693bffcdfd0 163 * ------------------------------------------------------------------------------------------- */
robleiker 47:6693bffcdfd0 164
robleiker 47:6693bffcdfd0 165 // while loop gets executed every main_task_period_ms milliseconds
robleiker 47:6693bffcdfd0 166 const int main_task_period_ms = 10; // define main task period time in ms e.g. 50 ms -> main task runns 20 times per second
robleiker 47:6693bffcdfd0 167 Timer main_task_timer; // create Timer object which we use to run the main task every main task period time in ms
pmic 36:23addefb97af 168
pmic 39:f336caef17d9 169 // start timer
pmic 39:f336caef17d9 170 main_task_timer.start();
pmic 40:924bdbc33391 171
pmic 42:d2d2db5974c9 172 // set initial state machine state, enalbe leds, disable motors
pmic 42:d2d2db5974c9 173 int state = ROBOT_OFF;
robleiker 47:6693bffcdfd0 174
robleiker 47:6693bffcdfd0 175 /* ------------------------------------------------------------------------------------------- *
robleiker 47:6693bffcdfd0 176 * -- State Machine
robleiker 47:6693bffcdfd0 177 * ------------------------------------------------------------------------------------------- */
robleiker 47:6693bffcdfd0 178
pmic 42:d2d2db5974c9 179 enable_leds = 1;
pmic 42:d2d2db5974c9 180 enable_motors = 0;
pmic 36:23addefb97af 181
pmic 39:f336caef17d9 182 while (true) { // this loop will run forever
pmic 36:23addefb97af 183
pmic 39:f336caef17d9 184 main_task_timer.reset();
pmic 39:f336caef17d9 185
pmic 42:d2d2db5974c9 186 // set leds according to DISTANCE_THRESHOLD
pmic 42:d2d2db5974c9 187 for (uint8_t i = 0; i < leds.size(); i++) {
pmic 42:d2d2db5974c9 188 if (irSensors[i].read() > DISTANCE_THRESHOLD)
pmic 42:d2d2db5974c9 189 leds[i] = 0;
pmic 42:d2d2db5974c9 190 else
pmic 42:d2d2db5974c9 191 leds[i] = 1;
pmic 40:924bdbc33391 192 }
pmic 39:f336caef17d9 193
pmic 42:d2d2db5974c9 194 // read actual wheel speed and transform it to robot coordinates
pmic 42:d2d2db5974c9 195 wheel_speed_actual << speedControllers[0]->getSpeedRPS(), speedControllers[1]->getSpeedRPS();
pmic 42:d2d2db5974c9 196 robot_coord_actual = Cwheel2robot * wheel_speed_actual;
pmic 42:d2d2db5974c9 197
pmic 42:d2d2db5974c9 198 // state machine
pmic 39:f336caef17d9 199 switch (state) {
pmic 39:f336caef17d9 200
pmic 42:d2d2db5974c9 201 case ROBOT_OFF:
pmic 42:d2d2db5974c9 202
pmic 39:f336caef17d9 203 if (do_execute_main_task) {
pmic 42:d2d2db5974c9 204 enable_motors = 1;
pmic 42:d2d2db5974c9 205 robot_coord(0) = TRANSLATIONAL_VELOCITY;
pmic 42:d2d2db5974c9 206 robot_coord(1) = 0.0f;
pmic 39:f336caef17d9 207 state = MOVE_FORWARD;
pmic 39:f336caef17d9 208 }
pmic 39:f336caef17d9 209 break;
pmic 42:d2d2db5974c9 210
pmic 39:f336caef17d9 211 case MOVE_FORWARD:
pmic 42:d2d2db5974c9 212
pmic 39:f336caef17d9 213 if (!do_execute_main_task) {
pmic 42:d2d2db5974c9 214 robot_coord(0) = 0.0f;
pmic 42:d2d2db5974c9 215 robot_coord(1) = 0.0f;
pmic 39:f336caef17d9 216 state = SLOWING_DOWN;
pmic 42:d2d2db5974c9 217 } else if ((irSensors[0].read() < DISTANCE_THRESHOLD) || (irSensors[1].read() < DISTANCE_THRESHOLD)) {
pmic 42:d2d2db5974c9 218 robot_coord(0) = 0.0f;
pmic 42:d2d2db5974c9 219 robot_coord(1) = ROTATIONAL_VELOCITY;
pmic 42:d2d2db5974c9 220 state = TURN_LEFT;
pmic 42:d2d2db5974c9 221 } else if (irSensors[5].read() < DISTANCE_THRESHOLD) {
pmic 42:d2d2db5974c9 222 robot_coord(0) = 0.0f;
pmic 42:d2d2db5974c9 223 robot_coord(1) = -ROTATIONAL_VELOCITY;
pmic 39:f336caef17d9 224 state = TURN_RIGHT;
pmic 42:d2d2db5974c9 225 } else {
pmic 42:d2d2db5974c9 226 // leave it driving
pmic 39:f336caef17d9 227 }
pmic 39:f336caef17d9 228 break;
pmic 39:f336caef17d9 229
pmic 39:f336caef17d9 230 case TURN_LEFT:
pmic 42:d2d2db5974c9 231
pmic 39:f336caef17d9 232 if (!do_execute_main_task) {
pmic 42:d2d2db5974c9 233 robot_coord(1) = 0.0f;
pmic 39:f336caef17d9 234 state = SLOWING_DOWN;
pmic 39:f336caef17d9 235
pmic 42:d2d2db5974c9 236 } else if ((irSensors[0].read() > DISTANCE_THRESHOLD) && (irSensors[1].read() > DISTANCE_THRESHOLD) && (irSensors[5].read() > DISTANCE_THRESHOLD)) {
pmic 42:d2d2db5974c9 237 robot_coord(0) = TRANSLATIONAL_VELOCITY;
pmic 42:d2d2db5974c9 238 robot_coord(1) = 0.0f;
pmic 39:f336caef17d9 239 state = MOVE_FORWARD;
pmic 39:f336caef17d9 240 }
pmic 39:f336caef17d9 241 break;
pmic 39:f336caef17d9 242
pmic 42:d2d2db5974c9 243 case TURN_RIGHT:
pmic 42:d2d2db5974c9 244
pmic 39:f336caef17d9 245 if (!do_execute_main_task) {
pmic 42:d2d2db5974c9 246 robot_coord(1) = 0.0f;
pmic 39:f336caef17d9 247 state = SLOWING_DOWN;
pmic 42:d2d2db5974c9 248 } else if ((irSensors[0].read() > DISTANCE_THRESHOLD) && (irSensors[1].read() > DISTANCE_THRESHOLD) && (irSensors[5].read() > DISTANCE_THRESHOLD)) {
pmic 42:d2d2db5974c9 249 robot_coord(0) = TRANSLATIONAL_VELOCITY;
pmic 42:d2d2db5974c9 250 robot_coord(1) = 0.0f;
pmic 39:f336caef17d9 251 state = MOVE_FORWARD;
pmic 39:f336caef17d9 252 }
pmic 39:f336caef17d9 253 break;
pmic 39:f336caef17d9 254
pmic 39:f336caef17d9 255 case SLOWING_DOWN:
pmic 42:d2d2db5974c9 256
pmic 42:d2d2db5974c9 257 if ((fabs(robot_coord_actual(0)) < VELOCITY_THRESHOLD) && (fabs(robot_coord_actual(1)) < VELOCITY_THRESHOLD)) {
pmic 42:d2d2db5974c9 258 enable_motors = 0;
pmic 39:f336caef17d9 259 state = ROBOT_OFF;
pmic 39:f336caef17d9 260 }
pmic 39:f336caef17d9 261
pmic 39:f336caef17d9 262 break;
pmic 42:d2d2db5974c9 263
pmic 39:f336caef17d9 264 }
pmic 39:f336caef17d9 265
robleiker 47:6693bffcdfd0 266 /* ------------------------------------------------------------------------------------------- *
robleiker 47:6693bffcdfd0 267 * -- Inverse Kinematics
robleiker 47:6693bffcdfd0 268 * ------------------------------------------------------------------------------------------- */
robleiker 47:6693bffcdfd0 269
pmic 42:d2d2db5974c9 270 // transform robot coordinates to wheel speed
pmic 42:d2d2db5974c9 271 wheel_speed = Cwheel2robot.inverse() * robot_coord;
pmic 42:d2d2db5974c9 272
pmic 46:41c9367da539 273 // smooth desired wheel_speeds
pmic 46:41c9367da539 274 trajectoryPlaners[0]->incrementToVelocity(wheel_speed(0) / (2.0f * M_PI), static_cast<float>(main_task_period_ms) * 1.0e-3f);
pmic 46:41c9367da539 275 trajectoryPlaners[1]->incrementToVelocity(wheel_speed(1) / (2.0f * M_PI), static_cast<float>(main_task_period_ms) * 1.0e-3f);
pmic 46:41c9367da539 276 wheel_speed_smooth << trajectoryPlaners[0]->getVelocity(), trajectoryPlaners[1]->getVelocity();
pmic 46:41c9367da539 277
pmic 42:d2d2db5974c9 278 // command speedController objects
pmic 46:41c9367da539 279 //speedControllers[0]->setDesiredSpeedRPS(wheel_speed(0) / (2.0f * M_PI)); // use this if you're not using the trajectoryPlaners
pmic 46:41c9367da539 280 //speedControllers[1]->setDesiredSpeedRPS(wheel_speed(1) / (2.0f * M_PI)); // use this if you're not using the trajectoryPlaners
pmic 46:41c9367da539 281 speedControllers[0]->setDesiredSpeedRPS(wheel_speed_smooth(0)); // set a desired speed for speed controlled dc motors M1
pmic 46:41c9367da539 282 speedControllers[1]->setDesiredSpeedRPS(wheel_speed_smooth(1)); // set a desired speed for speed controlled dc motors M2
pmic 42:d2d2db5974c9 283
pmic 39:f336caef17d9 284 user_led = !user_led;
robleiker 47:6693bffcdfd0 285
robleiker 47:6693bffcdfd0 286 /* ------------------------------------------------------------------------------------------- *
robleiker 47:6693bffcdfd0 287 * -- Printing to Console
robleiker 47:6693bffcdfd0 288 * ------------------------------------------------------------------------------------------- */
pmic 36:23addefb97af 289
pmic 42:d2d2db5974c9 290 // do only output via serial what's really necessary (this makes your code slow)
pmic 45:d9e6e89210f9 291 //printf("%f, %f\r\n", wheel_speed_actual(0), wheel_speed_actual(1));
robleiker 47:6693bffcdfd0 292
robleiker 47:6693bffcdfd0 293 /* ------------------------------------------------------------------------------------------- *
robleiker 47:6693bffcdfd0 294 * -- Wait for the next Cycle
robleiker 47:6693bffcdfd0 295 * ------------------------------------------------------------------------------------------- */
pmic 36:23addefb97af 296
pmic 39:f336caef17d9 297 // read timer and make the main thread sleep for the remaining time span (non blocking)
pmic 42:d2d2db5974c9 298 int main_task_elapsed_time_ms = std::chrono::duration_cast<std::chrono::milliseconds>(main_task_timer.elapsed_time()).count();
pmic 39:f336caef17d9 299 thread_sleep_for(main_task_period_ms - main_task_elapsed_time_ms);
pmic 1:93d997d6b232 300 }
pmic 1:93d997d6b232 301 }
pmic 39:f336caef17d9 302
robleiker 47:6693bffcdfd0 303 static void user_button_pressed_fcn()
pmic 39:f336caef17d9 304 {
pmic 39:f336caef17d9 305 user_button_timer.start();
pmic 39:f336caef17d9 306 user_button_timer.reset();
pmic 39:f336caef17d9 307 }
pmic 39:f336caef17d9 308
robleiker 47:6693bffcdfd0 309 static void user_button_released_fcn()
pmic 39:f336caef17d9 310 {
pmic 39:f336caef17d9 311 // read timer and toggle do_execute_main_task if the button was pressed longer than the below specified time
pmic 39:f336caef17d9 312 int user_button_elapsed_time_ms = std::chrono::duration_cast<std::chrono::milliseconds>(user_button_timer.elapsed_time()).count();
pmic 39:f336caef17d9 313 user_button_timer.stop();
pmic 39:f336caef17d9 314 if (user_button_elapsed_time_ms > 200) {
pmic 39:f336caef17d9 315 do_execute_main_task = !do_execute_main_task;
pmic 39:f336caef17d9 316 }
pmic 39:f336caef17d9 317 }